
Navigational and rule-based languages
for graph databases?

Juan Reutter and Domagoj Vrgoč

Pontificia Universidad Católica de Chile and Center for Semantic Web research, CL

Abstract. One of the key differences between graph and relational
databases is that on graphs we are much more interested in navigational
queries. As a consequence, graph database systems are specifically en-
gineered to answer these queries efficiently, and there is a wide body of
work on query languages that can express complex navigational patterns.
The most commonly used way to add navigation into graph queries is
to start with a basic pattern matching language and augment it with
navigational primitives based on regular expressions. For example, the
friend-of-a-friend relationship in a social network is expressed via the
primitive (friend)+, which looks for paths of nodes connected via the
friend relation. This expression can be then added to graph patterns,
allowing us to retrieve, for example, all nodes A,B and C that have a
common friend-of-a-friend.
But, in order to alleviate some of the drawbacks of isolating navigation
in a set of primitives, we have recently witnessed an effort to study lan-
guages which integrate navigation and pattern matching in an intrinsic
way. A natural candidate to use is Datalog, a well known declarative
query language that extends first order logic with recursion, and where
pattern matching and recursion can be arbitrarily nested to provide much
more expressive navigational queries.
In this paper we review the most common navigational primitives for
graphs, and explain how these primitives can be embedded into Datalog.
We then show current efforts to restrict Datalog in order to obtain a
query language that is both expressive enough to express all these prim-
itives, but at the same time feasible to use in practice. We illustrate how
this works both over the base graph model and over the more general
RDF format underlying the semantic web.

1 Introduction

Graph structured data is quickly becoming one of the more popular data
paradigms for storing data in computer applications. Social networks, bioinfor-
matics, astronomic databases, digital libraries, Semantic Web, and linked gov-
ernment data, are only a few examples of applications in which structuring data
as graphs is essential. There is a growing body of literature on the subject and
there are now several vendors of graph database systems [54, 47, 3]. See also [4,

? This work was supported by Iniciativa Cient́ıfica Milenio Grant 120004

12] for surveys of the area. The simplest model of a graph database is that of
edge-labelled directed graphs, where the nodes of the graph represent objects
and the labelled edges represent relationships between these objects.

A standard way of querying graph data is to use a pattern matching language
to look for small subgraphs of interest. For example, in a social network one can
match the following pattern to look for a clique of three individual that are all
friends with each other:

x

y z

friend friend

friend

However, in several graph database applications one also needs to look for
more complex conditions between nodes that are not necessarily adjacent to each
other, which are known as navigational queries. The most commonly used way to
add navigation into graph queries is to start with a basic pattern matching lan-
guage and augment it with navigational primitives based on regular expressions.
For example, the friend-of-a-friend relationship in a social network is expressed
via the primitive friend+, which looks for paths of nodes connected via an indi-
rect chain of friends. We can then add this primitive into the following pattern,
to look for pairs of persons with an indirect friend p1 in common:

p1

x

y

friend+

friend+

Navigational queries showcase one of the key differences between graph and re-
lational databases, because these queries use a form of recursion that traditional
relational languages and engines are not designed to deal with. As a consequence,
graph database systems are specifically engineered to answer navigational queries
efficiently, and there is a wide body of work on query languages that can express
complex navigational patterns [12].

The first and most common navigational primitive that was proposed is that
of Regular Path Queries, or RPQs [27], which corresponds precisely to regular
expressions. But nowadays there exists a wide range of extensions of RPQs that
add numerous other features such as the ability to traverse edges backwards, ex-
istential test operators such as the one used in XPath [32], negation over paths
[29], etc. Graph systems also implement these types of navigational primitives;
for example the graph system Neo4j [54] implements a subset of RPQs, and

SPARQL [35], the standard query language for RDF graphs [39], features Prop-
erty Paths: another extension of RPQs. The combination of graph patterns and
RPQs is usually modelled as a language where RPQs can be added to standard
conjunctive queries, resulting in Conjunctive Regular Path Queries, or CRPQs
[19]. This basic navigational pattern matching language are nowadays well un-
derstood, and there are also several extensions that have been proposed or are
now implemented (see [12]).

But isolating navigation in a set of primitives has drawbacks for both sys-
tems and users. First, the algorithmic challenges needed to support efficient
navigation are different from those needed to support efficient pattern match-
ing. Thus, one usually ends up implementing two separate engines to compute
the answers of a navigational query: one for pattern matching and one for deal-
ing with the navigational primitives. This makes other database problems such
as query planning and query optimization substantially more difficult, since now
one has to implement techniques that work across both engines. This issue is
also closely related to the fact that the navigational queries are generally not
an algebraically closed language, in the sense that one cannot re-apply the same
operators used for navigation to a graph pattern (for example, there is no notion
of applying the transitive Kleene star of regular expressions to the navigational
pattern of indirect friends shown above). Thus, posing queries in these language
can also be uncomfortable for users familiar with algebraically closed languages
such as the relational algebra, or SQL in general. But, additionally, by focusing
on primitives designed to deal with paths we leave out the possibility of express-
ing other complex navigational relationships that cannot be reduced to a set of
path operations.

In order to alleviate this situation, we have recently witnessed an effort to
study languages which integrate navigation and pattern matching in an intrinsic
way. A natural candidate to use is Datalog, a well known declarative query lan-
guage that extends first order logic with recursion, and where pattern matching
and recursion can be arbitrarily nested to provide much more expressive navi-
gational queries. Datalog is one of the most popular languages in databases and
has been used in numerous applications (one example is information extraction
on the Web [31]).

The first attempt to define a Datalog-like language for graph databases is
GraphLog [24], a language specifically designed to be closed, in the sense that
GraphLog queries not only mix navigation and pattern matching directly, but
also one can design queries where the Kleene star is directly applied to patterns
in order to form a different graph database. However, dealing with Datalog has
its own challenges, since it makes standard problems such as query evaluation
and query containment substantially more difficult than they are for navigational
queries based on pattern matching and primitives based on regular expressions.
Thus, in the last years there have been numerous proposals to restrict GraphLog
and similar languages so that they enjoy these other good algorithmic properties
[55, 17, 16, 18, 52, 15]. A good example of such a restriction are Regular Queries
[52], a subset of Datalog that has almost the same algorithmic properties as

CRPQs but whose expressive power is a good approximation of what GraphLog
can do.

In this paper we review the most common navigational primitives for graphs,
and explain how these primitives can be embedded into Datalog. We then show
current efforts to restrict Datalog in order to obtain a query language that is both
expressive enough to subsume all these primitives, but at the same time feasible
to use in practice. To show how these concepts can be used in a specific graph
application, we then move to RDF databases, the graph format underlying the
Semantic Web. We review Property Paths and Nested Regular Expressions, the
choices of navigational primitives for RDF, and then show the specific problems
we encounter when trying to design an algebraically closed language for RDF.

About the languages included in this survey We would like to stress that
this is not intended to be a complete survey of graph querying features and
languages. The objective of this article is to provide a good overview of query
features that separate graph databases from the traditional relational format,
and to do this we will focus on navigational aspects of graph querying. In partic-
ular, we will place a strong emphasis on languages based on regular expressions,
and also show how more declarative formalisms (such as e.g. Datalog) can be
used to capture interesting properties over graphs. Note that we do not consider
several other important features of graph query languages such as e.g. attribute
values and how these mix with navigational queries [45].

Organization We introduce the formal model of graph databases and review
relational queries in Section 2. Basic graph query languages based on regular
expression are described in Section 3. In Section 4 we talk about how Datalog
can be used to capture navigation over graphs, and in Section 5 we illustrate
what problems we face when applying graph query languages over the RDF
format underlying the Semantic Web. We conclude in Section 6.

2 Notation

Graph databases. Let Σ be a finite alphabet. A graph database G over Σ
is a pair (V,E), where V is a finite set of nodes and E ⊆ V × Σ × V is a set
of edges. That is, we view each edge as a triple (v, a, v′) ∈ V × Σ × V , whose
interpretation is an a-labelled edge from v to v′ in G. When Σ is clear from the
context, we shall simply speak of a graph database. Figure 1 shows an example
of a graph database that stores information about a social network: here the
nodes represent individuals that can be connected by relation knows, indicating
that a person knows another person, or by helps, indicating that a person has
helped another person in the past. Unless we specify otherwise, the size |G| of
G is simply the number of nodes in V plus the number of tuples in E.

We define the finite alphabet Σ± = Σ ∪ {a− | a ∈ Σ}, that is, Σ± is the
extension of Σ with the inverse of each symbol. The completion G± of a graph
database G over Σ, is a graph database over Σ± that is obtained from G by
adding the edge (v′, a−, v) for each edge (v, a, v′) in G.

v1

v2

v3

v4

v5

knows

helps

knows

helps

helps
knows

Fig. 1. A graph database over alphabet {knows, helps}, in which nodes are vi, 1 ≤ i ≤ 5.

A path ρ from v0 to vm in a graph G = (V,E) is a sequence (v0, a0, v1),
(v1, a1, v2), · · · , (vm−1, am−1, vm), for some m ≥ 0, where each (vi, ai, vi+1), for
i < m, is an edge in E. In particular, all the vi’s are nodes in V and all the aj ’s
are letters in Σ. The label of ρ, denoted by λ(ρ), is the word a0 · · · am−1 ∈ Σ∗.
We also define the empty path as (v, ε, v) for each v ∈ N ; the label of such path
is the empty word ε.

Relational queries: CQs and UCQs. A relational schema is a set σ =
{R1, . . . , Rn} of relation symbols, with each Ri having a fixed arity. Let D be a
countably infinite domain. An instance I of σ assigns to each relation R in σ of
arity n a finite relation RI ⊆ Dn. We denote by dom(I) the set of all elements
from D that appear in any of the relations in I.

A conjunctive query (CQ) over a relational schema σ is a formula Q(x̄) =
∃ȳϕ(x̄, ȳ), where x̄ and ȳ are tuples of variables and ϕ(x̄, ȳ) is a conjunction
of relational atoms from σ that use variables from x̄ and ȳ. We say that x̄ are
the free variables of the query Q. Conjunctive queries with no free variables are
called boolean CQs; if Q is a boolean CQ, we identify the answer false with the
empty relation, and true with the relation containing the 0-ary tuple.

We want to use CQs for querying graph databases over a finite alphabet Σ. In
order to do this, given an alphabet Σ, we define the schema σ(Σ) that consists
of one binary predicate symbol Ea, for each symbol a ∈ Σ. For readability
purposes, we identify Ea with a, for each symbol a ∈ Σ. Each graph database
G = (V,E) over Σ can be represented as a relational instance D(G) over the
schema σ(Σ): The database D(G) consists of all facts of the form Ea(v, v′) such
that (v, a, v′) is an edge in G (for this we assume that D includes all the nodes
in V).

A conjunctive query over Σ is simply a conjunctive query over σ(Σ±). The
answer Q(G) of a CQ Q over G is Q(D(G±)). A union of CQs (UCQ) Q over Σ
is a disjunction θ1(x̄) ∨ · · · ∨ θk(x̄) of CQs over Σ with the same free variables.
The answer Q(G) is

⋃
1≤j≤k θj(G), for each graph database G.

Example 1. Consider a social network over alphabet {knows, helps} such as the
one from Figure 1. The CQ

Q(x) = ∃y∃z
(
knows(x, y) ∧ helps(y, z)

)
retrieves all people that know a helper (a person that helps someone else). In
the graph G from Figure 1, we have that v1 ∈ Q(G), since v1 knows v3, and v3
helps v5. Similarly, v3 ∈ Q(G).

On the other hand, if we want to retrieves all people that either help someone,
or that know someone who is a helper, we can use the following UCQ

Q′(x) = ∃p helps(x, p) ∨ ∃y∃z (knows(x, y) ∧ helps(y, z)).

3 Navigational languages for graph databases

In this section we review the most widely used graph navigational primitives, and
introduce query languages that are obtained when we combine these primitives
in order to build more complex graph patterns. For each of these languages we
study their expressive power, as well as the complexity of some computational
tasks associated with them.

3.1 Path queries

The most simple navigational querying mechanism for graph databases is pro-
vided by means of regular expressions, which are commonly known as regular
path queries, or RPQs [1, 27, 20]. Formally, an RPQ Q over Σ is a regular lan-
guage L ⊆ Σ∗, and it is specified using a regular expression R. The idea behind
regular path queries is to select all pairs of nodes whose labels belong to the
language of the defining regular expression. That is, given a graph database
G = (V,E) and an RPQ R, both over Σ, the evaluation JRKG of R over G is the
set of all pairs (v, v′) ∈ V such that there is path ρ between v and v′, and the
label λ(ρ) of this path is a word in the language of R.

Example 2. Consider again the social network with relations knows and helps
from Figure 1. We can use RPQs to extract basic navigational information about
this graph. For example, the query knows+ retrieves all pairs of persons that
are connected by a path v1, . . . , vn of individuals, where each vi knows vi+1.
Furthermore, knows · helps can be used to retrieve all individuals that know a
helper, and knows + helps retrieves all nodes connected by a paths of individuals
linked by either a knows edge or a helps edge.

The idea of using regular expressions for querying graph databases has been
well established in the literature [19, 48], and several extensions have been pro-
posed for RPQs. The most popular is 2RPQs [20], which adds to RPQs the
possibility of traversing the edges in a backwards direction. Furthermore, the lan-
guage of 2RPQs has been subsequently extended to Nested regular path queries

JεKG = {(u, u) | u is a node id in G}
JaKG = {(u, v) | (u, a, v) ∈ G}

Ja−KG = {(u, v) | (v, a, u) ∈ G}
JR1 ·R2KG = JR1KG ◦ JR2KG

JR1 +R2KG = JR1KG ∪ JR2KG
JR∗KG = JεKG ∪ JRKG ∪ JR ·RKG ∪ JR ·R ·RKG ∪ · · ·

J [R] KG = {(u, u) | there exists v s.t. (u, v) ∈ JRKG}.
Table 1. Semantics of NRPQs. Here a is a symbol in Σ, and R, R1 and R2 are arbitrary
NRPQs. The symbol ◦ denotes the usual composition of binary relations.

(NRPQs), with the inclusion of an existential test operator, similar to the one in
XPath [32]. NRPQs were proposed in [50] for querying Semantic Web data, and
as a querying formalism they offer a substantial increase in expressive power in
comparison with 2RPQs, while maintaining the same query evaluation proper-
ties [50]. For this reason the language of nested regular path queries has received
a fair deal of attention in the last few years [10, 14, 17].

Just as RPQs and 2RPQs, NRPQs specify pairs of node ids in a graph
database, subject to the existence of a path satisfying a certain regular con-
dition among them. The syntax of NRPQs over an alphabet Σ is given by the
following grammar:

R := ε | a (a ∈ Σ) | a− (a ∈ Σ) | R · R | R∗ | R + R | [R]

As usual we use R+ as shorthand for R · R∗. Moreover, when it is clear from
the context, we omit the concatenation operator. Thus, if r1 and r2 are NRPQs,
we sometimes just write r1r2 instead of r1 · r2. The size |R| of an NRPQ is the
number of characters used to represent R, and the nesting depth of R is the
maximum number of nested [] operators in R (that is, the nesting depth of an
expression that does not use any [] operator is 0, the nesting depth of [R] is
1 plus the nesting depth of R, and all other operations preserve the maximum
nesting depth of its subexpressions).

Although the semantics of an NRPQ R can be defined in terms of paths, it
is best to define the binary relation JRKG, corresponding to the evaluation of R
over a graph database G, in an inductive fashion. We present the definition in
Table 1.

Note that NRPQs subsume RPQs and 2RPQs. In fact, 2RPQs are just NR-
PQs that do not use the test operator [R], and RPQs are NRPQs that use neither
[R] nor the inverse operator −.

Example 3. Let G be the graph database in Figure 1 that used labels knows
and helps. Recall that in Example 2 we used the RPQ (which is also an NRPQ)
R1 = knows+ to retrieve all pairs of nodes connected by a path in which all the
edges are labelled knows. In particular, the pair (v1, v2) belongs to JR1KG, and
so do (v1, v3) and (v1, v4). If we now consider instead the NRPQ

R2 = (knows + knows−)+,

we are now searching for a path of knows-labelled edges that may be traversed in
either direction. Thus, the pair (v2, v4) now belongs to JR2KG, as we can travel
from v2 to v1 by using knows−, and then to v4 via two knows-labelled edges.
This query is not an RPQ, but it is a 2RPQ. The NRPQ

R3 = (knows[helps])+

asks for all nodes x and y that are connected by a path of knows’s, but such
that from each node in this path, except from x, there is also an outgoing edge
labelled helps. The pair (v1, v4) belongs to JR3KG, but (v1, v2) /∈ JR3KG, as v2
has no outgoing helps-labelled edge. This query is neither an RPQ nor a 2RPQ.

Query evaluation. As usual, the query evaluation problem asks, given a query
R, a graph database G and a pair (u, v) of nodes from G, whether (u, v) belongs
to the evaluation JRKG. The problem of evaluating RPQs was first considered
in [27], where the resemblance between graph databases and automata was ex-
ploited to produce a simple algorithm that is linear in both the size of the graph
and the size of the query. The idea is the following. Given a graph database
G = (V,E) over Σ, an RPQ R and a pair (u, v) of nodes from V , in order
to decide wether (u, v) belongs to JRKG one constructs from G the automaton
AG(u, v) = (V,Σ, u, {v}, E) and the automaton AR that accepts the language
given by R. Note that AG(u, v) is obtained by viewing G as an NFA in which the
initial state is u, the only final state is v, and the transition function is given by
the edge relation E. Then it is not difficult to show that (u, v) belong to JRKG if
and only if the language of the product automaton AG(u, v)×AR is nonempty.
Since the size of the automata is linear in the size of R, the size of the resulting
product automata is O(|G| · |R|), and the reachability test is linear, giving us the
desired time bounds. But we can also obtain an NLogspace upper bound by
performing the usual on-the-fly reachability test on the said product automaton.
Hardness follows by reduction from the connectivity problem.

This result was lifted to 2RPQs in [19], the evaluation algorithm is based
on the idea that evaluating a 2RPQ R over Σ on a graph G is the same as
evaluating R over the completion G± of G, but now treating R as an RPQ over
the extended alphabet Σ±. Thus, all one needs to do is to obtain G± and then
compute JRKG± just as explained above.

Proposition 1 ([19]). The query evaluation problem for a 2RPQ R and a graph
G is NLogspace-complete, and can be solved in O(|G| · |R|).

It turns out that one can also obtain the same linear bounds even for NRPQs.
The idea is to start with the innermost sub-expressions of the form [R′] in R,
where the nesting depth ofR′ is 0. We evaluateR′ using the algorithm for 2RPQs,
and then augment graph G with a self-loop labeled [R′] in node u′ whenever there
is a node v′ such that (u′, v′) ∈ JR′KG. We can now repeat the process, treating
R as an as an NRPQ with 1 less level of nesting over the extended alphabet that
considers [R] as an additional label. However, this time we need to assume that
the nesting depth of the expression is fixed in order to obtain an NLogspace
upper bound.

Proposition 2 ([50]). The query evaluation problem for an NRPQ R and a
graph G can be solved in O(|G| · |R|). The problem is NLogspace-complete if
the nesting depth of R is assumed to be fixed.

Query answering has also been studied in the context of description logics,
and interestingly, the complexity of the evaluation problem for nested regu-
lar path queries is usually higher than that for 2RPQs, even when considering
knowledge bases given by simple DL-lite ontologies [14].

Query containment. Another important problem in the study of query lan-
guages is that of containment. Formally, the containment problem asks, given
queries R1 and R2 over Σ, whether JR1KG ⊆ JR2KG on all possible graph
databases over Σ. Checking query containment is a fundamental problem in
database theory, and is relevant to several database tasks such as data integra-
tion [43], query optimisation [2], view definition and maintenance [34], and query
answering using views [21].

As an example, query (aa)+ is contained in (a+), because all nodes connected
by a path of even number of as are also connected by a path of a’s. The problem
becomes more interesting when considering 2RPQs, for example, the query aa
is contained in a(a−a)+a, since in particular every path of two as will be part
of the evaluation of the second query.

The containment problem has also received substantial attention in the graph
database community. Calvanese et al. showed that the problem can be solved
in Pspace for RPQs and 2RPQs [19]. The proof uses the fact that an RPQ
R1 is contained in an RPQ R2 over all graph databases if and only if they are
contained only over paths, which allows us to work instead over strings: one can
show that R1 is contained in R2 over graphs if an only if the language given by
the regular expression R1 is contained in the language of R2. This gives us an
immediate Pspace tight bound for the complexity of containment since testing
containment of two regular expressions is Pspace-complete [49]. Likewise, for
2RPQs we can limit the search space for a counterexample to semipaths, or
paths in which edges may be reversed, enabling us to reason about containment
of 2RPQs by a clever rewriting of queries into 2-way automata [19], showing that
the containment problem for 2RPQs is still in Pspace.

For NRPQs the picture is a bit more complicated, since we cannot con-
centrate anymore on path-like structures. For example, consider the NRPQ
R1 = a[b]a[b] + c∗. Since the left disjunct of R1 is not satisfiable over paths,
we have that R1 is contained in R2 = c∗ over paths. However, R1 is not con-
tained in R2 if we consider all possible graphs over {a, b, c}. Nevertheless, one
can still solve the containment of NRPQs in Pspace. The idea of the algorithm
is to transform NRPQs into alternating two-way automata over a special types
of trees, which can be subsequently encoded into strings.

Proposition 3 ([19, 51]). The containment problem for two NRPQs is
Pspace-complete. It is Pspace-hard even when the input are RPQs.

3.2 Adding conjunction, union and projection

It has been argued (see, e.g., [27, 24, 1, 19]) that analogs of conjunctive queries
whose atoms are navigational primitives such as RPQs, 2RPQs or NRPQs are
much more useful in practice than the simple binary primitives. This motivated
in [30] the study of conjunctive regular path queries, or CRPQs, and the fur-
ther definition of conjunctive two-way regular path queries (C2RPQs, [19]) and
conjunctive nested regular path queries (CNRPQs, [11, 14]).

In such queries, multiple path queries can be combined, and some variables
can be existentially quantified. Formally, a CNRPQ Q over a finite alphabet Σ
is an expression of the form:

Q(z̄) =
∧

1≤i≤m

(xi, Li, yi), (1)

such that m > 0, each Li is an NRPQ, and z̄ is a tuple of variables among x̄
and ȳ. The atom Q(z̄) is the head of the query, the expression on the right of the
equality is its body. A query with the head Q() (i.e., no variables in the output) is
called a Boolean query. CRPQs and C2RPQs are defined analogously, requiring
instead the Lis to be RPQs or 2RPQs, respectively.

Intuitively, a query of the form (1) selects tuples z̄ for which there exist values
of the remaining node variables from x̄ and ȳ such that each RPQ (respectively,
2RPQ or NRPQ) in the body is satisfied. Formally, given Q of the form (1) and
a graph G = (V,E), a valuation is a map τ :

⋃
1≤i≤m{xi, yi} → V . We write

(G, τ) |= Q if (τ(xi), τ(yi)) is in JLiKG. Then the evaluation Q(G) of Q over G
is the set of all tuples τ(z̄) such that (G, τ) |= Q. If Q is Boolean, we let Q(G)
be true if (G, τ) |= Q for some τ (that is, as usual, the singleton set with the
empty tuple models true, and the empty set models false).

Example 4. Recall the social network from Figure 1 that connects people via
the helps and knows relationships. The following query looks for two individuals
u and v that are connected both by a path of helps relations and by a path of
friends relations:

Q(x, y) = (x, helps+, y) ∧ (x, knows+, y).

Note that the query in the example above has the same structure as the
pattern (x, helps, y) ∧ (x, knows, y) we used to compute people connected by
both knows and helps in Example 1. And indeed, there is a tight connection
between relational conjunctive queries and the notion of CRPQs, C2RPQs and
CNRPQs. Namely, CQs can be seen as queries over a relational representation
of a graph, where we can use the edge labels as basic navigational primitives. In
CRPQs this is generalised, and we can now use any regular language in place
of simple edge labels. Likewise, in C2RPQs we can use regular expressions over
Σ±, and in CNRPQs we can use any NRPQ (see [9] for a more detailed study
of this type of graph patterns).

Query evaluation. All three classes of graph queries we consider here contain
the class of CQs, so they inherit the NP-hardness bound for query evaluation

from CQs [22]. And using the fact that the evaluation of each primitive is in
polynomial time, it is not difficult to show that this bound is tight: to check
wether a tuple ā belongs to the answer of a CNRPQ Q(z̄) of the form (1) over a
graph G, one just need to guess a valuation τ that maps z̄ to ā, and then verify,
for each conjunct (xi, Li, yi) of Q, that (τ(xi), τ(yi)) is in JLiKG (in polynomial
time since Li is an NRPQ). In databases it is also customary to study the
evaluation problem when the query is considered to be fixed, which is known as
the data complexity of the evaluation problem. For CQs the data complexity is
in AC0, which is contained in NLogspace, and we can plug-in the NLogspace
algorithm to compute the answers of each NRPQ to obtain an NLogspace
upper bound for the evaluation of any fixed CNRPQ. Hardness follows directly
from Proposition 1, since RPQs are a special case of CNRPQs.

Observation 1 The query evaluation problem for CNRPQs is NP-complete. It
is NLogspace-complete in data complexity (when the query is fixed).

Query containment. The containment problem for CRPQs was first studied
by Calvanese et al. [19], and from there onwards we have seen a great deal of
work devoted to the containment problem for various restrictions and extensions
of these languages. The first observation is that, for containment, we only need
to focus on boolean queries.

Observation 2 There is a polynomial time reduction from the containment
problem for nested C2RPQs to the containment problem for boolean nested
C2RPQs.

The idea of the reduction is to replace each query Q(z̄) of the form (1) over Σ
with free variables z̄ = z1, . . . , zn with the following boolean query Qb over an
extended alphabet Σ ∪ {$1, . . . , $n}

Qb =
∧

1≤i≤m

(xi, Li, yi) ∧
∧

1≤j≤n

(zj , $j , zj) (2)

It is straightforward to show that a query Q1 is contained in a query Q2 iff Qb1
is contained in Qb2.

Let us now explain how to decide the containment problem for boolean CR-
PQs. Let Q1 and Q2 be two boolean CRPQs over Σ. The basic idea in [19] is the
following. Given two CRPQs, Q1 and Q2, we first construct an NFA A1, of ex-
ponential size, that accepts precisely the “codifications” of the graph databases
that satisfy Q1, and then construct an NFA A2, of double-exponential size, that
accepts precisely the “codifications” of the graph databases that do not satisfy
Q2. Then it is possible to prove that Q1 6⊆ Q2 if and only the language accepted
by A1 ∩A2 is nonempty. Since A1 and A2 are of exponential size, the latter can
be done in Expspace by using a standard “on-the-fly” verification algorithm
[57]. The same work also shows that the containment is also hard for Expspace,
so this algorithm is essentially the best one can do. Moreover, the same tech-
nique is shown to work when both Q1 and Q2 are C2RPQs. The containment

problem for CNRPQs was studied indirectly in [11] in the context of graph data
exchange, and an Expspace upper bound also follows from [16, 18].

Proposition 4. The query containment problem for CNRPQs is Expspace-
complete. It remains Expspace-hard even for CRPQs.

Adding Unions. Further extensions make a case for considering unions of these
queries, obtaining the classes of UCRPQs, UC2RPQs and UCNRPQs (where the
capital U stands for union). It is not difficult to show that these queries have
actually more expressive power than their union-free counterparts, and one can
also show that the same bounds hold for both containment and query evaluation
problems.

4 Datalog for querying graphs

It is evident that the base navigational languages we introduced in the previous
section lack the expressive power to be used as a standalone query language for
graph databases. But unfortunately none of extensions we have seen so far (from
CRPQs to UCNRPQs) is algebraically closed, which is a key disadvantage from
both the user and the system point of view. Indeed, algebraic closure has proved
to be a prevalent property in several other widely used query languages. To name
a few examples, note first that relational algebra is defined as the closure of a
set of relational operators [2]. Also, the class of CQs is closed under projection
and join, while UCQs are also closed under union [2]. Similarly, the class of
2RPQs is closed under concatenation, union, and transitive closure. In contrast,
UC2RPQs and UCNRPQs are not closed under transitive closure, because even
the transitive closure of a binary UC2RPQ query is not a UC2RPQ query.

In this section we show how to obtain query languages that are algebraically
closed. All of these languages are based on Datalog, so we must start by intro-
ducing Datalog programs, and showing how they are used to query graphs. The
problem, however, is that when using full Datalog as our query language we lose
the nice evaluation and containment properties that UCNRPQs enjoy. Is there
a navigational graph language that is algebraically closed, but that at the same
time enjoys the good properties of UCNRPQs? We answer this positively, with
the introduction of Regular Queries.

4.1 Datalog as a graph query language

A Datalog program Π consists of a finite set of rules of the form
S(x̄) ← R1(ȳ1), . . . , Rm(ȳm), where S,R1, . . . , Rm are predicate symbols and
x̄, ȳ1, . . . , ȳm are tuples of variables. A predicate that occurs in the head of a
rule is called intensional predicate. The rest of the predicates are called exten-
sional predicates. We assume that each program has a distinguished intensional
predicate called Ans. Let P be an intensional predicate of a Datalog program
Π and I an instance over the schema given by the extensional predicates of Π.

For i ≥ 0, P iΠ(I) denote the collection of facts about the intensional predicate
P that can be deduced from I by at most i applications of the rules in Π. Let
P∞Π (I) be

⋃
i≥0 P

i
Π(I). Then, the answer Π(I) of Π over I is Ans∞Π (I).

A predicate P depends on a predicate Q in a Datalog program Π, if Q occurs
in the body of a rule ρ of Π and P is the predicate in the head of ρ. The
dependence graph of Π is a directed graph whose nodes are the predicates of Π
and whose edges capture the dependence relation: there is an edge from Q to
P if P depends on Q. A program Π is nonrecursive if its dependence graph is
acyclic, that is, no predicate depends recursively on itself.

We can view Datalog queries as a graph language. In order to do this we
proceed just as for CQs: given an alphabet Σ, we use the schema σ(Σ) that con-
sists of one binary predicate for each symbol a ∈ Σ. We can then represent each
graph G over Σ as its straightforward relational representation D(G) over σ(Σ).
A (nonrecursive) Datalog program over a finite alphabet Σ is a (nonrecursive)
Datalog program Π whose extensional predicates belong to σ(Σ±). The answer
Π(G) of a (nonrecursive) Datalog program Π over a graph database G over Σ
is Π(D(G±)).

The idea of using Datalog as a graph query language comes from Consens
and Mendelzon [24], where it was introduced under the name GraphLog, as an
alternative to UCRPQs that could express other types of graph properties, in
particular those which are not monotone. To keep the complexity low, and to
ensure that the intentional predicates in Datalog programs continue to resemble
graphs, the arity of all predicates in the programs where restricted to be binary.
However, GraphLog includes features that we shall not review in this section,
such as including negated predicates. Nevertheless, Datalog programs as we have
defined here are still enough to express all of the primitives we reviewed in the
previous section, as well as conjunctions, unions, and of course more expressive
forms of recursion.

Example 5. Consider again the CRPQ in Example 4. It can be expressed via the
following Datalog program:

Hpath(x, y)← helps(x, y).

Hpath(x, z)← Hpath(x, y), helps(y, z).

Kpath(x, y)← knows(x, y).

Kpath(x, z)← Kpath(x, y), knows(y, z).

Ans(x, y)← Hpath(x, y),Kpath(x, y).

The program uses three intentional predicates: Hpath, whose intention is to store
all pairs of nodes that belong to the evaluation of the RPQ helps+ (that is, the
transitive closure of helps), Kpath, intended to store the result of knows+, and
Ans, which selects those pairs that appear both in Hpath and Kpath.

Datalog can also express NRPQs. For example, consider the NRPQ

(knows[helps])+,

which intuitively computes those pairs of nodes connected by a path of people
that know one another, but requiring as well that each node in the path is a
helper. This query is computed by the program

N(x, y)← knows(x, y), helps(y, z).

Ans(x, y)← N(x, y).

Ans(x, z)← Ans(x, y), N(y, z).

4.2 Binary Linear Datalog

The examples in the previous section suggest that Datalog programs subsume
all of our navigational primitives, and even all CNRPQs. But we can actually
show more: each CNRPQ (and in fact, each UCNRPQ) can be expressed by a
fragment of Datalog that is particularly well behaved for query evaluation. We
say that a Datalog program Π is linear if we can partition its rules into sets
Π1, . . . ,Πn such that (1) the predicates in the head of the rules in Πi do not
ocurr in the body of any rule in any set Πj , with j < i; and (2) the body of each
rule in Πi has at most one occurrence of a predicate that occurs in the head of
a rule in Πi

1. A binary linear Datalog program is just a linear program where
all intensional predicates have arity 2, except possibly for Ans.

As usual, we say that a language L1 can be expressed using a language L2

if for every query in L1 there is an equivalent query in L2. If in addition L2

has a query not expressible in L1, then L2 is strictly more expressive than L1.
The languages are equivalent if each can be expressed using the other. They are
incomparable if none can be expressed using the other.

Observation 3 Binary linear Datalog programs are strictly more expressive
than UCNRPQs.

To show that every UCNRPQ can be expressed as a Datalog program we
proceed just as in the example above. Unions, conjunctions and concatena-
tions, and the empty string are all straightforwardly expressed in Datalog,
and if one has programs that compute expressions R1 and R2 into predi-
cates PR1 and PR2 , then the query R1[R2] can be computed using the rule
And(x, y) ← PR1(x, y), PR2(y, z). Finally, if one has a program to compute R
into predicate PR, then R+ is given by the predicate PR+ , computed as follows:

PR+(x, y)← PR(x, y).

PR+(x, y)← PR+(x, z), PR(z, y).

Moreover, as the following examples show, one can use binary linear Datalog
to express a large number of interesting queries that cannot be expressed as
UCNRPQs.

1 These programs are sometimes referred to as stratified linear programs, or piecewise
linear Programs [56].

Example 6. Let us come back to our graph of relationships with labels knows
and helps from Figure 1. We say that a person p is a friend of a person p′ if
p knows and helps p′ at the same time. The following program returns all the
indirect friends, that is, all pairs of people connected by a chain of friends.

F (x, y)← knows(x, y), helps(x, y).

Fchain(x, y)← F (x, y).

Fchain(x, y)← Fchain(x, y), F (y, z).

Ans(x, y)← Fchain(x, y).

Suppose now that a person p′ is an acquaintance of p if p knows p′ and they
have an indirect friend in common. The pairs of people connected by a chain of
acquaintances can be expressed by the following RQ.

F (x, y)← knows(x, y), helps(x, y).

Fchain(x, y)← F (x, y).

Fchain(x, y)← Fchain(x, y), F (y, z).

A(x, y)← knows(x, y),Fchain(x, z),Fchain(y, z).

Achain(x, y)← A(x, y).

Achain(x, y)← Achain(x, y), A(y, z).

Ans(x, y)← Achain(x, y).

With a little bit of work one can use the techniques from [17] to show that
the two queries above cannot be expressed with UCNRPQs. 2

Thus, it appears that binary linear Datalog programs are a good candidate
for querying graph databases: the language is algebraically closed, and it can ex-
press all UCNRPQs. But what are the algorithmic properties of this language?
The good news is query evaluation, as we can show that binary linear Data-
log programs enjoy the same complexity as the conjunctive languages we have
reviewed in the previous section.

Proposition 5 ([23, 24]). The query evaluation problem for binary linear Dat-
alog programs is NP-complete in combined complexity and NLogspace-complete
in data complexity.

But, as it usually happens when working with Datalog programs, the con-
tainment problem becomes substantially more difficult when we move from UC-
NRPQs to binary linear Datalog. The following upper bound follows from [25,
26] (there is also a refinement in [18]), while the lower bound follows from lower
bounds of slightly less expressive languages in [17].

Proposition 6. The query containment problem for binary linear Datalog
queries is non-elementary.

As we see, the problem with this language is that we are allowing too much
freedom in choosing the way these programs are navigated. Thus, we need to
further restrict the language in order to obtain something manageable from the
point of view of containment.

4.3 Regular Queries

An extended Datalog rule is a rule of the form S(x̄) ← R1(ȳ1), . . . , Rm(ȳm),
where S is a predicate and, for each 1 ≤ i ≤ m, Ri is either a predicate or
an expression P+ for a binary predicate P . An extended Datalog program is a
finite set of extended Datalog rules. For an extended Datalog program, we define
its extensional/intensional predicates and its dependence graph in the obvious
way. Again we assume that there is a distinguished intensional predicate Ans.
As expected, a nonrecursive extended Datalog program over an alphabet Σ is
an extended Datalog program whose extensional predicates are in σ(Σ±) and
whose dependence graph is acyclic.

Intuitively, extended Datalog rules offer some degree of recursion, but the
recursion is limited so that it mimics the transitive closure operator of regu-
lar expressions. One can further define the language that results of combining
multiple of these rules, which is known as Regular Queries [52]. Formally, A reg-
ular query (RQ) Ω over a finite alphabet Σ is a nonrecursive extended Datalog
program over Σ, where all intensional predicates, except possibly for Ans, have
arity 2.

The semantics of an extended Datalog rule is defined as in the case of a
standard Datalog rule considering the semantics of an atom P+(y, y′) as the
pairs (v, v′) that are in the transitive closure of the relation P . The semantics
of a RQ is then inherited from the semantics of Datalog in the natural way. We
denote by Ω(G) the answer of a RQ Ω over a graph database G.

Example 7. Recall the first query in Example 6, that computed chains of friends
over a graph of relationships with labels knows and helps, and where a person p
is a friend of a person p′ if p knows and helps p′ at the same time. The following
RQ returns the desired information:

F (x, y)← knows(x, y), helps(x, y).

Ans(x, y)← F+(x, y).

The second query in Example 6 computed all chains of acquaintances, where
a person p′ is an acquaintance of p if p knows p′ and they have an indirect friend
in common. This query can be expressed with the following RQ:

F (x, y)← knows(x, y), helps(x, y).

A(x, y)← knows(x, y), F+(x, z), F+(y, z).

Ans(x, y)← A+(x, y).

2

Expressive Power. Note that RQs are also a closed language, since in particular
the transitive closure of a binary RQ is always a RQ. This makes RQs a natural
graph query language, but what about its expressive power?

The first observation is that every NRPQ can be expressed as a regular
query, and in fact RQs subsume UCNPQs. In order to provide a translation
from UCNRPQs to RQs one can do a construction such as the one in Example
5, except that now the + operator in NRPQs is translated directly as an an
expression P+. Furthermore, we have just shown, in Example 7, that both the
chain-of-friends and the chain-of-acquaintances queries in Example 6 can be
expressed as RQs, and since these queries are not expressible as UCNRPQs, it
follows that regular queries are strictly more expressive than UCNRPQs.

The next observation is RQs are actually contained in binary linear Datalog.
To see this, note first that each expression P+ in an extended Datalog program
can be computed by the following linear Datalog rules (assuming now P+ is a
new predicate):

P+(x, y)← P (x, y).

P+(x, y)← P+(x, z), P (z, y).

Thus, every RQ Ω can be translated in polynomial time into a binary linear
Datalog program ΠΩ : one just transforms Ω into a regular Datalog program
by treating each of the expressions P+ as a new predicate, and then adds the
rules shown above for each such predicate P+. It is not difficult to see that the
resulting program is indeed linear: since Regular Queries are nonrecursive we
can use the same ordering on the rules of Ω to derive a partition for the rules in
ΠΩ .

Being a subset of binary linear Datalog, the query evaluation problem for
regular queries remains NP-complete in combined complexity and NLogspace-
complete in data complexity. Moreover, as promised, the complexity of query
containment is elementary.

Proposition 7 (from [52]). The query containment problem for regular
queries is 2Expspace-complete.

Other Fragments There are several other languages that are either more ex-
pressive or incomparable to regular queries. Amongst the list of the most modern
ones we have extended CRPQs [8], which extends CRPQs with path variables,
XPath for graph databases [44, 41], and algebraic languages such as [29, 46].
Although all these languages have interesting evaluation properties, the con-
tainment problem for all of them is undecidable. Another body of research has
focused on fragments of Datalog with decidable containment problems. In fact,
regular queries are also investigated in [16, 18] (under the name of nested posi-
tive 2RPQs). But there are other restrictions that also lead to the decidability of
the containment problem. Some of these include Monadic Datalog programs [55,
17], programs whose rules are either guarded or frontier-guarded [17, 18, 15], and
first order logic with transitive closure [16]. However, most of these fragments

have non-elementary tight bounds for the containment problem, and elementary
upper bounds are only obtained when the depth of the programs is fixed. Thus,
regular queries seems to be the most expressive fragment of first-order logic with
transitive closure that is known to have an elementary containment problem.

5 Moving to RDF

The Semantic Web and its underlying data model, RDF, are usually cited as one
of the key applications of graph databases, but there is some mismatch between
them. The basic concept of RDF is a triple (s, p, o), that consists of the subject
s, the predicate p, and the object o, drawn from a domain of internationalised
resource identifiers (IRI’s). Thus, the middle element need not come from a finite
alphabet, and may in addition play the role of a subject or an object in another
triple. For instance, {(s, p, o), (p, s, o′)} is a valid set of RDF triples, but in graph
databases, it is impossible to have two such edges.

We take the notion of reachability for granted in graph databases, but what
is the corresponding notion for triples, where the middle element can serve as
the source and the target of an edge? Then there are multiple possibilities, two
of which are illustrated below.

Query Reach→ looks for pairs (x, z) connected by paths of the following
shape:

x z· · ·

and Reach1 looks for the following connection pattern:

· · ·

x

z

SPARQL, the standard query language for RDF graphs, defines property
paths, a navigational query language that resembles 2RPQs, but is more tailored
at querying graphs that can draw labels from infinite alphabets (for example,
they include an explicit operator !a to specify that two nodes should be connected
by an edge labelled with something different from a, which makes little sense
when dealing with a finite alphabet). However, property paths do not allow
navigation through the middle element in triples, so queries such as Reach1
cannot be expressed with property paths. To alleviate the situation, [50] propose
to treat navigation primitives over a different graph encoding of RDF files that
uses a finite alphabet of just three labels, and study the addition of NRPQs
over this representation to the language of SPARQL, a language they denote as
nSPARQL. We describe both property paths and nSPARQL in Section 5.2

However, as shown by [46], there are natural reachability patterns for triples,
similar to those shown above, that cannot be defined in graph encodings of RDF

St. Andrews Edinburgh London Brussels

Bus Op 1 Train Op 1

NatExpress EastCoast

Train Op 2

Eurostar

part ofpart of

part of

part of

Fig. 2. RDF graph storing information about cities and transport services between
them

[6] using nested regular path queries, nor in nSPARQL itself. In fact, queries
Reach→ and Reach1 demonstrate that there is no such thing as the reachability for
triples. Moreover, we have again the problem of closure, as using graph languages
for RDF leads us again to non-composable languages that need two different
engines. The alternative is to completely redefine the concept of reachability for
RDF graphs. One possibility is to take all possible analogs of compositions of
tertiary relation, and devise a navigational language built from these operators.
We review this approach in section 5.2.

5.1 Preliminaries

RDF graphs. RDF graphs consist of triples in which, unlike in graph
databases, the middle component need not come from a fixed set of labels. Let
I be a countably infinite domain of Internationalized resource identifiers (IRI’s).
An RDF triple is (s, p, o) ∈ I× I× I, where s is referred to as the subject, p as
the predicate, and o as the object. An RDF graph is just a collection of RDF
triples.2 We formalise this notion as follows:

Definition 1. An RDF graph (or a triplestore) is a pair T = (O,E), where

– O ⊆ I is a finite set of IRIs;
– E ⊆ O ×O ×O is a set of triples; and
– for each o ∈ O there is a triple t ∈ E such that o appears in T .

Note that the final condition is used in order to simulate how RDF data is
structured in practice, namely that it is presented in terms of sets of triples, so
all the objects we are interested in actually appear in the triple relation.

Example 8. The RDF graph T in Figure 2 contains information about cities,
modes of transportation between them, and operators of those services. Each
triple is represented by an arrow from the subject to the object, with the ar-
row itself labeled with the predicate. Examples of triples in T are (Edinburgh,

2 To simplify the presentation in this paper we only consider ground RDF graphs [50],
i.e. RDF graphs which do not contain any blank nodes nor literals.

Train Op 1, London) and (Train Op 1, part_of, EastCoast). For simplicity,
we assume from now on that we can determine implicitly whether an object is
a city or an operator. This can of course be modeled by adding an additional
outgoing edge labeled city from each city and operator from each service op-
erator.

5.2 Property Paths

Navigational properties (e.g. reachability) are among the most important func-
tionalities of RDF query languages. In this section we introduce property paths,
the W3C standard for querying navigational patterns in RDF, show how they
work and how difficult it is to evaluate them, and also discuss some of their
shortcomings and some proposals to fix those.

Property paths are a feature of SPARQL, the standard query language for
RDF [35], that allow asking navigational queries over RDF graphs. Intuitively, a
property path views an RDF document as a labelled graph where the predicate
IRI in each triple acts as an edge label. It then extracts each pair of nodes
connected by a path such that the word formed by the edge labels along this
path belongs to the language of the expression specifying the property path.
This idea is of course based on the family of regular path queries for graphs, but
as we will see, there are several important differences.

Let us first review the definition of property paths, following the SPARQL 1.1
specification [35]. For consistency we stick to the graph database notation, but
note that the standard sometimes uses different symbols for operators; for ex-
ample, inverse paths e− and alternative paths e1 + e2 from our definition are
denoted there by ˆe and e1 | e2, respectively.

Definition 2. Property paths are defined by the grammar

e := a | e− | e1 · e2 | e1 + e2 | e+ | e∗ | e? | !{a1, . . . , ak} | !{a−1 , . . . , a
−
k },

where a, a1, . . . , ak are IRIs in I. Expressions of the last two forms (i.e., starting
with !) are called negated property sets.

The definition is based on 2RPQs, with the only difference being negated
property sets. When dealing with singleton negated property sets brackets may
be omitted: for example, !a is a shortcut for !{a}. Besides the forms in Definition 2
the SPARQL 1.1 specification includes a third version of the negated property
sets !{a1, . . . , ak, b−1 , . . . , b

−
` }, which allows for negating both normal and inverted

IRIs at the same time. We however do not include this extra form in our formal-
isation, since it is equivalent to the expression !{a1, . . . , ak}+ !{b−1 , . . . , b

−
` }.

The normative semantics for property paths is given in the following defini-
tion.

x

w

y

z

v

a

b

a

b

c

a

Fig. 3. Illustrating how negated property sets work. Triples in this RDF graph are
(x, a, y), (y, b, x), (y, c, z), (y, a, v), (v, a, w) and (v, b, w).

Definition 3. The evaluation JeKT of a property path e over an RDF graph
T = (O,E) is a set of pairs of IRIs from O defined as follows:

JaKT = {(s, o) | (s, a, o) ∈ E},
Je−KT = {(s, o) | (o, s) ∈ JeKT },

Je1 · e2KT = Je1KT ◦ Je2KT ,
Je1 + e2KT = Je1KT ∪ Je2KT ,

Je+KT =
⋃
i≥1Je

iKT ,
Je∗KT = Je+KT ∪ {(a, a) | a ∈ O},
Je?KT = JeKT ∪ {(a, a) | a ∈ O},

J!{a1, . . . , ak}KT = {(s, o) | ∃a with (s, a, o) ∈ E and a /∈ {a1, . . . , ak}},
J!{a−1 , . . . , a

−
k }KT = {(s, o) | (o, s) ∈ J!{a1, . . . , ak}KT },

where ◦ is the usual composition of binary relations, and ei is the concatenation
e · . . . · e of i copies of e.

As we can see, for the most part, the semantics is the same as when dealing
with 2RPQs. The only real difference comes from the interpretation of negated
property sets. Intuitively, two IRIs are connected by a negated property set
if they are subject and object of a triple in the graph whose predicate is not
mentioned in the set under negation. Note that, according to Definition 3, the
expression !{a−1 , . . . , a

−
k } retrieves the inverse of !{a1, . . . , ak}, and thus it re-

spects the direction: a negated inverted IRI returns all pairs of nodes connected
by some other inverted IRI. To exemplify, consider the RDF graph T from Figure
3. We have that J!aKT = {(y, x), (y, z), (v, w)} as we can find a forward looking
predicate different from a for any of these pairs. Note that there is an a-labelled
edge between v and w, but since there is also a b-labelled one, the pair (v, w)
is in the answer. On the other hand, J!a−KT = {(x, y), (z, y), (w, v)}, because we
can traverse a backward looking predicate (either b− or c−) between these pairs.

Note that !{a1, . . . , ak} is not equivalent to !a1+. . .+ !ak. To see this consider
again the graph T from Figure 3. We have J!aKT = {(y, x), (y, z), (v, w)} and
J!bKT = {(x, y), (y, z), (y, v), (v, w)}, while J!{a, b}KT = {(y, z)}.
Query evaluation and query containment. Syntactically, property paths
without negated property sets are nothing more than 2RPQs, with the only

minor exception that the empty 2RPQ ε is not expressible as a property path
expression. However, negated property sets are a unique feature that we have
not reviewed yet. Note that if we were working with graph databases, where
predicates come from a finite alphabet Σ, then one could easily replace !a with
a disjunction of all other symbols in Σ. But since we are dealing with RDF
graphs, which have predicates from the infinite set of IRIs I, we cannot treat
this feature in such a naive way. However, one can still show that the query
evaluation problem remains in low polynomial time.

Proposition 8. (from [40]) For every property path e and RDF graph T the
problem of deciding whether a pair (a, b) of IRIs belongs to JeKT can be solved in
time O(|T | · |e|).

The idea of the algorithm is to do the usual product of the graph and the
automata, now taking into account the negated property sets. We proceed in
two steps.

– First we transform T = (O,E) into a graph database G = (V,E′) over Σ as
follows. Let Pred(T) be the set of all predicates appearing in the triples in
T , that is, Pred(T) = {p | ∃s, o such that (s, p, o) ∈ E}. The set Σ of labels
is Pred(T)∪{p− | p ∈ Pred(T)}. The set of nodes V is defined as the set of
all the objects and subjects appearing in the triples of T . Finally, the set of
edges E′ contains an edge labelled with p from a node u to a node v if the
triple (u, p, v) is in T , and an edge labelled with p− from u to v if the triple
(v, p, u) is in T .

– To do the cross product construction we treat e as an automata over the
extended alphabet that includes all negated property sets as additional la-
bels. We can then do the usual cross product construction, except we force a
transition labelled with {!p1, . . . , !pn} in e to be matched to edges in G that
are labelled with anything not in {p1, . . . , pn}.

When it comes to query containment one can show that property paths
behave similarly as 2RPQs. However, the techniques required to show this now
differ slightly due to the inclusion of negated property sets. Just as in the case
of 2RPQs, we can show that given two property paths e1 and e2, we can check
in Pspace if it holds that Je1KT ⊆ Je2KT for every RDF graph T . Interestingly,
when we allow conjunctions, projections and unions, the bound for UC2RPQs
is still preserved, but the basic ideas for CRPQ containment [19] can no longer
be used to prove this directly. Overall, we get:

Proposition 9. (from [40]). The query containment problem for property paths
is Pspace-complete. If we allow combining property paths using union, conjunc-
tion and projection, the problem becomes Expspace-complete.

Nested Regular Path Queries in the RDF context. As we have mentioned,
the navigational capabilities currently in use in SPARQL are quite limited, in the
sense that one cannot define paths that follow through properties such as the one

in the query Reach1. To address this limitation, Pérez et al. [50] propose to use
NRPQs over a codification which transforms RDF graphs into graph databases.

Formally, given an RDF graph T , we define the transformation δNNE(T) =
(V,E) as a graph database over alphabet Σ = {next, node, edge}, where V con-
tains all IRIs from T , and for each triple (s, p, o) in T , the edge relation E
contains edges (s, edge, p), (p, node, o) and (s, next, o). An example of coding an
RDF graph using this technique is shown in Figure 4.

a1
a2

a3
a4

b1
b2

b3

RDF graph T

next
ed

ge
node

next
ed

ge
node

next
ed

ge
node

a1

a2

a3

a4

b1

b2

b3

Transformed graph δNNE(T)

transforming
T to δNNE(T)

Fig. 4. Transforming an RDF graph into a graph database using δNNE.

Notice that the RDF document from Figure 4 corresponds to a part of the
reachability pattern Reach1 introduced above. As we stated, this type of pattern
is not expressible using property paths, but it can be computed as an NPRQ (and
in fact, an RPQ) over the translation δNNE of an RDF graph. To be more precise,
one can show that evaluating Reach1 over an arbitrary RDF graph T yields
the same answer as evaluating the RPQ edge+node over the transformation
δNNE(T). Besides allowing to express more complicated navigational queries,
this transformation scheme was also used in several important practical RDF
applications (e.g. to address the problem of interpreting RDFS features within
SPARQL [50]). Since the transformation δNNE can be computed in linear time,
using NRPQs over these codification is basically the same as using them over
the original RDF graph, from the point of view of computational complexity. In
particular, the bounds from Proposition 2 still hold with respect to the size of
the RDF graph.

Although more powerful than property paths, NRPQs are still not capable of
expressing some queries which one would naturally ask in the RDF context. To
see this, consider the transportation network from Figure 2. Suppose one wants
to answer the following query:

Q: Find pairs of cities (x, y) such that one can travel from x to y
using services operated by the same company.

A query like this is likely to be relevant, for instance, when integrating
numerous transport services into a single ticketing interface. For the graph T

in Figure 2, the pair (Edinburgh, London) belongs to Q(T) (here Q(T) de-
notes the answer of the query Q over the RDF graph T), and one can also
check that (St. Andrews, London) is in Q(T), since recursively both operators
are part of NatExpress (using the transitivity of part of). However, the pair
(St. Andrews, Brussels) does not belong to Q(T), since we can only travel
that route if we change companies, from NatExpress to Eurostar.

If we try to use NRPQs, or even their conjunctive variants, to answer such
a query, we immediately run into problem, as we are trying to verify that the
company at the end of a chain of part of edges is the same before we proceed to
the next city. In essence, to answer the query Q, we would need to find patterns
such as the one in Figure 5 in our RDF graph.

· ·
· · · ·· ·
·

x

y

z· · ·

Fig. 5. A pattern required to answer the query Q.

In fact, it was shown in e.g. [46] and [18] that the query Q above can not be
expressed using NRPQs over RDF graphs (or their δNNE-codification). On the
other hand, queries such as Q seem quite natural in the context of RDF, so is
there an efficient way of specifying and answering them? We give an answer to
this question in the following section, where we introduce a (recursive) algebra
for RDF graphs which can ask queries such as Q, and many others.

5.3 Native navigation in triples

In previous section we saw that treating RDF graphs as ordinary graph databases
might not always allow us to answer the queries we want, and we also showed
that the notion of reachability is not as straightforward when dealing with RDF
as it is in graph databases. There is also another problem we did not consider so
far. Namely, applying graph queries to RDF graphs leaves us with a set of pairs
of nodes, while the initial data we started with contained triples. This means
that all of these languages violate the closure property; that is, they start in one
data model (triples), but end up in binary relations. To see why this might be a
problem, note that once we obtain an answer to such query over RDF, we can

no longer ask another query over this answer. Another way of saying this is that
graph queries over RDF data do not compose.

So how can we overcome these issues? It is clear that for this we need a lan-
guage which works directly over triples and which is composable in a sense that
it does not leave the initial data model. Natural candidates to start with are of
course Datalog, as we have shown in the previous section, but also the relational
algebra [2], perhaps the most famous database composable language. We take
for now the algebraic approach to language design, and introduce an algebra
designed specifically for triples. We start with a plain version and then add re-
cursive primitives that provide the crucial functionality for handling navigational
queries. We also show how this algebra can be transformed into a Datalog frag-
ment that resembles the binary linear Datalog programs we defined previously
(but of course the binary restriction has to be dropped).

The operations of the usual relational algebra are selection, projection, union,
difference, and cartesian product. Our language must remain closed, i.e., the
result of each operation ought to be a set of triples. This clearly rules out pro-
jection. Selection and Boolean operations are fine. Cartesian product, however,
would create a relation of arity six, so instead we use joins that only keep three
positions in the result.

Triple joins. To better understand what kind of joins we need, let us first
look at the composition of two relations. For binary relations S and S′, their
composition S ◦ S′ has all pairs (x, y) so that (x, z) ∈ S and (z, y) ∈ S′ for
some z. We can now define reachability with respect to relation S by recursively
applying composition: S ∪ S ◦ S ∪ S ◦ S ◦ S ∪ Note that this is how RPQs
or property paths define reachability. So we need an analog of composition for
triples. To understand how it may look, we can view S ◦ S′ as the join of S and
S′ on the condition that the 2nd component of S equals the first of S′, and the
output consist of the remaining components. We can write it as

S
1,2′

1
2=1′

S′

Here we refer to the positions in S as 1 and 2, and to the positions in S′ as
1′ and 2′, so the join condition is 2 = 1′ (written below the join symbol), and
the output has positions 1 and 2′. This suggests that our join operations on
triples should be of the form R1i,j,k

condR
′, where R and R′ are ternary relations,

i, j, k ∈ {1, 2, 3, 1′, 2′, 3′}, and cond is a condition (to be defined precisely later).
But what is the most natural analog of relational composition? Note that

to keep three indexes among {1, 2, 3, 1′, 2′, 3′}, we ought to project away three,
meaning that two of them will come from one argument, and one from the other.
Any such join operation on triples is bound to be asymmetric, and thus cannot
be viewed as a full analog of relational composition.

So what do we do? Our solution is to add all such join operations. Formally,
given two ternary relations R and R′, join operations are of the form

R
i,j,k

1
θ
R′,

where

– i, j, k ∈ {1, 1′, 2, 2′, 3, 3′},
– θ is a set of (in)equalities between elements in {1, 1′, 2, 2′, 3, 3′} ∪ I.

As before, we use the indices 1, 2, 3 to denote positions in the relation to the
left of the join symbol, and 1′, 2′, 3′ for the ones to the right. In θ we allow
comparing if the elements in some position are equal or different, and we also
allow comparing them to some IRI as e.g. property paths do.

The semantics is defined as follows: (oi, oj , ok) is in the result of the join iff
there are triples (o1, o2, o3) ∈ R and (o1′ , o2′ , o3′) ∈ R′ such that

– each condition from θ holds; that is, if l = m is in θ, then ol = om, and if
l = o, where o is an IRI, is in θ, then ol = o, and likewise for inequalities.

Using triple joins we can now define the language with the desired properties.

Triple Algebra. We now define the expressions of the Triple Algebra, or TriAL
for short. It is a restriction of relational algebra that guarantees closure over
triples, i.e., the result of each expression is an RDF graph.

– The set E of all the triples in an RDF graph is a TriAL expression.
– If e is a TriAL expression and θ a set of equalities and inequalities over
{1, 2, 3} ∪I, then σθ(e) is a TriAL expression, called a selection expression.

– If e1, e2 are TriAL expressions, then the following are TriAL expressions:

• e1 ∪ e2;
• e1 − e2;
• e11i,j,k

θ e2, with i, j, k, θ as in the definition of the join above.

The semantics of the join operation has already been defined. The semantics
of the Boolean operations is the usual one. The semantics of the selection is
defined in the same way as the semantics of the join (in fact, the operator itself
can be defined in terms of joins): one just chooses triples (o1, o2, o3) satisfying θ.

Given an RDF graph T , we write e(T) for the result of evaluating the ex-
pression e over T . Note that e(T) is again an RDF graph, and thus TriAL defines
closed operations on triplestores.

Example 9. To get some intuition about the Triple Algebra consider the follow-
ing TriAL expression:

R = E
1,3′,3

1
2=1′

E

Indexes (1, 2, 3) refer to positions of the first triple, and indexes (1′, 2′, 3′) to
positions of the second triple in the join. Thus, for two triples (x1, x2, x3) and
(x1′ , x2′ , x3′), such that x2 = x1′ , expression R outputs the triple (x1, x3′ , x3).
E.g., in the triplestore of Figure 2, (London, Train Op 2, Brussels)
is joined with (Train Op 2, part_of, Eurostar), producing
(London, Eurostar, Brussels); the full result is the following set of triples

St. Andrews NatExpress Edinburgh

Edinburgh EastCoast London

London Eurostar Brussels

When interpreted over the RDF document from Figure 2, R gives us pairs of
European cities together with companies one can use to travel from the first
city to the second one. Note that this expression fails to take into account that
EastCoast is a part of NatExpress. To add such information to query results
(and produce triples such as (Edinburgh, NatExpress, London)), we use R′ =

R ∪ (R11,3′,3
2=1′ E).

Adding Recursion. One problem with Example 9 above is that it does
not include triples (city1,service,city2) so that relation R contains a triple
(city1,service0,city2), and there is a chain, of some length, indicating that
service0 is a part of service. The second expression in Example 9 only ac-
counted for such paths of length 1. To deal with paths of arbitrary length, we
need reachability, which relational algebra is well known to be incapable of ex-
pressing. Thus, we need to add recursion to our language.

To do so, we expand TriAL with right and left Kleene closure of any triple join
1i,j,k
θ over an expression R, denoted as (R 1i,j,k

θ)∗ for right, and (1i,j,k
θ R)∗

for left. These are defined as

(R 1)∗ = ∅ ∪ R ∪ R 1 R ∪ (R 1 R) 1 R ∪ . . . ,

(1 R)∗ = ∅ ∪ R ∪ R 1 R ∪ R 1 (R 1 R) ∪ . . .

We refer to the resulting algebra as Triple Algebra with Recursion and denote it
by TriAL∗.

When dealing with binary relations we do not have to distinguish between left
and right Kleene closures, since the composition operation for binary relations is
associative. However, as the following example shows, joins over triples are not
necessarily associative, which explains the need to make this distinction.

Example 10. Consider an RDF graph T = (O,E), with E =
{(a, b, c), (c, d, e), (d, e, f)}. The expression

R1 = (E
1,2,2′

1
3=1′

)∗

computes R1(T) = E ∪ {(a, b, d), (a, b, e)}, while

R2 = (
1,2,2′

1
3=1′

E)∗

computes R2(T) = E ∪ {(a, b, d)}.

Now we show how to formulate the queries mentioned earlier in this section
using Triple Algebra.

Example 11. We started Section 5 by saying how there are different types of
reachability over RDF graphs, and presented two queries, Reach→ and Reach1,
which illustrate this claim. It is easy to see that Reach→ and Reach1 can be
expressed using the TriAL∗ expressions E1 and E2 below:

E1 = (E
1,2,3′

1
3=1′

)∗ and E2 = (
1′,2′,3

1
1=2′

E)∗.

Next consider the query Q from Section 5.2. Recall that in this query we are
asking for all pair of cities such that one can travel from the first city to the
second one using services provided by the same company in a travel network
such as the one presented in Figure 2. Abstracting away from a particular RDF
graph, this query asks us to find patterns of the form illustrated in Figure 5.
Although not expressible using property paths, or NRPQs (over codifications of
RDF graphs), we can express this query using the following TriAL∗ expression:

((E
1,3′,3

1
2=1′

)∗
1,2,3′

1
3=1′,2=2′

)∗.

Note that the interior join (E
1,3′,3

1
2=1′

)∗ computes all triples (x, y, z), such that

E(x,w, z) holds for some w, and y is reachable from w using some E-path. The
outer join now simply computes the transitive closure of this relation, taking
into account that the service that witnesses the connection between the cities is
the same.

Datalog for RDF. Triple Algebra and its recursive versions are in their essence
procedural languages. It would therefore be nice to see a more declarative option
for specifying TriAL queries. We have already seen a good candidate for capturing
algebraic and recursive properties of a language in Section 4, that is: Datalog.
So it seems natural to look for Datalog fragments that capture TriAL and its
recursive version.

Since Datalog works over relational vocabularies, once again we need to ex-
plain how to interpret an RDF graph T = (O,E) as a relational structure.
However, this is rather straightforward: our relation schema will consist of a sin-
gle ternary relation E, and in an instance IT of this schema the interpretation
of the relation E is equal to the relation E which stores all the triples in T .
Using this we can now describe a Datalog fragment called TripleDatalog, which
captures TriAL.

A TripleDatalog rule is of the form

S(x) ← S1(x1), S2(x2), u1 = v1, . . . , um = vm (3)

where

1. S, S1 and S2 are (not necessarily distinct) predicate symbols of arity 3;
2. x, x1 and x2 are variables;

3. uis and vis are either variables or IRIs from I;

4. all variables in x and all variables in uj , vj are contained in x1 ∪ x2.

A TripleDatalog¬ rule is like the rule (3) but all equalities and predicates,
except the head predicate S, can appear negated. A TripleDatalog¬ program Π
is a finite set of TripleDatalog¬ rules. Such a program Π is non-recursive if there
is an ordering r1, . . . , rk of the rules of Π so that the relation in the head of ri
does not occur in the body of any of the rules rj , with j ≤ i.

As is common with non-recursive programs, the semantics of nonrecursive
TripleDatalog¬ programs is given by evaluating each of the rules of Π, according
to the order r1, . . . , rk of its rules, and taking unions whenever two rules have
the same relation in their head (see [2] for the precise definition). We are now
ready to present the first capturing result.

Proposition 10. TriAL is equivalent to nonrecursive TripleDatalog¬ programs.

Of course, here we are more interested in expressing navigational properties,
so we now turn to TriAL∗, the recursive variant of Triple Algebra. To capture
it, we of course add recursion to Datalog rules, and impose a restriction that
was previously used in [24]. A ReachTripleDatalog¬ program is a (potentially
recursive) TripleDatalog¬ program in which each recursive predicate S is the
head of exactly two rules of the form:

S(x) ← R(x)

S(x) ← S(x̄1), R(x̄2), V (y1, z1), . . . , V (yk, zk)
(4)

where each V (yi, zi) is one of the following: yi = zi, or yi 6= zi, and R is a
nonrecursive predicate of arity 3, or a recursive predicate defined by a rule of
the form 4 that appears before S. These rules essentially mimic the standard
linear reachability rules (for binary relations) in Datalog, and in addition one
can impose equality and inequality constraints, along the paths.

Note that the negation in ReachTripleDatalog¬ programs is stratified. The
semantics of these programs is the standard least-fixpoint semantics [2]. The
language GraphLog corresponds to almost the same syntactic class, except it is
defined for graph databases, rather than triplestores. Interestingly, one can show
that these classes capture the expressive power of FO with the transitive closure
operator [24]. In our case, we have a capturing result for TriAL∗.

Theorem 4. The expressive power of TriAL∗ and ReachTripleDatalog¬ programs
is the same.

We now give an example of a simple Datalog program computing the query
Q from Section 5.2 and Example 11.

Example 12. The following ReachTripleDatalog¬ program is equivalent to query
Q from Section 5.2. Note that the answer is computed in the predicate Ans.

S(x1, x2, x3)← E(x1, x2, x3)

S(x1, x
′
3, x3)← S(x1, x2, x3), E(x2, x

′
2, x
′
3)

Ans(x1, x2, x3)← S(x1, x2, x3)

Ans(x1, x2, x
′
3)← Ans(x1, x2, x3), S(x3, x2, x

′
3)

Recall that this query can be written in TriAL∗ as Q =

((E11,3′,3
2=1′)∗11,2,3′

3=1′,2=2′)
∗. The predicate S in the program computes the

inner Kleene closure of the query, while the predicate Ans computes the outer
closure.

Query evaluation and query containment over RDF graphs. We have
seen that TriAL∗ is a powerful language capable of expressing a wide range of
queries over RDF graphs. The question is then, can we evaluate these queries
efficiently? As before, to answer this question, we will look at the query evalu-
ation problem, which asks, given an RDF graph T , TriAL∗ expression e, and a
triple t, if it is true that t ∈ e(T).

From previous sections we know that many graph query languages (RPQs,
NRPQs) have a Ptime upper bound for the evaluation problem, and the data
complexity (i.e. when e is assumed to be fixed) is generally NLogspace (which
can not be improved since basic reachability is already NLogspace-hard). It
can be shown that similar bounds hold for Triple algebra, and even its recursive
variant.

Proposition 11. (from [46]) The query evaluation problem for TriAL∗ queries
is Ptime-complete, and it is NLogspace-complete when the algebra expression
is fixed.

Of course, the high expressive power of TriAL∗ has to come with price, and
this is reflected when we consider the query containment problem. Combining
the fact that TriAL∗ subsumes a variant of XPath over graphs [46], and the fact
that the latter has undecidable query containment [42], we obtain the following:

Proposition 12. The query containment problem for TriAL∗ expressions is un-
decidable.

5.4 More expressive languages

In previous sections we introduced several popular languages for extracting basic
navigational patterns from RDF graphs, and showed that they can be evaluated
efficiently. However, there are still many interesting properties of RDF graphs
that cannot be expressed using these languages, so several more expressive for-
malisms for extracting information from RDF data have been proposed in the
literature. The first one we would like to mention is TriQ [5], which is a Datalog-
based language for expressing RDF queries, and which subsumes property paths,

NRPQs and TriAL∗. In its essence TriQ can be viewed as an extension of the
Datalog characterisation of TriAL which does not place such severe restriction on
the shape of the recursion as ReachTripleDatalog¬ does, so it allows us to express
more powerful queries while still keeping good query evaluation properties. On
a more practical side there has been quite a bit of work on efficiently imple-
menting property paths and their extensions, starting from engines exclusively
dedicated to fine-tune the performance of reachability queries over RDF [33, 58],
to systems supporting fully recursive queries with SPARQL as their base [7, 53].

Finally, we would like to mention that all of the previously mentioned lan-
guages work under the classic assumption that we have all of the data available
locally and can process and rewrite it as needed. However, when we consider the
native setting where RDF data is used, namely, the Web, this assumption is no
longer valid, since it is no longer feasible to keep all the data locally, and it is
often not possible to run usual query evaluation algorithms which compute the
entire set of answers, but we need to limit ourselves to a subset, or an approxi-
mation of the answers which would be available if we were able to have the data
locally. In particular, several basic principles of navigational query languages
have to be refined to work in this context, and there has been some recent work
[36, 37, 28] proposing how to do this over the data published under the Linked
Data initiative [13], whose aim is to encourage the publishing of RDF data in
a way that allows connecting datasets residing on different servers into one big
dataset by enabling them to reference each other.

6 Conclusion

The problem of defining and evaluating navigational graph queries has been the
subject of numerous studies in recent years, and we now have several options of
languages available for use, that offer a wide range of querying possibilities under
a relatively low computational cost. But there is still much work to be done. For
example, there are several other options for obtaining closed languages that we
have not reviewed, and that so far have received far less attention than the
Datalog variants. One such option is to directly define iterations and transitive
closures of any graph pattern [38], and there are many other possibilities to
explore, each of which having their own algorithmic challenges.

The second important problem that need to be dealt with is that of queries
capable of returning the complete paths (see for example [8]). This feature is
widely used and needed in practice, but yet the theoretical studies are just
starting to appear, and there is still no consensus on what is a good way of
integrating navigational queries with the ability to return paths.

Acknowledgements. We would like to thank Pablo Barceló, Jorge Pérez,
Miguel Romero, Moshe Vardi, Egor Kostlyev and Leonid Libkin for helpful dis-
cussions on the topics of this paper. The authors are supported by the Millen-
nium Nucleus Center for Semantic Web Research Grant NC120004.

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kauffman, 1999.

2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

3. R. Angles. A comparison of current graph database models. In Data Engineering
Workshops (ICDEW), 2012 IEEE 28th International Conference on, pages 171–
177. IEEE, 2012.

4. R. Angles and C. Gutierrez. Survey of graph database models. ACM Computing
Surveys (CSUR), 40(1):1, 2008.

5. M. Arenas, G. Gottlob, and A. Pieris. Expressive languages for querying the seman-
tic web. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS’14, Snowbird, UT, USA, June 22-27,
2014, pages 14–26, 2014.

6. M. Arenas, C. Gutierrez, and J. Pérez. Foundations of RDF databases. Springer,
2009.

7. M. Atzori. Computing recursive SPARQL queries. In 2014 IEEE International
Conference on Semantic Computing, Newport Beach, CA, USA, June 16-18, 2014,
pages 258–259, 2014.

8. P. Barcelo, L. Libkin, A. W. Lin, and P. T. Wood. Expressive languages for path
queries over graph-structured data. ACM TODS, 37(4):31, 2012.

9. P. Barceló, L. Libkin, and J. L. Reutter. Querying regular graph patterns. Journal
of the ACM (JACM), 61(1):8, 2014.

10. P. Barceló, J. Pérez, and J. L. Reutter. Relative expressiveness of nested regular
expressions. In AMW, pages 180–195, 2012.

11. P. Barceló, J. Pérez, and J. L. Reutter. Schema mappings and data exchange for
graph databases. In to appear in ICDT, page TBD, 2013.

12. P. Barceló Baeza. Querying graph databases. In PODS, pages 175–188. ACM,
2013.

13. T. Berners-Lee. Linked data. http://www.w3.org/DesignIssues/LinkedData.html,
2006.

14. M. Bienvenu, D. Calvanese, M. Ortiz, and M. Simkus. Nested regular path queries
in description logics. In KR, 2014.

15. M. Bienvenu, M. Ortiz, and M. Simkus. Navigational queries based on frontier-
guarded datalog: Preliminary results. In Alberto Mendelzon International Work-
shop on Foundations of Data Management, page 162, 2015.

16. P. Bourhis, M. Krötzsch, and S. Rudolph. How to best nest regular path queries.
In Description Logics, 2014.

17. P. Bourhis, M. Krötzsch, and S. Rudolph. Query containment for highly expressive
datalog fragments. arXiv preprint arXiv:1406.7801, 2014.

18. P. Bourhis, M. Krötzsch, and S. Rudolph. Reasonable highly expressive query
languages. In IJCAI, pages 2826–2832, 2015.

19. D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Vardi. Containment of con-
junctive regular path queries with inverse. In 7th International Conference on
Principles of Knowledge Representation and Reasoning (KR), pages 176–185, 2000.

20. D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Vardi. Rewriting of regular
expressions and regular path queries. Journal of Computer and System Sciences,
64(3):443–465, 2002.

21. D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi. View-based query
answering and query containment over semistructured data. In DBPL, pages 40–
61, 2001.

22. A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries
in relational data bases. In Proceedings of the ninth annual ACM symposium on
Theory of computing, pages 77–90. ACM, 1977.

23. S. Chaudhuri and M. Y. Vardi. On the equivalence of recursive and nonrecur-
sive datalog programs. In Proceedings of the eleventh ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, pages 55–66. ACM, 1992.

24. M. Consens and A. Mendelzon. Graphlog: A visual formalism for real life recursion.
In 9th ACM Symposium on Principles of Database Systems (PODS), pages 404–
416, 1990.

25. B. Courcelle. The monadic second-order logic of graphs. i. recognizable sets of
finite graphs. Information and computation, 85(1):12–75, 1990.

26. B. Courcelle. Recursive queries and context-free graph grammars. Theoretical
Computer Science, 78(1):217–244, 1991.

27. I. Cruz, A. Mendelzon, and P. Wood. A graphical query language supporting
recursion. In ACM Special Interest Group on Management of Data 1987 Annual
Conference (SIGMOD), pages 323–330, 1987.

28. V. Fionda, G. Pirrò, and C. Gutierrez. Nautilod: A formal language for the web
of data graph. TWEB, 9(1):5:1–5:43, 2015.

29. G. H. Fletcher, M. Gyssens, D. Leinders, D. Surinx, J. Van den Bussche,
D. Van Gucht, S. Vansummeren, and Y. Wu. Relative expressive power of naviga-
tional querying on graphs. Information Sciences, 298:390–406, 2015.

30. D. Florescu, A. Levy, and D. Suciu. Query containment for conjunctive queries with
regular expressions. In 17th ACM Symposium on Principles of Database Systems
(PODS), pages 139–148, 1998.

31. G. Gottlob and C. Koch. Logic-based web information extraction. SIGMOD
Record, 33(2):87–94, 2004.

32. G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath
queries. ACM Trans. Database Syst., 30(2):444–491, 2005.

33. A. Gubichev, S. J. Bedathur, and S. Seufert. Sparqling kleene: fast property paths
in RDF-3X. In First International Workshop on Graph Data Management Expe-
riences and Systems, GRADES 2013, co-loated with SIGMOD/PODS 2013, New
York, NY, USA, June 24, 2013, page 14, 2013.

34. A. Gupta, I. S. Mumick, et al. Maintenance of materialized views: Problems,
techniques, and applications. IEEE Data Eng. Bull., 18(2):3–18, 1995.

35. S. Harris, A. Seaborne, and E. Prudhommeaux. Sparql 1.1 query language. W3C
Recommendation, 21, 2013.

36. O. Hartig and J. Pérez. LDQL: A query language for the web of linked data. In
The Semantic Web - ISWC 2015 - 14th International Semantic Web Conference,
Bethlehem, PA, USA, October 11-15, 2015, Proceedings, Part I, pages 73–91, 2015.

37. O. Hartig and G. Pirrò. A context-based semantics for SPARQL property paths
over the web. In The Semantic Web. Latest Advances and New Domains - 12th
European Semantic Web Conference, ESWC 2015, Portoroz, Slovenia, May 31 -
June 4, 2015. Proceedings, pages 71–87, 2015.

38. H. He and A. K. Singh. Graphs-at-a-time: query language and access methods
for graph databases. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 405–418. ACM, 2008.

39. G. Klyne and J. J. Carroll. Resource description framework (rdf): Concepts and
abstract syntax. 2006.

40. E. V. Kostylev, J. L. Reutter, M. Romero, and D. Vrgoč. Sparql with property
paths. In The Semantic Web-ISWC 2015, pages 3–18. Springer, 2015.

41. E. V. Kostylev, J. L. Reutter, and D. Vrgoč. Containment of data graph queries.
In ICDT, pages 131–142, 2014.

42. E. V. Kostylev, J. L. Reutter, and D. Vrgoč. Static analysis of navigational xpath
over graph databases. Inf. Process. Lett., 116(7):467–474, 2016.

43. M. Lenzerini. Data integration: a theoretical perspective. In PODS, pages 233–246,
2002.

44. L. Libkin, W. Martens, and D. Vrgoč. Querying graph databases with xpath.
In Proceedings of the 16th International Conference on Database Theory, pages
129–140. ACM, 2013.

45. L. Libkin, W. Martens, and D. Vrgoč. Querying graphs with data. J. ACM,
63(2):14, 2016.

46. L. Libkin, J. Reutter, and D. Vrgoč. Trial for rdf: adapting graph query languages
for rdf data. In PODS, pages 201–212. ACM, 2013.

47. N. Martinez-Bazan, S. Gomez-Villamor, and F. Escale-Claveras. Dex: A high-
performance graph database management system. In Data Engineering Workshops
(ICDEW), 2011 IEEE 27th International Conference on, pages 124–127, 2011.

48. A. Mendelzon and P. Wood. Finding regular simple paths in graph databases.
SIAM Journal on Computing, 24(6):1235–1258, 1995.

49. A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions
with squaring requires exponential space. In 13th Annual Symposium on Switching
and Automata Theory, College Park, Maryland, USA, October 25-27, 1972, pages
125–129, 1972.

50. J. Pérez, M. Arenas, and C. Gutierrez. nSPARQL: A navigational language for
RDF. Journal of Web Semantics, 8(4):255–270, 2010.

51. J. L. Reutter. Containment of nested regular expressions. arXiv preprint
arXiv:1304.2637, 2013.

52. J. L. Reutter, M. Romero, and M. Y. Vardi. Regular queries on graph databases.
In 18th International Conference on Database Theory (ICDT 2015), volume 31,
pages 177–194, 2015.

53. J. L. Reutter, A. Soto, and D. Vrgoč. Recursion in SPARQL. In The Semantic
Web - ISWC 2015 - 14th International Semantic Web Conference, Bethlehem, PA,
USA, October 11-15, 2015, Proceedings, Part I, pages 19–35, 2015.

54. I. Robinson, J. Webber, and E. Eifrem. Graph Databases: New Opportunities for
Connected Data. ” O’Reilly Media, Inc.”, 2015.

55. S. Rudolph and M. Krötzsch. Flag & check: Data access with monadically defined
queries. In Proceedings of the 32nd symposium on Principles of database systems,
pages 151–162. ACM, 2013.

56. J. D. Ullman. Principles of Database and Knowledge-Base Systems. Computer
Science Press, 1989.

57. M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics
for Concurrency - Structure versus Automata (8th Banff Higher Order Workshop,
August 27 - September 3, 1995, Proceedings), pages 238–266, 1995.

58. N. Yakovets, P. Godfrey, and J. Gryz. Query planning for evaluating SPARQL
property paths. In Proceedings of the 2016 International Conference on Manage-
ment of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 -
July 01, 2016, pages 1875–1889, 2016.

