
Computing Property Paths over Linked Data
Using AI Search

Jorge Baier, Dietrich Daroch, Juan L. Reutter, and Domagoj Vrgoč

PUC Chile and Center for Semantic Web Research

Abstract. The evaluation of SPARQL queries over the Web of Linked
Data poses significant challenges not seen when querying local RDF
datasets. This is particularly evident when processing property paths,
which are arguably one of the more important SPARQL features in
the context of Linked Data. Although semantics for property paths over
linked data have emerged, algorithms are currently lacking. In this paper
we show that the evaluation of a property path query can be reduced to
finding the solution of a single-agent deterministic search task, a prob-
lem which has been studied by the Artificial Intelligence (AI) community
for decades. By formulating the problem in terms of automata we are
able to define a variant of the A* search algorithm which can be used to
compute answers to property path queries over the Web of Linked Data.

1 Introduction

The Web of Linked Data comprises a wide variety of datasets that have been
published under a set of best practices and standards that aim to improve the
interconnection of these datasets and allow computers to search for information
the way humans do it with webpages (see e.g. [5]). The adoption of the linked
data standard and the creation of this new web has brought up several challenges,
one of the most important being how to query the Web of Linked Data.

From an algorithmic perspective, we define this problem as follows. We as-
sume that data in the Web is stored as RDF graphs, and that every IRI in these
graphs is dereferenceable, which in our context means that from any given IRI u
one should be able to obtain the set adoc(u) of hopefully all RDF triples in the
Web that mention u, or at least some of them. The main challenge is the sheer
size of the Web: it is not feasible to pose queries as if it was a single database. In-
stead, the idea is to leverage dereferencing to navigate the Web of Linked Data,
extracting only the information that is needed to process a given query.

Example 1. In order to retrieve actors with a finite Bacon number 1, we start
with the simpler task of computing all actors that have acted in a movie with
Kevin Bacon. We begin by searching DBPedia’s IRI for Kevin Bacon, which cor-
responds to dbr:Kevin Bacon (we omit prefixes for readability). We dereference

1 Actors have Bacon number 1 if they have acted in a movie with Kevin Bacon, and
Bacon number n if they have acted together with an actor with Bacon number n−1.

adoc(dbr:Kevin Bacon)

adoc(dbr:Footloose)

dbr:Kevin Bacon

ykr:Kevin Bacon

ykr:Hollow Man

dbr:Footloose

dbr:Crazy, Stupid, Love

dbr:Julianne Moore

dbr:Lori Singer

dbr:Ryan Gosling

dbr:Magnolia

dbp:starring

dbp:starring

dbp:starring

dbp:starring

dbp:starringdbp:starring

owl:sameAs

ykr:actedIn

(a) Graph Representation of RDF triples

dbr:Kevin Bacon owl:sameAs ykr:Kevin Bacon
dbr:Footloose dbp:starring dbr:Kevin Bacon
dbr:Crazy, Stupid Love dbp:starring dbr:Kevin Bacon

(b) RDF document corresponding to adoc(dbr:Kevin Bacon)

dbr:Footloose dbp:starring dbr:Kevin Bacon
dbr:Footloose dbp:starring dbr:Lori Singer

(c) Document corresponding to adoc(dbr:Footloose)

Fig. 1. A portion of the Web of Linked Data, depicting triples from DBPedia and Yago

this IRI to obtain the RDF document adoc(dbr:Kevin Bacon) shown in Figure
1. This document, in turn, contains a number of movies (we know an IRI I is
a movie when it is part of a triple of form I dbp:starring dbr:Kevin Bacon).
To finish our query we just need to dereference each of these movies, since they
will contain information about all the actors starring in them. For example, if we
dereference the IRI for Footloose we obtain the document adoc(dbr:Footloose),
which contains the information that Lori Singer also starred in Footloose.

Readers may note that in the particular example above we could have queried
the DBPedia endpoint to obtain this information. There are, however, advan-
tages in focusing on the more general problem of querying Linked Data. First,
knowing how to query the Web of Linked Data allows us to extract information
even when a suitable SPARQL endpoint does not exists, or just gives partial
information. Second, the Linked Data approach gives us a way to query the in-
formation without knowing the structure beforehand, but rather obtaining the
structure as we navigate the Web. And Finally, as we show in this paper, ab-
stracting to the more general Linked Data approach may sometimes even allow
us to propose algorithms that are better suited to process some SPARQL queries,
even in the context of a local database.

In order to express queries, the recommendation is to use SPARQL, the
default language for querying RDF datasets. Unfortunately, the official semantics

of SPARQL assumes we are dealing with a single dataset, and there is still no
standard semantics for SPARQL queries over the Web of Linked Data. The main
problem is that the open-world nature of the Web does not couple well with some
fragments of SPARQL, as the answers for some queries may be invalidated when
dereferencing additional tuples. For this reason, most previous work has focused
on simple, monotonic fragments of SPARQL (see e.g. [6, 14, 13]).

In this paper we focus instead on Property Paths, a navigational feature of
SPARQL 1.1 [11] that allow users to traverse through RDF documents, navi-
gating between two different entities. Given that traversing through nodes (by
dereferencing) is the most basic operation in linked data, it is conceivable that
property paths should have a major role when posing SPARQL queries over this
infrastructure. Unfortunately, this topic has remained mostly unexplored. There
has been some work about navigation within Linked Data (see e.g. [15, 9, 8]),
but the first proposal for semantics was published less than a year ago [16], and
it is still not clear how to actually compute the answers to property paths in the
linked data context. To understand the challenges we face, consider the following
property path pattern, designed to compute all actors within DBPedia [3] with
a finite Bacon number.

{ dbr:Kevin_Bacon (^dbo:starring/dbo:starring)+ ?x }

But how is one supposed to process this query? Recall that the structure of
the Web is not known, but must be learnt as we dereference new IRIs. If we
think of the Web of Linked Data as a huge graph, then a natural starting point
for algorithms to consider are Depth-first search (DFS) or Breadth-first search
(BFS). The DFS approach is clearly not the best option here, as the query above
allows for paths of arbitrary length and therefore defining when to stop the depth
search is not clear. BFS seemed to work with small graphs such as the one from
Figure 1. But plain BFS is not the best alternative either (and especially if we
are only interested in just a few answers): with BFS one would need to retrieve
all of Kevin Bacon’s movies before retrieving any answers. This algorithmic
issue becomes more and more involved when we deal with increasingly complex
property paths.

Our proposal is to specify the problem of evaluating property paths as a
search problem, and solve it using a variation of the classical A* algorithm.
More precisely, the following are our contributions.

– We show that answering property path queries over the Web of Linked Data
can be cast as what is known as a search problem, which are normally solved
with A* variants. This leads to the proposal of the first algorithm (up to our
best knowledge) for computing answers of property paths over the Web of
Linked data, that is also in line with previously proposed semantics [16].

– We show that this algorithm can be naturally extended to deal with more
expressive purely navigational queries such as pSPARQL [1], nested regular
expressions [21], NautiLOD [9] or LDQL [15], and show how to extend it so
that we return not only the nodes connected by a property path, but also
their witnessing paths of triples.

– We test the feasibility of the algorithm by running it over property paths
queries which have been considered in previous literature. We also compare
the algorithm to a BFS-based implementation and demonstrate that in the
worst case has comparable performance, and at best requires significantly less
resources to obtain query answers. structural proposals such as the Linked
Data Fragments.

2 Preliminaries

RDF graphs and linked data. Let I, L, and B be countably infinite disjoint
sets of IRIs, literals, and blank nodes, respectively. The set of RDF terms T is
I ∪ L ∪ B. An RDF triple is a triple (s, p, o) from T × I × T , where s is called
subject, p predicate, and o object. An (RDF) graph is a finite set of RDF triples.

To formalize the notion of Linked Data we rely on the model introduced in
[13]. A Web of Linked Data is a tuple W = (G, adoc), where G is a set of RDF
graphs and adoc : I → G ∪ {∅} is a function that assigns graphs in G to some
IRIs, and the empty graph to the resto of the IRIs 2.

The intuition behind this definition is that G represents the set of documents
in the Web of Linked data, and adoc captures IRI-based retrieval of documents
(for example, through dereference). Note that the tuple (G, adoc) is usually not
available and has to be retrieved by looking up IRIs with adoc.

Property Path Expressions. We adopt the formalisation in [19], but note

JaKG = {(s, o) | (s, a, o) ∈ G},
Je−KG = {(s, o) | (o, s) ∈ JeKG},

Je1 · e2KG = Je1KG ◦ Je2KG,
Je1 + e2KG = Je1KG ∪ Je2KG,

Je+KG =
⋃

i≥1Je
iKG,

Je∗KG = Je+KG ∪ {(a, a) | a is a term in G},
Je?KG = JeKG ∪ {(a, a) | a is a term in G},

J!{a1, . . . , ak}KG = {(s, o) | ∃a with (s, a, o) ∈ G and a /∈ {a1, . . . , ak}},
J!{a−1 , . . . , a

−
k }KG = {(s, o) | (o, s) ∈ J!{a1, . . . , ak}KG},

Table 1. The evaluation JeKG of a property path expression e over an RDF graph G.
Here ◦ is the usual composition of binary relations, and ei is the concatenation e · . . . ·e
of i copies of e relations.

that the standard sometimes uses different symbols for operators; for example,
inverse paths e− and alternative paths e1 + e2 from our definition are denoted
there by ˆe and e1 | e2, respectively.

2 Previous work such as [13] usually defines adoc as a partial function. We adopt
instead the convention that adoc(u) = ∅ whenever adoc is not defined for u, as it
simplifies the presentation of this paper

Definition 1. Property path expressions are defined by the grammar

e := a | e− | e1 · e2 | e1 + e2 | e+ | e∗ | e? | !{a1, . . . , ak} | !{a−1 , . . . , a
−
k },

where a, a1, . . . , ak are IRIs in I. Expressions starting with ! are called negated
property sets. We denote the set of all property path expressions by PP.

The normative semantics of Property Path expressions is given in terms of the
evaluation JeKG of a property path expression e over an RDF graph G, and is
shown in Table 1. As is usual with navigational languages for graph databases,
the problem of deciding whether a pair of IRIs belongs to the evaluation of a
Property Path expression e in a graph G is rather easy in terms of computational
complexity. For example, Kostlyev et al. provide an algorithm that works in time
O(|G| · |e|) that is based on a simple reachability argument [19].

Let V be an infinite set of variables disjoint from T . We denote elements of V
by ?x, ?y, etc. A property path pattern is a triple in (T ∪V)×PP×(T ∪V) . For in-
stance, the expression (dbr:Kevin Bacon, (dbo:starring−dbo:starring)+, ?x)
is a property path pattern. Property path patterns are added to SPARQL as as
usual graph patterns (see [19] for more details). The set of variables of a property
path pattern P , denoted by V ar(P), is simply the set containing all elements
from V appearing in P . Semantics of a property path pattern is defined via map-
pings in the same way as for usual SPARQL queries [11]. The evaluation of a
property path pattern P = (u, e, v) over a graph G is then formally defined as the
set of all mappings {µ : V ar(P)→ T | (µ∗(u), µ∗(v)) ∈ JeKG}, where µ∗(u) = u,
if u ∈ T , and µ∗(u) = µ(u) if u ∈ V. Note that we adopt set semantics: we only
focus on the mappings retrieved by a pattern and not their cardinality.

3 Property Paths over Linked Data

In this section we formally define the problem of computing property paths over
linked data. Since our goal is to solve this problem using AI search techniques,
it is best if we adopt an automata theoretic approach to define the answers of a
property path. We thus start by introducing the notion of property automata,
and then show how to use these automata to define the answers of property path
patterns. We finish with a comparison with the semantics introduced in [16].

3.1 Automata for Property Paths

Let Σ be a set of IRIs, and define Σ− = {a− | a ∈ Σ} and Σ±! = Σ∪Σ−∪{!S |
S ⊆ Σ or S ⊆ Σ−}. A property automaton over Σ is just an NFA over the
extended alphabet Σ±!. That is, a tuple A = {Q,Σ, q0, F, δ}, where Q is the set
of states, q0 is an initial state, F is the set of final states and δ ⊆ Q×Σ±! ×Q
is the transition relation.

Example 2. Consider the following simple automata, which intuitively corre-
sponds to the property path (dbo:starring−/dbo:starring)+ from the in-
troduction.

q0start q1 qf

dbo:starring− dbo:starring

dbo:starring−

As we can see, the idea is to represent each property path with an automaton,
in the same way as it is done with classical regular expressions. The difference
in syntax is that some transitions can be labelled with inverses, and others with
sets of IRIs or inverses of IRIs. The semantics, however, is completely different
from regular NFAs.

Semantics. In order to give semantics for property automata, we fix a Web of
Linked Data W = (G, adoc) and define the function neighborsa, parameterised
by the symbol a ∈ Σ±!, that takes an IRI u as input and gives all those IRIs that
can be traversed from u by means of a. Formally, for each a ∈ Σ±! we define the
function neighborsa(u) : I → 2T as follows:

– neighborsa(u) = {u′ | adoc(u) contains the triple (u, a, u′)}, if a ∈ Σ;
– neighborsa(u) = {u′ | adoc(u) contains the triple (u′, a, u)}, if a ∈ Σ−; 3

– neighborsa(u) = {u′ | u′ ∈ neighborsb(u) for b /∈ S}, if a =!S and S ⊆ Σ;
– neighborsa(u) = {u′ | u′ ∈ neighborsb−(u) for b− /∈ S}, if a =!S and S ⊆ Σ−.

Semantics is given by means of configurations. A configuration of a property
automaton A is a tuple (q, u), where q is a state in Q and u is a term in T .
Intuitively, a configuration represents a piece of the navigation that is defined
by A: we are positioned in u while parsing A in state q.

A run of a property automaton is a sequence of configurations c0, . . . , ck such
that c0 is of the form (q0, u), ck is of the form (qf , u

′) for some state qf ∈ F ,
and for each ci = (qi, ui) and ci+1 = (qi+1, ui+1) we have that:

1. There is a symbol a ∈ Σ±! such that qi+1 belongs to δ(qi, a),
2. The IRI ui+1 belongs to neighborsa(ui)

Note that, unlike regular NFAs, the runs for property automata are defined with
respect to a starting term and an ending term. In this case we say that the run
starts in u and ends in u′.

Example 3. Let us consider a run of the automata in Example 2 that starts
in dbr:Kevin Bacon and ends in dbr:Julianne Moore. The run starts with
(q0, dbr:Kevin Bacon), which corresponds to the initial configuration for Kevin
Bacon. Next, given that adoc(dbr:Kevin Bacon) contains the triple

(dbr:Crazy Stupid Love, dbo:starring, dbr:Kevin Bacon),

3 Note that we are implicitly assuming that adoc(u) contains at least some triples
where u is not the subject, but the object. While some servers do register in adoc(u)
all triples where u is present, others only register those triples where u is a subject.
We discuss how to deal with this issue in Section 3.3.

then dbr:Crazy Stupid Love is in neighborsdbo:starring−(dbr:Kevin Bacon),
which allows us to advance to the configuration (q1, dbr:Crazy Stupid Love).
The final configuration, (qf , dbr:Julianne Moore), is reached using a similar
argument.

3.2 Using automata to compute SPARQL queries

As it is customary in formal languages, to each property path e we can associate
a property automaton Ae. We obtain this automaton in two steps:

– First we normalize e into an equivalent property path e′ where all the inverses
are applied only to IRIs (see e.g. [4] for a precise algortithm).

– Treating e′ as a standard regular expression over Σ±! (we can do this because
e′ is already normalized), we construct an NFA (over Σ±!) for e′ in the usual
way. The property automata Ae is an exact copy of this NFA, except Ae runs
over Σ and is understood as a property automaton.

The following shows that automata capture the correct notion of computing
links for property paths. Recall that we are working with a fixed Web of Linked
Data W = (G, adoc). We can then define the graph Ω of W as Ω =

⋃
G∈G G.

Proposition 1. Let e be a property path and Ae the corresponding property
automata, and let u, u′ be IRIs. If there is a run for Ae that starts in u and
ends in u′, then (u, u′) ∈ JeKΩ.

With this proposition we can now turn to the evaluation of SPARQL property
path patterns. We say that an IRI u′ can be discovered from an IRI u using an
automatonA if there is a run that starts in u and ends in u′. Using this definition,
we can specify an alternative semantics for the evaluation of SPARQL property
path patterns over graphs.

Definition 2 (Automata-based semantics). Given a property path pattern
P and a Web of Linked Data W , the result of evaluating P over W under
automata-based semantics is denoted JP KAW . The definition is given in Figure 2.

Patterns of the form {?x e ?y} are especially problematic, as both the start
and end are existentially quantified and therefore there is nowhere to draw IRIs
from. We define the semantics assuming there is already a graph G where we
can draw IRIs from, for example, the graph that we have explored in previous
computations or in the evaluation of a different pattern in the same computation.

3.3 Inverses and comparison with previous semantics

As argued by Hartig and Pirrò [16], the semantics as defined in the standard
is not directly applicable to linked data that is distributed on the Web, as it
is defined assuming a single, centralised graph. To remediate the situation they
propose a context-based semantics for property paths, in line with the context-
based semantics for SPARQL graph patterns proposed in [14, 13].

Ju e u′KAW = [] if and only if u′ can be discovered from u using Ae.
Ju e ?xKAW = {[?x→ u′] such that u′ can be discovered from u using Ae}.
J?x e uKAW = {[?x→ u′] such that u′ can be discovered from u using Ae−}.
J?x e ?yKAW = {[?x→ u, ?y → u′] s.t. either u ∈ G and u′ can be discovered from u

using Ae, or u′ ∈ G and u can be discovered from u′ using Ae−}.

Fig. 2. Alternative semantics JKAW for the evaluation of property path patterns. Here
u and u′ are IRIs, e is a property path, and G is an RDF graph. We use [] to denote
the empty mapping and [?x → u] and [?x → u, ?y → u′] to denote the mapping that
only maps ?x to u, and ?x to u and ?y to u′, respectively.

Specifically, Hartig and Pirrò distinguish two types of semantics: a Full-Web
semantics and the aforementioned Context-based semantics. Full-Web semantics
for a property path e is just JeKΩ, which corresponds to the evaluation of e over
the complete graph of the Web. But, as we mentioned, this semantics is not
feasible in practice. This is why the alternative Context-based semantics was
proposed, which can be seen as an approximation of Full Web semantics: since
there is no way to obtain all possible answers, we just take what the context-
based semantics gives us.

The idea of context-based semantics is that the next triples that should follow
the evaluation of a property path can only be selected within the document that
we are currently exploring. Assume that we are evaluating a property path e of
the form a∗b, for some a, b ∈ I. Moreover, assume that we have a sequence of
triples (u0, a, u1), (u1, a, u2), . . . (un−1, a, un). Now, in order to continue from un
with this path, we need to find a triple of the form (un, a, un+1) or (un, b, un+1)
for some un+1 ∈ T . The question is, where do we look for this triple? Full Web
semantics tells us that we should look for this triple in the entire Web, which
is not very practical as we have no efficient way of doing this. Context-based
semantics restricts this search over adoc(un), the document retrieved from un.

It turns out that we can define Context-based semantics in our terms, albeit
a little bit of extra work is needed when property paths use inverses. The first
observation is that both semantics coincide for the case of property paths that
do not use inverse paths. This is expected, since our automata are also based on
the idea of looking for connections only in those triples that are dereferenced.

Proposition 2. For every property path pattern (u, e, ?x), for ?x in V and u ∈
T , and where e does not use inverses, the set J(u, e, ?x)KAW coincides with the set
of mappings retrieved by the context-based semantics of [16].

The comparison becomes more complicated when considering property paths
with inverses or patterns of the form (?x, e, u) (even if now e does not use inverse).
To see this, consider the pattern (?x, knows, Tim), which under our semantics is
equivalent to (Tim, knows−, ?x). To compute answers for this query we need to
retrieve IRIs u′ such that there is a triple of the form (u′, knows, Tim). Since
our focus is on the algorithmic side, we have assumed for now that we look for
those triples in adoc(Tim). In contrast, to state Hartig and Pirrò’s context-based
semantics in our term we need to define neighborsa−(u) as the set of all IRIs

u′ ∈ I such that adoc(u′) now contains the triple (u′, a, u). In other words, we
now search for all possible IRI’s that, when dereferenced, produce the triple
in question. However, even they acknowledge that there is no feasible way to
compute these answers.

Computing reverse links in practice. As we have mentioned, our algorithms
rely on the assumption that adoc(u) contains some triples where u is not the
subject, but the object. Having these types of reverse links is not uncommon in
Linked Data, and for example this is the case for DBPedia. Nevertheless, to cope
with the cases when adoc(u) does not contain reverse links, we maintain a list
of SPARQL endpoints in our system that can be used in case adoc(u) does not
contain inverse links. In this case we look whether the domain of u corresponds
to the domain of any of our endpoints. If it is so, then we set neighborsa−(u) as
the set of all answers to SPARQL query SELECT ?s WHERE {?s a u}, posed in
the endpoint corresponding to u. This practical definition of neighborsa−(u) is
clearly less general that what Hartig and Pirrò define, so even with this hack we
can only guarantee that our algorithm will deliver just a subset of the answers
defined by their context-based semantics.

We would like to note that the community is already building an infrastruc-
ture that would eliminate this mismatch: the Linked Data Fragments initiative
[24], which aims to study different ways of publishing linked data on the web.
Specifically, one of the proposals of this initiative is to build an infrastructure
that can support the answer of any SPARQL triple pattern. This infrastruc-
ture is called Triple Pattern Fragments [23] and, if present, would be enough
to process runs of our automata, since both neighborsa(u) and neighborsa−(u)
can be obtained with the triple pattern queries SELECT ?x WHERE {u a ?x} and
SELECT ?x WHERE {?x a u}, respectively.

4 Property Automata Querying as AI Search

Heuristic Search is a well-established area of Artificial Intelligence (AI) that aims
at solving hard search problems, with applications ranging from puzzle solving
(e.g., [18]) to computational biology (e.g., [17]). A deterministic, single-agent
search problem intuitively corresponds to finding a path in a graph connecting
an initial state with a goal state. More precisely, a search problem is a tuple
(s0, Act,Succ, ϕG), where:

– sstart , Act, and Succ define an implicit search graph in the following way.
sstart is the initial state. Act is a set of action operations (or simply actions),
and Succ is a partial function that given an action and a state returns a
state. We denote actions by the letter o, and states by s (with subscripts is
needed). When Succ(o, s) is defined we say that o is applicable in state s.
We say s′ is a successor of s if for some o ∈ Act, Succ(o, s) = s′. Slightly
abusing notation, Succ(s) denotes the set containing all the successors of
s. The nodes of the search graph are sstart and all states resulting from
successive application of actions over sstart . An arc between s and s′ exists
if and only if s′ is a successor of s.

– ϕG is a goal condition, which is a Boolean function that returns true for goal
states.

A solution to a search problem is a sequence of action operations o0o1o2 . . . on
whose successive application over s0 leads to a state that satisfies ϕG. To define
this formally we extend the definition of Succ to sequences of actions: if α is a
sequence of actions and o ∈ Act, then Succ(oα, s) is equal to Succ(o,Succ(α, s)) if
Succ(α, s) is defined, and is undefined otherwise. In addition Succ(α, s) = s if α is
the empty sequence. A state trace ρ = s0s1 . . . sn+1 is induced by the execution of
a sequence of actions o0o1 . . . on iff s0 = sstart and Succ(o0 . . . oi, sstart) = si+1,
for every i ∈ {0, . . . , n}. A sequence of actions α is a solution to the search
problem iff Succ(α, sstart) satisfies ϕG.

The problem of computing the run for a given automaton (i.e., finding the
answer to a property path query), can be reduced to that of finding a solution
to a search problem. Indeed, given a property automaton A = {Q,Σ, q0, F, δ},
and an initial IRI u0, we define a search problem P = (s0, Act,Succ, ϕG), where

– s0 = (q0, u0), thus the initial state is an ordered pair containing an IRI and
the initial state of A.

– Act = Σ±! ×Q.
– Succ((a, p), (q, u)) is defined as (q′, u′) if p = q′, neighborsa(u) contains u′,

and δ(q, a) = q′, and it is undefined otherwise.
– ϕG(u, q) is defined as q ∈ F .

Intuitively, an action (a, q′) tells us that by reading a letter a we move to the state
q′ of A. We need both the state and the symbol because A is nondeterministic.
Our states are configurations of the property path automaton A (over a Web of
linked data), so an action (a, q′) is applicable to (q, u) with the result (q, u′), if
δ(q, a) = q′, and u′ is an a-neighbor of u. The following result establishes that a
run of the property automaton A can be obtained by solving P .

Proposition 3. If α is a solution to P then the state trace ρ induced by α on
s0 is a run of A.

4.1 A Search Algorithm for Property Path Queries

A* [12] is one of the most well-known algorithms for solving search problems.
Besides a search problem, A* receives a heuristic function, h, as a parameter.
This function, which is key to A*’s performance is an estimate of cost-to-go; in
other words, h(s) estimates the cost of a path from s to a goal state. If h is
admissible, i.e., it is such that for every state s, h(s) never overestimates the
cost of any path from s to a goal state, then A* is guaranteed to find an optimal
solution; i.e., a shortest path between the initial state and a goal.

In a nutshell A* works as follows. At every moment it keeps a list of states,
Open, in which states are ranked using a function f(s) = g(s) + h(s), where h
is the heurisitic function and g(s) is the cost of the best path towards s that
has been found so far by A*. In each iteration it performs the following steps:

(1) the lowest f -value state, sbest , is extracted from Open; (2) if sbest is a goal,
it returns; (3) sbest is expanded, which means that each successor s′ of sbest is
computed and added to Open unless s′ has been previously found by the current
run via a better path.4

While A* can be applied directly to the problem of answering a path property
query, here we propose to use variant of k-Best-First Search (k-BFS) [7]. k-BFS
is a generalization of A* that expands k nodes of least f -value instead of simply
one (like A* does). k-BFS is A* when k equals 1. k-BFS is also optimal when h
is admissible.

The reason why we use k-BFS instead of A* is that expansions are com-
putationally expensive in query answering (we elaborate on this later when we
describe implementation aspects). The variant we use simply expands those k
successors in parallel. As successors are computed, we add them to Open. Af-
ter all successors have been computed (and added to Open), we continue with
the next iteration. Algorithm 1 shows a pseudocode of k-BFSPE. The main dif-
ferences between this and a standard A* pseudocode are as follows. k-BFSPE

extracts, in one shot, k nodes from the Open list, unlike A* which only extracts
one state from Open. In addition, k-BFSPE expands several states in parallel
(Line 9).
Guiding Search with a Heuristic. Above we mentioned that heuristic func-
tions are essential for the performance of search algorithms. It turns out that for
this class of problems it is possible to obtain an admissible heuristic from the
property automaton in a rather straightforward way. Indeed, assume a problem
P has been constructed using the property path automaton A. Observe that
the minimum number of actions required to reach a goal state from state (u, q)
cannot exceed the number of edges of a shortest path between the automaton
state q and a final state in the graph for automaton A. This is because each
time an action is applied to (u, q) the successor state (u′, q′) must be such that
there is an edge between q and q′ in the automaton’s graph. Prior to search, we
compute the shortest path of each state q in A to some final state, and store this
value as an attribute of q. During search, h(u, q) is a simple lookup that takes
constant time.
A Discussion of Implementation Aspects. We implemented Algorithm 1
in Python. Consistent with standard AI implementations, the Open list is im-
plemented with a priority queue, and generated states (Line 13) are stored in a
hash table. The following aspects however are not standard in AI applications
and are very particular to the application of A* over Linked Data.

– The computation of Succ((a, q′), (q, u)) needs an HTTP request to IRI u
(we implement this using the RDFlib library). Therefore the time needed
for this operation is extremely high relative to other operations of the search
algorithm. This is the main reason we chose to run expansions in parallel.
If many of the IRIs being expanded reside on the same server, this could

4 In fact, if s′ is already in Open and has been re-discovered via a better path most
implementations will decrease the key of s′ in Open instead of adding s′ again to
Open.

Algorithm 1: k-BFSPE with Parallel Expansions
1 procedure k-BFSPE
2 Let Open be a priority queue ordered by f attribute
3 g(sstart)← 0
4 f(sstart)← h(sstart)
5 Insert sstart into Open
6 while Open 6= ∅ do
7 Initialize B with an empty list
8 Extract min{k, |Open|} states from Open, and insert them in B
9 parallel for each b in B do

10 Expand(b)

11 procedure Expand (s)
12 for each o in Act such that Succ(o, s) is defined do
13 t← Succ(o, s)
14 if t is a goal state then
15 Output t

16 if t has not been seen before then
17 Store t in memory
18 g(t)←∞
19 cost← g(s) + 1
20 if cost < g(t) then
21 g(t) = cost
22 f(t) = g(t) + h(t)
23 parent(t) = 〈s, a〉
24 if t 6∈ Open then
25 Insert t in Open

26 else
27 Update priority of t in Open

lead to delays or closed connections. Thus the optimal parameter k may be
query- and database-specific.

– Our implementation keeps a local RDF graph which is formed by every
triple (u, a, u′) that has ever been fetched. This allows speeding up state
re-expansions, but it also allows another interesting feature: because all pre-
viously seen triples are in memory, the implementation may compute a more
complete version of the adoc function when it is looking for inverses. Indeed,
if (u, a, u′) has been fetched from the document u (when expanding a state
of the form (q, u)), the algorithm “remembers” that u is related inversely to
u′ via a. If, later on, a state of the form (q′, u′) is expanded, then (u, a, u′)
can be considered as being part of adoc(u′) even if such a triple is not in it.

– As stated previously, computing “inverse” neighbors of u can be particularly
problematic in practice, since most servers do not even publish inverse triples
available on that very server. Because of this our implementation sometimes
uses endpoints to obtain inverse edges, as described in Section 3.3.

4.2 Getting more than property paths

While the idea of computing the paths that explain a particular property path
expression is not new, it has been classified as a difficult problem, since the
number of those paths can be arbitrarily large. Previous attempts of restricting
the structure of paths have been also deemed infeasible (see e.g. [2, 20]), so there

is still not a clear consensus on what types of paths may or could be retrieved
from the evaluation of property path patterns over RDF graphs.

Another huge advantage of using our search algorithms is that we can actually
retrieve the shortest path of triples that serve as an explanation for the answers
of a property path expression. We formalise this as follows.

Let t1, . . . , tn be a sequence of triples, where each ti is (si, pi, oi), and consider
a run π = c1, . . . , cn+1 for a property automaton A, where each ci is (qi, ui). We
say that the sequence t1, . . . , tn witnesses the run π if c1 is either (q0, s1) or
(q0, o1), and for each 1 ≤ i ≤ n, one of the following holds.

– We have that ui = si, state qi+1 is in δ(qi, pi) and ui+1 = oi, or
– it holds that ui = oi, state qi+1 is in δ(qi, p

−
i) and ui+1 = si, or

– we have that ui = si, state qi+1 is in δ(qi, !S) for some S ⊆ Σ such that pi
is not in S and ui+1 = oi; or

– we have that ui = oi, state qi+1 is in δ(qi, !S) for some S ⊆ Σ− such that
p−i is not in S and ui+1 = si.

From this definition and Proposition 1, it is immediate to see that the prop-
erty automata Ae of a property path e has a run that starts in u and ends in
u′ if and only if this run is witnessed by a sequence t1, . . . , tn of triples in the
Web of Linked Data. This sequence can be understood as the path that explains
why (u, u′) belongs to the evaluation of e. Coming back to Example 3, the corre-
sponding sequence of triples that witness the run given in this example is simply:
(dbr:Crazy Stupid Love, dbo:starring, dbr:Kevin Bacon),
(dbr:Crazy Stupid Love, dbo:starring, dbr:Julianne Moore).

On input u and A, our implementation already computes a state trace ρ and
a set α of actions that correspond to a run of A that starts in u. However, one
could easily modify Algorithm 1 so that we also retrieve a sequence of triples that
witnesses such run, simply by storing the triple we use to verify that Succ(o, s)
is defined. by the properties of our algorithm, one can actually show that, for
each pair (u, u′) we actually retrieve the shortest possible sequence of triples,
amongst all the possible witnessing sequences that are formed with triples in the
documents that we discover.

5 Experimental Evaluation

Next, we show how the algorithm from Section 4 fares when computing property
paths over the Web of linked data. The objective of this study is twofold: first, we
will show that our implementation can compute a significant amount of answers
to property path queries which fail on SPARQL endpoints (even when asked for
a single result); and second, we compare our algorithm to the most obvious way
to implement property paths, namely, breadth-first-search (BFS). As input we
take the property path (which is transformed into an appropriate automaton),
and the start IRI, which allows us to search for the required data on the Web.
We would again like to stress that at the beginning of the evaluation we do not
have a local dataset which can aid us in the search. For our study we selected

five property path queries appearing in the previous literature [10, 22], and des-
ignated an appropriate start IRI for their evaluation. None of the five queries
returns any answers when ran over the appropriate public SPARQL endpoint,
due to exceeding the allotted memory quota, even when limited to a single an-
swer. The queries are as follows (see http://dvrgoc.ing.puc.cl/Planning for
more details):

– Q1: This query finds the (transitive) co-authors of Jorge A. Baier, starting
in the DBLP dataset;

– Q2 and Q3: Here we return actors with a finite Bacon number, while starting
in DBPedia (Q2) and YAGO (Q3), respectively;

– Q4: The query Q4 finds places located in a geographical entity which has
something to do with some European capital (starting in YAGO);

– Q5: This query searches the YAGO dataset in order to find places connected
to an airport in the Netherlands.

Experiment Setup. Since our goal is to illustrate that A* variants can be use-
ful when a partial answer to the query suffices, we test how much resources are
required in order to compute the first one, ten, fifty and hundred answers. As
users are usually not interested in seeing all the answers, having an algorithm
capable of returning a fixed quantity of answers can provide very useful, partic-
ularly taking into account that our approach also has the ability to return path
witnessing the answer to a property path query virtually for free.

Of course, when running queries over the Web, the execution time is not
a good indicator of the efficiency of an algorithm, since it depends on many
factors outside of our control (for instance, in one of the queries the first run
took 2 seconds, and the next one 160, although both produced precisely the same
sequence of requests). For this reason we measure the efficiency of our evaluation
with respect to the number of server requests. To ensure some sort of a fair-usage
policy, we also limited the total number of triples which can be obtained from
the server to 100000, in order not to bomb the server with limitless requests.
Since the queries Q1 through Q5 had trouble executing on the endpoints they
were designed for due to exceeding the memory limit, we will also report the
total amount of (system) memory our implementation used to compute the last
answer to the query. As a baseline we test the algorithm with no parallelism
(that is, 1-BFS, which in our context is essentially equivalent to classical A*).
When parallel calls are allowed, the only efficiency measure that changes is the
execution time, while the total number of requests, triples obtained, and the
memory used is roughly the same.

Results. Table 2 shows the result of our runs. We see that for a small set of
answers we do not require huge amount of requests to the server, and the memory
required to compute the answers is generally pretty low.

Although the numbers we provide are indicative that A*-based implementa-
tions of property paths are feasible in practice, as a sanity-check, we would also
like to compare our implementation to the most obvious approach to computing
property paths: using breadth-first-search (BFS). Note that BFS can be viewed

Requests used to compute i answers
LIMIT 1 LIMIT 10 LIMIT 50 LIMIT 100 Memory

Q1 4 27 162 305 42 MB

Q2 3 10 63 118 44.5 MB

Q3 3 11 59 123 39.7 MB

Q4 5 5 N/A N/A 46.8 MB

Q5 4 11 97 N/A 32 MB

Table 2. Number of requests needed to compute i-answers (i is the number in LIMIT).
We also report the total memory used to compute the final answer (for Q4 and Q5 this
is 20 and 50, respectively). All of the queries exceed the memory limit when ran on the
corresponding endpoint and did not return any answers.

as a special case of A*, where the heuristic forces each node to be expanded
completely, before getting a step closer to the final state. Here we test how our
implementation fares when compared to BFS in terms of the number of server
requests (the other measures, such as the number of triples, or memory, scale
accordingly). Figure 3 shows the result for the runs not utilizing parallelism,
however, analogous set of numbers is obtained when considering parallel runs.
As one would expect, the results depend heavily on the shape of the queried
data. In particular, for queries Q2, Q3 and Q5, we obtain many answers by
doing just one or two joins, thus resulting in a comparable number of requests
for BFS and A*. In case of queries Q1 and Q4, however, we can see that the
number of requests and used triples is significantly lower for A*, mainly due to
the fact that most answers are not obtainable by expanding the first node (or
just a few nodes), but the paths one must follow in order to answer the query are
much longer. To further illustrate his point, we also modified Q2, in order to find
actors at distance 2, 3, and 4 from Kevin Bacon. The results here show that for
distance 3 and 4, BFS can not even compute a single answer, due to surpassing
the amount of permitted triples (100000), while A* finds first 100 answers using
only 124 and 126 requests, in case of distance 3 and 4, respectively. When we
require actors at a distance 2, BFS can compute the answers, however, it uses
almost triple the amount of requests that A* needs (297 vs. 122).

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

Q1	 Q2	 Q3	 Q4	 Q5	

A*	 BFS	

(a) Requests needed for 10 answers

0	
200	
400	
600	
800	

1000	
1200	
1400	
1600	

Q1	 Q2	 Q3	 Q4	 Q5	

A*	 BFS	

(b) Requests needed for 100 answers

Fig. 3. Comparison of A* and BFS-based runs for queries Q1 through Q5.

Overall, we can conclude that using A* is a viable approach to implementing
property paths when we do not want to compute the entire answer, but want to
obtain the first few answers to the query rather quickly, and using relatively few
server requests. What is encouraging is that we can show that A* is at its worst
comparable to BFS, but when the data is more spread out, it can really speed up
the computation. We would also like to highlight that this implementation also
uses a very limited amount of working memory, and since all of the endpoints
struggled with evaluating property paths due to a high memory demand, it might
be a good alternative to evaluating property path queries over public endpoints.

6 Conclusions and Future Work

References

1. Alkhateeb, F., Baget, J., Euzenat, J.: Extending SPARQL with regular expression
patterns (for querying RDF). J. Web Sem. 7(2), 57–73 (2009)

2. Arenas, M., Conca, S., Pérez, J.: Counting beyond a Yottabyte, or how SPARQL
1.1 property paths will prevent adoption of the standard. In: WWW 2012 (2012)

3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia:
A nucleus for a web of open data. Springer (2007)

4. Barceló, P., Pérez, J., Reutter, J.L.: Relative Expressiveness of Nested Regular
Expressions. In: AMW. pp. 180–195 (2012)

5. Berners-Lee, T., Bizer, C., Heath, T.: Linked data-the story so far. International
Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)

6. Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach,
J., Lerer, A., Sheets, D.: Tabulator: Exploring and analyzing linked data on the
semantic web. In: SWUI Workshop (2006)

7. Felner, A., Kraus, S., Korf, R.E.: KBFS: k-best-first search. Annals of Mathematics
and Artificial Intelligence 39(1-2), 19–39 (2003)

8. Fionda, V., Gutierrez, C., Pirrò, G.: The swget portal: Navigating and acting on
the web of linked data. J. Web Sem. 26, 29–35 (2014)

9. Fionda, V., Pirrò, G., Gutierrez, C.: NautiLOD: A Formal Language for the Web
of Data Graph. TWEB 9(1), 5:1–5:43 (2015)

10. Gubichev, A., Bedathur, S.J., Seufert, S.: Sparqling kleene: fast property paths in
RDF-3X. In: GRADES 2013. p. 14 (2013)

11. Harris, S., Seaborne, A.: SPARQL 1.1 query language. W3C (2013)

12. Hart, P.E., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination
of minimal cost paths. IEEE Transactions on Systems Science and Cybernetics
4(2) (1968)

13. Hartig, O.: Sparql for a web of linked data: Semantics and computability. In: The
Semantic Web: Research and Applications, pp. 8–23. Springer (2012)

14. Hartig, O., Bizer, C., Freytag, J.C.: Executing SPARQL queries over the web of
linked data. Springer (2009)

15. Hartig, O., Pérez, J.: Ldql: A query language for the web of linked data. In: The
Semantic Web-ISWC 2015, pp. 73–91. Springer (2015)

16. Hartig, O., Pirrò, G.: A context-based semantics for SPARQL property paths over
the web. In: ESWC 2015. pp. 71–87 (2015)

17. Hatem, M., Ruml, W.: External memory best-first search for multiple sequence
alignment. In: AAAI 2013. AAAI Press (2013)

18. Korf, R.E.: Finding optimal solutions to rubik’s cube using pattern databases. In:
AAAI 1997. pp. 700–705. AAAI Press / The MIT Press (1997)

19. Kostylev, E.V., Reutter, J.L., Romero, M., Vrgoč, D.: Sparql with property paths.
In: The Semantic Web–ISWC 2015, pp. 3–18. Springer (2015)

20. Losemann, K., Martens, W.: The complexity of evaluating path expressions in
sparql. In: PODS 2012. pp. 101–112 (2012)

21. Pérez, J., Arenas, M., Gutierrez, C.: nSPARQL: A navigational language for RDF.
J. Web Sem. 8(4), 255–270 (2010)

22. Reutter, J.L., Soto, A., Vrgoč, D.: Recursion in SPARQL. In: ISWC 2015 (2015)
23. Verborgh, R., Hartig, O., Meester, B.D., Haesendonck, G., Vocht, L.D., Sande,

M.V., Cyganiak, R., Colpaert, P., Mannens, E., de Walle, R.V.: Querying datasets
on the web with high availability. In: ISWC 2014. pp. 180–196 (2014)

24. Verborgh, R., Vander Sande, M., Colpaert, P., Coppens, S., Mannens, E., Van de
Walle, R.: Web-scale querying through linked data fragments. In: LDOW (2014)

Appendix

A Queries used in Section 5

Here we provide the full code of the five queries used to test the feasibility of
implementing property paths using the A* algorithm. Note that some of the
property path queries from [10] have been modified in order to write them as a
single property path.
Q1. The first query, Q1, finds the co-authors of Jorge A. Baier in the DBLP
dataset.

NEED DIETRICH TO TELL ME THE EXACT QUERY

select * where {Jorge A. Baier (^akt:has-author/akt:has-author)* ?x }

Q2. The second query, Q2, finds people with a finite Bacon number in DBPedia.

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX dbr: <http://dbpedia.org/resource/>

select * where {dbr:Kevin_Bacon (^dbo:starring/dbo:starring)* ?x }

Q3. The third query, Q3, finds people with a finite Bacon number in YAGO.

PREFIX yago: <http://yago-knowledge.org/resource/>

select * where {?x (yago:actedIn/^yago:actedIn)* yago:Kevin_Bacon }

Q4. The fourth query, Q4, finds places located in a geographical entity which
has something to do with some European capital (starting in YAGO).

PREFIX yago: <http://yago-knowledge.org/resource/>

select * where { yago:wikicat_Capitals_in_Europe

^rdf:type/yago:isLocatedIn*/yago:dealsWith ?area }

Q5. The fifth query, Q5, finds the places connected to an airport in the Nether-
lands inside the YAGO dataset.

PREFIX yago: <http://yago-knowledge.org/resource/>

select * where { yago:wikicat_Airports_in_the_Netherlands

^a/yago:isConnectedTo* ?x }

