Incorporating API data into
SPARQL query answers

Matfas Jiinemann, Juan L. Reutter, Adridn Soto, and Domagoj Vrgo¢

PUC Chile and Center for Semantic Web Research

Abstract. In this demo we present an extension of SPARQL which
allows queries to connect to JSON APIs and integrate the obtained in-
formation into query answers. We achieve this by adding a new operator
to SPARQL, and implement this extension on top of the Jena framework
in order to illustrate how it functions with real world APIs.

1 Introduction and motivation

Semantic Web provides a platform for publishing data on the Web via the Re-
source Description Framework (RDF). Having a common format for data dis-
semination allows for applications of increasing complexity since it enables them
to access data obtained from different sources. However, the majority of data
available on the Web today is still not published in RDF, and is thus not (di-
rectly) available to Semantic Web services. Huge amount of this data is accessed
through Web APIs which use a variety of different formats to provide data to
the users. Therefore it would be useful to allow SPARQL, the standard query
language for the Semantic Web, to access and use all of this data.

In this demo we make a first step in this direction by extending SPARQL with
the capability of communicating with JSON APIs. We picked JSON because it
is currently the most popular data format in Web APIs, however, the results
presented here can easily be extended to any API format; we stick with JSON
simply to keep the presentation manageable. By allowing SPARQL to connect
to an API we can utilise not just the information that is available locally in
our dataset, but also extend the query answer with data obtained from a Web
service. Use cases for such an extensions are numerous and can be particularly
practical when the data obtained from the API changes very often (such as
current weather conditions, sensor data, etc.). We illustrate how this extension
works and why one might want to use it by means of an example.

Ezxample 1. Suppose that you are travelling around Japan in order to do some
skiing. You find yourself at the Hokkaido island and wish to find all the ski re-
sorts close to your location. It is easy to obtain this information by querying e.g.
the YAGO database using SPARQL, however, you will probably want to go ski-
ing in a resort where the weather conditions are favourable (i.e. it is not raining
nor snowing). Although you can not obtain weather information directly using
SPARQL and join it with the list of resorts obtained previously, this informa-
tion is available through a weather service API called weather.api. This API

implements HTTP requests, so for example to retrieve the weather in Sapporo
you use the URI template:

http://weather.api/request?q=Sapporo,

to which the API responds with a JSON document containing weather informa-
tion, say of the form

{"timestamp": "14/04/2016 11:59:07",
"temperature": 11, "description": "Sunny"},

Thus, all you need is to produce one call to the weather API for each ski centre
in Hokkaido, and filter out all those where the description is not Sunny. One can
do this manually by e.g. querying with SPARQL first, and then executing an API
call for each obtained resort. However this might be cumbersome, particularly
when the number of answers is large, and does not allow us to incorporate this
information into our query answers. On the other hand, we propose to extend
SPARQL with the BIND_API operator, which allows us to easily obtain all of
the desired information using the following query.

SELECT 7x ?n WHERE {
?x yago:isLocatedIn yago:Hokkaido .
?x rdf:type yago:wikicat_Ski_areas_and_resorts_in_Japan .
?x rdfs:label 7n
BIND_API <http://weather.api/request?q={7n}>
(["description"]) AS (7t)
FILTER regex(7t,"Sunny")
}

The first part of our query is executed over the YAGO database and obtains
the IRI representing the resort and the label of its location. We pass the label of
the location as a parameter to the URI template used to consult the API. The
newly introduced operator BIND_API takes the (instantiated) URI template and
upon executing the APT call processes the received JSON document using an
expression ["description"], which obtains the value of the key description
of the received JSON, and binds it to the variable ?¢. Generally, the answer we
receive is going to be a collection of key-value pairs, so we need to specify which
value we want to obtain and store using the BIND_API operator.

In this demo we showcase an extension of Jena framework implementing the
BIND_API operator, and do live testing (on a remote server available at http://107.
170.168.31/query/#/) using either preselected queries, or the ones provided by the
visitors at the time of the demonstration. To keep the presentation manageable
we will use YAGO as our base dataset, but allow arbitrary APIs to be used.

Related work. There have been several proposals to allow SPARQL to commu-
nicate with APIs (see e.g. [2]), the main difference here being that we offer com-
munication capability with an arbitrary API as an integral part of the SPARQL
query processor. On the other hand, there have been many attempts to trans-
form data residing in other formats to RDF, the most popular paradigm here
being that of mappings [1]. The main difference from the work we present is that
mappings generally do not support querying “on-the-fly”, which can be an issue
when the data changes a lot such as e.g. with weather information.

http://107.170.168.31/query/#/
http://107.170.168.31/query/#/

2 The proposed extension

In order to allow SPARQL to obtain API data, we propose to extend the language
with a new operator called BIND_API. Formally, we allow SPARQL to contain
patterns of the form

Py BINDAPI U (N1, Na,...,Ny,) AS (221,222, ..., 7%m), (1)

which we call BIND-from-API patterns. Here P; is an arbitrary SPARQL graph
pattern [4], U a URI template [3] used to contact the API, and Ny,...,N,, a
sequence of JSON navigation instructions [5] which tell us how to extract the
desired value from the retrieved JSON document. By our definition BIND-from-
API patterns can appear anywhere usual SPARQL patterns can. This can be e.g.
inside a WHERE clause, such as in Example 1, or even as P; in (1), thus allowing
us to obtain results from multiple APIs inside a single query.

Evaluating this operator over an RDF dataset GG is done as follows. For each
mapping p in [P1]¢ we instantiate every variable ?y in the URI template U
with the value p(?y), thus obtaining an IRI which is a valid APT call. We call
the API with this instantiated IRI, obtaining a JSON document, say J. We then
apply the navigation instruction N; to J and store the obtained value into 7x;.
If the API call produced an error, or if the returned value is not a literal, we do
not assign a value to 7z1. Similarly, the value of N applied to J is stored into
?x9, etc. After this is done, the mapping pu is extended with the new variables
?x1,..., Ty, which have been assigned values according to J and N;s.

The implementation is done on top of the Jena framework, and does not alter
the inner workings of the standard BIND operator. Of course, we do need to
specify how the communication with APIs will be authenticated; the two most
popular strategies here being OAuth and authentication via API key/token.
In our demonstration we will provide the user with an input form where the
strategy can be specified (it is also easy to modify the implementation to store
predefined strategies and tokens to be used). Full definitions of the syntax and
the semantics are available at http://dvrgoc.ing.puc.cl/APIs/. We have also made the
implementation available on github for the readers who would like to further
test the capabilities of our extension: https://github.com/CSWR/SPARQL-JSONAPI.

3 Demonstration overview

The main focus of this demonstration will be the live query interface available
at http://107.170.168.31/query/#/, which will allow the demo visitors to test out ar-
bitrary queries which use API calls. The service we provide runs the extended
version of the Jena TDB framework through Fuseki, and the query interface
connects to this implementation using a Python script. The interface will check
every five seconds if the results are available. In order to make the presentation
more streamlined, we have decided to use a reasonable sized (2 GB) chunk of
the YAGO and DBpedia database containing information about geographical
locations as our base dataset. Apart from the usual query window available in

http://dvrgoc.ing.puc.cl/APIs/
https://github.com/CSWR/SPARQL-JSONAPI
http://107.170.168.31/query/#/

Query Interface Home Avout

Enter your query below Bind Strategies n

Examples

Weather in Sky Centers in Hokkaido

Query Strategy Bind 1

Stratagy

SELECT 2x 2n 2t WHERE
{2x <http://yago-knowledge.org/resource/istocatadIny <http://yago- Token URL -
knowledge .org/resource/Hokkaido> . 2x <http://wwms.w3.org/1999/62/22-rdf-

stype> <http://yago-knowledge.org/resource Enter your API Key inside the query.

fwikicat_ski_areas_and_resorts_in_Japan> . ?x <http://ww.w3.org/2000/01

frdf-schems#label> ?n

BIND_APT <http://api.openweathermap.org/data/2.5/weather 2q={n},Japang
a00id=besac20685b078537618d2010e2cd564>(["weather” 11@1l "descriotion”1) AS

QUERY

* x n t
1 hitp:#/yago-knowledge.org/resource/Sapporo Sapporo@eng broken clouds

Fig. 1. Live query interface available at http://107.170.168.31/query/#/. The user types
the query in the window to the left, and provides a strategy in the window to the right.

SPARQL endpoints, we also have a separate window where the users can en-

ter their strategies for accessing the APIs. As a default, we provide support for

OAuth and the typical strategy of providing a personalised token to access the

API. The visual presentation of the query interface is illustrated in Figure 3.
The demonstration will consist of two parts:

— First, we will give a brief introduction by example showcasing the different
functionalities supported by our implementation.

— Second, we will allow the users to specify queries using API calls which they
wish to execute (here we allow arbitrary APIs).

The aim of the demo is to emphasise the potential uses of such an extension to
SPARQL through a series of examples, and also to show that our implementation
can handle multiple (and simultaneous) user provided queries in real time on a
remote server, thus simulating a typical SPARQL endpoint.

References

1. A. Dimou, M. V. Sande, P. Colpaert, R. Verborgh, E. Mannens, and R. V. de Walle.
RML: A generic language for integrated RDF mappings of heterogeneous data. In
LDOW, 2014.

2. P. Fafalios and Y. Tzitzikas. SPARQL-LD: a SPARQL extension for fetching and
querying linked data. In ISWC Demos, 2015.

3. IETF. URI Template. https://tools.ietf.org/html/rfc6570, 2012.

4. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL.
ACM Transactions on Database Systems, 34(3), 2009.

5. F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgo¢. Foundations of JSON
Schema. In WWW 2016, pages 263-273, 2016.

http://107.170.168.31/query/#/
https://tools.ietf.org/html/rfc6570

	Incorporating API data into SPARQL query answers

