
Querying APIs with SPARQL:
language and worst case optimal algorithms

Matthieu Mosser, Fernando Pieressa, Juan Reutter,
Adrián Soto, Domagoj Vrgoč

Pontificia Universidad Católica de Chile

Abstract. Although the amount of RDF data has been steadily in-
creasing over the years, the majority of information on the Web is still
residing in other formats, and is often not accessible to Semantic Web
services. A lot of this data is available through APIs serving JSON doc-
uments. In this work we propose a way of extending SPARQL with the
option to consume JSON APIs and integrate the obtained information
into SPARQL query answers, thus obtaining a query language allowing
to bring data from the “traditional” Web to the Semantic Web. Look-
ing to evaluate these queries as efficiently as possible, we show that the
main bottleneck is the amount of API requests, and present an algorithm
that produces “worst-case optimal” query plans that reduce the number
of requests as much as possible. We also do a set of experiments that
empirically confirm the optimality of our approach.

1 Introduction

The Semantic Web provides a platform for publishing data on the Web via the
Resource Description Framework (RDF). Having a common format for data dis-
semination allows for applications of increasing complexity since it enables them
to access data obtained from different sources, or describing different entities.
The most common way of accessing this information is through SPARQL end-
points; SPARQL is the standard language for accessing data on the Semantic
Web [20], and a SPARQL endpoint is a simple interface where users can obtain
the RDF data available on the server by executing a SPARQL query.

In the Web context it is rarely the case that one can obtain all the needed
information from a single data source, and therefore it is necessary to draw
the data from multiple servers or endpoints. In order to address this, a specific
operator that allows parts of the query to access different SPARQL endpoints,
called SERVICE, was included into the latest version of the language [30].

However, the majority of the data available on the Web today is still not
published as RDF, which makes it difficult to connect it to Semantic Web ser-
vices. A huge amount of this data is made available through Web APIs which
use a variety of different formats to provide data to the users. It is therefore
important to make all of this data available to Semantic Web technologies, in
order to create a truly connected Web. One way of achieving this is to extend
the SERVICE operator of SPARQL with the ability to connect to Web APIs in

the same way as it connects to other SPARQL endpoints. In this paper we make
a first step in this direction by extending SERVICE with the option to connect to
JSON APIs and incorporate their data into SPARQL query answers. We picked
JSON because it is currently the most popular data format in Web APIs, but
the results presented in the paper can easily be extended to any API format.

By allowing SPARQL to connect to an API we can extend the query answer
with data obtained from a Web service, in real time and without any setup. Use
cases for such an extension are numerous and can be particularly practical when
the data obtained from the API changes very often (such as weather conditions,
state of the traffic, etc.). To illustrate this let us consider the following example.

Example 1. We find ourselves in Scotland in order to do some hiking. We obtain
a list of all Scottish mountains using the WikiData SPARQL endpoint, but we
would prefer to hike in a place that is sunny. This information is not in WikiData,
but is available through a weather service API called weather.api. This API
implements HTTP requests, so for example to retrieve the weather on Ben Nevis,
the highest mountain in the UK, we can issue a GET request with the IRI:

http://weather.api/request?q=Ben_Nevis

The API responds with a JSON document containing weather information,
say of the form

{"timestamp": "24/10/2017 11:59:07",

"temperature": 3, "description": "clear sky",

"coord": {"lat": 56.79, "long": -5.02}}

Therefore, to obtain all Scottish mountains with a favourable weather all we
need to do is call the API for each mountain on our list, keeping only those
records where the weather condition is "clear sky". One can do this manually,
but this quickly become cumbersome, particularly when the number of API calls
is large. Instead, we propose to extend the functionality of SPARQL SERVICE,
allowing it to communicate with JSON APIs such as the weather service above.
For our example we can use the following (extended) query:

SELECT ?x ?l WHERE {

?x wdt:instanceOf wd:mountain .

?x wdt:locatedIn wd:Scotland .

?x rdfs:label ?l .

SERVICE <http://weather.api/request?q={?l}>{(["description"]) AS (?d)}

FILTER (?d = "clear sky")

}

The first part of our query is meant to retrieve the IRI and label of the moun-
tain in WikiData. The extended SERVICE operator then takes the (instantiated)
URI template where the variable ?l is replaced with the label of the mountain,
and upon executing the API call processes the received JSON document using
an expression ["description"], which extracts from this document the value
under the key description, and binds it to the variable ?d. Finally, we filter
out those locations with undesirable weather conditions. ut

2

With the ability of querying endpoints and APIs in real time we face an even
more challenging task: How do we evaluate such queries? Connecting to APIs
poses an interesting new problem from a database perspective, as the bottleneck
shifts from disk access to the amount of API calls. For example, when evaluating
the query in Example 1, about 80% of the time is spent in API calls. This is
mostly because HTTP requests are slower that disk access, something we cannot
control. To gauge the time taken for APIs to respond to a GET request we did a
quick study of five popular Web APIs. The results presented in Table 1 show us
the minimum, the maximum, and the average time over our calls for each API.

Yelp! Twitter Open Weather Wikipedia StackOverflow All

min 0.4 0.4 0.4 0.8 0.3 0.3

max 1.3 0.8 1.4 1.3 1.5 1.5

avg 1.1 0.5 0.6 1.0 0.6 0.76
Table 1. Min, max, and average response time of popular Web APIs based on ten
typical calls they support.

Hence, to evaluate these queries efficiently we need to understand how to
produce a query plan for them that minimizes the number of calls to the API.

Contributions. Our main contributions can be summarized as follows:
- Formalization. We formalize the syntax and the semantics of the SERVICE

extension which supports communication with JSON APIs. This is done in a
modular way, similar to the SPARQL formalization of [28], making it easy to
incorporate this extension into the language standard.
- Implementation. We provide a fully functional implementation of the extended
SERVICE operator within the Apache Jena framework, and test its functionality
on a range of queries over real world and synthetic data sources. We also set up
a demo at [2] for trying out the new functionality.
- Optimization. Given that the most likely bottleneck for our queries is the
number of API calls, we design, implement and test a series of optimizations
based on the AGM bound [8,27] for estimating the number of intermediate results
in relational joins, resulting in a worst case optimal algorithm for evaluating a
large fragment of SPARQL patterns that uses remote SERVICE calls.

Related work. Standard SERVICE that connects to SPARQL endpoints has
been extensively studied in the literature [5,6,7,25,24]. The main conclusions
regarding efficiency in this context resonate with our argument that the amount
of calls to external endpoints is the main bottleneck for evaluation. For standard
SERVICE there are several techniques we can use to alleviate this issue (see e.g.
[6,7]), and for our implementation we opt for the one that minimizes the database
load. In terms of bringing arbitrary API information into SPARQL most of the
works [23,26,31,14] are based on the idea of building RDF wrappers for other
formats. This is somewhat orthogonal to our approach and can be prohibitively
expensive when the API data changes often (like in Example 1). The most similar
to our work are the approaches of [15,16,9] that incorporate API data directly
into SPARQL, but do not provide a worst-case optimal implementation, nor
formal semantics of the extended SERVICE operation. Our paper is a continuation
of the demo presentation [22].

3

Organization. We recall standard notions in Section 2. The formal definition
and examples of the extended SERVICE are given in Section 3. The worst-case
optimal algorithm for evaluating queries that use SERVICE is presented in Section
4. Experimental evaluation is given in Section 5. For space reasons detailed proofs
can be found in our online appendix [1], and further examples at [2].

2 Preliminaries

RDF Graphs. Let I, L, and B be infinite disjoint sets of IRIs, literals, and
blank nodes, respectively. The set of RDF terms T is I ∪ L ∪B. An RDF triple
is a triple (s, p, o) from T × I × T, where s is called subject, p predicate, and o
object. An (RDF) graph is a finite set of RDF triples. For simplicity we assume
that RDF databases consist of a single RDF graph, although our proposal can
easily be extended to deal with datasets with multiple graphs.

SPARQL Queries. We assume the reader is familiar with the syntax and se-
mantics of SPARQL 1.1 query language [20], as well as the abstraction proposed
in [28]. We use this abstraction for our theoretical work, but examples are stated
in the standard syntax.

Let us recall some basic notions from [28] that will be used later on. We
define queries via graph patterns. Graph patterns are defined over terms T and
an infinite set V = {?x, ?y, . . .} of variables. The basic graph pattern is called
a triple pattern, and is a tuple t ∈ (I ∪ V) × (I ∪ V) × (I ∪ V). All other
graph patterns are defined recursively, using triple patterns, and operators AND,
OPT, UNION, FILTER and SERVICE. We consider SERVICE patterns of the form
(P1 SERVICE a P2), with a ∈ (I∪V) and P1, P2 graph patterns. If P is a graph
pattern we denote the variables appearing in P by var(P). Finally, we define
SPARQL queries as expressions of the form SELECT W WHERE { P }, where P is
a graph pattern, and W a set of variables.

We use the usual semantics of SPARQL, defined in terms of mappings [20,28];
that is, partial functions from the set of variables V to IRIs. The domain dom(µ)
of a mapping µ is the set of variables on which µ is defined. Two mappings µ1 and
µ2 are compatible (written as µ1 ∼ µ2) if µ1(?x) = µ2(?x) for all variables ?x in
dom(µ1)∩ dom(µ2). If µ1 ∼ µ2, then we write µ1 ∪ µ2 for the mapping obtained
by extending µ1 according to µ2 on all the variables in dom(µ2) \ dom(µ1).
Note that if two mappings µ1 and µ2 have no variables in common they are
always compatible, and that the empty mapping µ∅ is compatible with any other
mapping. For sets M1 and M2 of mappings we define their join as M1 |><| M2 =
{µ1 ∪ µ2 : µ1 ∈ M1, µ2 ∈ M2 and µ1 ∼ µ2}. Given a graph G and a pattern P ,
we denote the evaluation of a graph pattern P over G as JP KG. We refer to [20]
for a full specification of the semantics.

3 Enabling SPARQL to make JSON calls

While theoretically one can use our ideas to connect SPARQL to any Web API,
we concentrate on the so-called REST Web APIs, which communicate via HTTP

4

requests, and we only consider requests of type GET. Of course, any implemen-
tation needs to take care of many other details when connecting to APIs (e.g.
authentication). Our implementation takes this into consideration, but for space
reasons here we just focus on the problem of evaluating these queries. An end-
point allowing the users to try the SERVICE-to-API functionality can be found
at [2]), and the source code of our implementation can be found at [3].

We assume that all API responses are JSON documents, and we use JSON
navigation conditions to navigate and retrieve certain pieces of a JSON doc-
ument, analogous to the way JSON documents are navigated in programming
languages. For example, if we denote by J the JSON received in Example 1,
we use J ["temperature"] to obtain the temperature and J ["coord"]["lat"] to
obtain the latitude. We always assume that the general structure of the JSON
response is known by users; this can be achieved, for example, by including the
schema of the response in the documentation of the API (see e.g. [29,17]).

3.1 Syntax and semantics of the extended SERVICE operator

A URI Template [21] is an URI in which the query part may contain substrings
of the form {?x}, for ?x in V. For example, the following is a URI template:

http://weather.api/request?q={?city},{?country}

The elements inside brackets are replaced by concrete values in order to make
a request. In what follows, we will refer to the variables in such substrings of a
URI template U as the variables of U , and denote them with var(U).

Here is how we propose to extend SERVICE to enable calls to APIs. Let P1

be a SPARQL pattern, U a URI template using only variables that appear in P1,
?x1, . . . , ?xm a sequence of pairwise distinct variables that do not appear in P1,
and N1, . . . , Nm a sequence of JSON navigation instructions. Then the following
is a SPARQL pattern, that we call a SERVICE-to-API pattern:

P1 SERVICE U{(N1, N2, . . . , Nm) AS (?x1, ?x2, . . . , ?xm)} (1)

The intuition behind the evaluation of this operator over a graph G is the follow-
ing. For each mapping µ in the evaluation JP1KG we instantiate every variable
?y in the URI template U with the value µ(?y), thus obtaining an IRI which
is a valid API call1. We call the API with this instantiated IRI, obtaining a
JSON document, say J . We then apply the navigation instruction N1 to J and,
assuming the instruction returns a basic JSON value, store this value into ?x1.
Similarly, the value of N2 applied to J is stored into ?x2, and so on. The map-
ping µ is then extended with the new variables ?x1, . . . , ?xm, which have been
assigned values according to J and Ni. Notice that in (1) the pattern P1 can
again be an overloaded SERVICE pattern connecting to another JSON API, thus
allowing us to obtain results from one or more APIs inside a single query.

1 Note that replacing ?y in a URI template with µ(?y) may result in a IRI, and not
a URI, since some of the characters in µ(?y) need not be ASCII. To stress this, we
use the term IRI for any instantiation of the variables in a URI template.

5

Semantics. The semantics of a SERVICE-to-API pattern is defined in terms of
the instantiation of an URI template U with respect to a mapping µ (denoted
µ(U)), which is simply the IRI that results by replacing each construct {?x} in
U with µ(?x). If there is some ?x ∈ var(U) such that µ(?x) is not defined, we
define µ(U) as an invalid IRI that will result in an error when invoked.

Thus, every mapping produces an IRI, which we then use to execute an HTTP
request to the API in the body of the IRI. Formally, given an URI template U
and a mapping µ, we denote by call(U, µ) the result of the following process:

1. Instantiate U with respect to µ, obtaining the IRI µ(U).
2. Produce a request to the API signed by (µ(U)), obtaining either a JSON

document (in case the call is successful) or an error.

Informally, we refer to this process as the call to U with respect to the mapping
µ. We adopt the convention that HTTP requests that do not give back a JSON
document result in an error, that is, call(U, µ) = error whenever the request
using U does not result in a valid JSON document.

For instance, if µ is a mapping, such that µ(?y) = Ben Nevis, and U =
<http://weather.api/request?q={?y}> is a URI template, then µ(U) =
<http://weather.api/request?q=Ben Nevis>. When this request is executed
against the weather API in the IRI, the answer result is either a JSON document
similar to the one from Example 1, or it is an error.

To define the evaluation we need some more notation. First, if ?x is a variable
and t ∈ T, we use ?x 7→ t to denote the mapping that assigns t to ?x and does not
assign values to any other variable. Next, given a JSON document J , a navigation
expression N , and a variable ?x, we define the set M?x7→J[N] that contains the
single mapping ?x 7→ J [N], when J [N] is a basic JSON value (integer, string,
or boolean), and is equal to the empty set ∅ otherwise. We also assume that
M?x7→J[N] = ∅ when J is not a valid JSON document, or J = error.

The semantics of a SERVICE-to-API pattern P of the form (1) is then:

JP KG =
⋃

µ∈JP1KG

{µ} |><|M?x1 7→call(U,µ)[N1] |><| · · · |><|M?xm 7→call(U,µ)[Nm]

Therefore, a mapping in JP KG is obtained by extending a mapping µ ∈ JP1KG
by binding each ?xi to call(U, µ)[Ni]. In the case that call(U, µ) = error (e.g.
when µ(?x) is not defined for some ?x ∈ var(U)), or that call(U, µ)[Ni] is not
a basic JSON value, the mapping µ will not be extended to the variables ?xi,
and will not be part of JP KG. This is consistent with the default behaviour of
SPARQL SERVICE [30] which makes the entire query fail if the SERVICE call
results in an error. In the case that we want to implement the SILENT option
for SERVICE which makes the latter behave as an OPTIONAL (see [30]), we would
need to change the ∅ in the definition of M?x 7→J[N] to the empty mapping µ∅,
since this mapping can be joined with any other mapping.

For example, if P1 = {?x wdt:P131 wd:Q22 . ?x rdfs:label ?y} is a pat-
tern, and U = <http://weather.api/request?q={?y}> a URI template. Let

P = P1 SERVICE U{(["temperature"]) AS (?t)}

6

be the pattern we are evaluating over some RDF graph G, and assume that
JP1KG contains the following mappings.

?x ?y
µ1 wd:London London

µ2 wd:Berlin Berlin

The evaluation of P over G is then obtained by extending mappings in JP1KG
using U . That is, we iterate over µ ∈ JP1KG one by one, execute the call call(U, µ),
and store the value call(U, µ)["temperature"] into the variable ?t, in case that
the obtained JSON value is a string, a number, or a boolean value, and discard
µ otherwise. For example, if we assume that the calls are as follows,

call(µ1, U) = {"temperature": 22 }, call(µ2, U) = error

then the evaluation JP KG will contain the following mapping

?x ?y ?t
µ1 wd:London London 22

Since call(U, µ2) returns an error, the mapping µ2 can not be extended, so
it will not form a part of the output. In the case that the “SILENT semantic” is
triggered, we would actually output µ2 where ?t would not be bound.

3.2 A Basic Implementation

We propose a way to implement the overloaded SERVICE operation on top of any
existing SPARQL engine without the need to modify its inner workings. To do
so, we partition each query using this operator into smaller pieces, and evaluate
these using the original engine whenever possible. More precisely, whenever we
find a pattern of the form:

P ≡ P1 SERVICE U{(N1, N2, . . . , Nm) AS (?x1, ?x2, . . . , ?xm)}

in our query, we process it over a local database G using the following algorithm:

1. Compute JP1KG (recursively if P1 contains a SERVICE-to-API pattern).

2. Define M = ∅.
3. For each µ ∈ JP1KG do:

– Execute call(U, µ); if an error is returned, start step 3 with the next µ;

– For 1 ≤ i ≤ m, compute Mi = M?xi 7→call(U,µ)[Ni]; if there was an error,
start step 3 with the next µ;

– Let M = M ∪ ({µ} |><|M1 |><| · · · |><|Mm).

4. Finally, to compute JP KG, serialize the set of mappings M using the VALUES

operator, as in [7], to allow it to be used by the next graph pattern inside
the WHERE clause in which it appears.

7

Regarding the final step, the obtained mappings need to be serialized in case
P is followed by another graph pattern P2. In particular, if we are processing a
query of the form SELECT * WHERE {P . P2}, with P as above, then P2 needs
to be able to access the values from the mappings matched to P .

With this implementation, the natural question is whether this basic imple-
mentation can be optimized. As we have mentioned, the bottleneck in our case
is API calls, so if we want to evaluate queries as efficiently as possible we need
to do the least amount of API calls as possible. There are a number of opti-
misations we can immediately implement in our basic implementation that will
reduce the number of calls, and we try some of them in Section 5. However, next
we consider a rather different question, for a broad subclass of patterns: Can we
reformulate query plans to make sure we are making as few calls as possible?

4 A Worst-case optimal algorithm

Our goal is to evaluate SERVICE-to-API queries as efficiently as possible, which
implies minimising the number of API calls we issue when evaluating queries.
This takes us to the following question: what is the minimal amount of API calls
that need to be issued to answer a given query? Ideally, we would like to issue a
number of calls that is linear in the size of the output of the query: for each tuple
in the output we issue only those calls that are directly relevant for returning
that particular tuple. But in general this is not possible. Consider the pattern

(?x0, p, ?x1) AND . . . AND (?xm−1, p, ?xm) SERVICE U{(N) AS ?y},

where U uses variables ?x1, . . . , ?xm. Then the number of calls we would need to
issue could be of order |G|m (e.g. when all triples in G are of the form (a, p, b)),
but depending on the API data the output of this query may even be empty!

What we can do is aim to be optimal in the worst case, making sure that we
do not make more calls than the number we would need in the worst case over
all graphs and APIs of a given size. We can devise an algorithm that realises
this bound if we focus on the smaller class of SPARQL queries made just from
AND, FILTER and SERVICE-to-API operators, which we denote as conjunctive
patterns. This is the federated analogue of conjunctive queries, which amount to
roughly two thirds of the queries issued on the most popular endpoints on the
Web, according to [12].

As we shall see, bounding the number of API calls for this fragment is inti-
mately related to bounding the number of tuples in the output of a relational
query, a subject that has received considerable attention in the past few years
in the database community (see e.g. [8,18,27]). To illustrate this, let P be a
conjunctive SERVICE-to-API pattern of the form:

(. . . (((((P1 S1) AND P2) S2) AND P3) S3) . . . Pn) Sn,

where each Pi is a SPARQL pattern (not using SERVICE) and each Si is of the
form SERVICE U {(N1, N2, . . . , Nm) AS (?x1, ?x2, . . . , ?xm)}, with U , m, and
each of the Njs and ?xjs possibly different for different Si.

8

We can now cast the problem of processing the query P over an RDF graph
G as the problem of answering a join query over a relational database as follows.
First, we simulate each SPARQL pattern Pi as a relation Ri with attributes
corresponding to the variables of Pi (i.e. we project out the constants from each
pattern in Pi since they do not contribute to an output). Second, we view an API
U in each SERVICE call Si described above as a relation Ti with access methods
(see e.g. [10,13]), that has output attributes ?x1, . . . , ?xm and input attributes
var(U). Intuitively, an access method prevents arbitrary access to a relation; the
only way to retrieve the tuples of a relation T with input attributes A1, . . . , Ak
is to provide appropriate values for A1, . . . , Ak, after which we are given all the
tuples in T that match these input values.

It is now easy to see that answering P over G is the same as answering the
following relational query2:

QP = R1 |><| T1 |><|R2 |><| T2 |><| . . . |><|Rn |><| Tn, (2)

over the relational instance that has the result of JPiKG stored in Ri, and the
API data in Ti, for i = 1 . . . n. Queries of the form (2) are known as join queries.
Generally, join queries that do not use access methods are one of a few classes
of queries for which we know tight bounds for the size of their outputs [8]. In
what follows, we show that this bound can be extended even for queries that use
access methods, such as (2), thus allowing us to solve the problem of evaluating
SERVICE-to-API patterns.

We say that every action of matching values for the input attributes of one of
the Ti’s is a call operation, and we are able to offer a tight bound on the number
of calls needed to answer a join query with access method such as QP . The main
result we show in this section is the following. Take any feasible3join query Q,
and a database D. Denote by MQ,D the maximum size of the projection of any
relation appearing in Q over a single attribute in the database D. Furthermore,
let 2ρ

∗(Q,D) be the AGM bound [8] of the query Q over D, i.e. the maximum
size of the output of Q over any relational database having the same number of
tuples in each relation as D4. Then we can prove the following:

Theorem 1. Any feasible join query under access methods Q can be evaluated
over any database instance D using a number of calls in

O(MQ,D × 2ρ
∗(Q,D)).

To show this proposition we provide an algorithm that, given a query QP
obtained from a conjunctive SERVICE-to-API pattern as described above, con-

2 We abuse the notation and denote relational joins using the same symbol that we
use for mappings; the two operators are always distinguished by the context.

3 Some queries with access methods may not be answerable, e.g. a query with only
input attributes. We call queries that can be answered feasible (see Subsection 4.1).

4 The bound is obtained by solving a specific linear program that depends on the
query and the arity of the relations in D. We do not have space to formally state
this result or this program, but refer to [19] for an excellent summary

9

structs a query plan for QP that is guaranteed to make a number of calls sat-
isfying the bound. We also show that this bound is tight: one can construct a
family of patterns and instances of growing size where one actually needs that
amount of API calls. We then show that the query plan for QP can be used to
construct a query plan for P that is worst-case optimal.

4.1 API calls as relational access methods

Our shift into the relational setting is to facilitate the presentation when merging
all the different data paradigms involved in the evaluation of SERVICE-to-API
patterns. In the following we assume familiarity with relational databases and
schemas, and relational algebra. For a quick reference see [4].

We denote access methods with the same symbol as relations, but making
explicit which of the attributes are input attributes, and which are output at-
tributes. For example, an access method for a relation R(A,B,C) with attributes
A, B and C and where A and C are input attributes is denoted by R(Ai, Bo, Ci)
(letter i is a shorthand for input and o for output).

Access methods impose a restriction on the way queries are to be evaluated,
as there are queries that cannot be evaluated at all. To formalise the intuition
that access methods impose a restriction on the way queries are to be evaluated,
we say that a relation Ri in a join query R1 |><| R2 |><| . . . |><| Rm is covered if all of
its input attributes appear as an output in any of the relations R1, . . . , Ri−1.
Then such a join query is said to be feasible when all its relations are covered.
For example, consider a schema with with relations R(Ai, Bo), S(Ao, Bo) and
T (Bi, Co). Then S |><| R |><| T is feasible: the input for R is an output of S and
likewise for T . But R |><| T is not feasible, as we do not have a source for the
input of R. Naturally, a join query can only be answered if it is equivalent to
a feasible query, so without loss of generality we focus on feasible queries. This
is also enough for our purposes, as all queries we produce out of conjunctive
SERVICE-to-API patterns are feasible.

We adopt the convention that, for a relation T with input attributes
A1, . . . , Ak and a set R of tuples having all attributes A1, . . . , Ak, the num-
ber of calls required to answer R |><| T corresponds to the size of πA1,...,Ak

(R).
Intuitively, this means that we answer R |><| T by selecting all different inputs
coming from the tuples of R, and issue one call for each of these inputs.

We can then analyse the number of calls for the naive left-deep join plan for
Q = R1 |><| R2 |><| . . . |><| Rm, which corresponds to setting φ1 = R1 and iteratively
computing φi+1 = φi |><|Ri+1 until we obtain φn, which corresponds to the answers
of Q. How many calls do we issue? In the worst case where all except R1 are rela-
tions representing APIs, we would need to issue a number of calls corresponding
to the sum of the tuples in R1, R1 |><|R2, and so on until R1 |><| . . . |><|Rn−1.

It turns out that we can provide a much better bound for the number of calls
required, as well as an algorithm fulfilling this bound. In the following section
we show an algorithm that produces a reformulation of Q whose left-deep plan
issues a number of calls that agrees with the bound in Theorem 1. We also show
that the algorithm is as good as it gets for arbitrary feasible join queries.

10

4.2 The algorithm

Let Q = R1 |><|R2 |><| . . . |><|Rm be a feasible join query under some access methods,
and let A1, . . . , An be an enumeration of all attributes involved in Q, in order of
their appearance. Without loss of generality, we assume that there is exactly one
access method per relation in Q (if not one can construct two different relations,
the worst case analysis does not change). We use Input(R) to denote the set of
all input attributes of the access method for R.

Our algorithm is inspired by the optimal plan exhibited in [8,19] for con-
junctive queries without access methods. Starting from Q, we construct a query
Q∗ = ∆n, where the sequence ∆1, . . . ,∆n is defined as:

1. For ∆1, let S1
1 , . . . , S

1
k1

be all relations in {R1, . . . , Rn} whose set Input(S1
`)

of input attributes is contained in {A1} (including relations with only output
attributes). Then

∆1 = πA1(S1
1) |><| . . . |><| πA1(S1

k1).

2. For ∆i, let again Si1, . . . , S
i
ki

be all relations such that Input(Si`) is contained
in {A1, . . . , Ai}. Then

∆i = ∆i−1 |><| πA1,...,Ai
(Si1) |><| . . . |><| πA1,...,Ai

(Siki).

The feasibility of Q∗ follows from the fact that Q is feasible, so every relation
with inputs A1, . . . , Ai appears after all these attributes are outputs of previous
relations, and we order attributes in the order of appearance. According to the
construction above, we can write Q∗ as a natural join Q∗ = E1 |><| . . . |><| Er of
expressions Ei which are join free. We then evaluate Q∗ using a left-deep join
plan: we start with the leftmost expression φ1 = E1 = πA1

(R) in Q∗, where R
is some relation, and then keep computing φt = φt−1 |><| Et, for t = 2, . . . , r. The
relation φr contains our output. Part of our plan involves caching the results of
all relations R with Input(R) 6= ∅ the first time they are requested, and before
we compute any projection over them. This only imposes a memory requirement
that is at most as big as what we would need with the basic implementation.

Analysis. Recall that for a query Q and instance D, MQ,D is the maximum size
of the projection of any relation in Q over a single attribute, and 2ρ

∗(Q,D) is the
AGM bound of the query. Theorem 1 now follows from the following proposition.

Proposition 1. Let Q be a feasible join query over a schema with access meth-
ods and D a relational instance of this schema. Let Q∗ be the query constructed
from Q by the algorithm above. Then the number of calls required to evaluate Q∗

over D using a left-deep plan is in

O(MQ,D × 2ρ
∗(Q,D)).

Let m be the number of relations in Q and n the total number of attributes. If
we are considering combined complexity (i.e. Q is part of the input), the bound
above raises to O(m ×MQ,D × 2ρ

∗(Q,D)) for the algorithm that does caching.
Likewise, the number of calls is in O(n ×m ×MQ,D × 2ρ

∗(Q,D)) if we rule out
the possibility of caching.

For the worst case optimality we show queries realising the upper bound.

11

Proposition 2. There is a schema S, a query Q and a family of instances
(Dn)n≥1 such that: (i) The maximum size of the projection of a relation in D
over one attribute is n, (ii) The AGM bound is n2, and (iii) Any algorithm
evaluating Q must make at least n3 calls to a relation with access methods.

SERVICE-to-API patterns. To create optimal plans for SERVICE-to-API
patterns, we need to show that (1) our translation from patterns to relational
queries is sound and creates feasible queries, and (2) how to devise an optimal
plan for the SERVICE pattern when given a plan for the relational query.

For (1), let P be a SERVICE-to-API pattern and QP the constructed join
query, and consider an RDF graph G. Then the instance IP,G in which QP should
be evaluated is defined next, and the correctness lemma follows.

- Each relation Ri in IP,G with attributes ?x1, . . . , ?xm contains the set of tuples
{(µ(?x1), . . . , µ(?xn)) | µ ∈ JP KG}.
- Each relation Ti in IP,G with input attributes ?z1, . . . , ?zk and output attributes
?y1, . . . , ?yp contains the set of tuples {(µ(?z1), . . . , µ(?zk), µ(?y1), . . . , µ(?yp)) |
µ ∈ JP KG}.

Lemma 1. Let P be a conjunctive SERVICE-to-API pattern using variables
{?x1, . . . , ?x`}. A tuple (a1, . . . , a`) is in the evaluation of QP over IP,G if and
only if there is a mapping µ ∈ JP KG such that (a1, . . . , a`) = (µ(?x1), . . . , µ(?x`)).

While not obvious, this lemma also shows that the query is feasible, as long
as P is not trivially unanswerable (i.e., as long as there is a graph G for which
JP KG is nonempty). Note that for finding the worst-case optimal plan for QP
we do not need to construct the instance IP,G, as this would amount to pre-
computing the answer JP KG. Next, for (2): we show how the optimal plan for
QP gives us an optimal plan for P :

Proposition 3. Let P be SERVICE-to-API pattern, G an RDF graph and QP ,
IP,G the corresponding relational query with access methods and instance as con-
structed above. Then any optimal query plan Q∗ for QP over an instance IP,G
can be transformed (in polynomial time) into a query plan for P that evaluates
P over G using the same amount of API calls as the evaluation of Q∗.

Proof. The plan for P mimics step-by-step the plan for QP . That is, assume that
Q∗ = E1 |><| · · · |><| Er is the reformulation of QP from Section 4.2. Starting with
φ1 = E1, we iteratively compute the the set JφiKG = Jφi−1KG |><|Ei of mappings for
each i = 2 · · · r. This is done in the following way. Whenever Ei = π?x1,...,?xp

Ri,
we evaluate the query SELECT ?x1, . . . , ?xp WHERE Pi over G. On the other
hand, if Ei is a relation using Tj for the first time, we call the API (because
QP is feasible we will have all the needed input parameters), cache all the API
results and then only retrieve the attributes that are not projected out in Ei. All
subsequent appearances of Tj are evaluated directly on the cached JSON file.
(If we are not using caching, then we need to call the API for each Ek, where
k > i, that uses Tj .) Since the query φr is equivalent to Q∗, it is also equivalent
to QP . Thus the output of this query plan correctly computes JP KG by Lemma
1. The number of calls is worst-case optimal by Propositions 1 and 2.

12

5 Experiments

The goal of this section is to give empirical evidence that the worst-case optimal
algorithm of Section 4 is indeed a superior evaluation strategy for executing
queries that use API calls. We also constructed several real world use cases, for
space reasons we defer them to the appendix [1] and the online demo [2].

Experimental setup. To construct a benchmark for SERVICE-to-API patterns
we reformulate the queries from the Berlin benchmark [11] by designating certain
patterns in a query to act as an API call. We then run a battery of tests that
simulate real-world APIs by sampling from the distributions of the response
times presented in the introduction. The experiments where run on a 64-bit
Windows 10 machine, with 8 GB of RAM, and Intel Core i5 7400 @ 3.0 GHz
processor. Experiments were repeated five times, reporting the average value.
Adapting the Berlin benchmark to include API calls. The Berlin bench-
mark dataset [11] is inspired by an e-commerce use case. It has products that
are offered by vendors and are reviewed by users. Each one of those entities has
properties related with them (such as labels, prices, etc.). The size of the dataset
is specified by the user. To test our implementation we created a database of
5000 products consisting of 1959874 triples.

The benchmark itself is composed of 12 queries. Our adaptation con-
sists of exposing the data of five recurrent patterns we find in the
benchmark queries as APIs that return JSON documents. For instance,
{?x bsbm:productPropertyNumericZ ?y} is one such pattern, where Z is a
number between 1 and 5. This pattern is used to return the value of some nu-
meric property of a product with the label ?x, so we created a (local) API route
api/numeric-properties/{label}, that will give us all the values of numeric
properties of an object. For instance, if a product with the IRI bsbm:Product1
has a label "Product 1", and its numerics properties are PropertyNumeric1 =
3, PropertyNumeric2 = 10, the request api/numeric-properties/Product 1

returns the JSON: { "p1": 3, "p2": 10}. The other API routes we imple-
mented are similar (details can be found in [1]).

Next, we transform the original benchmark queries by replacing each pat-
tern used when creating the APIs by a SERVICE call to the corresponding API.
For instance, in the case of the “numeric properties API” described above, we
replace each pattern of the form: {?product bsbm:productPropertyNumericX
?valueX}, by the following API call:

SERVICE <api/numeric-properties/{label}>{ (["pX"]) AS (?valueX) }

We did a similar transformation for each pattern including entities served by
our APIs. We ran all the queries of the Berlin Benchmark except Q6, Q9, and
Q11, because they were too short to include API calls in their patterns. Also,
we change the OPTIONAL operator in each query by AND, because the two are the
same in terms of worst case optimal analysis.

Implementation. Our implementation of SERVICE-to-API patterns is done on
top of Jena TBD 3.4.0 using Java 8 update 144. We differentiate three evaluation

13

algorithms for SERVICE-to-API patterns: (1) Vanilla, the base implementation
described in Section 3; (2) Without duplicates, the base algorithm that uses
caching to avoid doing the same API call more than once; and (3) WCO, the
worst-case optimal algorithm of Section 4.
Results. The number of API calls done for each of the three versions of our
algorithm are shown in Table 2. As we see, avoiding duplicate calls reduces the
number of calls to some extent, but the best results are obtained when we use
the worst-case optimal algorithm. We also measured the total time taken for the
evaluation of these queries. Query times range from over 8000 seconds to just
0.7 seconds for the Vanilla version, and in average the use of WCO reduces by
40% the running times of the queries. Full details in [1].

Q1 Q2 Q3 Q4 Q5 Q7 Q8 Q10 Q12 AVG

Vanilla 5332 77 5000 5066 2254 15 1 7 1 0%

W/O Duplicates 4990 3 4990 4990 608 15 1 7 1 20%

WCO 2971 0 3284 4571 608 13 0 0 1 53%
Table 2. The number of API call per query for each algorithm. WCO plans average
53% reduction in API calls.

6 Conclusion

In this paper we propose a way to allow SPARQL queries to connect to HTTP
APIs returning JSON. We describe the syntax and the semantics of this ex-
tension, show how it can be implemented on top of existing SPARQL engines,
provide a worst-case optimal algorithm for processing these queries, and demon-
strate the usefulness of this algorithm both formally and in practice.

In future work, we plan to support formats other than JSON, and explore
how to support it in public endpoints. It would be also interesting to test how
issuing API calls in parallel affects the running times of diferent algorithms.
Another line of work we plan to pursue is to support automatic entity resolution
based on an API answer, thus allowing us to transform API information back
into IRIs to be used again by SPARQL, instead of just literals.

References

1. Online Appendix. http://67.205.159.121/query/appendix/.
2. Online demo of SERVICE-to-API. http://67.205.159.121/query/#/.
3. SERVICE-to-API implementation. http://67.205.159.121/query/code/.
4. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,

1995.
5. C. B. Aranda, M. Arenas, and Ó. Corcho. Semantics and optimization of the

SPARQL 1.1 federation extension. In ESWC 2011, pages 1–15, 2011.
6. C. B. Aranda, M. Arenas, Ó. Corcho, and A. Polleres. Federating queries in

SPARQL 1.1: Syntax, semantics and evaluation. J. Web Sem., 18(1):1–17, 2013.

14

http://67.205.159.121/query/appendix/
http://67.205.159.121/query/#/
http://67.205.159.121/query/code/

7. C. B. Aranda, A. Polleres, and J. Umbrich. Strategies for executing federated
queries in SPARQL1.1. In ISWC 2014, pages 390–405, 2014.

8. A. Atserias, M. Grohe, and D. Marx. Size bounds and query plans for relational
joins. SIAM J. Comput., 42(4):1737–1767, 2013.

9. R. Battle and E. Benson. Bridging the semantic web and web 2.0 with represen-
tational state transfer (REST). J. Web Sem., 6(1):61–69, 2008.

10. M. Benedikt, J. Leblay, and E. Tsamoura. Querying with access patterns and
integrity constraints. PVLDB, 8(6):690–701, 2015.

11. C. Bizer and A. Schultz. The berlin SPARQL benchmark. Int. J. Semantic Web
Inf. Syst., 5(2):1–24, 2009.

12. A. Bonifati, W. Martens, and T. Timm. An analytical study of large SPARQL
query logs. CoRR, abs/1708.00363, 2017.

13. A. Cal̀ı and D. Martinenghi. Querying data under access limitations. In ICDE
2008, pages 50–59, 2008.

14. A. Dimou, M. V. Sande, P. Colpaert, R. Verborgh, E. Mannens, and R. V. de Walle.
RML: A generic language for integrated RDF mappings of heterogeneous data. In
LDOW, 2014.

15. P. Fafalios and Y. Tzitzikas. SPARQL-LD: a SPARQL extension for fetching and
querying linked data. In ISWC Demos, 2015.

16. P. Fafalios, T. Yannakis, and Y. Tzitzikas. Querying the web of data with SPARQL-
LD. In TPDL 2016, pages 175–187, 2016.

17. F. Galiegue and K. Zyp. Json schema: Core definitions and terminology. Internet
Engineering Task Force (IETF), 2013.

18. G. Gottlob, S. T. Lee, G. Valiant, and P. Valiant. Size and treewidth bounds for
conjunctive queries. J. ACM, 59(3):16:1–16:35, 2012.

19. M. Grohe. Bounds and algorithms for joins via fractional edge covers. In In Search
of Elegance in the Theory and Practice of Computation. Springer, 2013.

20. S. Harris and A. Seaborne. SPARQL 1.1 query language. W3C, 2013.
21. IETF. URI Template. https://tools.ietf.org/html/rfc6570, 2012.
22. M. Junemann, J. L. Reutter, A. Soto, and D. Vrgoč. Incorporating API data into

SPARQL query answers. In ISWC 2016 Posters & Demos, 2016.
23. N. Kobayashi, M. Ishii, S. Takahashi, Y. Mochizuki, A. Matsushima, and T. Toy-

oda. Semantic-json. Nucleic Acids Research, 39:533–540, 2011.
24. G. Montoya, M. Vidal, and M. Acosta. A heuristic-based approach for planning

federated SPARQL queries. In COLD 2012, 2012.
25. G. Montoya, M. Vidal, Ó. Corcho, E. Ruckhaus, and C. B. Aranda. Benchmarking

federated SPARQL query engines: Are existing testbeds enough? In ISWC 2012,
pages 313–324, 2012.

26. H. Müller, L. Cabral, A. Morshed, and Y. Shu. From restful to SPARQL: A case
study on generating semantic sensor data. In ISWC 2013, pages 51–66, 2013.

27. H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal join algorithms.
In PODS 2012, pages 37–48, 2012.

28. J. Pérez, M. Arenas, and C. Gutierrez. nSPARQL: A navigational language for
RDF. J. Web Sem., 8(4):255–270, 2010.

29. F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoč. Foundations of JSON
Schema. In WWW 2016, pages 263–273, 2016.

30. E. Prud’hommeaux and C. Buil-Aranda. SPARQL 1.1 Federated Query. W3C
Recommendation, 21, 2013.

31. L. Rietveld and R. Hoekstra. YASGUI: not just another SPARQL client. In ESWC
2013, pages 78–86, 2013.

15

https://tools.ietf.org/html/rfc6570

	Querying APIs with SPARQL: language and worst case optimal algorithms

