
Containment of Data Graph Queries

Egor V. Kostylev
University of Edinburgh

ekostyle@inf.ed.ac.uk

Juan L. Reutter
PUC Chile

jreutter@ing.puc.cl

Domagoj Vrgoč
University of Edinburgh

domagoj.vrgoc@ed.ac.uk

ABSTRACT
The graph database model is currently one of the most pop-
ular paradigms for storing data, used in applications such
as social networks, biological databases and the Semantic
Web. Despite the popularity of this model, the develop-
ment of graph database management systems is still in its
infancy, and there are several fundamental issues regarding
graph databases that are not fully understood. Indeed, while
graph query languages that concentrate on topological prop-
erties are now well developed, not much is known about lan-
guages that can query both the topology of graphs and their
underlying data.

Our goal is to conduct a detailed study of static analysis
problems for such languages. In this paper we consider the
containment problem for several recently proposed classes
of queries that manipulate both topology and data: regular
queries with memory, regular queries with data tests, and
graph XPath. Our results show that the problem is in gen-
eral undecidable for all of these classes. However, by allow-
ing only positive data comparisons we find natural fragments
that enjoy much better static analysis properties: the contain-
ment problem is decidable, and its computational complex-
ity ranges from PSPACE-complete to EXPSPACE-complete.
We also propose extensions of regular queries with an in-
verse operator, and study query evaluation and query con-
tainment for them.

1. INTRODUCTION
Managing graph-structured data is one of the most active

topics in the database community these days. Although first
introduced in the eighties [16, 17], the model has recently
gained popularity due to a high demand from services that
find the relational model too restrictive, such as social net-
works, Semantic Web, crime detection networks, biological
databases and many others. There are several vendors offer-
ing graph database systems [19, 23, 34] and a growing body
of literature on the subject (for a survey see e.g. [2, 7, 42]).

In such applications the data is usually modelled as a
graph, with each node describing one entity in the database,
for example a user in a social network, and the edges of the
graph representing various connections between nodes, such
as friends in a social network, supervisor connections in a

database modelling the structure of a company, etc. Nodes
can have various types of connections, so usually each edge
in the graph is labelled. Finally, nodes by themselves contain
the actual data, modelled as traditional relational data with
values coming from an infinite domain [2].

To query graph-structured data, one can, of course, use
traditional relational languages and treat the model as a re-
lational database. What makes graph databases attractive in
modern applications is the ability to query intricate naviga-
tional patterns between objects, thus obtaining more infor-
mation about the topology of the stored data and how it re-
lates to the actual data. Earliest graph query languages, such
as regular path queries (RPQs) [17] and conjunctive regu-
lar path queries (CRPQs) [13, 16], concentrate on retrieving
the topology of the graph and ignore the actual data stored.
These languages have been well studied in last decades, and
many extensions were defined for them, such as 2-way RPQs
[13], that allow backward navigation; nested regular expres-
sions [5], that allow existential tests; or extended CRPQs [3],
that allow checks of nontrivial relations amongst paths.

But purely navigational languages such as RPQs or CR-
PQs cannot reason on the data stored in the nodes. Thus such
data was usually queried using relational languages, without
a way of specifying the interplay between the data stored and
various navigational patterns connecting the data.

This interplay is indeed a requirement in many applica-
tions using graph-structured data. For example, in a database
modelling the inner workings of a company one might be
interested in finding chains of people living in the same city
that are connected by professional links, or in a social net-
work one could look for a sequence of friends, all of which
like the same type of music. Recently, several languages
that can handle such queries have been proposed [29–31]
and they were all built on the idea of extending RPQs, or
some variation thereof, with the ability to reason about data
values that appear along the navigated path.

Our goal is to study static analysis aspects of this new
generation of graph query languages. We concentrate on the
query containment problem, which is the problem of decid-
ing, given two queries in some graph language, whether the
answer set of the first query is contained in the answer set
of the second one. Deciding query containment is a funda-

1

mental problem in database theory, and is relevant to several
complex database tasks such as data integration [28], query
optimisation [1], view definition and maintenance [24], and
query answering using views [15].

The importance of this problem has motivated sustained
research for relational query languages (see e.g. [1]), XML
query languages (see e.g. [39]) and even extensions of RPQs
and other graph query languages [3, 4, 13, 20]. The overall
conclusion is that containment is generally undecidable for
first order logic and other similar formalisms (see e.g. [1]),
but becomes decidable if we restrict to queries with little
or no negation. For example, containment of conjunctive
queries is NP-complete, while containment of RPQs, 2-way
RPQs and nested regular expressions is PSPACE-complete.
For CRPQs it jumps to EXPSPACE-complete.

While much is known about the containment of above
mentioned classes of queries, no detailed study has been
conducted for query languages that deal both with naviga-
tional and data aspects of graph databases. In this work we
concentrate on three such languages. Namely, we consider
regular queries with memory (or RQMs for short), regular
queries with data tests (or RQDs), both introduced in [31],
as well as a recent adaptation of the widely used XML query
language XPath to the graph setting, which is called graph
XPath (or GXPath) [30]. We primarily concentrate on con-
tainment, but the techniques presented here can easily be
adapted to deal with other similar problems, such as satis-
fiability or equivalence of queries.

The intuition behind RQMs is that one can navigate
through a graph in the same way as with RPQs, but along
the path it is also possible to store a data value into a register
and later on compare it with another value encountered fur-
ther on the path. This idea is very similar to the one of regis-
ter automata [27,35] and in fact one can show that these two
formalisms are equivalent [32]. RQDs operate in a similar
fashion, but storing and comparing values adheres to a more
strict stack-like discipline, so they enjoy much better eval-
uation properties. Lastly, the language of GXPath allows
one to define patterns in the graph that are not necessarily
just paths, as it is in the cases of RQMs and RQDs, and also
provides the ability to test whether some data values in these
patterns are equal.

Contributions By using equivalence of RQMs with register
automata, we obtain our first result: the problem of checking
whether one RQM is contained in another RQM is undecid-
able. This, of course, opens up the question of fragments
of the language that do have decidable containment prob-
lem. The class of positive RQMs is one of such fragments, in
which we allow testing only if two data values are equal, but
not different. We show that the problem of positive RQM
query containment is decidable, and, in fact, EXPSPACE-
complete—the same complexity as for CRPQs [13].

Next we move onto the class of RQDs, which was shown
to be strictly contained in the class of RQMs [31]. The im-
posed restrictions to RQMs are quite heavy, and computa-

tional complexity of query evaluation drops by almost one
exponent when we consider RQDs instead of RQMs. For
this reason one may expect the containment problem to be
decidable for RQDs. On the contrary, as we show, it remains
undecidable even in this restricted scenario. However, this
changes once again when we consider positive RQDs, for
which a PSPACE algorithm for testing containment is ob-
tained. This is the best possible bound for any extension of
RPQs, since their containment is already PSPACE-hard [14].

A common assumption when considering graph lan-
guages is that edges can be traversed in both directions. In-
deed, the authors in [12, 13] argue that any practical query
mechanism for graphs should incorporate this functional-
ity, as there are many scenarios when backward navigation
is required. It is therefore natural to study what happens
when RQMs and RQDs are extended with the inverse oper-
ator. This gives rise to two new classes of languages, called
2RQMs and 2RQDs, respectively. Remarkably, we show
that adding this operator carries no extra computational cost
with respect to query evaluation. However, it does make a
big difference for containment, as even the subclass that al-
lows only positive data comparisons has undecidable query
containment problem.

Finally, we consider GXPath and its various dialects.
This language has recently attracted attention because it
provides considerable expressive power while maintaining
good query evaluation properties (in particular, the com-
bined complexity is in polynomial time). However, with
respect to containment the story is different: even the nav-
igational fragment that uses no data value comparisons has
undecidable containment problem. Although this bound fol-
lows from some folklore results on satisfiability of the three
variable fragment of first order logic, we could not find a
formal proof of this fact and, hence, provide a self-contained
one by a reduction from the tiling problem.

The reason for the undecidability of GXPath is the pres-
ence of a powerful negation operator that allows comple-
mentation of binary relations. We show, that if one excludes
such negation from the language, then containment becomes
decidable (EXPTIME-complete). Such a language is in fact
close to propositional dynamic logic (PDL), whose contain-
ment is also known to be EXPTIME-complete [26].

The classes above do not consider data values tests in
GXPath queries. Following [30], we consider an extension
of these classes with an operator to test whether data values
at the beginning and at the end of a path are same or differ-
ent. This language can simulate all RQDs [30], and thus our
previous results imply that inequalities in tests immediately
lead to undecidability of the containment problem.

Hence the natural way to obtain decidability is to consider
GXPath queries that allow only equalities between data val-
ues. Whether or not the containment problem is decidable
for this class promises to be a challenging task, worthy of
a research line of its own. Indeed, even seemingly simpler
problems in the XML case (that is, trees with data) are still

2

unanswered [8, 9], and the ones that have been solved usu-
ally require very intricate techniques that cannot be applied
in the graph scenario (see e.g. [18, 33]).

Overall, we see that when containment is considered, the
situation is quite different for languages handling both topol-
ogy and data than it is for traditional graph languages allow-
ing only navigational queries. While for the latter contain-
ment is generally decidable, we show that for the languages
considered here the problem resembles behaviour of rela-
tional algebra, where containment is undecidable for the full
language, but various restrictions on the use of negation lead
to decidable fragments. Hence, the existence of real-world
relational systems which deal with similar problems, demon-
strates that undecidability or high complexity should not be
viewed as an insurmountable obstacle for practical use of
the languages studied here, but as a foundation for further
research.

Organization In Section 2 we formally define the data
model and the problem studied. In Sections 3 and 4 we in-
troduce RQMs and RQDs, respectively, and study their con-
tainment problems. In Section 5 we show how these classes
can be extended with inverses, and turn our attention to GX-
Path in Section 6. We conclude with some remarks about
future work in Section 7. Due to space limitations, most of
the proofs are only sketched, and complete proofs can be
found in the appendix.

2. PRELIMINARIES
Data graphs Let Σ be a finite alphabet of labels and D an
infinite set of data values. A data graph over labels Σ and
data values D is a triple 〈V,E, ρ〉, where:

- V is a finite set of nodes,

- E ⊆ V × Σ× V is a set of labelled edges, and

- ρ : V → D is a function that assigns a data value to
each node in the graph.

An example of a data graph is shown in Figure 1. If data
values are not important, we disregard ρ and only talk about
graphs 〈V,E〉 over Σ.

Regarding data values, this paper follows [30, 31] and the
standard convention for data trees (as a model for XML),
and assumes that data values are attached to nodes. There
are of course other possibilities, but they are all essentially
equivalent. We also assume that each node is assigned with
a single data value. This is not a real restriction, since tuples
of attributes can be modelled by a set of edges, each labelled
with the attribute name and connecting the current node to a
new node with a data value for the corresponding attribute.
Paths A path π between nodes v1 and vn in a graph 〈V,E〉
is a sequence

v1a1v2a2v3 . . . vn−1an−1vn,

such that each (vi, ai, vi+1), for 1 ≤ i < n, is an edge in E.

1

v1

2

v2

1

v3

2

v4

3v5

3

v6

a
c

a
a

b c

ab

Figure 1: A data graph over labels {a, b, c} and natural num-
bers as data values, in which nodes are vi, 1 ≤ i ≤ 6.

The label of the path π is the word a1 . . . an−1 obtained
by reading the edge labels appearing along this path.
Queries The default core of each query language for graphs
is regular path queries (or RPQs) which are just regular lan-
guages over Σ, usually defined by regular expressions. The
evaluation JeKG of an RPQ e over a graph G, is the set of
all pairs (v1, v2) of nodes in G for which there exists a path
from v1 to v2 with the label from the language of e.

There are a number of extensions of RPQs proposed in
the literature. In this paper we concentrate on those that are
capable of dealing with data values. Also, all of the queries
we study are binary queries, i.e. such that their evaluations
(i.e. answers) are sets of pairs of nodes. We denote by JeKG
the evaluation of a query e over a data graph G.
Containment A query e1 is contained in a query e2 (written
e1 ⊆ e2) if for each data graph G over Σ andD we have that

Je1KG ⊆ Je2KG.

The queries e1 and e2 are equivalent (written e1 ≡ e2) iff
Je1KG = Je2KG for every G.

The containment and equivalence are at the core of many
static analysis tasks, such as query optimisation. All the
classes of queries considered in this paper are closed un-
der union, so these two problems are easily interreducible:
e1 ≡ e2 iff e1 and e2 contains each other, and e1 ⊆ e2 iff
e1 ∪ e2 ≡ e2. That is why in this paper we concentrate
just on the first and consider the following decision problem
parametrized by a class of queries Q.

CONTAINMENT (Q)
Input: Queries e1 and e2 from Q.
Question: Is e1 contained in e2?

The semantics of RPQs is defined for graphs, but it is
straightforward to see that for any two RPQs e1 and e2, we
have that e1 ⊆ e2 if and only if the language accepted by
the regular expression e1 is contained in the language ac-
cepted by e2 [14]. From this fact we obtain that contain-
ment of RPQs is PSPACE-complete, following the classic

3

result that containment of regular expressions is PSPACE-
complete. Since all of the classes of queries studied in this
paper are extensions of RPQs, this establishes a lower bound
for containment of any of these classes.

3. REGULAR QUERIES WITH MEMORY
Regular queries with memory, or RQMs for short, were

introduced in [31] (where they were called regular expres-
sions with memory) as a formalism for querying data graphs
that allows data comparisons while navigating through the
structure of the graph. They are based on register automata,
an extension of finite-state automata for words over infinite
alphabets (see, e.g. [31, 35] for a detailed description).

The idea of RQMs is the following. They can store data
values in a number of named registers, while parsing the in-
put graph according to a specified regular navigation pattern.
Also, they can compare the current data value with values
that had previously been stored. An example of an RQM is
the expression ↓x.a+[x=], which returns all pairs (v, v′) of
nodes in a graph that have the same data value and are con-
nected by a path labelled only with a’s. Intuitively the ex-
pression works as follows: it first stores the data value of
the node v into register x, and after navigating an a-labelled
path, it checks that the node v′ at the end of this path has the
same data value as the first node. This check is done via test
x= which makes sure that the data value of v′ is the same as
the one stored in register x.

The proposal of RQMs as a formalism for querying data
graphs was motivated not only by their ability to handle
data values, but also by the low computational complex-
ity of their evaluation: it is PSPACE-complete in general,
and NLOGSPACE-complete if the query is fixed (i.e. in data
complexity) [31]. Hence, their complexity is essentially the
same as for first-order or relational algebra queries.

3.1 Syntax and Semantics of RQMs
Let X be a countable set of registers. We denote them by

letters x, y, z, etc. A condition over X is a positive boolean
combination of atoms of the form x= or x 6=, for x ∈ X .

DEFINITION 3.1. A regular query with memory (or
RQM) over an alphabet of labels Σ and set of registers X is
an expression satisfying the grammar

e := ε | a | e ∪ e | e · e | e+ | e[c] | ↓x.e (1)

where ε is the empty word, a ranges over labels, x over reg-
isters, and c over conditions.

Before formally defining the semantics, let us give some
examples of RQMs and explain their intuitive meaning.

EXAMPLE 3.2.

1. The RQM ↓x.(a[x=])+ returns all pairs of nodes con-
nected by a path, along which all edges are labelled
a and all data values are equal. The evaluation starts

HG(ε) = {(s, s) | s is a state},
HG(a) = {((v, λ), (v′, λ)) | (v, a, v′) ∈ E},
HG(e1 ∪ e2) = HG(e1) ∪HG(e2),
HG(e1 · e2) = HG(e1) ◦ HG(e2),
HG(e+) = HG(e) ∪HG(e · e) ∪ . . . ,
HG(e[c]) = {((v, λ), (v′, λ′)) |

((v, λ), (v′, λ′)) ∈ HG(e) and (ρ(v′), λ′) |= c},
HG(↓x.e) = {((v, λ), (v′, λ′)) |

((v, λ), (v′, λ′)) ∈ HG(e) and λ(x) = ρ(v)}.

Table 1: Definition of the functionHG with respect to a data
graph G.

with ↓x, which stores the first data value into regis-
ter x. The subexpression (a[x=])+ then checks that
each subsequent label along the path is a, and that the
data value of each node on this path is equal to the one
of the first node (this is done by comparison with the
value stored in register x). The fact that this subexpres-
sion is in the scope of + indicates that the length of the
sequence of checks is of arbitrary length.

2. The RQM ↓x.(a[x 6=])+ returns all pairs of nodes con-
nected by a path where all edges are labelled with a
and the first data value is different from all other data
values. It works analogously as the expression above,
except that it checks for inequality.

3. The RQM ↓x.(abc)+[x 6=] returns all pairs of nodes
connected by a path, whose label is of the form
abc . . . abc, and the first data value is different from the
last. Note that the order of + and condition is different
from the previous examples: the condition is checked
only once, after verifying that the label is in (abc)+,
i.e. at the end of the path.

To define what it means for a data value to satisfy a con-
dition we need the following notion. An assignment of reg-
isters X is a partial function λ, from X to the set of data
valuesD. Intuitively, an assignment models the current state
of the registers at some point of computation, with some
registers containing stored data values, and some still being
empty. Formally, a data value d and an assignment λ satisfy
a condition x= (or x 6=) iff λ(x) is defined and d = λ(x)
(or d 6= λ(x), correspondingly). This satisfaction relation is
denoted |= and extended to general conditions in a straight-
forward way.

Given a data graph G and a set of registers X , a state is a
pair consisting of a node of G and an assignment of X .

The semantics of RQMs over a data graph G = 〈V,E, ρ〉
is defined in terms of function HG, which binds each RQM
with a set of pairs of states. The intuition of the set HG(e),
for some RQM e, is as follows. Given states s = (v, λ)
and s′ = (v′, λ′), the pair (s, s′) is in HG(e) if there exists
a path w from v to v′, such that the expression e can parse
w assuming that the registers are initialized according to λ,
modified and compared as dictated by e, and the resulting

4

assignment after traversing the path is λ′.
Formally, given a data graph G = 〈V,E, ρ〉, the function

HG is constructed by the inductive definition in Table 1.
The symbol ◦ in the table refers to the usual composition

of binary relations:

HG(e1) ◦ HG(e2) = {(s1, s3) |
∃s2 s.t. (s1, s2) ∈ HG(e1) and (s2, s3) ∈ HG(e2)}.

Finally, the evaluation JeKG of an RQM e over a data
graph G is the following set of pairs of nodes in G:

{(v, v′) | ∃λ′ s.t. ((v,⊥), (v′, λ′)) ∈ HG(e)},

where ⊥ is the empty assignment.

EXAMPLE 3.3. Consider the evaluations of expressions
from Example 3.2 over the data graph from Figure 1:

1. the evaluation of ↓x.(a[x=])+ is {(v6, v5)};
2. the evaluation of ↓x.(a[x 6=])+ is {(v1, v2), (v1, v5),

(v2, v5), (v2, v3)};
3. the evaluation of ↓x.(abc)+[x 6=] contains

(v1, v6), (v6, v1), (v2, v1) and (v2, v6) (but not
(v6, v6)).

3.2 From Graphs to Words
As we mentioned in the preliminaries, standard algo-

rithms for containment of RPQs rely on the fact that two
RPQs are contained if and only if the regular languages they
define are contained [14]. In this section we exhibit a similar
behaviour for RQMs.

Data words are a widely studied extension of words over
finite alphabets [38], in which every position carries not only
a label from the finite alphabet Σ, but also a data value from
the infinite domain D. However, just for uniformity of pre-
sentation, we follow [31] and opt to the following essentially
equivalent definition, by which data values are attached not
to positions in a word, but “between” them.1

DEFINITION 3.4. A data word over a finite alphabet of
labels Σ and infinite set of data values D is a sequence
d1a1d2a2 . . . an−1dn, where n > 0, ai ∈ Σ, for each
1 ≤ i < n, and di ∈ D, for each 1 ≤ i ≤ n.

Every data word w = d1a1d2 . . . an−1dn can be eas-
ily transformed to a data graph Gw, consisting of n differ-
ent nodes with data values d1, . . . , dn, respectively, conse-
quently connected by edges labeled with a1, . . . , an−1, as
illustrated in Fig. 2.

The semantics of RQMs over data words is defined in the
straightforward way: a data word w is accepted by an RQM
e iff (v, v′) ∈ JeKGw , where v and v′ are the first and the last
node of Gw. The set of all data words, accepted by an RQM
e is denoted L(e).
1In [31] to distinguish this notion from the original, the term “data
path” was used.

d1

v

d2 d3
. dn

v′

a1 a2 a3 an−1

Figure 2: The data graph Gw corresponding to the data
word w = d1a1d2 . . . an−1dn (some node identifiers are
omitted).

Coming back to graphs, each path

v1a1v2a2v3 . . . vn−1an−1vn,

in a data graph 〈V,E, ρ〉 has the corresponding data word

ρ(v1)a1ρ(v2)a2ρ(v3) . . . ρ(vn−1)an−1ρ(vn).

As noted in [31], for each RQM e, data graph G, and
nodes v, v′ of G, it holds that (v, v′) ∈ JeKG iff there ex-
ists a path between v and v′ such that its corresponding data
word is accepted by e. Exploiting usual techniques in query
containment we arrive at the following proposition, similar
to the property of RPQs, mentioned in the preliminaries.

PROPOSITION 3.5. Given two RQMs e1 and e2, it holds
that e1 ⊆ e2 iff L(e1) ⊆ L(e2).

In the proposition above e1 ⊆ e2 is defined on data
graphs, but L(e1) and L(e2) are sets of data words.

3.3 Containment of RQMs
We now turn to the containment problem for RQMs. Un-

fortunately, as the following theorem shows, the power that
RQMs gain through its data manipulation mechanism comes
with a high price for static analysis tasks.

THEOREM 3.6. The problem CONTAINMENT (RQMs) is
undecidable.

This fact follows from Proposition 3.5 and the undecid-
ability of the containment problem for register automata (
[35]), which are known to be equivalent to RQMs evaluated
on data words ([31, 32]).

The theorem above naturally leads to question of finding
decidable subclasses. It is known that testing containment
of an expression using at most one register in an expression
using at most two registers is decidable [35]. This approach
appears to be too restrictive, and thus we concentrate instead
on positive RQMs, i.e. those RQMs, that use only atoms of
the form x= in the conditions. In [40] it was shown that
the containment of positive RQMs is decidable, but no com-
plexity bounds were given. The following theorem fills this
gap.

THEOREM 3.7. The problem CONTAINMENT (positive
RQMs) is EXPSPACE-complete.

PROOF SKETCH. Let e1 and e2 be two RQMs over Σ.
For the EXPSPACE upper bound, assume that e1 6⊆ e2.

5

Then by Proposition 3.5 there is a data word w, such that
(v, v′) ∈ Je1KGw , v and v′ being the first and last nodes of
the graph Gw. By definition of the semantics of RQDs, one
can assign to each node inGw a particular assignment for the
registers in e1, according to the states of relation HGw(e1).
We show that one can always have such a graph Gw satis-
fying, in addition, the following property: two nodes u and
u′ of Gw have the same data value d if and only if the as-
signment for the registers in all nodes in the path from u to
u′ assign d to at least one of the registers. Combining this
property with the fact that RQMs are equivalent to register
automata [31], we can show that, in order to check whether
there is a data word that belongs to L(e1) but does not be-
long to L(e2), we do not need to run the automata for e1 and
e2 storing all the information of the registers. Instead we
can perform this simulation remembering only which regis-
ters in e1 and e2 store the same data values, and which store
different ones. In other words, we can build a transition sys-
tem whose states store roughly the following information:
(1) the current state of the automata equivalent to e1 and e2,
and (2) the equality class formed by the data values stored
in the registers of e1 and e2. The size of this system is dou-
ble exponential in e1 and e2, but a reachability test can be
performed in EXPSPACE using the standard on-the-fly pro-
cedure.

Hardness is by a reduction from the acceptance problem
of a Turing machine that works in EXPSPACE. The reduction
is similar as the one used in [6, Theorem 6], except that the
gadgets in this proof are constructed by taking advantage of
registers, instead of the variable assignments used there.

The previous proof relies on the fact that the set of regis-
ters X is unbounded. Carefully checking the proof reveals
the following corollary. Here n-bounded positive RQMs
refers to the class of positive RQMs which can use at most
n registers.

COROLLARY 3.8. Let n be a natural number. The
problem CONTAINMENT (n-bounded positive RQMs) is
PSPACE-complete.

Hence, positive RQMs are a natural subclass of RQMs
with decidable query containment. However, when compar-
ing the complexity with the one for RPQs, we see that allow-
ing positive data test comparisons results in an exponential
jump. In the following section we consider another class of
queries extending RPQs, which also allows data value com-
parisons, but in a more restricted way than RQMs. As we
will see, the positive subclass of this class has the same com-
plexity of query containment as RPQs.

4. REGULAR QUERIES WITH DATA TESTS
Looking for classes of queries handling data values, but

having better query answering properties than RQMs, the
authors of [31] introduced regular queries with data tests, or
RQDs for short (these were called regular expressions with

equality in the original paper). An example of such a query
is the expression a(b+)=c, whose intention is to return all
pairs of nodes connected by a path labeled by ab . . . bc and
where the data values before and after the sequence of b’s
are the same.

All RQDs are RQMs, but the usage of registers is re-
stricted: each stored data value can be retrieved and com-
pared only once, and the order of these storing and retrieving
operations is not arbitrary, but on the “last in, first out” ba-
sis. The data complexity of RQDs’ evaluation is the same as
for RQMs—in NLOGSPACE, but the combined complexity
is much better, in fact tractable, in PTIME [31].

4.1 Syntax and Semantics of RQDs
The syntax for RQDs can be defined in a direct, much sim-

pler way than for RQMs, without even mentioning registers
and conditions.

DEFINITION 4.1. A regular query with data tests (or
RQD) over an alphabet of labels Σ is an expression satis-
fying the grammar

e := ε | a | e ∪ e | e · e | e+ | e= | e 6= (2)

where a ranges over labels.

Again, before the formal definition of semantics we give
some examples of RQDs and their connection to RQMs.

EXAMPLE 4.2. Recall RQMs from Example 3.3 (we
consider them here in different order for better understand-
ing of the relation between RQMs and RQDs).

1. The RQM ↓x.(abc)+[x6=] can be written as the RQD
((abc)+) 6=: the first data value is stored, then the se-
quence of abc’s is read, and then the value is retrieved
and compared for inequality with the current one. Note
that the stored value is used just once.

2. The RQM ↓x.(a[x=])+ can be written as the RQD
(a=)+: the first data value is stored; then a is read;
then the stored data value is retrieved and compared
with the current one for equality; if successful, this
current value (equal to the original!) is stored again,
another a is read, and so on. If the parsing continues,
then the current data value is always equal to the orig-
inal one, even if we use each stored value just once.

3. Contrary to the previous case, it can be shown that the
RQM ↓x.(a[x 6=])+ cannot be expressed as an RQD:
indeed, after the first comparison the original data
value is lost, and storing the current data value (dif-
ferent from the original) cannot help with correct com-
parison on the next step.

4. The RQM ↓x.a ↓y.b[y=]c[x=] can be written as the
RQD (ab=c)=. However, the very similar RQM
↓x.a ↓y.b[x=]c[y=] is not expressible as an RQD,
since the sequence in which data values have to be

6

JεKG = {(v, v) | v ∈ V },
JaKG = {(v, v′) | (v, a, v′) ∈ E},
Je1 · e2KG = Je1KG ◦ Je2KG,
Je1 ∪ e2KG = Je1KG ∪ Je2KG,
Je+KG is the transitive closure of JeKG,
Je=KG = {(v, v′) | (v, v′) ∈ JeKG, ρ(v) = ρ(v′)},
Je 6=KG = {(v, v′) | (v, v′) ∈ JeKG, ρ(v) 6= ρ(v′)}.

Table 2: Semantics of RQDs with respect to a data graph G.
The composition of binary relations is again denoted ◦.

retrieved does not respect the ”first-in-last-out” disci-
pline required by RQD syntax.

The semantics of RQDs is also defined in a much simpler
way than for RQMs. The evaluation JeKG of an RQD e over
a data graph G = 〈V,E, ρ〉 is the set of all pairs (v1, v2) of
nodes in V defined recursively in Table 2.

As Example 4.2 suggests, and as it is formally shown in
[31], the class of RQDs is strictly contained in the class of
RQMs. Indeed, to transform an RQD to RQM we just need
to recursively replace each subexpression of the form e∼,
∼ ∈ {=, 6=}, with the subexpression ↓x.e[x∼], where x is a
previously unused register. However, there are RQMs which
cannot be transformed to RQDs, which is also justified by
the lower complexity of query evaluation.

Similarly to RQMs, each RQD also defines a language of
data words. A data word w is accepted by an RQD e iff
(v, v′) ∈ JeKGw , with Gw as in the Figure 2. The set of all
data words accepted by an RQD e is denoted L(e). It is easy
to see that for each RQD e, data graph G and nodes v, v′ in
G, it holds that (v, v′) ∈ JeKG iff there exists a path between
v and v′ such that its corresponding data word is accepted
by e. This allows us to show an analogue of Proposition 3.5,
thus reducing query containment to language containment.

PROPOSITION 4.3. Given two RQDs e1 and e2, it holds
that e1 ⊆ e2 iff L(e1) ⊆ L(e2).

4.2 Containment of RQDs
RQDs were originally introduced as a restriction of RQMs

that enjoys much better query evaluation properties. In light
of this result, one might also hope for good behaviour when
query containment is considered. Surprisingly, the following
theorem shows that this is not the case.

THEOREM 4.4. The problem CONTAINMENT (RQDs) is
undecidable.

PROOF SKETCH. The proof exploits the idea of coding
the Post correspondence problem by data words from [35].
However, the expressions used there are RQMs and they rely
on the fact that one can store a data value and then compare
it with a value encountered later with no restrictions. This is
not immediately possible when dealing with RQDs, since
testing for (in)equality must adhere to the first-in-last-out
discipline. The trick used to circumvent this issue is based

on the observation that part of the coding from [35] can be
reversed, thus allowing us to nest data value tests as dictated
by the syntax of RQDs.

This naturally opens the search for subclasses of RQDs
with decidable containment problem. Similarly to posi-
tive RQMs, we now consider the class of positive RQDs,
i.e. RQDs where subexpressions of the form e 6= are not al-
lowed. We can obtain a positive RQM from a positive RQD
by the described above procedure that transforms an RQD
into an RQM. Hence, we again have a strict containment of
the corresponding classes, and from Thm. 3.7 we conclude
that containment of positive RQDs is decidable and in EX-
PSPACE. However, the following theorem says that we can
perform even better, in fact, the best possible in light of the
PSPACE lower bound for plain RPQs.

THEOREM 4.5. The problem CONTAINMENT (positive
RQDs) is PSPACE-complete.

PROOF SKETCH. The hardness follows from the bounds
for RPQs, so next we give an idea of an PSPACE algorithm
which decides whether L(e′) ⊆ L(e) holds for positive
RQDs e′ and e.

Let’s start with a simple PSPACE algorithm for contain-
ment of RPQs: (1) transform the RPQs to nondetermin-
istic finite state automata (NFAs) A′ and A without ε-
transitions; (2) put a pebble to each of the initial states; (3)
non-deterministically repeat moving the single pebble in A′

along transitions, moving at the same time all the pebbles
in A in parallel, along the transitions labelled the same as
the current transition in A′: if we have several options, the
pebble multiplies, if a pebble cannot move, it is removed,
if several pebbles meet, just one is left; (4) stop and fail if
the pebble in A′ is in a final state, but none of the pebbles
in A are; stop and succeed if the search space is exhausted.
Essentially, the set of pebbles in A is the state in the typical
power set construction, done “on the fly”.

A naive adaptation of this algorithm to deal with data val-
ues can be as follows.
(a) Before transforming to NFAs, normalise e and e′ such
that none of the equality checks ()= can be opened together
and none of them can be closed together on any run. This
can be done, essentially, by applying the rules

((e1)=e2)= (e1)=(e2)=, (e1(e2)=)= (e1)=(e2)=,

and some others. After this, RQDs can be transformed to
NFAs whose transitions have extra labels from the set R =
{∅, ↑, ↓, ↓↑}, where ↑ means that an equality is opening, and
↓ that an equality is closing.
(b) Attach a stack of reactions to all the pebbles in A, where
each reaction is a symbol from R. Then, during a run of
the algorithm, if the pebble in A′ moves along a transition
with ↑, then every moved pebble in A pushes into its stack
the extra label of the transition, but only if it is either ∅ or
↑; otherwise pebble does not pass (of course, the usual label
matching is also checked). In turn, if the pebble in A′ moves

7

along a transition with ↓, then only those pebble pass, which
popped extra label pairs with the label of the current transi-
tion: ↓ pairs with ↑, and ∅ pairs with itself. The extra label
↓↑ can be handled similarly.

By this, e.g. (ab=c)= is contained in (abc)= because the
only pebble in the second NFA when reading b has stack
(↑, ∅) and the current label is pairing ∅. The same (ab=c)= is
contained in ab=c, because, after b the stack is (∅, ↑) and the
label is pairing ↓, but it is not contained in (ab)=c, because
they are (↑, ∅) and not pairing ↓.

Such an adaptation would work, but it has space issues.
First, the normalisation step can cause an exponential

blow-up if nested simultaneously opened or closed equali-
ties are combined with ∪ operation. So, a PSPACE algo-
rithm should not apply the rules above, but deal with such
situations on the fly: e.g. we may allow a pebble inA to pass
through an equality opening, but only with a condition that
this equality will be closed together with the previous one.

Second, and more serious problem is that even if the depth
of each stack is bounded by the depth of the equality tests
nesting in A′, the number of different stacks is exponential.
In fact, there are examples where exponentially big set of
pebbles with different stacks are on the same state in A at
some point of a run. However, such a set is never arbitrary,
and lots of information in the stacks can be shared: if a stack
can be seen as a unary tree, then every set of such trees which
appears on a run can be represented as a dag, whose size is
polynomial.

By carefully exploiting the ideas above we describe the
desired PSPACE algorithm in the appendix.

5. LANGUAGES WITH INVERSE
RQMs and RQDs are recent, but established extensions

of RPQs which manage data values. However, as noted
in [13], RPQs by themselves lack a very natural construc-
tion for navigation through the structure of graphs—namely,
the inverse operator. Indeed, consider for example a geneal-
ogy graph over a single parent label, such as the one pre-
sented in Figure 3. We assume that nodes represent people
and data values are their names. A natural query over this
graph, which does not deal with data values, would be to
ask for all pairs of siblings. This, however, is clearly not
expressible as an RPQ. On the other hand, it can be writ-
ten as parent−parent, where ‘−’ is the inverse operator,
which traverses edges backwards. This query will retrieve
e.g. (v2, v4) from the graph in Figure 3, since these nodes
have a common parent v1.

The class of queries enriching RPQs with inverse, called
2-way RPQs, or 2RPQs for short, was introduced in [13],
where it was shown that even with this extension query eval-
uation remains the same as for RPQs (namely NLOGSPACE-
complete). Moreover, in [14] the authors also show that
query containment is as efficient as for plain RPQs (namely
PSPACE-complete).

In this section we consider the extensions of RQMs and

Mary

v1

Ianv2

Paulv3

Paulv4

Jo

v5

Laura v6

Michael v7

parent

parent

parent

parent

parent

parent

parent

Figure 3: A genealogy database over the parent label.

RQDs with the inverse operator, called 2RQMs and 2RQDs
respectively. As far as we are aware, these languages
have never been formally investigated, but we believe that
they are natural and intuitive formalisms for querying data
graphs. For example, one query of interest in our genealogy
database might be to retrieve all pairs of (blood) relatives
with the same name. This can be easily done by the means
of 2RQD ((parent−)+parent+)=, which checks that two
people have a common ancestor and ensures that they also
have the same name. For example the pair (v3, v4) is an an-
swer to this query in our sample graph.

The main focus of this paper is query containment. But
since we introduce the languages of 2RQMs and 2RQDs
here, after the formal definitions we first explore the com-
plexity of query evaluation, and afterwards proceed to the
containment problem.

5.1 Definition and Evaluation of 2RQMs and
2RQDs

The syntax of 2RQMs results from adding the inverse op-
erator to RQMs. The similar holds for 2RQDs.

DEFINITION 5.1. A 2-way regular query with memory,
or 2RQM, over alphabet of labels Σ and registers X , is an
expression satisfying the grammar (1) in Definition 3.1 ex-
tended with the alternative a−, where a ranges over Σ.

A 2-way regular query with data tests, or 2RQD, over la-
bels Σ is an expression satisfying (2) in Definition 4.1 ex-
tended with a−.

By this definition, 2RQDs restrict 2RQMs in the same
way as RQDs restrict RQMs. The semantics of these lan-
guages extends their one-way analogs in the intuitive way.
For 2RQMs, given a data graph G = 〈V,E, ρ〉, the func-
tion HG extends the definition from Table 1 to the inverse
construction as follows:

HG(a−) = {((v′, λ), (v, λ)) | (v, a, v′) ∈ E}.

Then, the evaluation JeKG of an 2RQM e over a data graph
G stays the same as for RQMs.

Similarly, the evaluation JeKG of a 2RQD e over a data
graph G = 〈V,E, ρ〉 is obtained by adding the following

8

rule to Table 2:

Ja−KG = {(v′, v) | (v, a, v′) ∈ E}.

As noted above, the complexity of 2RPQ evaluation is the
same as for plain RPQs. Next we show that the same also
holds for RQMs and RQDs with their two-way variants.

PROPOSITION 5.2. The problem of deciding whether a
pair of nodes belongs to JeKG for a 2RQM e and a data
graph G is PSPACE-complete. The same problem is in
PTIME if e is a 2RQD. If we assume that e is fixed the prob-
lem becomes NLOGSPACE-comlete.

The proof of this proposition follows from the evaluation
algorithms for RQMs and RQDs described in [31], and the
observation that such two-way query can be viewed as an
ordinary one-way query over the extended alphabet Σ′ =
Σ∪{a− | a ∈ Σ}. Then a pair (v, v′) is an answer of e over
a graph G if and only if it is an answer of e when viewed
as a one-way query over the extended graph G′ (over the
alphabet Σ′) which contains the edge (v′, a−, v) edge for
each edge (v, a, v′) in G.

5.2 Containment of 2RQMs and 2RQDs
The classic result by Calvanese et al. [14] states that one

can add the inverse operator to RPQs and maintain not only
the same complexity of query evaluation, but also the same
complexity of query containment. The proposition above
gives a hope that the inverse functionality will not affect
the complexity of containment of 2RQMs and 2RQDs as
well. Of course, by the results of the previous sections,
containment is undecidable when full languages are consid-
ered. Unfortunately, as we show next, decidability for posi-
tive RQMs does not propagate to their two-way variant.

The class of positive 2RQMs is defined as the subclass of
2RQMs that use only conditions built from atoms of the form
x= (but not x 6=). Note that for 2RQMs we can no longer use
language containment to check for query containment [14].
Indeed, it might be tempting to do the same as we did for
Proposition 5.2, and reduce containment checking of two-
way queries to containment of the same queries, but viewed
as one-way queries over the extended alphabet containing
symbols a− for each a ∈ Σ. However, this does not im-
ply that queries are contained, because labels of the form
a− can also symbolise going backwards (for example, query
a is contained in aa−a, but they are not contained when
viewed as regular expressions over the extended alphabet).
This leads to the following announced result.

THEOREM 5.3. The problem CONTAINMENT (positive
2RQMs) is undecidable.

PROOF SKETCH. The proof is by reduction from the
emptiness problem of stateless multihead automata, known
to be undecidable [43]. Two-way register automata are
known to be able to simulate stateless multihead automata
[35], and the same can be shown for 2RQMs. However, such

v

v′

b b
a

c

. . .

Figure 4: A pattern for GXPath query a[〈b+〉]c.

simulation requires both equalities and inequalities, so the
proof does not follow directly from this fact.

We do not simulate a stateless multihead automatonA di-
rectly, but rather simulate only the accepting runs. We define
positive 2RQMs e1 and e2 such that A accepts no words if
and only if e1 ⊆ e2. In our coding, a witnessGw for e1 6⊆ e2

represents a word belonging to A.

This negative result comes as a surprise, and it poses a
question on whether the containment problem is at least de-
cidable for positive 2RQDs. We leave this question for fu-
ture work.

6. GRAPH XPATH
As we saw in the previous section, 2RQMs and 2RQDs

extend RPQs with the constructs for data values compar-
isons and also with an additional navigational feature. The
language of graph XPath, or GXPath for short, which was
introduced in [30] as an adaptation of the widely used XML
query language XPath to the graph setting, goes further in
this direction, extending the classes considered above with
even more elaborate navigational tools. For example, the
GXPath query a[〈b+〉]c retrieves all pairs (v, v′) of nodes
connected by a path labelled ac, such that the intermedi-
ate node on this path has an outgoing sequence of b-labelled
edges. The end point of that sequence can be arbitrary, we
are only interested in its existence. The pattern described by
this query is illustrated in Figure 4.

One consequence of this gain in navigational expressive-
ness is that we cannot always go from graphs to words as be-
fore: for instance, there are GXPath queries which are sat-
isfiable on graphs, but not on words (like the one above). It
means that we cannot hope for anything like Propositions 3.5
and 4.3, because query containment no longer corresponds
to containment of languages.

Contrary to 2RQMs and 2RQDs, static analysis aspects
of GXPath were not previously studied even for purely nav-
igational fragment GXPathreg that uses no data value com-
parisons. That is why we start by exploring the containment
problem for this fragment, and only after it proceed to vari-
ous extensions with data tests.

Before proceeding to the formal details, it is worth to note,
that the aforementioned class GXPathreg essentially corre-
sponds to the well studied formalism of propositional dy-

9

J>KG = {v | v ∈ V },
J¬ϕKG = V − JϕKG,

Jϕ ∧ ψKG = JϕKG ∩ JψKG,
Jϕ ∨ ψKG = JϕKG ∪ JψKG,

J〈α〉KG = {v | ∃v′ (v, v′) ∈ JαKG};

JεKG = {(v, v) | v ∈ V },
JaKG = {(v, v′) | (v, a, v′) ∈ E},

Ja−KG = {(v′, v) | (v, a, v′) ∈ E},
J[ϕ]KG = {(v, v) ∈ G | v ∈ JϕKG},

Jα ∪ βKG = JαKG ∪ JβKG,
Jα · βKG = JαKG ◦ JβKG,

JαKG = V × V − JαKG,
Jα+KG is the transitive closure of JαKG.

Table 3: The semantics of GXPathreg. The symbol ‘−’
stands for set-theoretic difference.

namic logic, or PDL [26], with negation on paths.

6.1 Syntax and Semantics of GXPathreg

As in XPath, formulas of GXPathreg are divided into path
formulas, returning pairs of nodes, and node formulas, re-
turning single nodes. Since we are interested in extensions of
RPQs (which are binary), we concentrate on path formulas,
and node ones will play just an auxiliary role. The formulas
are defined by mutual recursion as follows.

DEFINITION 6.1. Node formulas of ϕ,ψ of GXPathreg
and path formulas α, β are expressions satisfying the gram-
mar

ϕ,ψ := > | ¬ϕ | ϕ ∧ ψ |ϕ ∨ ψ | 〈α〉,
α, β := ε | a | a− | [ϕ] | α ∪ β | α · β | α | α+.

(3)

Just by glancing the definition one immediately notices
that GXPathreg is a formalism much richer in navigational
properties than RPQs: it allows inverse traversal of edges
(the a− operator), non-existence of paths (the α operator),
and testing for existence of (boolean combinations of) paths
starting from the current node (the [ϕ] operator). The formal
semantics with respect to a graph G = 〈V,E〉 is given in
Table 3: a node formula ϕ defines the set JϕKG of nodes,
and a path formula α defines the set JαKG of pairs of nodes.

Note that negation over path formulas is usually not in-
cluded in the syntax of XPath when working on trees, since
one can show that this class is closed under negation. This,
however, is not the case for GXPath as shown in [30], so
complementation is added to preserve close connection be-
tween XPath and first-order logic.

6.2 Containment of GXPathreg Queries
Analysing the expressive power of GXPathreg reveals that

this class of queries is equivalent to the extension of first or-
der logic with three variables (FO3) with the transitive clo-
sure operator [30]. It is well known that satisfiability of

FO3 formulas is undecidable over arbitrary (possibly infi-
nite) graphs, and it is folklore to assume that this bound is
maintained for finite graphs, which we study in this paper.
Since containment is a more general problem, than satisfia-
bility, we have the following theorem.

THEOREM 6.2. The CONTAINMENT (GXPathreg) prob-
lem is undecidable.

PROOF SKETCH. Since we could not find a formal proof
of the aforementioned result about finite satisfiability of
FO3, we include a self contained proof in the appendix, as
for all other theorems of this paper. The proof shows that
even satisfiability problem for GXPathreg formulas is unde-
cidable. To obtain this result we give a reduction from a
variation of tiling problem from [25]. In particular we use
the fact that the set Snotiling, of all finite sets of tiles that can
not tile the positive plane, and the set Speriod, of all finite sets
of tiles that can tile the plane periodically, are recursively
inseparable.

Following the ideas from [21], we then show how to con-
struct, for each finite set of tiles T , a GXPathreg node for-
mula γT such that satisfiability of γT implies that T can tile
the positive plane, while the fact that T can tile the plane pe-
riodically implies that γT is satisfiable. Note that this shows
that the set S = {ϕ | ∃G s.t. JϕKG 6= ∅} contains the set
{γT | T ∈ Speriod} and is disjoint from {γT | T ∈ Snotiling}.
The fact that Snotiling and Speriod are recursively inseparable
then implies that S can not be recursive, so satisfiability, and
thus containment, of GXPathreg queries is undecidable.

To define the formula γT we rely heavily on the fact that
GXPathreg can force loops in a graph, thus allowing us to
check that tiles are placed correctly and that the tiling can
proceed from any point in the plane.

By analysing the proof one can also observe that the usage
of the transitive closure operator + is restricted to edge labels
only. Thus, we actually show that the satisfiability problem
is already undecidable for the fragment of GXPathreg, called
GXPathcore by analogy with the core fragment of XPath,
which allows only a+ and (a−)+ instead of α+ in the gram-
mar for path queries in (3). Note, that GXPathcore does not
contain RPQs any more, and in fact these two classes are
incomparable [30].

Due to the before mentioned connection to PDL, we have
a result on satisfiability of PDL with negation over finite
models.

COROLLARY 6.3. The satisfiability problem for PDL
with negation on paths is undecidable over finite models,
even in the absence of propositional variables.

In fact, by carefully examining the proof, one can check
that the use of negation is quite limited and that we only use
intersection and the fact that GXPathreg can define the set of
all pairs of mutually different nodes via the expression ε. We
are hoping that further adaptations of the proof could lead to

10

Data comparisions RQD RQM 2RQD 2RQM GXPathpos
reg GXPathpath-pos

reg GXPathreg

none PSPACE-c∗ PSPACE-c∗ PSPACE-c∗ EXPTIME-c und.
full und. und. und. und. und. und. und.

positive PSPACE-c EXPSPACE-c ? und. ? ? und.

Table 4: Complexity of containment of data graph queries. Some classes have synonyms, not given for clarity: i.e. RQDs and
RQMs with no data comparisons are RPQs. Results, known before, are marked with ‘*’, “-c” stands for “complete”.

solving the well know open problem of finite satisfiablity for
PDL formulas with intersection [22].

As in the previous sections, we have the following ques-
tion: what are the restrictions on GXPathreg that make con-
tainment decidable? The most natural candidates are of
course the ones that forbid negation. Since we have two
forms of negation, one on node formulas and another on path
formulas, we consider two positive subclasses of GXPathreg.

DEFINITION 6.4. The positive GXPathreg, denoted
GXPathpos

reg , does not allow node formulas of the form ¬ϕ
nor path formulas of the form α in the grammar (3) of
GXPathreg.

The path-positive GXPathreg, denoted GXPathpath-pos
reg ,

does not allow α, but keeps ¬ϕ in the grammar.

Note that, as opposed to the classes from previous sec-
tions, the word “positive” refers here to restrictions of navi-
gational properties, and not of data manipulation abilities.

A PSPACE upper bound for complexity of containment
problem for GXPathpos

reg queries was shown in [37]. Hence,
this complexity is the same as for RPQs. Exploiting con-
nections with PDL, we obtain the following result for the
second, bigger class defined above.

THEOREM 6.5. The decision problem CONTAINMENT
(GXPathpath-pos

reg) is EXPTIME-complete.

Note that this result gives us an upper bound of con-
tainment for path-positive GXPathcore, i.e. the intersection
of GXPathcore and GXPathpath-pos

reg . We leave the precise
bounds for core fragments for future work, as our focus in
this paper is on queries extending RPQs.

6.3 Adding Data Values
There are two approaches to add data value comparisons

to Xpath. We consider the one which is in line with RQDs.
The syntax of this new class GXPathreg(∼) extends the
grammar (3) of GXPathreg with path formulas of the form
α= and α6=. The semantics over a data graph G = 〈V,E, ρ〉
enriches Table 3 in a way similar to semantics of RQDs:

Jα=KG = {(v, v′) ∈ JαKG | ρ(v) = ρ(v′)},
Jα6=KG = {(v, v′) ∈ JαKG | ρ(v) 6= ρ(v′)}.

Similarly to previous sections, we also consider subclasses
GXPathpos

reg (∼) and GXPathpath-pos
reg (∼) of GXPathreg(∼),

the first of which does not allow node negations ¬ϕ and

path negations α, and the second one does not allow just
path negations.

Another way to add data value tests would be to follow
usual XPath and add node formulas 〈α = β〉 to the syntax.
The evaluation of such a formula contains all the nodes in
the graph from which one can reach two nodes v′ and v′′

by following paths satisfying α and β respectively, such that
ρ(v′) = ρ(v′′). In [30] it was shown that such an exten-
sion of GXPathreg is strictly contained in the defined above
GXPathreg(∼).

Next we come to query containment for GXPathreg(∼)
and its fragments. However, it is shown in [30], that even
GXPathpos

reg (∼), i.e. the smallest subclass defined above,
contains the class of RQDs. That is why we have the fol-
lowing corollary of Theorem 4.4.

COROLLARY 6.6. The problems

- CONTAINMENT (GXPathpos
reg (∼)),

- CONTAINMENT (GXPathpath-pos
reg (∼)) and

- CONTAINMENT (GXPathreg(∼))

are undecidable.

The next step in the search for decidable fragments of
GXPath would be to restrict data tests to equality tests of
the form α= only (i.e. forbid the form α6=). We did such a
restriction for RQDs and RQMs before. From Theorem 6.2
we already know that containment for GXPathreg(∼) with
such restriction is undecidable. However, results for simi-
lar fragments of RQDs give some hope that containment for
GXPathpath-pos

reg (∼) and GXPathpos
reg (∼) with such restrictions

might be decidable. In future work we would like to extend
our research in this direction, as well as study what hap-
pens in core fragments, where one might even be allowed to
use inequality tests and still retain decidability of basic static
analysis tasks.

7. CONCLUSIONS AND FUTURE WORK
After conducting a detailed study of query containment

for main classes of queries for graphs with data, we con-
clude that the picture here is quite different from the one for
traditional navigational languages. In particular, there is a
sharp contrast between RPQs or CRPQs, where containment
is decidable, and any of the known extension of RPQs that
handle data values. Undecidability for the class of RQMs

11

comes as not a surprise, due to high complexity of query
evaluation and powerful data manipulation mechanism, but
we have seen that even classes with good query evaluation
properties can have undecidable containment.

The presence of inequality tests seems to be one of the
major detractors here, although the ability to define com-
plex navigational patterns can lead to undecidability as well.
Thus, it seems that to obtain decidable fragments one has to
limit attention to purely positive subclasses. The situation
further complicates in the presence of inverse operator. We
summarise all of the results in Table 4.

All of this shows that, although most of graph query lan-
guages are already well established, there is still some fine
tuning needed to define languages with desirable static anal-
ysis properties. In particular, we would like to fully under-
stand the containment problem for all fragments of GXPath.
Some results in previous sections give us hope that decid-
ability could be obtained for positive fragments using only
equality tests and for core fragments, which we did not con-
sider here.

In particular, the decidability of containment is open
for the classes of positive 2RQDs; and the equalities-only
versions of GXPathpos

reg and GXPathpath-pos
reg . The expres-

sive power of these classes is tightly related: positive
GXPathpos

reg is obtained by adding the test operator [ϕ] to pos-
itive 2RQDs, and of course positive GXPathpath-pos

reg contains
positive GXPathpos

reg . An undecidability result for positive
2RQDs would settle the question for all three classes, but we
conjecture that the the decidability frontier is somewhere be-
tween positive GXPathpos

reg and positive GXPathpath-pos
reg . An-

other approach is to consider only standard XPath-like tests
of the form 〈α = β〉, which were shown to be weaker than
the equality tests used here [30]. Finally, it could be interest-
ing to look at graph queries over various description logics,
where some results are known, but only about 2RPQs and
C2RPQs [10].

8. REFERENCES

[1] S. Abiteboul, R. Hull, V. Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[2] R. Angles, C. Gutierrez. Survey of graph database models. ACM
Computing Surveys, 40(1), 2008.

[3] P. Barceló, L. Libkin, A.W. Lin, P. Wood. Expressive languages for
path queries over graph-structured data. ACM TODS 38(4) (2012).

[4] P. Barceló, L. Libkin, J. Reutter. Querying graph patterns. In
PODS’11, pages 199–210.

[5] P. Barceló, J. Pérez, J. L. Reutter. Relative expressiveness of nested
regular expressions. In AMW’12, pages 180–195.

[6] P. Barceló, J. Reutter, L. Libkin. Parameterized regular expressions
and their languages.. TCS 474: 21–45 (2013).

[7] P. Barceló. Querying Graph Databases. In PODS’13.
[8] M. Benedikt, C. Koch. XPath leashed. ACM Computing Surveys

(CSUR), 41(1) (2008).
[9] M. Benedikt, W. Fan, F. Geerts. XPath satisfiability in the presence of

DTDs. In J. ACM, 55(2) (2008).
[10] M. Bienvenu, M. Ortiz, M. Šimkus. Conjunctive Regular Path

Queries in Lightweight Description Logics. In IJCAI, 2013.

[11] E. Börger, E. Grädel, Y. Gurevich The Classical Decision Problem.
Perspectives in Mathematical Logic, Springer, 2001.

[12] P. Buneman, S. B. Davidson, G. G. Hillebrand, D. Suciu A Query
Language and Optimization Techniques for Unstructured Data. In
SIGMOD Conference 1996, pages 505–516

[13] D. Calvanese, G. De Giacomo, M. Lenzerini, M.Y. Vardi.
Containment of conjunctive regular path queries with inverse. In
KR’2000, pages 176–185.

[14] D. Calvanese, G. De Giacomo, M. Lenzerini, M.Y. Vardi. Reasoning
on regular path queries. ACM SIGMOD Record, 32(4):83–92, 2003.

[15] D. Calvanese, G. De Giacomo, M. Lenzerini, M.Y. Vardi.
View-Based query answering and query containment over
semistructured data. In DBPL 2001, pages 176–185.

[16] M. Consens, A. Mendelzon. GraphLog: a visual formalism for real
life recursion. In PODS’90, pages 404–416.

[17] I. Cruz, A.O. Mendelzon, P. Wood. A graphical query language
supporting recursion. In SIGMOD’87, pages 323–330.

[18] C. David, A. Gheerbrant, L. Libkin, W. Martens. Containment of
pattern-based queries over data trees. ICDT 2013, pages 201–212.

[19] DEX query language.
http://www.sparsity-technologies.com/dex.php.

[20] D. Florescu, A. Y. Levy, D. Suciu. Query Containment for
Conjunctive Queries with Regular Expressions. PODS’98, pages
139–148.

[21] R. Goldblatt, M. Jackson. Well structured program equivalence is
highly undecidable. ACM Trans. Comput. Log., 13(3):26, 2012.

[22] S. Göller, M. Lohrey, C. Lutz. PDL with intersection and converse:
satisfiability and infinite-state model checking. In J. Symb. Log.,
74(1): 279-314 (2009).

[23] The Gremlin graph traversal language.
http://gremlin.tinkerpop.com.

[24] A. Gupta, I.S. Mumick. Maintenance of Materialized Views:
Problems, Techniques, and Applications. IEEE Data Eng. Bull.,
18(2): 3–18, 1995.

[25] Y. Gurevich, I. Koryakov. Remarks on Berger’s paper on the domino
problem. In Siberian Math. Journal, 1972.

[26] D. Harel, D. Kozen, J. Tiuryn. Dynamic Logic. MIT Press, 2000.
[27] M. Kaminski, N. Francez. Finite memory automata. TCS,

134(2):329–363, 1994.
[28] M. Lenzerini. Data integration: a theoretical perspective. In PODS,

2002.
[29] L. Libkin, J. L. Reutter, D. Vrgoč. TriAL for RDF: Adapting Graph

Query Languages for RDF Data. In PODS, 2013.
[30] L. Libkin, W. Martens, D. Vrgoč. Querying graph databases with

XPath. In ICDT, 2013.
[31] L. Libkin, D. Vrgoč. Regular path queries on graphs with data. In

ICDT’12, pages 74–85.
[32] L. Libkin, D. Vrgoč. Regular expressions for data words. LPAR’12,

pages 274–288.
[33] G. Miklau, D. Suciu. Containment and equivalence for a fragment of

XPath. J. ACM, 51(1): 2-45 (2004).
[34] The Neo4j Manual. http://docs.neo4j.org.
[35] F. Neven, T. Schwentick, V. Vianu. Finite state machines for strings

over infinite alphabets. ACM TOCL 5(3): 403–435 (2004).
[36] J. Pérez, M. Arenas, C. Gutierrez. nSPARQL: A navigational

language for RDF. J. Web Sem., 8(4):255–270, 2010.
[37] J. L. Reutter. Containment of Nested Regular Expressions. CoRR

abs/1304.2637 , (2013).
[38] L. Segoufin. Automata and logics for words and trees over an infinite

alphabet. In CSL’06, pages 41-57.
[39] T. Schwentick. XPath query containment. ACM SIGMOD Record,

33(1):101–109, 2004.
[40] A. Tal. Decidability of Inclusion for Unification Based Automata.

M.Sc. thesis (in Hebrew), Technion, 1999.
[41] B. ten Cate, C. Lutz. The complexity of query containment in

expressive fragments of XPath 2.0. In J. ACM, 56(6), 2009.
[42] P. Wood. Query languages for graph databases. Sigmod Record,

41(1):50–60, 2012.
[43] L. Yang, Z. Dang, O. H. Ibarra. On stateless automata and P systems.

In International Journal of Foundations of Computer Science,
19(05), 1259–1276, 2008.

12

APPENDIX
In this appendix we give full proofs for all the propositions and theorems of the paper.

Proofs for Section 3
PROPOSITION 3.5. Given two RQMs e1 and e2, it holds that e1 ⊆ e2 iff L(e1) ⊆ L(e2).

PROOF. In this proof we will use the following result from [30]: a pair of nodes (u, v) of a data graph G belongs to JeKG if
and only if there is a path from u to v such that its corresponding data word belongs to L(e).

Assume first that e1 ⊆ e2. By definition it means that Je1KG ⊆ Je2KG, for every data graph G. Consider any data word
w = d1a1d2a2 . . . ak−1dk such that w ∈ L(e1). By definition this means that (v, v′) ∈ Je1KGw , where Gw is the data graph
corresponding to w, as denoted in Figure 2. Then by our assumption we have (v, v′) ∈ Je2KGw . From this and definition of
L(e2), it follows that w ∈ L(e2), as desired.

On the other hand, suppose that L(e1) ⊆ L(e2) and take any data graph G and two nodes (v, v′) ∈ Je1KG. By aforemen-
tioned fact there is a path from v to v′ in G whose corresponding data word w belongs to L(e1). Then by our assumption we
have that w ∈ L(e2), so using the same fact we get that (v, v′) ∈ Je2KG.

THEOREM 3.6. The problem CONTAINMENT (RQMs) is undecidable.

PROOF. Since the class of RQDs, considered in Section 4 is a subclass of RQMs, this theorem is an immediate corollary of
Theorem 4.4, which proof is given below.

THEOREM 3.7. The problem CONTAINMENT (positive RQMs) is EXPSPACE-complete.

PROOF. We start with the upper bound. We need some auxiliary definitions and claims.
It is more convenient to show the upper bound for register automata over data words, that we now define. Note that since we

are using data words as in [31], we draw from their definition of register automata.
Let Σ be a finite alphabet of labels, D an infinite set of data values, and {x1, . . . , xk} be a finite set of registers. Recall, that

a condition over {x1, . . . , xk} is a positive boolean combination of atoms of the form x=
i or x 6=i , 1 ≤ i ≤ k, and assignment is

a partial function from {x1, . . . , xk} to D. Denote Ck the set of all conditions over {x1, . . . , xk} and [k] = {1, . . . , k}.
A k-register data word automaton is a tuple A = (Q, q0, F, λ0, δ), where:

- Q is a set of states which is a disjoint union of word states Qw and data states Qd;
- q0 ∈ Qd is the initial state;
- F ⊆ Qw is the set of final states;
- λ0 ∈ Dk is the initial assignment;
- δ = (δw, δd) is a pair of transition relations:

δw ⊆ Qw × Σ×Qd is the word transition relation;
δd ⊆ Qd × Ck × 2[k] ×Qw is the data transition relation.

The intuition behind this definition is that since we alternate between data values and word symbols (labels) in data words,
we also alternate between data states (which expect data value as the next symbol) and word states (which expect alphabet
letters as the next symbol). We start with a data value, so q0 is a data state, end with a data value, so final states, seen after
reading that value, are word states.

In a word state the automaton behaves like a usual NFA (but moves to a data state). In a data state, the automaton checks if
the current data value and assignment of the registers satisfy the condition, and if they do, moves to a word state and updates
some of the registers with the read data value.

Formally, given a data word w = d0a0d1a1 . . . an−1dn, where each di is a data value and each ai is a letter, a configuration
of A on w is a tuple (j, q, λ), where j is the current position of the symbol in w that A reads, q is the current state and λ is the
current assignment of the registers. The initial configuration is (0, q0, λ0) and any configuration (j, q, λ) with q ∈ F is a final
configuration.

From a configuration (j, q, λ) we can move to a configuration (j + 1, q′, λ′) if one of the following holds:

- the jth symbol in w is a letter a, there is a transition (q, a, q′) ∈ δw, and λ′ = λ; or

13

- the jth symbol in w is a data value d, and there is a transition (q, c, I, q′) ∈ δd such that d, λ |= c and

λ′(xi) =

{
d, i ∈ I,
λ(xi), i /∈ I.

A data word w is accepted by A if A can move from the initial configuration to a final configuration after reading w. We
then say that the sequence of configuration forms an accepting run for A on input w. The language of data paths accepted by
A is denoted by L(A).

It was shown in [31] that for every RQM e one can construct in polynomial time a register data word automaton A such that
L(e) = L(A). Let then e1 and e2 be RQMs. To show that e1 ⊆ e2 we can, by Lemma 3.5, show instead that L(e1) ⊆ L(e2).
Moreover, by the aforementioned equivalence with automata, it suffices to show that L(A1) ⊆ L(A2) for the automataA1 and
A2 equivalent to e1 and e2.

The reminder of the proof is devoted to showing that such decision problem belongs to EXPSPACE, assuming both A1 and
A2 use only equalities in the conditions.

Let A1 and A2 be two register automata that only use equalities in the conditions, such that L(A1) 6⊆ L(A2). Then there is
a data word w = d1a1d2a2 · · · andn+1 that belongs to L(A1) but it does not belong to L(A2). Further, there is an accepting
run τ that associates to each data value di in w a change of configuration, going from a configuration of the form (2i− 1, q, λ)
to one of the form (2i, q′, λ′).

Set w1 = w and τ1 = τ . Starting from i = 2 up to i = n + 1, we repeatedly perform the following operations on wi,
increasing i.

Let wi−1 and τ i−1 be the resulting word and accepting run after performing the i − 1-th operation, and assume that τi−1

changes from a configuration (2i−1, q, λ) to (2i, q′, λ′). If all data values in the image of λ are also in the image of λ′, then let
wi = wi−1 and τ i = τ i−1. Otherwise, assume that d1, . . . , d` are in the image of λ but not of λ′. Then let p1, . . . , p` be fresh,
new data values. Construct wi as follows. For each j = 1, . . . , `, replace all appearances of dj in wi−1, only after position
2i− 2 of wi−1, with the data value pj . Moreover, construct τ i by replacing as well d1, . . . , d` with p1, . . . , p` in all the register
values of the remaining configurations, from position 2i− 1 onwards.

For the automaton A1, data word w ∈ L(A1) and run τ witnessing the acceptance of w, let us denote by uw,τ the resulting
data word wn+1 after performing all transformations above, and by σw,τ the resulting run τn+1. Note that the constructed
run remains a valid run, so that A1 accepts as well the word uw,τ . Moreover, the following can be shown about uw,τ (the
proof follows from the construction): if there are positions j1 and j2 of uw,τ such that both j1 and j2 contain the same data
value, then such data value is present in at least one register in all configurations of σw,τ starting from position j1 and ending
in position j2.

Moreover, since the automaton A2 does not accept w, we have that it does not accept uw,τ . This follows simply because we
are only using automata with equalities, and our transformation actually introduce additional inequalities on the data values of
words. From the above facts we obtain the following claim.

CLAIM 8.1. Given automataA1 andA2, we have that L(A1) ⊆ L(A2) if and only if there is a word w ∈ L(A1), accepted
by run τ , such that uw,τ belongs to L(A1) but does not belong to L(A2).

All that remains now is to show that the existence of such a word can be decided in EXPSPACE.

Let now A1 = (Q1, q
0
1 , F1, λ

0
1, δ1) and A1 = (Q2, q

0
2 , F2, λ

0
2, δ2). Furthermore, assume that REG1 and REG2 are all

possible assignments of registers in A1 and A2, respectively (obviously these are infinite sets).
Consider the following transition system. Its states are Q1 × REG1 × 2Q2×REG2 . The initial state is (q0

1 , λ
0
1), {(q0

2 , λ
0
2)},

the set of final states are all those states that contain a state in F1 and does not contain any state in F2 (i.e. if at any point we
are in a final state, we know that a given word is accepted by A1 but it is not accepted by A2).

The transition is defined as follows: there is a transition between state (q1, λ1), {(q1
2 , λ

1
2), . . . , (qn2 , λ

n
2)} and state

(q′1, λ
′
1), {(q′12, λ′

1
2), . . . , (q′

m
2 , λ

′m
2)} by letter a or data value d if one can go from (q1, λ1) to (q′1, λ

′
1) using δ1 over a or

d, and {(q′12, λ′
1
2), . . . , (q′

m
2 , λ

′m
2)} is the set of all states that are reachable from any state in {(q1

2 , λ
1
2), . . . , (qn2 , λ

n
2)}, using δ2

and a or d.
Now, obviously the size of this transition system is infinite. However, we proceed as follows.
We guess, symbol by symbol, the word uw,τ and its run σw,τ , and only pick those moves in the transition system where q1

and λ1 move as in σw,τ . Then by the properties of uw,τ and σw,τ we know that any state (q1, λ1), {(q1
2 , λ

1
2), . . . , (qn2 , λ

n
2)}

can be simplified into a state in which all values in λ1
2, . . . , λ

n
2 that are not in λ1 are mapped to a single fresh value d. This is

because such data values will never appear again in uw,τ , and thus from the equality point it is just as good as any data value
which is different to all the remaining values in uw,τ .

14

But we can do even better, as here it suffices to store only the equivalence classes of the registers, i.e. whether the registers
store, at any given point, the same data value as in other register, or a different one. If the next symbol we are guessing
corresponds to a data value that was in one of the registers of λ1, then we guess, instead of the particular data value, the
following information ”the incoming data value is the one stored in register x”. The system then updates the equivalence
classes according to the registers. If, on the contrary, the incoming data value is a data value different from all λ1, we just guess
”the incoming data value is not stored in any register”, and then updates the information as before.

Thus, for our simulation of A1 it suffices to store, at any given point, the equivalence class formed by the registers in A1,
and to simulate all possible runs of A2 we need to store, besides the equivalence classes of its registers, a pointer indicating
whether it is storing a value also stored in a register of A1, or whether it is storing a data value not currently stored in A1

(that will never show up again in our word). This amounts to a total of Q1 × 2|A1| × 2Q2×2|A2|×|A1| states, which is doubly
exponential in A1 and A2. We can therefore decide whether there is a valid run fo this system (that ends in a final state) using
a standard on-the-fly EXPSPACE algorithm.

Hardness. The proof of EXPSPACE-hardness is by reduction from the complement of the acceptance problem of a Turing
machine.

Let L be a language that belongs to EXPSPACE over some alphabet Γ,M be a deterministic Turing machine that decides L in
EXPSPACE, and w be a word (plain, without data values) over Γ. Next we show how to construct RQDs e′ and e (in polynomial
time in the size ofM and w) such that L(e′) ⊆ L(e) if and only ifM does not accept the input w. By Proposition 3.5 this is
enough for the proof of the hardness.

LetM = (Q,Γ, q0, {qf}, δ), whereQ = {q0, . . . , qf} is the set of states, Γ is the tape alphabet, containing the distinguished
blank symbol B, q0 and qm are the unique initial and final states, and δ : (Q \ {qf})× Γ→ Q× Γ× {L,R} is the transition
function. Notice, that without loss of generality we assume that no transition is defined on the unique final state qf . SinceM
decides L in EXPSPACE, there exists a polynomial P (which does not depend on w) such thatM decides w using space 2n,
where n = P (|w|). Let also w = a0a1 · · · ak.

In the following find convenient to introduce the following abusing of notation. For an alphabet ∆ = {b1, . . . , bm} of
symbols, we denote by the same ∆ the regular expression (b1 ∪ · · · ∪ bm).

Let Σ = {#,&,%,4} ∪ Γ ∪ (Γ×Q) be the alphabet of the constructing expressions e′ and e.
Let 〈i〉 denote the binary representation of the number i as a data word on n labels # such that its data values represent

the string representation of i as a binary number. That is, the data word dn#dn−1# . . .#d1 such that dndn−1d1 is precisely
the string representation of i as a binary number. For example, 〈0〉 is the data word (0#)n−10, and 〈2〉 is the data word
(0#)n−21#0.

We represent configurations of the Turing machine by data words satisfying

〈0〉 (Γ∪ (Γ×Q)) d & 〈1〉 (Γ∪ (Γ×Q)) d & 〈2〉 (Γ∪ (Γ×Q)) d & . . . 〈2n− 1〉 (Γ∪ (Γ×Q)) d& d% d, (4)

where d stands for any data value. Intuitively, the words 〈0〉, 〈1〉, 〈2〉, 〈2n − 1〉 indicate each of the 2n cells ofM, and the
symbol following such a word represents either the content of the cell (which means that the head does not point here), or the
content of the cell plus the state ofM (ifM is pointing at that particular cell at a given point of the computation).

Since every configuration ofM can be represented as a data word of form (4), a run ofM on the input w can be seen as a
sequence (i.e. concatenation) of words of form (4).

The idea of the reduction is the following. The expression e′ is such that it accepts all data words in each of which every data
value is equal to one of the first two data values of the word. Without loss of generality we can then denote the first data value
of each of these words by 0 and the second data value by 1. In turn, the expression e shall represent all those words that belong
to L(e′) that are either not valid concatenations of words of form (4), or that the sequence of configurations is not a valid run
ofM on input w (in both cases, followed by some initialisation). This way, if there is a valid run forM on w, we have that
there is a data word in L(e′) that is not in L(e), i.e. L(e′) 6⊆ L(e).

Formally, the first of these expressions e′ is defined as following:

e′ = ↓x.4↓y.(4[x=] ∪4[y=])
(
Σ[x=] ∪ Σ[y=]

)∗
.

We split the definition of the second expression into six parts e = e0 ∪ e1 ∪ e2 ∪ e3 ∪ e4 ∪ e5, such that

- e0 describes all words that use a single data value (instead of two);

- e1 describes all data words that are not concatenations of words of form (4);

- e2 describes all words that, even if they are concatenations of words of form (4), some of them do not represent valid
configurations forM;

- e3 describes words in which the first configuration does not correctly describe the initial configuration ofM on input w;

15

- e4 describes those words in which the last sub word of form (4) does not represent an accepting configuration ofM;
- e5 describes words that contain two consecutive sub words of form (4) that represent configurations forMwhich, however,

do not agree on δ.

Expression e0 is straightforward to define. Next we give the remaining ones.
Expression e1. Most of this expression is not really related to data values, but instead can be defined by an NFA in a standard

way (see [6] Theorem 6). The only interesting part is the one which accepts all words with a “configuration” in which “cells”
are concatenated not in the only proper order, from 〈0〉 to 〈2n−1〉. To do this we include in e1 the a disjunction of the following
expressions:

- the expressions

↓x.4↓y.4Σ∗ (#[x=])n(Σ \ {%})∗ (#[x=])n Σ∗,
↓x.4↓y.4Σ∗ (#[y=])n(Σ \ {%})∗ (#[y=])n Σ∗,

which look for two words of form 〈0〉 within one configuration, and likewise for 〈2n − 1〉;
- the expressions

↓x.4↓y.4Σ∗% (#[x=])i #[y=] Σ∗, for each 0 ≤ i ≤ n− 1,
↓x.4↓y.4Σ∗#[x=] (#[y=])i (Γ ∪ (Γ×Q)) % Σ∗, for each 0 ≤ i ≤ n− 1,

which look for a configuration starting with something different from 〈0〉, and likewise ending with something different
from 〈2n − 1〉;

- the expression

↓x.4↓y.4Σ∗#n−1 #[x=] (Γ ∪ (Γ×Q)) & #n−1 #[x=] Σ∗,

looking for a configuration where an even number follows with another even number;
- the expressions

↓x.4↓y.4Σ∗#i #[x=] #n−i−2 #[x=] (Γ ∪ (Γ×Q)) & #i #[y=] #n−i−1 Σ∗, for each 0 ≤ i ≤ n− 2,
↓x.4↓y.4Σ∗#i #[y=] #n−i−2 #[x=] (Γ ∪ (Γ×Q)) & #i #[x=] #n−i−1 Σ∗, for each 0 ≤ i ≤ n− 2,

looking for a configuration where an even number follows with a number where some of the digits are different from the
onces in the previous number (except the last).

Note that last 2 cases cover all configurations in which even position numbers are not followed by their successors. It is also
possible, but rather cumbersome and lengthy, to define expressions which cover the even—odd cases. We omit such definition,
and refer the reader to [6] for very similar constructions.

Expression e2. Similarly to the next expressions e3 and e4, it can be described with standard NFA’s. In particular, e2 is the
union of expressions stating the following:

- between two symbols % there is no symbol in (Γ×Q), which means that in some configuration the machine dos not point
to any cell;

- between two neighbouring symbols % there are two symbols in (Γ×Q), which means that the machine is pointing at two
cells.

Expression e3. It is the union of expressions stating the following:

- the first configuration does not contain the initial state in the first position of the tape, reading the first symbol of the input;
- the following k − 1 cells do not contain the remainder of the input;
- any of the remaining cells does not contain the blank symbol.

Expression e4. It can be dfined in the similar way as e3.
Expression e5. It is defined as the union of the following expressions:

- a cell not pointed by the head changed its content from one configuration to the subsequent one:

⋃
a∈Γ

↓x.4↓y.4Σ∗# ↓x1.# s↓xn−1.# ↓xn.a (Σ \ {%})∗%

(Σ \ {%})∗#[x=
1] #[x=

2] s#[x=
n]
(
(Γ \ {a}) ∪ ((Γ \ {a})×Q)

)
Σ∗;

16

- a configuration which is not final features a pair in Γ×Q for which no transition is defined

⋃
{(a,q)|δ(q,a) is not defined}

Σ∗ (a, q) Σ∗% Σ+;

- the change of state does not agree with δ:

⋃
{(a,q)|δ(q,a)=(a′,q′,{L,R})}

Σ∗ (a, q) (Σ \ {%})∗% (Σ \ {%})∗
(
Γ× (Q \ {q′})

)
Σ∗;

- the symbol written in a given step does not agree with δ:

⋃
{(a,q)|δ(q,a)=(a′,q′,{L,R})}

↓x.4↓y.4Σ∗# ↓x1.# s↓xn−1.# ↓xn.(a, q) (Σ \ {%})∗%

(Σ \ {%})∗#[x=
1] #[x=

2] s#[x=
n] (Γ \ {a′}) Σ∗;

- the movement of the head does not agree with δ:

⋃
{(a,q)|δ(q,a)=(a′,q′,R)}

↓x.4↓y.4Σ∗# ↓x1.# s↓xn−1.# ↓xn.(a, q) (Σ \ {%})∗%

(Σ \ {%})∗#[x=
1] #[x=

2] s#[x=
n] a′& (ε ∪

(
#n Γ (Σ \ {%})∗

)
) % Σ∗,

⋃
{(a,q)|δ(q,a)=(a′,q′,L)}

↓x.4↓y.4Σ∗# ↓x1.# s↓xn−1.# ↓xn.(a, q) (Σ \ {%})∗%

(ε ∪
(
(Σ \ {%})∗#n Γ &

)
) #[x=

1] #[x=
2] s#[x=

n] Σ∗.

With these definitions in hand, it is now straightforward to show that L(e′) ⊆ L(e) if and only ifM does not accept on input
w. This finishes the proof of the EXPSPACE lower bound.

Proofs for Section 4
PROPOSITION 4.3. Given two RQDs e1 and e2, it holds that e1 ⊆ e2 iff L(e1) ⊆ L(e2).

PROOF. Proof of the proposition is analogous to the proof of Proposition 3.5. but this time using the fact [31] that for RQDs
a pair of nodes (u, v) belongs to JeKG if and only if there is a path from u to v such that its corresponding data word belongs to
L(e).

THEOREM 4.4. The problem CONTAINMENT (RQDs) is undecidable.

PROOF. Next we will prove a stronger result that the universality problem for RQDs, defined below, is undecidable. Let
Σ[D]∗ denote the set of all data words over the alphabet Σ and set of data values D.

UNIVERSALITY OF RQDS

Input: An RQD e.
Qestion: Does L(e) = Σ[D]∗?

The undecidability of this problem immediately implies that given two RQDs e1 and e2, checking whether L(e1) ⊆ L(e2)
is undecidable. The latter then implies undecidability of query containment over graphs by Proposition 4.3.

The proof of undecidability of universality problem for RQDs is similar to the proof of the universality of register automata
in [35]. The reduction is from Post correspondence problem (PCP), which is well-known to be undecidable.

An instance of PCP is a set of pairs of words

{(u1, v1), . . . , (un, vn)}, (5)

17

over a finite alphabet Γ. A solution for an instance I is a sequence k1, . . . , km of numbers from {1, . . . , n} such that
uk1 · · ·ukm = vk1 · · · vkm . The question is whether an instance has a solution.

Throughout the reduction we will use the following notation for every data word w = d1a1d2 . . . ak−1dk. Let REV(w)
be the reversal of w, that is REV(w) = dkak−1 . . . d2a1d1. Also, let Proj(w) be its projection to the labels, i.e. the word
a1 . . . ak−1.

Let $,# be two special symbols not in Γ, let Σ′ = Γ ∪ {$,#}, and let Σ = Γ ∪ {$}. A solution k1, . . . , km of a PCP
instance I of the form (5) can be encoded as a data word w1#REV(w2) over Σ, where

w1 =
0 $c1 a1d1 · · · a`1d`1 $c2 a`1+1d`1+1 · · · a`1+`2d`1+`2 · · · · · · $cm a`1+···+`m−1+1d`1+···+`m−1+1 · · · a`1+···+`md`1+···+`m ,
w2 =

0 $g1 b1f1 · · · b`1f`1 $g2 b`1+1f`1+1 · · · b`1+`2f`1+`2 · · · · · · $gm b`1+···+`m−1+1f`1+···+`m−1+1 · · · b`1+···+`mf`1+···+`m ,

such that a’s and b’s are labels from Σ, c’s, g’s, d’s, f ’s, and 0 are data values, and, for a shortcut ` = `1 + · · · + `m, the
following conditions hold:

(C1) the symbol # appears only once;
(C2) Proj(w1) ∈ ($u1 ∪ · · · ∪ $un)∗;
(C3) Proj(w2) ∈ ($v1 ∪ · · · ∪ $vn)∗;
(C4) the data values ci’s and di’s are pairwise different;
(C5) the data values gi’s and fi’s are pairwise different;
(C6) c1 = g1 and cm = gm;
(C7) d1 = f1 and d` = f`;
(C8) for each i, j ∈ {1, . . . ,m− 1} if ci = gj then ci+1 = gj+1;
(C9) for each i, j ∈ {1, . . . , `− 1}, if di = fj then di+1 = fj+1;

(C10) for each i, j ∈ {1, . . . , `}, if di = fj , then ai = bj ;
(C11) for each i, j ∈ {1, . . . ,m}, if ci = gj , then (a`1+...+`i−1+1 · · · a`1+...+`i , b`1+...+`j−1+1 · · · b`1+...+`j) ∈ I .

Note that e.g. Conditions (C4–C6, C8) forces the sequence of c’s in w1 to be equal to the sequence of g’s in w2.
It is straightforward to show that there exists a solution to the PCP instance I if and only if there exists a data word of the

form w1#REV(w2) over Σ′ that satisfies Conditions (C1–C11) above. The word w1 is meant to encode the u-part of I and
w2 the v-part. The idea is that the equality ci = gi codes a position ki in a solution by a unique data value, and in (C11) it is
checked that the pair on this position belongs to I . Also, d’s and f ’s code the actual pairs (ui, vi) in I and since we check that
d’s equal f ’s in Conditions (C4–C9) and that the letter after each d equals the corresponding one before the appropriate f in
Condition (C10). Note that we require the word w2 to be reversed in order to nest equality tests according to the semantics of
RQDs.

We now construct an RQD e over Σ′ that accepts a data word w such that it is either not of the form w1#REV(w2), or
at least one of the Conditions (C1–C11) above is not satisfied. Thus, if e is universal (i.e. accepts all data words) then in
particular there is no data word coding a solution to the PCP instance, and, hence there is no solution by itself. The RQD e is
obtained by taking the union of the following, using the usual shortcut ∆ for the expression b1 ∪ . . . ∪ bp over any alphabet
∆ = {b1, . . . , bp}:

- RQDs recognising the negations of Conditions (C1–C3), which can be written as standard regular expressions without
equality tests;

- the RQD (
Σ∗$(ΓΣ∗$)=Σ∗ ∪ Σ∗$ΓΓ∗(Σ∗Γ)=

)
#Σ∗,

which recognises the negation of (C4); here the left part of ∪ finds equal c’s, while the right one finds equal d’s; note that
for equal ds we take care that we don’t incidentally compare with some c;

- an RQD which recognises the negation of (C5), which is very similar to the previous one, but takes into account that w2

is reversed;

- the RQD

$(Σ∗)6=$ ∪ Σ∗$(Γ∗#Γ∗) 6=$Σ∗,

which recognises the negation of (C6); note, that here we use the fact that w2 is reversed, so in particular g1 appears as the
second last data value (and right before the final $), which is covered by the left disjunct; similarly cm is the value after

18

the last $ in w1, so after that we can only advance by means of Γ before reaching # and then we proceed in w2 to the first
$ in front of which gm is located;

- an RQD which recognises the negation of (C7), which is very similar to the previous one;

- the RQD

Σ∗$(Γ∗$(Σ∗#Σ∗$) 6=Γ∗$)=Σ∗,

which recognises the negation of (C8);

- RQDs which recognise the negation of (C9–11), which are very similar to the previous one.

It is straightforward to see that the PCP instance I has no solution if and only if L(e) = Σ[D]∗. This concludes our proof of
Theorem 4.4.

THEOREM 4.5. The problem CONTAINMENT (positive RQDs) is PSPACE-complete.

PROOF. The hardness immediately follows from the PSPACE-completeness of the containment problem of RPQs, so next
we concentrate on the algorithm. Before its description we introduce a monoid Λ which domain is a set of pairs of nonnegative
numbers and which operation ◦ is defined as follows:

〈`′1, `′2〉 ◦ 〈`′′1 , `′′2〉 =

{
〈`′1, `′2 − `′′1 + `′′2〉, if `′2 ≥ `′′1 ,
〈`′1 − `′2 + `′′1 , `

′′
2〉, otherwise.

An NFA with positive data tests is a tuple (Q,Σ, δ, q0, qf , γ), where

- 〈Q,Σ, δ, q0, qf 〉 is a usual NFA without ε-transitions, such that every node is on a path from q0 to qf ,

- γ is a partial function γ : Q×Q ⇀ Λ, defined for all pairs q1, q2 for which there exists a transition from q1 to q2 by some
symbol in Σ, and

- for any loop along transitions in this automata, as well as for any path from q0 to qf the composition of values of γ is
〈0, 0〉.

Such an NFA is essentially a register automata restricted by a special policy for manipulation of registers:

1. only tests for equality are allowed,

2. the registers are arranged in a stack,

3. data values can be stored only in the currently unused register just above the top of the stack (i.e. pushed), and

4. (positive) comparisons of current data value can be performed with only the value stored in the register on top of the stack,
and, moreover, after such a comparison the stored value is lost and the register becomes unused (i.e. the value is popped).

Having this policy, we do not need to name the registers, and the function γ represents the number of values which are popped
from the stack as the first component, and the number of times the current data value is pushed as the second component. Note,
that the last requirement of NFA with positive data tests guarantees that the number of registers used (i.e. the size of the stack)
is bounded by a number which does not depend on the particular input and run. The semantics of NFA with positive data tests
is inherited from register automata.

Given an RQD which last symbol is from Σ, the corresponding NFA with positive data tests is as following. The NFA part
is as the standard transformation from the regular expression to NFA (without ε-transitions). For each transition in this NFA
there is a corresponding sequence of openings and closings of data values equality checks in the RQD, which is done before
reading the symbol; however, without loss of generality we may assume, that there are no openings after any closings, i.e. this
sequence can be represented as a pair of nonnegative numbers. This pair will be the value of γ for the states from the transition.
Note, that such a pair is unique for any two states, regardless which valid transition symbol we take for these states.

The transformation above is straightforward and can be done in polynomial time. Moreover, the language L(A) of the NFA
with positive data tests corresponding to an RQD e is the same as the language L(e). The size of a stack required for such an
automata (which does not depend on input, as noted above) equals the maximal depth of nesting of ()= in e.

Let e′ and e be positive RQDs. Without loss of generality we assume that the last symbol of each of them is from Σ. Next
we describe a PSPACE algorithm which decides whether L(A′) ⊆ L(A), where A′ and A are the NFAs with positive data tests
which correspond to e′ and e. By the observation above and Proposition 4.3 it is enough for the proof of the theorem.

In the algorithm the following data structures are used.

19

- A state q′ in A′; it is used to represent the current state which moves on each step non-deterministically according to a
transition of A′.

- A stack P of positive natural numbers; the sum of all numbers in this stack always equals to the nesting depth of q′, so
we can always use only polynomial space to store it; we denote |P| the number of positions in P; we assume that the
positions in the stack are enumerated from 1 and refer to those numbers by just positions; this stack essentially splits all
the currently open equality checks in the automataA′ into consecutive groups for each of which we know that the opening
data values of all the checks in this group are the same.

- A set G of quadruples of the form (q1, q2, n, λ), where q1, q2 ∈ Q, n is a position in P , and λ is a pair from Λ; during the
run of the algorithm the following always hold for each (q1, q2, n, λ) in G:

if n = 1 then q1 = q0,
if 1 < n ≤ |P| then there exists a quadruple (q′1, q1, n− 1, λ′) in G for some q′1 and λ′;

as an exception, it will be convenient to have the quadruple (∗, q0, 0, ∗) (for a special symbol ∗, which is however never
used) in G during all the run of the algorithm; this set represents the history of reactions in A to the transitions in A′ which
open equality checks.

- A set F of pairs of states from Q; this set represents the reactions in A inside the current equality check in A′: the first
component stores the second component of the ”parent” quadruple in G (i.e. one of the quadruples for which the third
component is |P|), and the second is (one of) the current states in A.

The stack P and the set G are highly related, so we often consider them as a pair (P,G). Given a positive number m, which
is less than the sum of all numbers in P , a trace of depthm in (P,G) is a tuple (q1, q2, n, k, λ) where q1, q2 ∈ Q, n is a position
in P , k is a number, and λ ∈ Λ, such that

- n is the position in P such that the sum s of all numbers in the positions greater than n is less than m, but if we add the
number r in the position n, it is greater or equal;

- k = s+ r −m;

- there is a sequence (qi1, q
i
2, i, λ

i), n ≤ i ≤ |P|, of quadruples from G such that qn1 = q1 and q|P|2 = q2;

- λ = λn ◦ . . . ◦ λ|P|.
Note, that even if the number of sequences above can be exponential in the size of G, the number of traces is polynomial. Also,
all the traces of depth m in (P,G) depend only on P , so they have the same n and k. If k = 0 we say that the level of depth
m in P is exact. We also define an operation trim up to depth m on (P,G) which is removing all the elements with positions
greater or equal than n from P , and all the quadruples from G which refer to those positions (where n is computed as above).

In turn, we define an operation flash of F which first empties F and then add there a pair (q2, q2) for each (q1, q2, |P|, λ) in
G.

The algorithm works as follows.

1. Initialize q′ := q′0, P := ∅, G := (∗, q0, 0, ∗), F := {(q0, q0)}.
2. Repeat until the space is exhausted

- pick randomly a symbol a ∈ Σ and a state q′′ ∈ δ(q′, a);
- if γ(q′, q′′) = 〈0, 0〉 then

form F ′ as a set of all pairs (q1, q3) such that
there exists a state q2 with (q1, q2) ∈ F and q3 ∈ δ(q2, a) for which γ(q2, q3) = 〈0, 0〉,
F := F ′;

- else if γ(q′, q′′) = 〈0,m2〉 then
append m2 to P ,
add to G all quadruples (q1, q3, n, λ) such that

there exists a state q2 for which (q1, q2) ∈ F and q3 ∈ δ(q2, a), and
n = |P|, and
λ = γ(q2, q3),

flash F ;
- else if γ(q′, q′′) = 〈m1, 0〉 such that the level of depth m1 in P is exact then

form F ′ as a set of all pairs (q1, q4) such that
there exists a trace (q1, q2, n, 0, λ) in (P,G) of depth m1 (for some q2, λ, and irrelevant number n) and

20

there exists a state q3 with (q2, q3) ∈ F and q4 ∈ δ(q3, a) for which λ ◦ γ(q3, q4) = 〈0, 0〉,
F := F ′;
trim (P,G) up to depth m1;

- else let γ(q′, q′′) = 〈m1,m2〉 and
form G′ as the set of all quadruples (q1, q4, n, λ) such that

there exists a trace (q1, q2, n, k, λ
′) in (P,G) of depth m1 (for some q2, n, k and λ′), and

there exists a state q3 with (q2, q3) ∈ F and q4 ∈ δ(q3, a),
λ = λ′ ◦ γ(q3, q4),

trim (P,G) up to depth m1,
append k +m2 to P ,
add G′ to G,
flash F ;

- q′ := q′′;
- if q′ = q′f and (q0, qf) /∈ F then return false.

3. Return true.

The algorithm clearly works in PSPACE. It is a matter of technicality to show that it ends with true if and only if L(A′) ⊆
L(A).

Proofs for Section 5
PROPOSITION 5.2. The problem of deciding whether a pair of nodes belongs to JeKG for a 2RQM e and a data graph

G is PSPACE-complete. The same problem is in PTIME if e is a 2RQD. If we assume that e is fixed the problem becomes
NLOGSPACE-comlete.

PROOF. Take any 2RQM or 2RQD e over Σ and a data graph G. Let Σ′ = Σ∪{a− : a ∈ Σ} and let G′ = 〈V,E′, ρ〉, where
V and ρ are as in G, while E′ = E ∪ {(v′, a−, v) : (v, a, v′) ∈ E}. Note that we can view e as an ordinary one-way RQM(or
RQD) over this extended alphabet. A straightforward induction on expressions shows that (v, v′) ∈ JeKG, where e is viewed
as an two-way query over Σ, if and only if (v, v′) ∈ JeKG

′
, where e is now a (one-way)query over Σ′.

The desired upper bounds now follow from query evaluation algorithms for RQMs and RQDs from [31], since both the
alphabet and the graph grow only linearly in size.

THEOREM 5.3. The problem CONTAINMENT (positive 2RQMs) is undecidable.
PROOF. The proof is by reduction from the problem of non-emptiness of deterministic, stateless 2-way 3-head automata,

which is proven to be undecidable in (Yang, L., Dang, Z., and Ibarra, O. H. (2008). On stateless automata and P systems.
International Journal of Foundations of Computer Science, 19(05), 1259-1276).

Formally, a deterministic stateless 2-way 3-head automaton (or, DS23A) over a finite alphabet Γ is given by a transition
partial function δ : Σ × Σ × Σ ⇀ {−1, 0, 1}3, where Σ = Γ ∪ {`,a}, the latter symbols assumed not to be in Γ. These
automata accept language of words of form ` σ a, with σ a word over Γ. The automaton starts with its 3 heads reading the `
symbol of just before σ, moves its heads according to δ (−1 denotes “move one cell back”, 0—“no move”, and 1—“move one
cell forward”), and accepts σ if at any step of computation over this word all 3 heads point at the symbol a.

Let A be a DS23A. We now construct 2RQMs e′ and e over Σ such that the language of A is empty if and only if e′ ⊆ e.
The definition of e′ is defined as follows:

e′ = ` Γ∗ a .
As expected, the definition if e is much more intricate. But before it we present a crucial claim.

CLAIM 8.2. Let e′ be the RPQ defined as above, and let e be a 2RQM. Then e′ (e is and only if there exists a graph Gw
corresponding to a data word w with start and end nodes u and v, respectively, such that (u, v) ∈ Je′KGw but (u, v) /∈ JeKGw .

PROOF. The if direction is obvious, so we only show the only if direction. Assume then that e′ (e. Then there is a graph
G and a pair (u′, v′) of nodes in G such that (u′, v′) ∈ Je′KG but (u′, v′) /∈ JeKG. Consider a data word w which is a projection
of labels and data values of a path in G witnessing e′. Then let us consider the graph Gw corresponding to w, with start and
end nodes u and v, respectively. Clearly, (u, v) ∈ Je′KGw . Now assume for the sake of contradiction that (u, v) ∈ JeKGw . By
examining the definition of 2RQMs one immediately obtains that (u, v) ∈ JeKG, which results in a contradiction. This implies
that (u, v) /∈ JeKG, which was to be shown.

21

Next we continue with the definition of e. The idea is the following. Since A is deterministic, if A accepts some word σ
then there exists a single run that leads to this acceptance. We can take advantage of this determinism, and code with e all
computations ofA that end up failing at some point. This way, if there is a data word with a corresponding data graph accepting
by e′, which is not accepted by e, then the language of A is nonempty, as A really accepts this word.

The definition of e is split into three parts as follows:

e = eeq ∪ ecrash ∪ enotdef.

Intuitively, eeq accepts all graphs corresponding to data words that have two equal data values (data values shall be used
as placeholders for the positions of the heads of A, as will be explained shortly); ecrash corresponds to words for which the
computation of A crashes, and enotdef corresponds to all words for which the computation of A ends up in a position that is not
defined.

The part eeq is straightforward to define. For definitions of the other parts of e we first need to describe the 2RQM evalid, that
simulates the computation of A on its input.

For each (a, b, c) in Σ3 for which δ is defined, assume that δ(a, b, c) = (t1, t2, t3), where each ti is either −1, 0 or 1. Then
let e(a,b,c) be the following expression:

(Σ−)∗ ` Σ∗[x=
1] a (Σ−)∗ ` Σ∗[x=

2] b (Σ−)∗ ` Σ∗[x=
3] c

(Σ−)∗ ` Σ∗[x=
1] r1 (Σ−)∗ ` Σ∗[x=

2] r2 (Σ−)∗ ` Σ∗[x=
3] r3,

where, as usual, Σ stands for the union of all symbols in the alphabet Σ, Σ− stands for the union of inverses of all symbols in
Σ, and for each i, 1 ≤ i ≤ 3,

ri =

 Σ− ↓xi. , if ti = −1,
ε, if ti = 0,
Σ ↓xi. , if ti = 1.

Having this construction in hands, let

evalid = # ↓x1.↓x2.↓x3.

 ⋃
(a,b,c) s.t. δ(a,b,c) is defined

e(a,b,c)

∗.
This expression, so far, describes valid computations, up to some step. In order to make sure that we represent all words not

accepted by A, we need to accept all words in which this route of valid computation leads to either a crash (by moving out of
the word), or to a transition that is not defined.

Specifically, to describe that a run goes out from the computation space, we define

ecrash = evalid

 ⋃
i=1,2,3

((
(Σ−)∗[x=

i] `
)
∪
(
Σ∗[x=

i] a−
)) .

Furthermore, for each (a, b, c) such that δ(a, b, c) is not defined, except (a,a,a) (because this is the final step of an accepting
computation), define

e¬(a,b,c) = (Σ−)∗ ` Σ∗[x=
1] a (Σ−)∗ ` Σ∗[x=

2] b (Σ−)∗ ` Σ∗[x=
3] c,

and then

enotdef = evalid

 ⋃
(a,b,c) s.t. δ(a,b,c) is not defined, and (a,b,c)6=(a,a,a)

e¬(a,b,c)

 .

It is now straightforward to show that the language of A is nonempty if and only if there exists a graph Gw corresponding
to a data word w with start and end nodes u and v, respectively, such that (u, v) ∈ Je′KGw but (u, v) /∈ JeKGw . Application of
Claim 8.2 finishes the proof of the theorem.

Proofs for Section 6
THEOREM 6.2. The CONTAINMENT (GXPathreg) problem is undecidable.

22

PROOF. The proof follows the main lines of the proof of undecidability of PDL with extras from [21]. To deduce undecid-
ability we do a reduction from a variant of the tiling problem shown to be undecidable in [25] and [11].

First we define the terminology needed to state the problem precisely.
A finite set of tiles is a collection T = {T1, . . . , Tk} of square tiles, together with two edge relations ∼h and ∼v . The fact

that Ti ∼h Tj means that the tile Tj can be placed to the right of the tile Ti in a horizontal row, while Ti ∼v Tj means that Ti
can be placed below Tj in a vertical column.

A tiling of the non-negative grid N× N is a function from t : N× N→ T such that for all i, j

- t(i, j) ∼h t(i+ 1, j) and,

- t(i, j) ∼v t(i, j + 1).

Tilings of integer grid Z× Z are defined analogously. We say that a set of tiles can tile Z× Z periodically if there is a tiling
of Zn×Zm for some positive integers n and m that can be used to tile the entire grid by repeating this segment both vertically
and horizontally. One can imagine this tiling as forming a torus since the bottom row can be ”glued” to the top one and the
same for left and right edge of this finite grid.

Let now Snotiling denote the set of all finite sets of tiles that can not tile N×N and let Speriod be the set of all finite sets of tiles
that can tile Z× Z periodically.

To prove undecideability we will use the following fact.

FACT 8.3. ([11, 25]) Sets Snotiling and Speriod are recursively inseparable. In particular there is no recursive set S such
that Speriod ⊆ S and Snotiling ∩ S = ∅.

Fix the finite alphabet of edge labels Σ = {U,D,L,R, a}. In what follows U is meant to interpret ”up”, D ”down”, L ”left”
and R ”right”, while a will be used to code the tiles. Note that we can work with only {U,R, a}, since we can use U− instead
of D ans R− instead of L, but we opted for the extended alphabet to make the formulas easier to understand.

Let now T = {T1, . . . , Tk} be a finite set of tiles. For i = 1 . . . k define αi = 〈ai∩ε〉. In what follows αi is meant to denote
the placement of the tile Ti at some position in the grid. E.g. 〈aaa ∩ ε〉 will denote the placement of the tile T3 and so on.

We also define the following node formulas of GXPath that will be used throughout the proof. First, for every path formula
β we define

loop(β) := 〈β ∩ ε〉 ∧ ¬〈β ∩ ε〉.

This formula extracts all nodes v from the graph that have an outgoing β path and such that every such path ends at v itself.
It is easy to check that for any graph database G:

Jloop(β)KG = {v ∈ G | (∃v′) s.t. (v, v′) ∈ JβKG and (∀v′) if (v, v′) ∈ JβKG then v = v′}.

Second, for every path expression β and every node test ϕ we define the following formula:

when(β, ϕ) := ¬〈β[¬ϕ]〉.

The intended meaning of this node formula is to extract all nodes v from a graph such after every β-path starting in v ends
with a node belonging to JϕKG. Again, it is easy to check that for any graph database G:

Jwhen(β, ϕ)KG = {v ∈ G | (∀v′) if (v, v′) ∈ JβKG then v′ ∈ JϕKG}.

Associated with the set of tiles T we define the formula γT = γ1 ∧ γ2.
To define our formula γ1 we need to be able to force a ”square” at any position in our model, both in a clockwise and in

anticlockwise direction. This is done by the means of formula square which is defined as the conjunction of the following
two formulas:

clockwise := loop(U ·D) ∧ when(U,loop(R · L)) ∧ when(U ·R,loop(D · U)) ∧
when(U ·R ·D,loop(L ·R)) ∧ loop(U ·R ·D · L),

anticlockwise := loop(R · L) ∧ when(R,loop(U ·D)) ∧ when(R · U,loop(L ·R)) ∧
when(R · U · L,loop(D · U)) ∧ loop(R · U · L ·D).

Intuitively clockwise allows us to define a square starting at some point in our graph and going ”up”, then ”right”, then
”down” and finally ”left”, finishing at the same point. It also forces the point to be able to complete the square whenever it has
an outgoing ”up” arrow U . Similarly anticlockwise forces a square starting with ”right” and completing it in an obvious
way.

23

Now γ1 simply states that we can make a square at any point:

γ1 := when(U∗,when(R∗,square)).

Formula γ2 is going to be responsible for forcing a tiling and is defined next. First, let

α =
∨

i=1...k

αi ∧
∧

i=1...k

(αi →
∧
j 6=i

¬αj).

Note that α simply states that precisely one αi is true. Here and in the remainder of the proof we use the node formula
ϕ→ ψ as a shorthand for ¬ϕ ∨ ψ.

Next for each i, define βi as the disjunction of all the αj such that Ti ∼h Tj . That is βi is a disjunction of all the tiles that
can be placed to the right of the tile i. Similarly, define βi to be the disjunction of all αj such that Ti ∼v Tj .

Now let tile be the formula denoting that a tile is placed correctly in the grid. Formally:

tile := α ∧
∧

i=1...k

(αi → (when(R, βi) ∧ when(U, βj))).

Finally define

γ2 := when(U∗,when(R∗,tile)).

We now show how to deduce the wanted reduction. More formally we show that the set {ϕ | ∃G s.t. JϕKG 6= ∅} contains
the set {γT | T ∈ Speriod} and is disjoint from {γT | T ∈ Snotiling}. Note that Fact 8.3 implies that {ϕ | ∃G s.t. JϕKG 6= ∅} can
not be recursive.

First we show that if JγT KG 6= ∅ for some graph G, then T can tile the positive plane N× N. Take any node a0,0 ∈ JγT KG.
By γ1 the proposition square has to be true at a0,0, so in particular loop(U · D) is true. This means that there is a point
which we label a0,1 that can be reached from a0,0 by an U -labelled edge. (Note that we can also get from a0,1 to a0,0 by and
D-labelled edge.) Now since when(U,loop(R ·L)) is also true at a0,0, there must be a node which we label a1,1, reached by
an R-labelled edge from a0,1 (and with the corresponding L-labelled edge in the other direction). Again, this time using the
fact that when(U ·R,loop(D · U)) is true at a0,0, we get a node labelled a1,0, connected to a1,1 by an D-labelled edge (and
with an U -labelled edge connecting it back with a1,1). Next, we use the fact that when(U ·R ·D,loop(L ·R)) is true at a0,0

to get a node a′0,0 to the left of a1,0. Finally, since loop(U · R ·D · L) is true at a0,0, it must be that a′0,0 = a0,0. Again we
note that each edge has a dual edge with the appropriate label, connecting the node in reverse direction.

Similarly, since square is true at a1,1 (as we can reach it from a0,0 by traversing U and then R-labelled edge), we can
also find points a1,2, a2,2 and a2,1 in an analogous way. This process is illustrated by the following image (note that we do not
claim that nodes ai,j are in fact mutually distinct nodes from our model).

a0,0

a0,1

a1,0

a1,1

a2,1

a2,2a1,2

U

U

R

R

D

D

L

L

Note now that since square is also true at a0,1, then a0,1 must satisfy anticlockwise. Since going R and then U from
a0,1 takes us to a1,2 and since when(R ·U,loop(L ·R)) is true at a0,1, there is some node which we label a0,2, that is reached
by traversing an L-labelled edge from a1,2. Note that this also implies that there is anR-labelled edge from a0,2 to a1,2. Again,
since when(R · U · L,loop(D · U)) is true at a0,1 and a0,2 can be reached by R · U · L we have that there is a point a′0,1
connected to a0,2 by an D-labelled edge (and in the other direction by an U -labelled one). But now since a0,1 also satisfies
loop(R ·U ·L ·D) and a′0,1 is reached from a0,1 by a path labelled R ·U ·L ·D,we have that a′0,1 = a0,1. Thus we can draw
a square starting in a0,1, going in anticlockwise direction. This is illustrated in the following image.

24

a0,0

a0,1

a1,0

a1,1

a2,1

a2,2a1,2a0,2

U

U

R

R

D

D

L

L

L

D

We now note that with each edge there is a corresponding edge in the other direction with the appropriate label (e.g. L and
R). To see this observe that in e.g. a0,0 we have that loop(U ·D) is true. This means that there is an U -edge from a0,0 to a0,1

and also an D-edge from a0,1 to a0,0 and analogously for all other edges.
In particular there is anR-edge from a0,0 to a1,0, so we can also complete the clockwise square started at a1,0 and continuing

through a1,1 and a2,1. This is done by the means of formula clockwise.
It is straightforward to see that this process can be continued for any number of steps, starting from the main diagonal and

completing the squares above the diagonal in an anticlockwise direction, while completing the ones below the diagonal in a
clockwise direction. Thus we showed that we can force a square grid by our formula.

Define now t(i, j) = Tl, where αl is the unique formula of the form 〈al ∩ ε〉 that is true at any point ai,j by means of γ2.
Note that γ2 also forces the tiling t to be proper, since the formula tile assures that the tile t(i+ 1, j) and t(i, j+ 1) can only
come from the set of tiles compatible with t(i, j) in the appropriate direction.

Thus we have shown that if formula γT is satisfiable, then T can tile the positive plane N × N. This implies that the set
{ϕ | ∃G s.t. JϕKG 6= ∅} is disjoint from Snotiling.

On the other hand, suppose that T = {T1, . . . , Tk} can tile the plane periodically, that is it can tile the torus Zn × Zm for
some integers n and m. Let t be the tiling function t : Zn × Zm → T that witnesses this periodic tiling. We define the graph
database G containing at most (n+ 1) · (m+ 1) + (k − 2) nodes and satisfying γT as follows.

First, let

V = {ai,j : i = 1, . . . , n+ 1 and j = 1, . . . ,m+ 1} ∪ {T2, . . . , Tk}.

Next add the following edges to our graph.

1. For vertical edges:

- for i = 1 . . . n+1 and j = 1 . . .m put an U -edge between ai,j and ai,j+1 and anD-labelled one in the other direction;
- for i = 1 . . . n+ 1 put an U -labelled edge between ai,m+1 and ai,1 and an D-labelled one in the other direction.

2. Analogously for horizontal edges:

- for i = 1 . . . n and j = 1 . . .m+1 put anR-edge between ai,j and ai+1,j and an L-labelled one in the other direction;
- for j = 1 . . .m+ 1 put an R-labelled edge between an+1,j and a1,j and an L-labelled one in the other direction.

Also, define T2, T3, . . . , Tk to form an a-labelled chain. That is we add an a-edge between Ti and Ti+1, for i = 2, . . . k− 1.
Next, for each ai,j ,where i 6= n + 1 and j 6= m + 1 let Tl be the unique tile given by the tiling t(i, j). If l = 1 we add an

a-edge from ai,j to itself. If l > 1 we add an a-labelled edge from ai,j to T2 and another a-labelled edge from Tl to ai,j . This
will allow us to satisfy the formula αi = 〈al ∩ ε〉 as illustrated in the following image.

T2 T3 T4 T5

ai,j

a a a

a a

Finally, for i = n + 1 and j 6= m + 1 let Tl = t(1, j) and define the outgoing a-edges from an+1,j to T2 and from Tl as
above. Similarly, for i 6= n + 1 and j = m + 1 do the same for Tl = t(i, 1). Lastly, repeat the procedure for an+1,m+1 and
Tl = t(1, 1).

Consider now formula γ1. Note that we can reach any point by using U and R transitions, so we have to check that square
is true at any point. But this is straightforward to check, since our graph G is a simple finite grid that folds onto itself (that is

25

from each point on the edge we can continue in the appropriate direction). The fact that γ2 is true follows from the fact that t
is a periodic tiling. Namely, at any point in the graph G, precisely one αi is true (note that we require the a-path to loop over
the node, so only one such path exists by our construction). After that, any R or U step we take will take us to a node where
the appropriate βj or βj is true since t is a tiling.

This shows that the set S = {ϕ | ∃G s.t. JϕKG 6= ∅} contains the set {γT | T ∈ Speriod}. As mentioned above, Fact 8.3
implies that the set of all satisfiable GXPath node formulas S, is not recursive.

In particular this implies that query containment for GXPath is not decidable, since the latter would entail recursivity of the
set S by simply checking does the containment [ϕ] ⊆ [¬>] hold.

Thus we proved that query containment for GXPath is undecidable, even with a fixed alphabet Σ of edge labels.

THEOREM 6.5. The decision problem CONTAINMENT (GXPathpath-pos
reg) is EXPTIME-complete.

PROOF. To show the upper bound we first prove that the problem of query containment for GXPathpath-pos
reg path formulas

can be polynomially reduced to the problem of satisfiability of GXPathpath-pos
reg node formulas. The idea is similar to the one

used in [41] to show that the two problems are inter-reducible for XPath queries on trees.
Let α and β be two GXPathpath-pos

reg path formulas and let Γ denote the alphabet of all symbols occurring in α and β plus
one additional symbol b. It is straightforward to see that if α is not contained in β, then there is a graph G witnessing this
non-containment that uses labels from Γ only. (The idea here is that only labels appearing in α and β are relevant, and all the
other labels can be replaced by the new label.)

Let now Γ′ := Γ× {0, 1}. That is, Γ′ contains copies of each label decorated with either 0 or 1. We define α′ as a formula
obtained from α by replacing each occurrence of a label a by (a, 0)∪ (a, 1) and likewise for β′. Finally, let out be the formula⋃
a∈Γ(a, 1). We show that α is contained in β if and only if the formula

ϕ := 〈α′[out]〉 ∧ ¬〈β′[out]〉

is not satisfiable.2

Assume first that α is not contained in β. Then there is a graph G and two nodes v, v′ ∈ G such that (v, v′) ∈ JαKG, but
(v, v′) /∈ JβKG. As mentioned above, we can assume, without the loss of generality, that G uses only labels from Γ. Define
now G′ to be a Γ′ labelled graph where each label a is replaced by (a, 0). In addition, we also add a loop from v′ to v′ labelled
(b, 1). Since v′ is the only node with an outgoing edge whose label has second component equal to 1 we get that v ∈ JϕKG

′
, as

required.
On the other hand, assume that ϕ is satisfiable. Let G′ be any graph such that there is v ∈ G′ with v ∈ JϕKG

′
. Let G be

a graph obtained from G′ be replacing every edge labelled (a, 0) or (a, 1) by a (note that the b-edges can be thrown away,
since neither α, nor β can access them). Since v ∈ JϕKG

′
, there is some v′ ∈ G′ such that (v, v′) ∈ Jα′[out]KG

′
. It is

then straightforward to see that (v, v′) ∈ JαKG. On the other hand, if we had that (v, v′) is in JβKG, then we would also
get that (v, v′) ∈ Jβ′[out]KG

′
, (since v′ must have an outgoing edge with second component equal to 1 to satisfy α′[out]),

which contradicts the fact that v ∈ JϕKG
′
. Thus α is not contained in β, as required. (Note that it could still be the case that

v ∈ J〈α〉KG and v ∈ J〈β〉KG, but we are interested in binary containment.)
We have thus shown that query containment for GXPathpath-pos

reg path formulas is polynomially reducible to (un)satisfiability
of node formulas of the same language. Using this and the fact that GXPathpath-pos

reg is contained in PDL (in fact GXPathpath-pos
reg

is the same as PDL without variables) we can use the decision procedure for PDL to solve GXPathpath-pos
reg query containment.

Since the former is in EXPTIME (see [26], Theorem 8.4), we obtain the desired result.
The lower bound follows from adapting known EXPTIME-complete results regarding the satisfiability of PDL versions close

to XPath (see e.g. Section 4.4 of Alechina, N., Demri, S., De Rijke, M. (2003). A modal perspective on path constraints.
Journal of Logic and Computation, 13(6), 939-956.; or Theorem 8.4 in [26]). These results present reductions from the
acceptance problem of a Turing machine that decides a language in EXPTIME. The only difficulty in the adaptation of these
proofs is dealing with a bounded alphabet, since the natural adaptation of these results would result in a reduction needing an
unbounded alphabet. But this can be done by coding the symbols of the alphabet as binary strings—of unbounded length but
now using a bounded alphabet—as it is repeatedly done in [6] (see the EXPSPACE-hardness proof). For example, if Σ contains
4 characters, then we treat them as strings 00, 01, 10 and 11.

2To reduce notational clutter we write here and further e.g. [α] instead of [〈α〉], when checking that a node has an outgoing α-path.

26

