
Constant delay algorithms for regular document spanners

Fernando Florenzano
PUC Chile

faflorenzano@uc.cl

Cristian Riveros
PUC Chile

cristian.riveros@uc.cl

Martín Ugarte
Université Libre de Bruxelles

mugartec@ulb.ac.be
Stijn Vansummeren

Université Libre de Bruxelles
stijn.vansummeren@ulb.ac.be

Domagoj Vrgoč
PUC Chile

dvrgoc@ing.puc.cl

ABSTRACT
Regular expressions and automata models with capture vari-
ables are core tools in rule-based information extraction.
These formalisms, also called regular document spanners,
use regular languages in order to locate the data that a user
wants to extract from a text document, and then store this
data into variables. Since document spanners can easily gen-
erate large outputs, it is important to have good evaluation
algorithms that can generate the extracted data in a quick
succession, and with relatively little precomputation time.
Towards this goal, we present a practical evaluation algo-
rithm that allows constant delay enumeration of a spanner’s
output after a precomputation phase that is linear in the
document. While the algorithm assumes that the spanner
is specified in a syntactic variant of variable set automata,
we also study how it can be applied when the spanner is
specified by general variable set automata, regex formulas,
or spanner algebras. Finally, we study the related problem
of counting the number of outputs of a document spanner,
providing a fine grained analysis of the classes of document
spanners that support efficient enumeration of their results.

1. INTRODUCTION
Rule-based information extraction (IE for short) [7,

10, 15] has received a fair amount of attention from the
database community recently, revealing interesting con-
nections with logic [11, 12], automata [10, 17], datalog
programs [3, 22], and relational languages [6, 16, 13].
In rule-based IE, documents from which we extract the
information are modelled as strings. This is a natural
assumption for many formats in use today (e.g. JSON
and XML files, CSV documents, or plain text). The
extracted data are represented by spans. These are in-
tervals inside the document string that record the start
and end position of the extracted data, plus the sub-
string (the data) that this interval spans. The process
of information extraction can then be abstracted by the
notion of document spanners [10]: operators that map
strings to tuples containing spans.

The most basic way of defining document spanners
is to use some form or regular expressions or automata
with capture variables. The idea is that a regular lan-
guage is used in order to locate the data to be extracted,
and variables to store this data. This approach to IE has
been widely adopted in the database literature [10, 9, 3,

11, 17], and also forms the core extraction mechanism of
commercial IE tools such as IBM’s SystemT [16]. The
two classes of expressions and automata for extracting
information most commonly used in the literature are
regex formulas (RGX) and variable-set automata (VA),
both formally introduced in [10].

A crucial problem when working with RGX and VA
in practice is how to evaluate them efficiently. One is-
sue here is that the output can easily become huge.
For the sake of illustration, consider the regex formula
γ “ Σ˚ ¨ x1tΣ

˚ ¨ x2tΣ
˚u ¨ Σ˚u ¨ Σ˚, where Σ denotes

a finite alphabet. Intuitively, γ extracts any span of
a document d into x1, and any sub-span of this span
into x2. Therefore, on a document d over Σ it will pro-
duce an output of size Ωp|d|2q. If we keep nesting the
variables (i.e., x3 inside x2, etc.), the output size will
be Ωp|d|`q, with ` the number of variables in γ. Since
an evaluation algorithm must at least write down this
output, and since the latter is exponential (in γ and d),
alternative complexity measures need to be used in or-
der to answer when this problem is efficiently solvable.

A natural option here is to use enumeration al-
gorithms [19], which work by first running a pre-
computation phase, after which they can start pro-
ducing elements of the output (tuples of spans in our
case) with pre-defined regularity and without repeti-
tions. The time taken by an enumeration algorithm
that has an input I and an output O is then measured
by a function that depends both on the size of I and the
size of O. Ideally, we would like an algorithm that runs
in total time Opfp|I|q ` |O|q, where f is a function not
depending on the size of the output, so that the output
is returned without taking much time between generat-
ing two of its consecutive elements. This is achieved by
the class of constant delay enumeration algorithms [19],
that do a pre-computation phase that depends only on
the size of the input (γ and d in our case), followed by
an enumeration of the output without repetitions where
the time between two outputs is constant.

Constant delay algorithms have been studied in var-
ious contexts, ranging from MSO queries over trees [4,
8], to relational conjunctive queries [5]. These studies,
however, have been mostly theoretical in nature, and
did not consider practical applicability of the proposed
algorithms. To quote several recent surveys of the area:
“We stress that our study is from the theoretical point of

view. If most of the algorithms we will mention here are
linear in the size of the database, the constant factors
are often very big, making any practical implementation
difficult.” [19, 20, 21]. These surveys also leave open
the question of whether practical algorithms could be
designed in specific contexts, where the language being
processed is restricted in its expressive power. This was
already shown to be true in [3], where a constant de-
lay enumeration algorithm for a restricted class of doc-
ument spanners known as navigation expressions was
implemented and tested in practice. Since navigation
expressions are a very restricted subclass of RGX and
VA [17], and since the latter have been established in
the literature as the two most important classes of rule-
based IE languages, in this paper we study practical
constant delay algorithms for RGX and VA.

Contributions. The principal contribution of our
work is an intuitive constant delay algorithm for eval-
uating a syntactic variant of VA that we call extended
VA. Extended VA are designed to streamline the way
VA process a string, and the algorithm we present can
evaluate an extended VA A that is both sequential
[17] and deterministic over a document d with pre-
processing time Op|A| ˆ |d|q, and with constant delay
output enumeration. We then study how this algorithm
can be applied to arbitrary RGX and VA, and their
most studied restrictions such as functional and sequen-
tial RGX and VA. Both sequential and functional VA
and RGX are important subclasses of regular spanners:
as shown in [10, 17, 13], they have both good algo-
rithmic properties and prohibit unintuitive behaviour.
Next, we proceed by extending our findings to the set-
ting where spanners are specified by means of an algebra
that allows to combine VA or RGX using unions, joins
and projections. As such, we identify upper bounds
on the preprocessing times when evaluating the class of
regular spanners [10] with constant delay.

In an effort to get some idea of potential lower-bounds
on preprocessing times, we study the problem of count-
ing the number of tuples output by a spanner. This
problem is strongly connected to the enumeration prob-
lem [19], and gives evidence on whether a constant de-
lay algorithm with faster pre-computation time exists.
Here, we extend our main constant delay algorithm to
count the number of outputs of a deterministic and se-
quential extended VA A in time Op|A| ˆ |d|q. We also
show that counting the number of outputs of a func-
tional but not necessarily deterministic nor extended
VA is complete for the counting class SpanL [2], thus
making it unlikely to compute this number efficiently
unless the polynomial hierarchy equals Ptime.

Related work. Constant delay enumeration algo-
rithms (from now on CDAs) for MSO queries have been
proposed in [4, 8, 14]. Since any regular spanner can be
encoded by an MSO query (where capture variables are
encoded by pairs of first-order variables), this implies
that CDAs for MSO queries also apply to document
spanners. In [8], a CDA was given with preprocessing
time Op|t| ˆ logp|t|qq in data complexity where |t| is the
size of the input structure (e.g. document). In [14],

a CDA was given based on the deterministic factoriza-
tion forest decomposition theorem, a combinatorial re-
sult for automata. Our CDA has linear precomputation
time over the input document and does not rely on any
previous results, making it incomparable with [8, 14].

The CDA given by Bagan in [4] requires a more de-
tailed comparison. The core algorithm of [4] is for a
deterministic automaton model which has some resem-
blance with deterministic VA, but there are several dif-
ferences. First of all, Bagan’s algorithm is for tree au-
tomata and the output are tuples of MSO variables,
while our algorithm works only for VA, whose output
are first order variables. Second, Bagan’s algorithm has
preprocessing time Op|A|3 ˆ |t|q, where A is a tree au-
tomaton and t is a tree structure. In contrast, our algo-
rithm has preprocessing time Op|A|ˆ|d|q, namely, linear
in |A|. Although Bagan’s algorithm is for tree-automata
and this can explain a possible quadratic blow-up in
terms of |A|, it is not directly clear how to improve its
preprocessing time to be linear in |A|. Finally, Bagan’s
algorithm is described as a composition of high-level op-
erations over automata and trees, while our algorithm
can be described using a few lines of pseudo-code.

There is also recent work [13, 17] tackling the enu-
meration problem for document spanners directly, but
focusing on polynomial delay rather than constant de-
lay. In [17], a complexity theoretic treatise of poly-
nomial delay (with polynomial pre-processing) is given
for various classes of spanners. And while [17] focuses
on decision problems that guarantee an existence of a
polynomial delay algorithm, in the present paper we fo-
cus on practical algorithms that furthermore allow for
constant delay enumeration. On the other hand, [13]
gives an algorithm for enumerating the results of a func-
tional VA automaton A over a document d with a delay
of roughly Op|A|2 ˆ |d|q, and pre-processing of the or-
der Op|A|2 ˆ |d|q. The main difference of [13] and the
present paper is that our algorithm can guarantee con-
stant delay, albeit for a slightly better behaved class
of automata. When applying our algorithm directly to
functional VA as in [13], we can still obtain constant
delay enumeration, but now with a pre-processing time
of Op2|A| ˆ |d|q (see Section 4). Therefore, if consider-
ing only functional VA, the algorithm of [13] would be
the preferred option when the automaton is large, and
when the number of outputs is relatively small, while for
spanners that capture a lot of information, or are exe-
cuted on very big documents, one would be better off
using the constant delay algorithm presented here. An-
other difference is that the algorithm of [13] is presented
in terms of automata theoretic constructions, while we
aim to give a concise pseudo-code description.

Organization. We formally define all the notions used
throughout the paper in Section 2. The algorithm for
evaluating a deterministic and sequential extended VA
with linear preprocessing and constant delay enumer-
ation is presented in Section 3, and its application to
regular spanners in Section 4. We study the counting
problem in Section 5, and conclude in Section 6. Due to
space reasons, most proofs are deferred to the appendix.

2. BASIC DEFINITIONS
Documents and spans. We use a fixed finite alphabet
Σ throughout the paper. A document, from which we
will extract information, is a finite string d “ a1 . . . an
in Σ˚. We denote the length n of document d by |d|.
A span s is a pair ri, jy of natural numbers i and j
with 1 ď i ď j. Such a span is said to be of document
d if j ď |d| ` 1. In that case, s is associated with a
continuous region of the document d (also called a span
of d), whose content is the substring of d from positions
i to j ´ 1. We denote this substring by dpsq or dpi, jq.
To illustrate, Figure 1 shows a document d as well as
several spans of d. There, for example, dp1, 5q “ John.
Notice that if i “ j, then dpsq “ dpi, jq “ ε. Given two
spans s1 “ ri1, j1y and s2 “ ri2, j2y, if j1 “ i2 then their
concatenation is equal to ri1, j2y and is denoted s1 ¨ s2.
The set of all spans of d is denoted by spanpdq.

Mappings. Following [17], we will use mappings to
model the information extracted from a document.
Mappings differ from tuples (as used by e.g., Fagin et
al. [10] and Freydenberger et al. [11, 12]) in that not
all variables need to be assigned a span. Formally, let
V be a fixed infinite set of variables, disjoint from Σ.
A mapping is a function µ from a finite set of variables
dompµq Ď V to spans. Two mappings µ1 and µ2 are said
to be compatible (denoted µ1 „ µ2) if µ1pxq “ µ2pxq
for every x in dompµ1q X dompµ2q. If µ1 „ µ2, we
define µ1Yµ2 as the mapping that results from extend-
ing µ1 with the values from µ2 on all the variables in
dompµ2qzdompµ1q. The empty mapping, denoted by H,
is the only mapping such that dompHq “ H. Similarly,
rx Ñ ss denotes the mapping whose domain only con-
tains the variable x, which it assigns to be the span s.
The join of two set of mappings M1 and M2 is defined
as follows:

M1 ’ M2 “ tµ1Yµ2 | µ1 PM1, µ2 PM2 and µ1 „ µ2u.

Document spanners. A document spanner is a func-
tion that maps every input document d to a set of map-
pings M such that the range of each µ PM are spans of
d—thus modeling the process of extracting the informa-
tion (in form of mappings) from d. Fagin et al. [10] have
proposed different languages for defining spanners: by
means of regex formulas, by means of automata, and by
means of algebra. We next recall the definition of these
languages, and define their semantics in the context of
mappings rather than tuples.

Document d
J o h n x j @ g . b e y , J a n e x 5 5 5 ´ 1 2 y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

JγKd
name email phone

µ1 r1, 5y r7, 13y
µ2 r16, 20y r22, 28y

Figure 1: A document d and the evaluation JγKd,
with γ as defined in Equation (1).

JγKd “ tµ | pp1, |d| ` 1q, µq P rγsdu

rεsd “ tps,Hq | s P spanpdq and dpsq “ εu

rasd “ tps,Hq | s P spanpdq and dpsq “ au

rxtγusd “ tps, µq | Dps, µ
1q P rγsd :

x R dompµ1q and µ “ rxÑ ss Y µ1u

rγ1 ¨ γ2sd “ tps, µq | Dps1, µ1q P rR1sd,

Dps2, µ2q P rγ2sd : s “ s1 ¨ s2,

dompµ1q X dompµ2q “ H, and

µ “ µ1 Y µ2u

rγ1 _ γ2sd “ rγ1sd Y rγ2sd

rγ˚sd “ rεsd Y rγsd Y rγ
2sd Y rγ

3sd Y ¨ ¨ ¨

Table 1: The semantics JγKd of a RGX γ over a
document d. Here γ2 is a shorthand for γ ¨ γ,
similarly γ3 for γ ¨ γ ¨ γ, etc.

Regex formulas. Regex formulas extend the syntax
of classic regular expressions with variable capture ex-
pressions of the form xtγu. Intuitively, and similar to
classical regular expressions, regex formulas specify a
search through an input document. However, when,
during this search, a variable capture subformula xtγu
is matched against a substring, the span s that delim-
its this substring is recorded in a mapping rx Ñ ss as
a side-effect. Formally, the syntax of regex formulas is
defined by the following grammar [10]:

γ :“ ε | a | xtγu | γ ¨ γ | γ _ γ | γ˚.

Here, a ranges over letters in Σ and x over variables in V.
We will write varpγq to denote the set of all variables
occurring in regex formula γ. We write RGX for the
class of all regex formulas.

The mapping-based spanner semantics of RGX is
given in Table 1 (cf. [17]). The semantics is defined
by structural induction on γ and has two layers. The
first layer, rγsd, defines the set of all pairs ps, µq with
s P spanpdq and µ a mapping such that (1) γ successfully
matches the substring dpsq and (2) µ results as a conse-
quence of this successful match. For example, the regex
formula γ “ a matches all substrings of input document
d equal to a, but results in only the empty mapping. On
the other hand, γ “ xtγ1u matches all substrings that
are matched by γ1, but assigns x the span s that delim-
its the substring being matched, while preserving the
previous variable assignments. Similarly, in the case of
concatenation γ1 ¨ γ2 we join the mapping defined on
the left with the one defined on the right, while impos-
ing that the same variable is not used in both parts (as
this would lead to inconsistencies). The second layer,
JγKd then simply gives us the mappings that γ defines
when matching the entire document. Note that when
γ is an ordinary regular expression (varpγq “ Hq, then
the empty mapping is output if the entire document
matches γ, and no mapping is output otherwise.

Example 2.1. Consider the task of extracting
names, email addresses and phone numbers from
documents. To do this we could use the regex formula
γ defined as

Σ˚ ¨nametγnu ¨ ¨ x¨pemailtγeu_phonetγpquq¨y ¨Σ
˚ (1)

where represents a space; name, email, and phone are
variables; and γn, γe, and γp are regex formulas that
recognize person names, email addresses, and phone
numbers, respectively. We omit the particular definition
of these formulas as this is irrelevant for our purpose.
The result JγKd of evaluating γ over the document d
shown in Figure 1 is shown at the bottom of Figure 1.

It is worth noting that the syntax of regex formula
used here is slightly more liberal than that used by Fa-
gin et al. [10]. In particular Fagin et al. require regex
formulas to adhere to certain syntactic restrictions that
ensure that the formula is functional : every mapping
in JγKd is defined on all variables appearing in γ, for
every d. For regex formulas that satisfy this syntactic
restriction, the semantics given here coincides with that
of Fagin et al [10] (see [17] for a detailed discussion).

Variable-set automata. A variable-set automaton
(VA) [10] is an finite-state automaton extended with
captures variables in a way analogous to RGX; that is,
it behaves as a usual finite state automaton, except that
it can also open and close variables. Formally, a VA au-
tomaton A is a tuple pQ, q0, F, δq, where Q is a finite
set of states; q0 P Q is the initial state; F Ď Q is the set
of final states; and δ is a transition relation consisting
of letter transitions of the form pq, a, q1q and variable
transitions of the form pq, x$, q1q or pq,%x, q1q, where
q, q1 P Q, a P Σ and x P V. The $ and % are special
symbols to denote the opening or closing of a variable
x. We refer to x$ and %x collectively as variable mark-
ers. We define the set varpAq as the set of all variables
x that are mentioned in some transition of A.

A configuration of a VA automaton over a document
d is a tuple pq, iq where q P Q is the current state and
i P r1, |d| ` 1s is the current position in d. A run ρ over
a document d “ a1a2 ¨ ¨ ¨ an is a sequence of the form:

ρ “ pq0, i0q
o1ÝÑ pq1, i1q

o2ÝÑ ¨ ¨ ¨ omÝÑ pqm, imq

where oj P ΣYtx$,%x | x P Vu and pqj , oj`1, qj`1q P δ.
Moreover, i0, . . . , in is a non-decreasing sequence such
that i0 “ 1, im “ |d| ` 1, and ij`1 “ ij ` 1 if oj`1 P Σ
(i.e. the automata moves one position in the document
only when reading a letter) and ij`1 “ ij otherwise.
Furthermore, we say that a run ρ is accepting if qm P F
and that it is valid if variables are opened and closed
in a correct manner (that is, each x is opened or closed
at most once, and x is opened at some position i if
and only if it is closed at some position j with i ď j).
Note that not every accepting run is valid. In case that
ρ is both accepting and valid, we define µρ to be the
mapping that maps x to rij , iky P spanpdq if, and only
if, oij “ x$ and oik “%x in ρ. Finally, the semantics
of A over d, denoted by JAKd is defined as the set of all
µρ where ρ is a valid and accepting run of A over d.

Note that validity requires only that variables are
opened and closed in a correct manner; it does not re-
quire that all variables in varpAq actually appear in the
run. Valid runs that do mention all variables in varpAq
are called functional. In a functional run, all variables
are hence opened and closed exactly once (and in the
correct manner) whereas in a valid run they are opened
and closed at most once.

A VA A is sequential (sVA) if every accepting run of
A is valid. It is functional (fVA) if every accepting run
is functional. In particular, every fVA is also sequential.
Intuitively, during a run a sVA does not need to check
whether variables are opened and closed in a correct
manner; the run is guaranteed to be valid whenever a
final state is reached.

It was shown in [17, 13] that constant delay enu-
meration (after polynomial-time preprocessing) is not
possible for variable-set automata in general. However,
the authors in [17] also show that for the class of fVA
or sVA, polynomial delay enumeration is possible, thus
leaving open the question of constant delay in this case.
As we will see, the sequential property is important in
order to have constant-delay algorithms.

Spanner algebras. In addition to defining basic docu-
ment spanners through RGX or VA, practical informa-
tion extraction systems also allow spanners to be de-
fined by applying basic algebraic operators on already
existing spanners. This is formalized as follows. Let L
be a language for defining document spanners (such as
RGX or VA). Then we denote by Ltπ,Y,’u the set of all
expressions generated by the following grammar:

e :“ α | πY peq | eY e | e ’ e.

Here, α ranges over expressions of L, and Y is a finite
subset of V. Assume that JαK denotes the spanner de-
fined by α P L. Then the semantics JeK of expression e
is the spanner inductively defined as follows:

JπY peqKd “ tµ|Y : µ P JeKdu
Je1 Y e2Kd “ Je1Kd Y Je2Kd
Je1 ’ e2Kd “ Je1Kd ’ Je2Kd

Here, µ|Y is the restriction of µ to variables Y and
Je1Kd ’ Je2Kd is the join of two sets of mappings.

It was shown by Fagin et al. [10] that VA,

RGXtπ,Y,’u, and VAtπ,Y,’u all express the same class of
spanners, called Regular Spanners. In particular, every

expression in RGXtπ,Y,’u, and VAtπ,Y,’u is equivalent
to a VA. This will be used later in Section 4.

The enumeration problem. In this paper, we study
the problem of enumerating all mappings in JγKd, given
a document spanner γ (e.g. by means of a VA) and a
document d. Given a language L for document spanners
we define the main enumeration problem of evaluating
expressions from L formally as follows:

Problem: EnumeraterLs
Input: Expression γ P L and document d.

Output: All mappings in JγKd without
repetitions.

As usual, we assume that the size |R| of a RGX ex-
pression R is the number of alphabet symbols and op-
erations, and the size |A| of a VA A is given by the
number of transitions plus the number of states. Fur-
thermore, the size |e| of an expression e in Ltπ,Y,’u (e.g

RGXtπ,Y,’u) is given by
ř

i |αi| where αi are the expres-
sions in L plus the number of operators (i.e. tπ,Y,’u)
used in e.

Enumeration with constant delay. We use the def-
inition of constant delay enumeration presented in [19,
20, 21] adapted to EnumeraterLs. As it is standard in
the literature [19], we consider enumeration algorithms
over Random Access Machines (RAM) with addition
and uniform cost measure [1]. Given a language L for
document spanners, we say that an enumeration algo-
rithm E for EnumeraterLs has constant delay if E runs
in two phases over the input γ P L and d.
- The first phase (precomputation) which does not pro-

duce output.
- The second phase (enumeration) which occurs imme-

diately after the precomputation phase and enumer-
ates all mappings in JγKd without repetitions. We re-
quire that the delay between the start of enumeration,
between any two consecutive outputs, and between
the last output and the end of this phase depend only
on |γ|. A such, it is constant in |d|.

We say that E is a constant delay algorithm for
EnumeraterLs with precomputation phase fp|γ|, |d|q,
if E has constant delay and the precomputation phase
takes time Opfp|γ|, |d|qq. We say that E features con-
stant delay enumeration after linear time pre-processing
if fp|γ|, |d|q “ gp|γ|q ¨ |d| for some function g. It is im-
portant to stress that the delay between consecutive
outputs has to be constant, so we seek to reduce the
precomputation time fp|γ|, |d|q as much as possible.

3. CONSTANT DELAY EVALUATION OF
EXTENDED VSET AUTOMATA

In this section we present an algorithm featuring con-
stant delay enumeration after linear pre-processing for a
syntactic variant of VA that we call extended variable-
set automata (eVA for short). This variant avoids sev-
eral problems that VA have in terms of evaluation.
Later, in Section 4, we show how this algorithm can
be applied to ordinary VA, RGX formulas, and spanner
algebras. We start by introducing extended VA.

3.1 Extended variable-set automata
VA can open or close variables in arbitrary ways,

which can lead to multiple runs that define the same
output. An example of this is given in Figure 2, where
we have a functional VA (fVA) that has two runs result-
ing in the same output (i.e. they produce a mapping
that assigns the entire document both to x and y). This
is of course problematic for constant delay enumeration,
as outputs must be enumerated without repetitions1.

1As shown in [10], such behaviour also leads to a factorial
blow-up when defining the join of two VA, as all possible or-

q0

q1

q2

q3 q4 q5

x$

y$

y$

x$

a

%x %y

Figure 2: A functional VA with multiple runs
defining the same output mapping.

Ideally, when running a VA one would like to start
by declaring which variable operations take place be-
fore reading the first letter of the input word, then pro-
cess the letter itself, followed by another step declar-
ing which variable operations take place after this, read
the next letter, etc. Extended variable-set automata
achieve this by allowing multiple variable operations to
take place during a single transition, and by forcing each
transition that manipulates variables to be followed by
a transition processing a letter from the input word.

Formally, let MarkersV “ tx $,% x | x P Vu be
the set of open and close markers for all the variables
in V. An extended variable-set automaton (extended
VA, or eVA) is a tuple A “ pQ, q0, F, δq, where Q, q0,
and F are the same as for variable-set automata, and
δ is the transition relation consisting of letter transi-
tions pq, a, q1q, or extended variable transitions pq, S, q1q,
where S Ď MarkersV and S ‰ H. A run ρ over a docu-
ment d “ a1a2 ¨ ¨ ¨ an is a sequence of the form:

ρ “ q0
S1ÝÑ p0

a1ÝÑ q1
S2ÝÑ p1

a2ÝÑ . . . anÝÑ qn
Sn`1
ÝÑ pn (2)

where every Si is a (possibly empty) set of markers,
ppi, ai`1, qi`1q P δ, and pqi, Si`1, piq P δ whenever
Si`1 ‰ H, and qi “ pi otherwise. Notice that ex-
tended variable transitions and letter transitions must
alternate in a run of an eVA, and that a transition with
the H of variable markers is only allowed when it stays
in the same position.

As in the setting of ordinary VA, we say that a run ρ
is valid if variables are opened and closed in a correct
manner: the sets Si are pairwise disjoint; for every i
and every x $P Si there exists j ě i with % x P Sj ;
and, conversely, for every j and every % x P Sj there
exists i ď j with x$P Si. For a valid run ρ we define
the mapping µρ that maps x to ri, jy P spanpdq if, and
only if, x$P Si, %x P Sj and i ď j. Also, we say that ρ
is accepting if pn P F . Finally, the semantics of A over
d, denoted by JAKd is defined as the set of all mappings
µρ where ρ is a valid and accepting run of A over D.
We transfer the notion of being sequential (seVA) and
functional (feVA) from normal VA to extended VA in
the obvious way.

An extended VA A is deterministic if the transition
relation δ of A is a partial function δ : Q ˆ pΣ Y

2MarkersV ztHuq Ñ Q. If A is deterministic, then we
define Markersδpqq as the set tS Ď MarkersV | pq, Sq P
dompδqu. Note that, in contrast to determinism for clas-
sical NFAs, determinism as defined here does not imply

ders between variables need to be considered. See Section 4
for further discussion.

that there is at most one run for each input document d.
Instead, it implies that for every document d and ev-
ery µ P JAKd, there is exactly one valid and accepting
run ρ with µ “ µρ. In other words: there may still be
many valid accepting runs on a document d, but each
such run defines a unique mapping. For instance, we
could convert the VA A from Figure 2 into an equiva-
lent eVA A1 by adding a transition pq0, tx $, y $u, q3q

to δ, and removing the states q1 and q2, together with
their associated transitions. It is easy to see that A1 is
deterministic, so all accepting runs will define an unique
mapping, thus avoiding the issues that A has when con-
sidering the enumeration of output mappings.

The following results shows that eVA are indeed a
natural variant of normal VA and that all eVA can be
determinized.

Theorem 3.1. For every VA A there exists an eVA
A1 such that A ” A1 and vice versa. Furthermore, if A
is sequential (resp. functional), then A1 is also sequen-
tial (resp. functional).

Proposition 3.2. For every eVA A there exists a
deterministic eVA A1 such that A ” A1.

In Section 4 we will study in detail the complexity
of these translations; to present our algorithm we only
require equivalence between the models.

3.2 Constant delay evaluation algorithm
The objective of this section is to describe an algo-

rithm that takes as input a deterministic and sequential
eVA A (deterministic seVA for short) and a document
d, and enumerates the set JAKd with a constant delay
after pre-processing time Op|A| ˆ |d|q. We start with
an intuitive explanation of the algorithm’s underlying
idea, and then give the full algorithm.

3.2.1 Intuition
As with the majority of constant delay algorithms, in

the pre-processing step we build a compact representa-
tion of the output that is used later in the enumeration
step. In our case, we build a directed acyclic graph
(DAG) that can then be traversed in a depth-first man-
ner to enumerate all the output mappings. This DAG
will encode all the runs of A over d, and its construction
can be summarized as follows:

‚ Convert the input word d into a deterministic ex-
tended VA Ad;

‚ Build the product between A and Ad, and anno-
tate the variable transitions with the position of d
where they take place;

‚ Replace all the letters in the transitions of AˆAd

with ε, and construct the “forward” ε-closure of
the resulting graph.

We first illustrate how this construction works by
means of an example. For this, consider the eVA A
from Figure 3. It is straightforward to check that this
automaton is functional (hence sequential) and deter-
ministic. To evaluate A over document d “ ab we first

q0

q1 q4 q6

q2 q5 q7

q8

q3

q9

a, b

x$

y$

x$, y$ %x,%y

a

a

b

b

y$a

x$

%x,%y

Figure 3: An extended functional VA A.

convert the input document d into an eVA Ad that rep-
resents all possible ways of assigning spans over d to the
variables of A. The automaton Ad is a chain of |d| ` 1
states linked by the transitions that spell out the word
d. That is, Ad has the states p1, . . . , p|d|`1, and letter
transitions ppi, di, pi`1q, with i “ 1 . . . |d|, and where di
is the ith symbol of d. Furthermore, each state pi has
2| varpAq|´1 self loops, each labelled by a different non-
empty subset of MarkersvarpAq. For instance, in the case
of d “ ab, the automaton Ad is the following:

p1 p2 p3
a b

tx$u ty$u

t%x, y$u . . .

.

Next, we build the product automaton A ˆ Ad in the
standard way (i.e. by treating variable transitions as
letters and applying the NFA product construction).
During construction, we take care to only create prod-
uct states of the form pq, pq that are reachable from the
initial product state pq0, p1q. In addition, we annotate
the variable transitions of this automaton with the posi-
tion in d where the particular transition is applied. For
this, we use the fact that Ad is a chain of states, so in
the product A ˆ Ad, each variable transition is of the
form ppq, piq, S, pq

1, piqq. We therefore annotate the set
S with the number i. We depict the resulting annotated
product automaton for A and d “ ab in Figure 4 (top).

In the final step, we replace all letter transitions with
ε-transitions and compute what we call the “forward”
ε-closure. This is done by considering each variable
transition ppq, pq, pS, iq, pq1, p1qq of the annotated prod-
uct automaton, and then computing all the states pr, sq
such that one can reach pr, sq from pq1, p1q using only ε
transitions. We then add an annotated variable transi-
tion ppq, pq, pS, iq, pr, sqq to the automaton. For instance,
for the product automaton at the top of Figure 4, we
would add a transition ppq0, p1q, px $, 1q, pq4, p2qq, due
to the fact that we can reach pq1, p1q from pq0, p1q using
px $, 1q, and we can reach pq4, p2q from pq1, p1q using
ε (which replaced a). We repeat this procedure for all
the variable transitions of AˆAd, and the newly added
transitions, until no new transition can be generated.
In the end, we simply erase all the ε transition from the

q0, p1

q1, p1 q4, p2 q6, p2

q2, p1 q5, p2 q7, p2

q8, p3

q3, p1 q3, p2 q3, p3

q9, p3

x$, 1

y$, 1

x$, y$, 1

a b

%x,%y, 3

a

a

b

b

y$, 2a

x$, 2

%x,%y, 3

q0, p1

q4, p2

q8, p3

q5, p2

q3, p3

q9, p3

x$, 1

y$, 1

y$, 2

x$, 2

%x,%y, 3

x$, y$, 1 %x,%y, 3

Figure 4: The annotated product automaton
(top) and its “forward”ε-closure (bottom).

resulting automaton. An example of this process for the
automaton A of Figure 3 and the document d “ ab is
given at the bottom of Figure 4.

From the resulting DAG we can now easily enumer-
ate JAKd. For this, we simply start from the final state,
and do a depth-first traversal taking all the edges back-
wards. Every time we reach the initial state, we will
have the complete information necessary to construct
one of the output mappings. For example, starting from
the accepting state and moving backwards to pq3, p3q,
and then again to the initial state. From the labels
along this run we can then reconstruct the mapping µ
with µpxq “ µpyq “ r1, 3y.

Since A and Ad are deterministic, we will never out-
put the same mapping twice. Also, note that the time
for generating each output is bounded by the number of
variables in A, and therefore the delay between outputs
depends only on |A| (and is constant in the document).

3.2.2 The algorithm
While the previous construction works correctly, there

is no need to perform the three construction phases
separately in a practical implementation. In fact, by
a clever merge of the three construction steps we can
avoid materializing Ad and AˆAd altogether. The re-
sult is a succinct, optimized, and easily-implementable
algorithm that we describe next.

There are two main differences with the construction
described above and our algorithm. First, the algorithm
never materializes Ad, nor the product AˆAd. Rather,
it traverses this product automaton on-the-fly by pro-
cessing the input document one letter at a time. Sec-
ond, the algorithm does not construct the ε-closure it-
self, but its reverse dual. That is, the resulting DAG
has the edge labels of the ε-closure as nodes and there
is an edge from pT, jq Ñ pS, iq in the reverse dual if we

had pq, pq
pS,iq
ÝÝÝÑ pq1, p1q

pT,jq
ÝÝÝÑ pq2, p2q in the ε-closure for

some product states pq, pq, pq1, p1q, and pq2, p2q.
The algorithm builds the reverse dual DAG incremen-

tally by processing d one letter at a time. In order to
do this, it tracks at every position i (1 ď i ď |d|q the
states of A that are live, i.e., the states q P Q such that
there exists at least one run of A, on the prefix dp1, iq
of d that ends in q. For each such state, the algorithm
keeps track of the nodes in the reverse dual that repre-
sent the last variable transitions taken by runs ending
in q. When appropriate, new nodes are added to the
reverse dual based on this information.

The different procedures that comprise the evaluation
algorithm are given in Algorithms 1 and 2. In partic-
ular, the procedure Evaluate shown in Algorithm 1
takes a deterministic and sequential eVA A and a doc-
ument d “ a1 . . . an as input, and creates the reverse
dual DAG that encodes all the runs of A over d. The
procedure Enumerate shown in Algorithm 2 enumer-
ates all the resulting mappings. Before discussing these
procedures in detail, we need to elaborate on the data
structures used.

Data structures. We store the reverse dual DAG by
using the adjacency list representation. Each node n
in this DAG is a pair ppS, iq, lq where S Ď MarkersV ,
i P N, and a l is the list of nodes to which n has outgoing
edges. Given a node n, the method n.content retrieves
the pair pS, iq while the method n.list retrieves the
adjacency list l. A special node, denoted by K will be
used as the sink node (playing the same role as the
initial state of AˆAd).

The algorithm makes extensive use of list operations.
Lists are represented as a pair ps, eq of pointers to the
start and end elements in a singly linked list of ele-
ments. Elements are created and never modified. The
only exception to this is an element whose next pointer
is null. Such an element may have its next pointer up-
dated, but only once. Lists are endowed with six meth-
ods: begin, next, atEnd, add, lazycopy, and append.
The first three methods begin, next, and atEnd are
standard methods for iterating through a list. Specifi-
cally, begin starts the iteration from the beginning (i.e.
it locates the position before the first node), next gives
the next node in the list, and atEnd tells whether the
iteration is at the end or not. The last three methods
add, lazycopy and append are methods for modifying
or extending a list l “ ps, eq. add receives a node n
and inserts n at the beginning of l (i.e., it creates a new
element whose payload is n and whose next pointer is
s, and updates l :“ ps1, eq with s1 pointing to this new
element). lazycopy makes a lazy copy of l by returning
a copy of the pair ps, eq. This copy is not updated on
operations to l (such as, add, which would modify s).
append receives another list l1 “ ps1, e1q and appends l1

at the end of l “ ps, eq by updating the next pointer of
e to s1 and subsequently updating l to ps, e1q. Note that
all of these operations are clearly Op1q operations.

Evaluation. The procedure Evaluate maintains a
list listq of nodes, for every state q of A. If listq is empty,
then q is not live for the current letter position. Other-
wise, q is live and listq contains the nodes in the reverse

Algorithm 1 Evaluate A over the document a1 . . . an
1: procedure Evaluate(A, a1 . . . an)
2: for all q P Qztq0u do
3: listq Ð ε

4: listq0 Ð rKs

5: for i :“ 1 to n do
6: Capturingpiq
7: Readingpiq

8: Capturingpn` 1q
9: EnumerateptlistquqPQ, F q

10: procedure Capturing(i)
11: for all q P Q do
12: listoldq Ð listq.lazycopy

13: for all q P Q with listoldq ‰ ε do
14: for all S P Markersδpqq do

15: node Ð NodeppS, iq, listoldq q

16: pÐ δpq, Sq
17: listp.addpnodeq

18: procedure Reading(i)
19: for all q P Q do
20: listoldq Ð listq
21: listq Ð ε

22: for all q P Q with listoldq ‰ ε do
23: pÐ δpq, aiq

24: listp.appendplistoldq q

dual DAG that represent the last variable transitions
taken by runs of A on the current prefix that end in q.
Initially, listq is empty for every state q except the initial
state q0, which is initialized to the singleton list contain-
ing the special sink node K. Evaluate then alternates
between calls to Capturingpiq and Readingpiq, where
i is a letter position in d (recall that all the runs of an
extended automata alternate between variable and let-
ter transitions and start with a variable transition, cf.
(2)). Capturingpiq simulates the variable transitions
that A does immediately before reading the letter ai,
and modifies the reverse dual DAG accordingly. Simi-
larly, Readingpiq simulates what A does when reading
the letter ai of the input. Finally, Capturingpn ` 1q
simulates the last variable transition of A.

In Capturingpiq we first make a lazy copy of all the
lists. We then try to extend the runs of A from each
state q that was live at position i´1 (i.e., listoldq ‰ ε) by
executing a variable transition. If we can do this (i.e.
there is a transition of the form pq, S, pq in A), we create
a new node n labeled by pS, iq that has an edge to each

node in listoldq . Finally, we add n to the beginning of the
list listp, thus recording that A can be in state p after
executing the ith variable transition. Notice that it is
possible that two transitions enter the same state p (like
the transitions reaching the accepting state in Figure 3).
To accommodate for this, our algorithm adds the new
node at the beginning of the list, so by traversing the
entire list we get the information about all the runs.

Algorithm 2 Enumerate all mappings

1: procedure Enumerate(tlistquqPQ, F)
2: for all q P F with listq ‰ ε do
3: EnumAllplistq, εq

4: procedure EnumAll(list,map)
5: list.begin
6: while list.atEnd “ false do
7: node Ð list.next
8: if node “ K then
9: Outputpmapq

10: else
11: pS, iq Ð node .content
12: EnumAllpnode .list, pS, iq ¨mapq

It is important to note that in Capturingpiq we
do not overwrite the lists listq that were created in
Readingpi ´ 1q for i ą 1. This is necessary to cor-
rectly keep track of the situation in which no transition
using variable markers was triggered in Capturingpiq
(i.e. when S “ H in our run). On a run of a sequen-
tial extended variable-set automaton this can happen
for instance when we have self loops (as in e.g. state q3

in Figure 3). This way, the list listq is kept for the next
iteration; i.e. Readingpiq can again continue from q
since no variable markers were used in between.

In Readingpiq we simulate what happens when A
reads the letter ai of the input document by updating
the lists of the states that A reaches in this transition.
That is, we first mark all lists as “old” lists, and then set
listq to empty. Then for each live state q (i.e., listoldq ‰ ε,
hence A was in q immediately before reading ai), and
the transitions of the form pq, ai, pq, we append the list

listoldq at the end of the list listp. Appending this list at
the end is done in order to accommodate the fact that
two letter transitions can enter the same state p while
reading ai (see e.g. the state q8 in the automaton from

Figure 3). Note here that each listoldq is appended to at
most one listp, since A is deterministic.

Enumeration. At the end of Evaluate, procedure
Enumerate simply traverses the constructed reverse
dual DAG in a depth first manner. In this way, Enu-
merate traces all the accepting runs (since it starts
from an accepting state), and outputs a string allowing
us to reconstruct the mapping.

Example. Next we give an example detailing the situ-
ations that could occur while running Algorithm 1. For
this, consider the deterministic seVA A from Figure 3
and an input document d “ ab. In this case we have
that JAKd “ tµ1, µ2, µ3u, where:

‚ µ1pxq “ r1, 3y, µ1pyq “ r2, 3y;

‚ µ2pxq “ r2, 3y, µ2pyq “ r1, 3y; and

‚ µ3pxq “ r1, 3y, µ3pyq “ r1, 3y.

To show how Algorithm 1 works, in Figure 5 we pro-
vide the state of all the active lists after completion
of each phase of the algorithm. To stress that we are

Stage Non-empty lists

Initial list0q0 “ rKs

Capturingp1q

list0q0 “ rKs

list0q1 “ rnode(ptx$u, 1q, rKs)s

list0q2 “ rnode(pty$u, 1q, rKs)s

list0q3 “ rnode(ptx$, y$u, 1q, rKs)s

Readingp1q

list1q4 “ list0q1

list1q5 “ list0q2

list1q3 “ list0q3

Capturingp2q

list1q4 “ list0q1

list1q5 “ list0q2

list1q3 “ list0q3

list1q6 “ rnode(pty$u, 2q, list1q4)s

list1q7 “ rnode(ptx$u, 2q, list1q5)s

list1q9 “ rnode(pt%x,%yu, 2q, list1q3)s

Readingp2q
list2q3 “ list1q3

list2q8 “ rlist1q6 , list1q7s

Capturingp3q

list2q3 “ list1q3

list2q8 “ rlist1q6 , list1q7s

list2q9 “ rnode(pt%x,%yu, 3q, list2q8),

node(pt%x,%yu, 3q, list2q3)s

Figure 5: The state of non-empty lists after ex-
ecuting each stage of the algorithm.

talking about the state of some list listq during the it-
eration i of Algorithm 1, that is, about the state of the
list after executing Readingpiq or Capturingpiq, we

will use the notation listiq. To keep the notation simple,
we also denote lists using the array notation.

At the beginning only the list listq0 correspond-
ing to the initial state of A is non-empty. When
Capturingp1q is triggered, we create three new nodes,
each corresponding to the variable transitions leaving
the state q0. These nodes are then added to the appro-
priate lists. In Readingp1q we “move” the non-empty
lists by renaming their state. For instance, since A can
go from q1 to q4 while reading a1 “ a, the list list0q1 now

becomes list1q4 , signalling that q4 is one of the states
where A can be at this point. The same is done by the
other two transition reading the letter a. Notice that
the list listq0 becomes empty at this point.

Next, Capturingp2q is executed. Here, the lists
that were non-empty after Readingp1q will remain un-
changed after Capturingp2q, simulating the situation
when no variable bindings were used in the run of A
over d after processing the first letter. Other variable
transitions that can be triggered create new nodes and
add them at the beginning of the appropriate lists.
Readingp2q again“moves”the lists according to what

A does when reading a2 “ b. The lists list1q3 gets prop-
agated (simulating a self loop). A more interesting sit-

K

ptx$u, 1q

pty$u, 1q

ptx$, y$u, 1q

pty$u, 2q

ptx$u, 2q

pt%x,%yu, 3q

pt%x,%yu, 3q

s,e

s,e

s,e

s,e

s,e

s

e

s,e

next

next

list3q9list3q8

Figure 6: DAG created by Algorithm 1 to record
the output mappings.

uation occurs when the transitions δpq6, bq “ q8 and
δpq7, bq “ q8 are processed. Since they both reach q8,
we first append the list list1q6 at the end of (the empty

list) list2q8 , and then to keep track that one can also get

here from q7, also append the list list1q7 at the end of

(now non empty list) list2q8 . Since these are the only
way that A can move while reading b, we forget about
all the other lists.

Finally, Capturingp3q keeps track of what happens
during the last variable transition of A. There are two
transitions that can reach the accepting state q9, and
they get added to the list list3q9 . Note that the two lists
from Readingp2q also remain non-empty at this stage.

The DAG created by Algorithm 1 is given in Figure 6.
Here the dashed edges point to the list corresponding
to the node with this label (i.e. the list representation
ps, eq). For instance, node(ptx $u, 0q,K) corresponds
to the edge between the node with the label ptx$u, 0q
and its associated list K “ list0q0 . Full edges link the
nodes that belong to the same list, and curvy edges to
the start of a list generated after Capturingp3q.

To enumerate the answers, we now call the proce-
dure Enumerate, passing it as a parameter all the
lists corresponding to the final states of A. Since
A has only one final state, the procedure will trig-
ger only EnumAllplistq9 , εq. This procedure now re-
cursively traverses the structure of connected lists cre-
ated by Algorithm 1 in a depth-first manner generating
the output mappings. For instance, the mapping µ1,
with µ1pxq “ r1, 3y and µ2pyq “ r2, 3y is generated by
traversing the upper most path from pt%x,%yu, 2q until
reaching K, and similarly for other mappings.

Correctness. To prove the correctness of the above
algorithm, we first introduce some notation. For en-
coding mappings in the enumeration procedure, we as-
sume that mappings are sequences of the form pS1, i1q
. . . pSm, imq where Sj Ď MarkersV , i1 ă . . . ă im and
variables in S1 . . . Sm are open and closed in a correct
manner, i.e. like in the definition of a run of an extended
variable set automata. Clearly, from a sequence M “

pS1, i1q . . . pSm, imq we can obtain a mapping µM and
viceversa. For this reason, in the sequel we call M and
µ mappings without making any distinction. Further-

more, we say that a sequence M “ pS1, i1q . . . pSk, ikq
is a partial mapping if it is the prefix sequence of some
mapping, i.e., it can be extended to the right to create
a mapping. This is useful to represent the output of
partial run of A over d; that is, if ρ is of the form:

ρ “ q0
S1ÝÑ p0

a1ÝÑ q1
S2ÝÑ p1

a2ÝÑ . . . aiÝÑ qi
Si`1
ÝÑ pi

where i ď |d|, the mapping µρ is not necessarily well-
defined, or is possibly incomplete. We therefore define
a partial mapping M of ρ, denoted by Outpρq, as the
concatenation of all the pairs pSj , jq where Sj ‰ H,
in an increasing order on j. For instance, in the run

ρ “ q0
tx$u
ÝÑ p0

a1ÝÑ q1
H
ÝÑp1

a2ÝÑ q2
ty$u
ÝÑp2 we will have

that Outpρq “ ptx $u, 0q pty $u, 2q. Note that in the
case that ρ is an accepting run of A, it is then clear that
Outpρq defines the mapping µρ.

The proof that Algorithm 1 correctly enumerates all
the mappings in JAKd without repetitions follows from
the invariant stated in the lemma below.

Lemma 3.3. Let d “ a1 . . . an be a document and A
an extended variable-set automaton that is deterministic
and sequential (deterministic seVA). Then for every
0 ď i ď n, the following two statements are equivalent:

1. There exists a run of A over a1 ¨ ¨ ¨ ai of the form

ρ “ q0
S1ÝÑ p0

a1ÝÑ q1 . . . aiÝÑ qi
Si`1
ÝÑ pi.

2. After executing Capturingpi`1q in Algorithm 1,
it holds that listpi ‰ ε and there is partial output
M of EnumAll(listpi , ε) with M “ Outpρq.

The proof of the lemma is done by a detailed induc-
tion on the number of steps of the algorithm and can be
found in the appendix. Note that the case when i “ 0
corresponds to a run over the empty word ε (i.e. pro-
cessing the part of d “before” a1), thus simulating the
first variable transition of A. With the invariant proved
in Lemma 3.3, we can now easily show that running
EvaluatepA, dq will enumerate all of the mappings in
JAKd and only those mappings. Indeed, if µ P JAKd, this
means that there is an accepting run ρ such that µρ “ µ,
so by Lemma 3.3, the algorithm will output M with
M “ Outpρq. On the other hand, if EvaluatepA, dq
produces an output M , we can match this output with
a run ρM . Furthermore, since the output was produced
from an accepting state, and since A is sequential, this
means ρM is valid, so µρM “ µM P JAKd as desired.

Finally, we need to show that Algorithm 1 does not
enumerate any answer twice when executed over a de-
terministic seVA A and a document d. For this, observe
that if we have two accepting runs ρ and ρ1 of A over d
such that µρ “ µρ

1

, then ρ “ ρ1. This follows from the
fact that A is deterministic. Therefore, it follows from
Lemma 3.3 that there is a one to one correspondence be-
tween accepting runs of A and outputs of Algorithm 1,
which gives us the desired result.

Complexity. It is rather straightforward to see
that the pre-processing step takes time Op|A| ˆ |d|q.
Namely, for each letter ai of d we run the procedures

Capturingpiq and Readingpiq once. These two pro-
cedures simply scan the transitions of the automaton
and manipulate the list pointers as needed, thus taking
Op|A|q time, where |A| is measured as the number of
transitions of the automaton.

As far as the enumeration is concerned, Algorithm 2,
traverses the graph generated in the pre-processing step
in a depth-first manner. From Lemma 3.3, it follows
that all the paths in the constructed graph must reach
the initial node K and that the length of each path is
linear in the number of variables. Thus, we are able
to enumerate the output by taking only constant delay
(i.e. constant in the size of the document) between two
consecutive mappings.

Note that the actual delay is not really dependent on
the entire automaton A, as allowed by the definition
of constant delay, but depends only on the number of
variables. We argue that this is the best delay that
can be achieved, because to write down a single output
mapping one needs at least the time that is linear in the
number of variables.

4. EVALUATING REGULAR SPANNERS
The previous section shows an algorithm that eval-

uates a deterministic and sequential extended VA
(deterministic seVA for short) A over a document d
with constant-delay enumeration after Op|A|ˆ |d|q pre-
processing. Since the wider objective of this algorithm is
to evaluate regular spanners, in this section we present
a fine-grained study of the complexity of transforming

an arbitrary regular spanner, expressed in RGXtπ,Y,’u

or VAtπ,Y,’u to a deterministic seVA. This will illus-
trate the real cost of our constant delay algorithm for
evaluating regular spanners.

Because it is well-known that RGX formulas can be
translated into VA in linear time [10], we can focus
our study on the setting where spanners are expressed

in VAtπ,Y,’u. We first study how to translate arbi-
trary VAs into deterministic seVAs, and then turn to
the algebraic constructs. For the sake of simplification,
throughout this section we assume the following nota-
tion: given a VA A “ pQ, q0, F, δq, n “ |Q| denotes the
number of states, m “ |δ| the number of transitions,
and ` “ |varpAq| the number of variables in A.

To obtain a sequential VA from a VA, we can use a
construction similar to the one presented in [11]. This
yields a sequential VA with 2n3` states that can later
be extended and determinized (see Theorem 3.1 and
Proposition 3.2, respectively). Unfortunately, following
these steps would yield an automaton whose size is dou-
ble exponential in the size of the original VA. The first
positive result in this section is that we can actually
transform a VA into a deterministic seVA avoiding this
double exponential blow-up.

Proposition 4.1. For any VA A there exists an
equivalent deterministic seVA A1 with at most 2n3`

states and 2n3`p2` ` |Σ|q transitions.

Therefore, evaluating an arbitrary VA with constant de-
lay can be done with preprocessing that is exponential

q0 . . . q

x1$

y1$

%x1

%y1

x2$

y2$

%x2

%y2

xn$

yn$

%x`

%y`

a

Figure 7: A sequential VA with ` variables such
that every equivalent eVA has Op2`q transitions.

in the size of the VA and linear in the document. How-
ever, note that the resulting deterministic seVA is expo-
nential both in the number of states and in the number
of variables of the original VA. While having an au-
tomaton that is exponential in the number of states is
to be expected due to the deterministic restriction of
the resulting VA, it is natural to ask whether there ex-
ists a subclass of VA where the blow-up in the number
of variables can be avoided.

The two subclasses of VA that were shown to have
good algorithmic properties [13, 17] are sequential VA
and functional VA, so we will consider if the cost of
translation is smaller in these cases. In the more gen-
eral case of sequential VA we can actually show that the
blow-up in the number of variables is inevitable. The
main issue here is that preserving the sequentiality of
a VA when transforming it to an extended VA can be
costly. To illustrate this, consider the automaton in Fig-
ure 7. In this automaton any path between q0 and qF
opens and closes exactly one variable in txi, yiu, for each
i P t1, . . . , nu. Therefore, to simulate this behaviour in
an extended VA (which disallows two consecutive vari-
able transitions), we need 2` transitions between the
initial and final states, one for each possible set of vari-
ables. More formally, we have the following proposition.

Proposition 4.2. For every ` ą 0 there is a sequen-
tial VA A with 3`` 2 states, 4`` 1 transitions, and 2`
variables, such that for every extended VA A1 equivalent
to A it is the case that A1 has at least 2` transitions.

On the other hand, if we consider functional VA, the
exponential factor depending on the number of variables
can be eliminated when translating a functional VA into
a deterministic seVA.

Proposition 4.3. For any functional VA A there
exists an equivalent deterministic seVA A1 with at most
2n states and 2npn2 ` |Σ|q transitions.

Due to this, and the fact that functional VA are prob-
ably the class of VA most studied in the literature [10,
13, 11], for the remainder of this section we will be
working with functional VA.

Now we proceed to study how to apply the alge-
braic operators to evaluate regular spanners. In [10], it
was shown that any regular spanner (i.e. a join-union-
projection expression built from RGX or VA as atoms)
is in fact equivalent to a single VA, and effective con-
structions were given. In particular, it is known that
for every pair of VA A1 and A2, there exists a VA A
of exponential size such that JAKd “ JA1Kd ’ JA2Kd.

The exponential blow-up comes from the fact that each
transition is equipped with at most one variable, and
two variable transitions can occur consecutively. There-
fore, one needs to consider all possible orders of consecu-
tive variable transitions when computing a product (see
[10]). On the other hand, as shown by a subset of the
author’s in their previous work [18], and independently
in [13], this blow-up can be avoided when working with
functional VA. In the next proposition, we generalize
this result to extended VA2.

Proposition 4.4. Let A1 and A2 be two functional
eVA, and Y Ă V. Furthermore, let A3 and A4 be two
functional eVAs that use the same set of variables. Then
there exist functional eVAs A’, AY, and Aπ such that:

‚ A’ ” A1 ’ A2, and A’ is of size |A1| ˆ |A2|.

‚ AY ” A3 YA4, and AY is of size |A3| ` |A4|.

‚ Aπ ” πYA1, and Aπ is of size |A1|.

Combining these results we can now determine the
precise cost of compiling a regular spanner γ into a
deterministic seVA automaton that can then be used
by the algorithm from Section 3 to enumerate JγKd with
constant delay, for an arbitrary document d. More pre-
cisely, we have the following.

Proposition 4.5. Let γ be a regular spanner in

VAtπ,Y,’u using k functional VA as input, each of them
with at most n states. Then there exists an equivalent

deterministic seVA Aγ with at most 2n
k

states, and at

most 2n
k

¨ pn2k ` |Σ|q transitions.

In this case the 2n factor from Proposition 4.3 turns

to 2n
k

, thus making it double-exponential depending on
the number of algebraic operations used in γ. Ideally,
we would like to isolate a subclass of regular spanners
for which this factor can be made single exponential.
Unfortunately, in the general case we do not know if the

double exponential factor 2n
k

can be avoided. The main
problem here is dealing with projection, since it does not
preserve determinism, thus causing an additional blow-
up due to an extra determinization step. However, if

we consider VAtY,’u, we can obtain the following.

Proposition 4.6. Let γ be a regular spanner in

VAtY,’u using k functional VA as input, each of them
with at most n states. Then, there exists an equivalent
deterministic seVA Aγ with at most 2n¨k states, at most
2n¨k ¨ pn2k ` |Σ|q transitions.

Overall, compiling arbitrary VA or expressions in

VAtπ,Y,’u into deterministic seVA can be quite costly.
However, restricting to the functional setting and dis-
allowing projections yields a class of document span-
ners where the size of the resulting deterministic seVA
is manageable. In terms of practical applicability, it is
also interesting to note that all of these translations can
be fed to Algorithm 1 on-the-fly, thus rarely needing to
materialize the entire deterministic seVA.
2Note that since [13] does not consider extended VA, the
size of the join automaton is Opn4

q, and not quadratic.

5. COUNTING DOCUMENT SPANNERS
In this section we study the problem of counting the

number of output mappings in JγKd, where γ is a doc-
ument spanner. Counting the number of outputs is
strongly related to the enumeration problem [19] and
can give some evidence on the limitations of finding
constant delay algorithms with better precomputation
phases. Formally, given a language L for specifying doc-
ument spanners, we consider the following problem:

Problem: CountrLs
Input: An expression γ P L, a document d.

Output: |JγKd|

It is common that constant delay enumeration algo-
rithms can be extended to count the number of outputs
efficiently [19]. We show that this is the case for our
algorithm over deterministic seVA.

Theorem 5.1. Given a deterministic sequential ex-
tended VA A and a document d, |JγKd| can be computed
in time Op|A| ˆ |d|q.

Therefore, CountrL1s, where L1 is the class of de-
terministic seVA, can be computed in polynomial time
in combined complexity. The algorithm for CountrL1s

can be found in the appendix. This algorithm is a direct
extension of Algorithm 1, modified to keep the number
of (partial) output mappings in each state instead of a
compact representation of the mappings (i.e. listq).

Unfortunately, the efficient algorithm of Theorem 5.1
cannot be extend beyond the class of sequential deter-
ministic VA, that is, we show that CountrfVAs is a
hard counting problem, where fVA is the class of func-
tional VA (that are not necessarily extended). First,
we note that CountrfVAs is not a #P-hard problem
– a property that most of the hard counting problems
usually have in the literature [23]. We instead show
that CountrfVAs is complete for the class SpanL [2],
a counting complexity class that is included in #P and
is incomparable with FP, the class of functions com-
putable in polynomial time.

Intuitively, SpanL is the class of all functions f for
which we can find a non-deterministic Turing machine
M with an output tape, such that fpxq equals the num-
ber of different outputs (i.e. without repetitions) that
M produces in its accepting runs on an input x, and
M runs in logarithmic space. We say that a function
f is SpanL-complete if f P SpanL and every function
in SpanL can be reduced to f by log-space parsimo-
nious reductions (see [2] for details). It is known [2] that
SpanL functions can be computed in polynomial time
if, and only if, all the polynomial hierarchy is included in
P (in particular NP “ P). By well-accepted complexity
assumptions the SpanL-hardness of CountrfVAs hence
implies that counting the number of outputs of a fVA
over a document cannot be done in polynomial time.

Theorem 5.2. CountrfVAs is SpanL-complete.

It is not hard to see that any functional VA can be
converted in polynomial time into an functional ex-
tended VA (see [18]). Therefore, the above theorem also

implies intractability in counting the number of output
mappings of a functional extended VA. Given that all
other classes of regular spanners studied in this paper
(i.e. sequential, non-sequential, etc) include either the
class of functional VA or functional extended VA, this
implies that CountrLs is intractable for every L differ-
ent from L1, the class of deterministic seVA.

In Section 4 we have shown that enumerating the an-
swers of a functional VA with constant delay can be
done after a pre-computation phase that takes the time
linear in the document but exponential in the docu-
ment spanner. The big question that is left to answer
is whether enumerating the answers of a functional VA
can be done with a lower pre-computing time, ideally
Op|A|ˆ|d|q. Given that constant delay algorithms with
efficient pre-computation phases usually imply the exis-
tence of efficient counting algorithms [19], Theorem 5.2
sheds some light that it may be impossible to find a
constant delay algorithm that has pre-computation time
better than Op2|A|ˆ|d|q, that is obtained by determiniz-
ing a fVA and running the algorithm from Section 3. Of
course, this does not establish that a constant delay al-
gorithm with precomputation phase sub-exponential in
A (i.e. op2|A| ˆ |d|q) for fVA cannot exist, since we
are relying on the conjuncture that constant delay al-
gorithms with efficient precomputation phase implies
efficient counting algorithms. We leave it as an open
problem whether this is indeed true.

6. CONCLUSIONS
We believe that the algorithm described in Section 3

is a good candidate algorithm to evaluate regular docu-
ment spanners in practice. Throughout the paper we
have provided a plethora of evidence for this claim.
First, the proposed algorithm is intuitive and can be
described in a few lines of code, lending itself to easy
implementations. Second, its running time is very effi-
cient for the class of deterministic sequential extended
VA, and the latter in fact subsumes the class of all
regular spanners. Third, we have shown the cost of
executing our algorithm on arbitrary regular spanners,
obtaining bounds that, although not ideal, are reason-
able for a wide range of spanners usually encountered
in practice. Finally, we have shown that better pre-
computation times for arbitrary regular spanners are
not very likely, as one would expect to be able to com-
pute the number of their outputs more efficiently.

In terms of future directions, we are working on im-
plementing the algorithm from Section 3 and testing it
in practice. We are also looking into the fine points
of optimizing its performance, especially with respect
to the different translations given in Section 4. As far
as theoretical aspects of this work are concerned, we
are also interested in establishing hard lower bounds
for constant delay algorithms, that do not relay on con-
jectured claims.

7. REFERENCES
[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D.

Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

[2] Carme Álvarez and Birgit Jenner. A very hard
log-space counting class. Theoretical Computer
Science, 107(1):3–30, 1993.

[3] Marcelo Arenas, Francisco Maturana, Cristian
Riveros, and Domagoj Vrgoč. A framework for
annotating csv-like data. Proc. VLDB Endow.,
9(11):876–887, July 2016.

[4] Guillaume Bagan. Mso queries on tree
decomposable structures are computable with
linear delay. In CSL, volume 4207, pages 167–181.
Springer, 2006.

[5] Guillaume Bagan, Arnaud Durand, and Etienne
Grandjean. On acyclic conjunctive queries and
constant delay enumeration. In Proc. of CSL,
pages 208–222, 2007.

[6] Laura Chiticariu, Rajasekar Krishnamurthy,
Yunyao Li, Sriram Raghavan, Frederick Reiss, and
Shivakumar Vaithyanathan. Systemt: An
algebraic approach to declarative information
extraction. In ACL 2010, Proceedings of the 48th
Annual Meeting of the Association for
Computational Linguistics, July 11-16, 2010,
Uppsala, Sweden, pages 128–137, 2010.

[7] Laura Chiticariu, Yunyao Li, and Frederick R.
Reiss. Rule-based information extraction is dead!
long live rule-based information extraction
systems! In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language
Processing, EMNLP 2013, pages 827–832, 2013.

[8] Bruno Courcelle. Linear delay enumeration and
monadic second-order logic. Discrete Applied
Mathematics, 157(12):2675–2700, 2009.

[9] Ronald Fagin, Benny Kimelfeld, Frederick Reiss,
and Stijn Vansummeren. Cleaning inconsistencies
in information extraction via prioritized repairs.
In PODS, pages 164–175, 2014.

[10] Ronald Fagin, Benny Kimelfeld, Frederick Reiss,
and Stijn Vansummeren. Document spanners: A
formal approach to information extraction.
Journal of the ACM, 62(2), 2015.

[11] Dominik D. Freydenberger. A logic for document
spanners. In 20th International Conference on
Database Theory, ICDT 2017, March 21-24,
2017, Venice, Italy, pages 13:1–13:18, 2017.

[12] Dominik D Freydenberger and Mario Holldack.
Document spanners: From expressive power to
decision problems. In LIPIcs-Leibniz International
Proceedings in Informatics, volume 48. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[13] Dominik D. Freydenberger, Benny Kimelfeld, and
Liat Peterfreund. Joining Extractions of Regular
Expressions. PODS 2018 (to appear),
abs/1703.10350, 2017.

[14] Wojciech Kazana and Luc Segoufin. Enumeration
of monadic second-order queries on trees. ACM

Transactions on Computational Logic (TOCL),
14(4):25, 2013.

[15] Benny Kimelfeld. Database principles in
information extraction. In Proceedings of the 33rd
ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS’14,
Snowbird, UT, USA, June 22-27, 2014, pages
156–163, 2014.

[16] Rajasekar Krishnamurthy, Yunyao Li, Sriram
Raghavan, Frederick Reiss, Shivakumar
Vaithyanathan, and Huaiyu Zhu. Systemt: a
system for declarative information extraction.
SIGMOD Record, 37(4):7–13, 2008.

[17] Francisco Maturana, Cristian Riveros, and
Domagoj Vrgoč. Document Spanners for
Extracting Incomplete Information:
Expressiveness and Complexity. PODS 2018 (to
appear), abs/1707.00827, 2017.

[18] Andrea Morciano, Mart́ın Ugarte, and Stijn
Vansummeren. Automata-based evaluation of
AQL queries. Technical report, Université Libre de
Bruxelles, 2016.

[19] Luc Segoufin. Enumerating with constant delay
the answers to a query. In Joint 2013
EDBT/ICDT Conferences, ICDT ’13
Proceedings, Genoa, Italy, March 18-22, 2013,
pages 10–20, 2013.

[20] Luc Segoufin. A glimpse on constant delay
enumeration. In 31st International Symposium on
Theoretical Aspects of Computer Science (STACS
2014), STACS 2014, March 5-8, 2014, Lyon,
France, pages 13–27, 2014.

[21] Luc Segoufin. Constant delay enumeration for
conjunctive queries. SIGMOD Record,
44(1):10–17, 2015.

[22] Warren Shen, AnHai Doan, Jeffrey F. Naughton,
and Raghu Ramakrishnan. Declarative
information extraction using datalog with
embedded extraction predicates. In VLDB, pages
1033–1044, 2007.

[23] Leslie G Valiant. The complexity of enumeration
and reliability problems. SIAM Journal on
Computing, 8(3):410–421, 1979.

APPENDIX
A. PROOFS FROM SECTION 3

Proof of Theorem 3.1
We will show that given a VA A, one can construct an equivalent extended VA (eVA) A1 and vice versa. Both
of these constructions have the property that, if the input automaton is sequential or functional, then the output
automaton preserves this property.

Let A “ pQ, q0, F, δq be a VA. The resulting EVA A1 should produce valid runs that alternate between letter
transitions and extended variable transitions. To this end, we say that a variable-path between two states p and q

is a sequence π : p “ p0
v1ÝÑp1

v2ÝÑ . . . vnÝÑpn “ q such that ppi, vi`1, pi`1q P δ are variable transitions and vi ‰ vj for
every i ‰ j. Since all transitions in π are variable transitions, we define Markerspπq “ tv1, . . . , vnu as the union of
all variable markers appearing in π.

Consider now the following extended VA A1 “ pQ, q0, F, δ
1q where δ1 “ tpp, a, qq P δ | a P ΣuYδext and pp, S, qq P δext

if, and only if, there exists a variable-path π between p and q such that Markerspπq “ S. Intuitively, this construction
condenses variable transitions into a single extended transition. It does so in a way that it can be assured that
two consecutive extended transitions are not needed, but also, preserving all possible valid runs. The equivalence
JAKd “ JA1Kd for every document d follows directly from the construction and definition of a variable-path.

The opposite direction follows a similar idea, namely, a run in A1 can be separated into single variable marker
transitions in A since each extended transition can be separated into a variable-path in A. Formally, consider a EVA
A1 “ pQ1, q10, F 1, δ1q. The equivalent VA A construction is straightforward: for every extended transition between
two states, a single path must be created between those two states such that they have the same effect as the single
extended transition. The only issue to consider is that one must preserve an order between variable markers in such
a way that A does not open and close a variable in the wrong order. To this end, given an arbitrary order ĺ of
variables V, we can expand this order over MarkersV such that x$ĺ%y, and x ĺ y implies x$ĺ y$ and %x ĺ%y.
Namely, two different variable markers follow the original order but all opening markers precede closing markers.
From this, in every extended transition set S we can find a first and last marker in the set, following the mentioned
order. Also, we can find for each marker, a successor marker in S, as the one that goes after, following the induced
order.

Consider now the VA A “ pQ1 Y Qext, q0, F, δq where Qext “ t q
v
pp,S,p1q | pp, S, p

1q P δ1 and v P Su, δ “ tpp, a, qq P

δ1 | a P Σu Y δfirst Y δsucc Y δlast Y δone and:

δfirst “ tpp, v, q
v
pp,S,p1qq | v is the ĺ-minimum element in S u

δsuc “ tpq
v
pp,S,p1q, v

1, qv
1

pp,S,p1qq | v, v
1 P S and v1 is the ĺ-successor of v in Su

δlast “ tpq
v
pp,S,p1q, v

1, p1q | v, v1 P S, v1 is the ĺ-successor of v in S, and v1 is the ĺ-maximum of Su

δone “ tpp, v, p
1q | pp, tv1u, p1q P δ1u

The previous construction maintains the shape of A1 but adds the needed intermediate states to form a whole
extended marker transition. For every extended transition pp, S, p1q, |S| ´ 1 states are added, labeled with the
incoming marker that will arrive to that state. δfirst defines how to get to the first state of the path, using the
first marker of S, δsucc defines how to get to the next marker in S and δlast how to get back to the A1 state p1,
having finished the extended transition. δone defines the case when |S| “ 1 and no intermediate states are needed
and just use the only marker to do the transition. Note that a different set of intermediate states are added for
each extended transition pp, S, p1q, so states do not get reused or transitions do not get mixed. As each transition
pp, S, p1q of A1 has a corresponding variable-path in A, it is obvious that a run in either A or A1 has a corresponding
run in the opposite automaton with the same properties, thanks to the order preservation established in the created
variable-paths. Finally, it is straightforward to show that JAKd “ JA1Kd for every document d.

Let us show that for both constructions, if the input automaton is sequential or functional, then the output
automaton preserves this property. In the first case, if A is sequential, it is easy to see that all accepting runs of A1
must be valid, since all extended marker transitions are performed in the same order as in the original automaton A,
and therefore, are also valid. If A uses all the variables for all accepting runs, this must also hold for A1, preserving
functionality.

Proof of Proposition 3.2
This result follows from the classical NFA determinization construction. In this case, let A “ pQ, q0, F, δq be an eVA,
then the following is an equivalent deterministic eVA for A: A1 “ p2Q, tq0u, F

1, δ1q, where F 1 “ tB P 2Q | BXF ‰ Hu
and δ1pB, oq “ tq P Q | Dp P B. pp, o, qq P δu. One can easily check that δ1 is a function and therefore A1 is
deterministic. The fact that JAKd ” JA1Kd for every document d follows, as well, from NFA determinization: namely,
a valid and accepting run in A can be translated using the same transitions onto a valid and accepting run in A1

where the set-states hold the states from the original run. On the other hand, a valid and accepting run in A1 can
only exists if there exists a sequence of states using the same transitions in the original automaton A.

Finally, since the construction works with sets of n state, then in the worst case it may use 2n states. As for
transitions, if each state has all m transitions defined, then the determinization, at most, has 2n ¨m transitions.

Proof of Lemma 3.3
The proof is done by induction on i. For the sake of simplification, we denote every object in the i-th iteration, that
is, while running Readingpiq, or Capturingpiq, with a superscript i. For example, the value of the listq in the i-th

iteration is denoted by listiq.
For the base case assume that i “ 0. At the beginning we have that listq0 “ K. If it holds that δpq0, Sq “ p0 for

some S ‰ H, then while running Capturingp1q, the algorithm will create a new node n with n.content “ pS, 1q
and a n.list “ list1q0 “ K, and add it at the beginning of the list list1p0 . Note that list1p0 can also contain other

elements coming from other transitions of the form δpq0, S
1q “ p0 with S1 ‰ S. Running then EnumAll(list1p0 , ε),

will eventually reach the node n in list1p0 , resulting in the output M “ pS, 1q. Since n.list “ K, then the output will

be pS, 1q which is the output of the corresponding run ρ “ q0
S
ÝÑ p0 and clearly Outpρq “ M . The other direction

is analogous.
For the inductive step, assume that the claim holds for some 0 ď i ă n. To show that the claim holds for i ` 1

assume first that there is a run:

ρi`1 “ q0
S1ÝÑ p0

a1ÝÑ . . . aiÝÑ qi
Si`1
ÝÑ pi

ai`1
ÝÑ qi`1

Si`2
ÝÑ pi`1 (3)

that defines an output Outpρi`1q. By the induction hypothesis, we know that after running Capturingpi` 1q we

have that listi`1
pi ‰ ε, and that running EnumAll(listi`1

pi , ε) results in an output Mi with Mi “ Outpρiq, where

ρi “ q0
S1ÝÑ p0

a1ÝÑ q1
S2ÝÑ p1

a2ÝÑ . . . aiÝÑ qi
Si`1
ÝÑ pi. The algorithm now proceeds by executing the procedures

Readingpi` 1q and Capturingpi` 2q one after the other.

Consider what happens when the procedure Readingpi ` 1q is executed. First, we know that the list listi`1
pi

gets copied to listoldpi and listi`1
pi is reset to the empty list ε. Then, since listoldpi ‰ ε, and since qi`1 “ δppi, ai`1q,

the procedure Readingpi ` 1q will append the entire list listi`1
pi somewhere in the list listi`1

qi`1
. Therefore, we know

that after executing Readingpi ` 1q, the entire list listi`1
pi will appear in the list listi`1

qi`1
before the procedure

Capturingpi` 2q is executed.

In Capturingpi` 2q we will first guard a copy of listi`1
qi`1

in listoldqi`1
. What follows depends on whether Si`2 “ H

or not. In the case that Si`2 “ H, we know that pi`1 “ qi`1 and that the nodes in listoldqi`1
remain on the list

listi`2
pi`1

“ listi`1
qi`1

. The latter follows since any other transition such that δpq, Sq “ pi`1 will simply add a new

node at the beginning of listi`2
pi`1

. Because of this we also have listi`2
pi`1

‰ ε. Therefore, after Capturingpi ` 2q has

executed, running EnumAll(listi`2
pi`1

, ε) will have Mi with Mi “ Outpρiq as one of its outputs, since it will traverse

the part of the list listi`1
qi`1

which was already present after Capturingpi ` 1q. Since Outpρi`1q “ Outpρiq, the
result follows.

On the other hand, if Si`2 ‰ H, since δpqi`1, Si`2q “ pi`1, and listoldqi`1
‰ ε, the procedure Capturingpi ` 2q

will create a new node n to be added to the list listi`2
pi`1

. The node n will have the values n.content “ pSi`2, i` 2q

and n.list “ listoldqi`1
“ listi`1

qi`1
. In particular, after Capturingpi ` 2q, we have that listi`2

pi`1
‰ ε and that running

EnumAll(listi`2
pi`1

, ε) will eventually do a call to the procedure EnumAll(n.list, pSi`2, i ` 2q ¨ ε). Therefore one

of the outputs of the original call EnumAll(listi`2
pi`1

, ε) will simply append the pair pSi`2, i` 2q to Mi resulting in

Mi`1 “Mi ¨ pSi`2, i` 2q as output. From (3) it is clear that Mi`1 “ Outpρi`1q.
For the other direction, assume now that we have executed the procedure Capturingpi` 2q in Algorithm 1 and

that listi`2
pi`1

‰ ε. Furthermore, assume that n ‰ K is a node in listi`2
pi`1

and pS, jq “ n.content. The first observation

we make is that for any node n1 ‰ K that is inside the list n.list with pS1, j1q “ n1.content, it holds that j1 ă j.
This is evident from the algorithm since the only way that the node n1 can enter the list n.list is when the node
n is being created in Capturingpjq. However, in this case, the node n1 must have already been defined in some

previous iteration of the algorithm (as n.list guards the “old” pointers listoldp for some p), and since new nodes are
being created only in the procedure Capturing, this means that n1 was created in Capturingpj1q. Because of this
we have that j1 ă j. Moreover, given that each iterative call of EnumAll uses elements from the list n.list we
have that for any output M “ pS1, i1q . . . pSk, ikq of EnumAll(listi`1

pi`1
, ε), it holds that ik ą ik´1 ą ¨ ¨ ¨ ą i1.

Let Mi`1 “ pS1, i1q . . . pSk´1, ik´1qpSk, ikq, where k ě 0, be one output of EnumAll(listi`2
pi`1

, ε). There are
two possible cases: either ik “ i ` 2, or ik ‰ i ` 2. Consider first the case when ik ‰ i ` 2. In this case, the

procedure EnumAll(listi`2
pi`1

, ε) will not access a node created in Capturingpi ` 2q when generating the output

Mi`1. Therefore, it will have to start with some node n that got in the list listi`2
pi`1

during Readingpi ` 1q.

This can only happen if δppi, ai`1q “ qi`1 “ pi`1, for some state pi such that listoldpi ‰ ε at the beginning of

Readingpi ` 1q, and n belongs to listi`1
pi , since the only thing Readingpi ` 1q does is to copy and merge the lists

listi`1
pi , for different states p. However, this means that listi`1

pi ‰ ε after executing Capturingpi ` 1q. This means

that Mi`1 is one of the outputs of EnumAll(listi`1
pi , ε) after executing Capturingpi ` 1q. Using the induction

hypothesis, there is a run ρi “ q0
S1ÝÑ p0

a1ÝÑ q1 . . . aiÝÑ qi
Si`1
ÝÑ pi such that Outpρiq “ Mi`1. Consider now the

run ρi`1 “ q0
S1ÝÑ p0

a1ÝÑ q1 . . . aiÝÑ qi
Si`1
ÝÑ pi

ai`1
ÝÑ qi`1

H
ÝÑpi`1. Since clearly Outpρi`1q “ Outpρiq, we get that

the claim holds true for i` 1 when ik ‰ i` 2.
Consider now the case when ik “ i ` 2. To produce Mi`1 as output, the procedure EnumAll(listi`2

pi`1
, ε) had to

do a recursive call to EnumAll(n.list, pSk, i ` 2q ¨ ε), for some node n on listi`2
pi`1

. Since ik “ i ` 2 we know that

node n was created in Capturingpi` 2q. Therefore, there must exist a state qi`1 such that δpqi`1, Skq “ pi`1 and

listoldqi`1
‰ ε at the beginning of Capturingpi` 2q. As n.list “ listoldqi`1

, we know that running EnumAll(listoldqi`1
, ε)

must have Mi “ pS1, i1q . . . pSk´1, ik´1q as one of its outputs. However, since all the nodes in listoldqi`1
must already be

in listi`1
qi`1

after running Readingpi`1q, they must enter this list in Readingpi`1q because there is some transition

δppi, ai`1q “ qi`1, for some state pi P Q. In particular, the recursive call of EnumAll(n.list, ε) that produced Mi

as its output used a node on listi`1
qi`1

that was already present in listi`1
pi , for state pi such that δppi, ai`1q “ qi`1. By

the induction hypothesis, there is a run ρi “ q0
S1ÝÑ p0

a1ÝÑ q1 . . . aiÝÑ qi
Si`1
ÝÑ pi such that Outpρiq “ Mi. Because

of this, the run ρi`1 “ q0
S1ÝÑ p0

a1ÝÑ q1 . . . aiÝÑ qi
Si`1
ÝÑ pi

ai`1
ÝÑ qi`1

SkÝÑ pi`1 clearly has Outpρi`1q “ Mi`1. This
concludes the proof.

B. PROOFS FROM SECTION 4

Proof of Proposition 4.1
Let A “ pQ, q0, F, δq be a VA with |Q| “ n, |δ| “ m and ` variables. We show how to construct a deterministic seVA
A1 “ pQ1, q10, F 1, δ1q that is equivalent to A and has 2n ˆ 3` states, 2n3`p2` ` |Σ|q transitions and ` variables. Let
us first describe the set Q1 of states of A. Intuitively, every state will correspond to a tuple ptq1, . . . , qku, Sq, where
q1, . . . , qk P Q are the states reached by A by reading the set of variable markers S. Since there are n states, the
first component (the set of reached states) can be chosen of 2n different sets. Now for each state in the chosen
set, we have a set of variable markers. Note that we need to exclude the sets of variable markers that contain a
variable that is closed but not opened. Therefore, if we have ` variables the number of such sets of variable markers

is
ř`
i“1

`

n
i

˘

2i, where i represents the number of opened variables,
`

n
i

˘

the different ways of choosing those i variables,

and 2i possible ways of closing those variables. From this we obtain

ÿ̀

i“0

ˆ

n

i

˙

2i “
ÿ̀

i“0

ˆ

n

i

˙

2i1n´i “ p1` 2q` “ 3`

Therefore, it is clear that we have 2n3` states. The only initial state is q10 “ ptq0u,Hq.
Let us now define the set of transitions δ1. Given a character c P Σ, the transition δppP, Sq, cq is simply defined

as pδpP, cq, Sq, where δpP, cq “ tq P Q | Dq1 P P s.t. pq1, c, qq P δu. Let us now describe the variable transitions.
Intuitively, δ1ppP, Sq, S1q will contain the set of states that can be reached from a state of P by following a path in A
of variable transitions in which each variable marker in S1 is mentioned exactly once. Formally, we define a variable
path in A as a sequence of transitions p “ pqi1 ,m1, qi2qpqi2 ,m2, qi3q . . . pqih´1

,mh´1, qihq in δ˚, where each mj is a
variable marker and for all j ‰ k P t0, . . . ,mu we have mj ‰ mk. If S “ tm1, . . . ,mhu we say that p is an S-path
from qi1 to qih . Then, for every P Ă Q and every pair pS, S1q of variable markers such that S and S1 are compatible
(in the sense that every closed variable in S1 Y S is also opened), δ1ppP, Sq, S1q is defined as pP 1, S2q where:

1. S2 “ S Y S1 and

2. for every q1 P P 1 there exists q P P such that there is an S1-path between q and q1.

If S and S1 are not compatible, δ1pptq0, . . . , qku, Sq, S
1q is undefined (note that this makes the automaton sequential).

Let us analyze the number of transitions in δ1. To do a fine-grained analysis of the variable transitions, for each
i P t0, . . . , `u we consider the number of states pP, Sq where S has exactly i open variables (i.e. 2n

`

`
i

˘

2i), multiplied

by the number of variable transitions that can originate in such a state. This number is again analyzed for the
`

`´i
j

˘

sets of size j of opened variables (out of the `´ i remaining variables), and for each of these sets which variables are
closed (2j possibilities). The variable transitions are

ÿ̀

i“0

«

2n
ˆ

`

i

˙

2i
`´i
ÿ

j“0

ˆ

`´ i

j

˙

2j

ff

“ 2n
ÿ̀

i“0

ˆ

`

i

˙

2i3`´i “ 2np2` 3q` “ 2n5`

This is the number of variable transitions in A1. To this number, we must add the number of character transitions,
which is at most one transition per state per character, i.e. 2n3`|Σ|. Then, the total number of transitions is
2n5` ` 2n3`|Σ| as expected. Finally, we define the set F 1 of final states as those states pP, Sq in which P X F ‰ H
and all variables opened in S are also closed.

It is trivial to see that A1 is sequential. Since the only way to reach a state pP, Sq using a variable transition is
from a previous state pP 1, S1q and a set of markers S2 such that S1 Y S2 “ S, it is clear that if a run ρ ends in state
pP, Sq then S is the union of all variable markers seen in ρ. Sequentiality then follows since we require at all times
that every variable is opened and closed at most once, variables are opened before they are closed, and in final states
all opened variables are closed. The fact that A1 is deterministic can be immediately seen from the construction;
for every state there is at most one transition for each character, and at most one transition for each set of variable
markers. Since A1 is an extended VA and must alternate between variable and character transitions, this implies
that two different runs cannot generate the same mapping.

We now show that A is equivalent to A1. Let d be a document and assume the mapping µ is produced by a

valid accepting run ρ “ pq0, i0q
o1ÝÑ pq1, i1q

o2ÝÑ ¨ ¨ ¨ omÝÑ pqm, imq of A over d. Define a function f with domain
i P t1, . . . ,mu as follows:

fpiq “

#

k if @j P t1, . . . , ku oi is a variable marker, and either k “ m or ok`1 is not a variable marker.
poi,Hq if oi P Σ and oi`1 P Σ
oi otherwise.

With this definition, we construct a run for A1 generating µ starting with ρ1 as the run that only contains q10 and
i “ 1 as follows:

1. If fpiq “ k, define the set of variable markers S as
Ťk
j“i oj , update ρ1 to ρ1 SÝÑδ1ppP 1, S1q, Sq, where pP 1, S1q was

the last state of ρ1 before this update. Finally, update i to k ` 1.

2. If fpiq “ poi,Hq, update ρ1 to ρ1 oiÝÑδ1pP 1, S1q
H
ÝÑδ1ppP 1, S1q,Hq, where pP 1, S1q was the previous final state of ρ1.

Finally update i to i` 1.

3. If fpiq “ oi, update ρ1 to ρ1 oiÝÑδ1ppP 1, S1q, oiq, where pP 1, S1q was the previous final state of ρ1. Finally update i
to i` 1.

We need to show that this is actually a valid and accepting run of A1 over d. To show that it is a run over A1 is

simple: since ρ is a run over A, the construction of f implies that for every step of the form pP 1, S1q SÝÑpP, S Y S1q
in ρ1 there is an S-path from a state in P to a state in P 1 (assuming S ‰ H). The H and character transitions
immediately yield valid transitions for ρ1. The fact that ρ1 follows from the construction, as we can see that it will
open and close variables in the same order and in the same positions as ρ, which was already valid. This also shows
that ρ1 generates µ. The fact that ρ1 is valid follows because qm P F is final and belongs to the last state of ρ1.

The opposite direction is similar: considering a mapping µ generated by a valid accepting run ρ1 of A1 over d, we
need to show a valid accepting run ρ of A over d generating µ. We omit this direction as ρ can be generated by
doing essentially the same process as before but in reverse: We know that ρ1 ends in a state that mentions a final

state qf P F . Then, for each step pP, Sq o
ÝÑpP 1, S1q of ρ and the selected state in P 1 (at the beginning, qf), there is

a transition or an pS1zSq-path going from a state q P P to q1. This way we can construct ρ1 backwards; proving it is
valid, accepting and it generates µ follows again by the construction.

Proof of Proposition 4.2
Unfortunately, a sequential VA has an exponential blow-up in terms of the number of transitions the resulting eVA
may have. For every ` consider the VA A, with 3` ` 2 states and 4` ` 1 transitions depicted in Figure 8 with 2`
variables: x1, . . . , x`, y1, . . . , y`. A only produces valid runs for the document d “ a, the resulting mapping is always
valid but never total, as it properly opens and closes variables, but never all of them. At each intermediate state,
the run has the option to choose opening and closing either xi or yi, for every 1 ď i ď `, generating 2` different
runs. Therefore, if we only consider the equivalent eVA that extends transitions from q0 to q and no other pair in
between, we obtain the extended VA A1 in Figure 9. This is the smallest eVA equivalent to A, since each of the
mentioned transitions group the greatest amount of variables in a different run. Specifically, each of this transitions
has a corresponding and different ε mapping, the one where the contained variables is defined. Therefore, it has 2`

transitions, as well as any other equivalent eVA.

q0 . . . q

x1$

y1$

%x1

%y1

x2$

y2$

%x2

%y2

x`$

y`$

%x`

%y`

a

Figure 8: A sequential VA with 2` variables such that every equivalent eVA has Op2`q transitions.

q0 q

. . .

tx1$,%x1, x2$, . . . , x`$,%x`u

ty1$,%y1, x2$, . . . , x`$,%x`u

ty1$,%y1, y2$, . . . , x`$,%x`u

ty1$,%y1, y2$, . . . , y`$,%y`u

a

Figure 9: The smallest eVA A1 equivalent to A with 2` transitions.

Proof of Proposition 4.3
We showed in the proof of Theorem 3.1 that given a VA A we can construct an equivalent eVA Aext, and the
functional property also holds for Aext. We show here that if A has n states and m transitions, then Aext has at
most n states and m` n2 transitions.

The bound n over the number of states in Aext directly follows from the construction in Theorem 3.1. The bound
m`n2 over the number of transitions in Aext follows from the fact that A is functional, given that in a functional VA
the number of extended marker transitions that can be established between two states is at most one. Specifically,
we prove the following lemma3 (for a formal definition of variable path see the Proof of Theorem 3.1).

Lemma B.1. If A is functional, then for every two states q and q1 in A that can produce valid runs, it holds that
Markerspπq “ Markerspπ1q for every pair of variable paths π and π1 between q and q1.

Proof. If not, then there are two states q and q1 in A such that the are at least two variable paths π and π1

between q and q1, with different sets of markers appearing in them. Since q and q1 can produce a valid run, then
they are both reachable from q0 and can reach a final state. Specifically, let πi be the path from q0 to q, and πf
be the path from q1 to a final state. Then the concatenated paths πiππf and πiπ

1πf are both accepting. Both also
must be valid, because A is functional. But, the set of markers in π and π1 are different, yet, the rest of the paths
are the same and they open and close all variables in A. This is a contradiction: either πiππf or πiπ

1πf cannot
open and close all variables. Therefore, all paths between q and q1 must contain the same set of markers appearing
in them.

Thanks to the previous lemma, we can bound the number of possible extended marker transitions between every
pair of states to just one: the set of markers appearing in paths connecting these two states. Therefore, using our
construction for Aext, at most one extended marker transition may be added between two states. Then, additionally
to the m transitions in A, at most n2 extended marker transitions can be added (for every pair of states in A). We
conclude that Aext has at most m` n2 transitions.

Finally, as showed in Proposition 3.2, deterministic seVA A1 can be constructed such that Aext ” A1, where, A1
has at most 2n states. Since A1 is deterministic, every state can have, at most, the number of extended transitions
added or all the possible symbols in Σ. Therefore, the number of transitions for A1 is at most 2npn2 ` |Σ|q.

Proof of Proposition 4.4
Join of functional extended VA

Let A1 “ pQ1, q
1
0 , F1, δ1q and A2 “ pQ2, q

2
0 , F2, δ2q be two feVA. Let V1 “ varpA1q, V2 “ varpA2q and V’ “ V1 X V2.

The intuition behind the following construction is similar to the standard construction for intersection of NFAs:

3A similar lemma appears in [13].

we run both automaton in parallel, limiting the possibility to use simultaneously markers on both automata only
on shared variables, and let free use of markers that are exclusive to V1 or V2. Formally, we define A’ “ pQ1 ˆ

Q2, pq
1
0 , q

2
0q, F1 ˆ F2, δq where δ is defined as follows:

‚
`

pp1, p2q, a, pq1, q2qq
˘

P δ if a P Σ, pp1, a, q1q P δ1 and pp2, a, q2q P δ2.

‚
`

pp1, p2q, S1, pq1, p2qq
˘

P δ if p2 P Q2, pp1, S1, q1q P δ1, and S1 XMarkersV’
“ H.

‚
`

pp1, p2q, S2, pp1, q2qq
˘

P δ if p1 P Q1, pp2, S2, q2q P δ2 and S2 XMarkersV’
“ H.

‚
`

pp1, p2q, S1 Y S2, pq1, q2qq
˘

P δ if pp1, S1, q1q P δ1, pp2, S2, q2q P δ2, and S1 XMarkersV’
“ S2 XMarkersV’

.

To show that JA’Kd Ď JA1Kd ’ JA2Kd, let µ be a mapping in JA’Kd for the document d, and ρµ the corresponding
valid and accepting run of A’ over d. By construction, from ρµ we can get a sequence of states in A1 and A2 that
define runs ρ1 and ρ2 in their respective automaton. This preserves both order and positions of markers. Since A1

and A2 are functional and ρµ is accepting, then ρ1 and ρ2 are accepting and valid runs of A1 and A2, respectively.
This implies that µρ1 P JA1Kd and µρ2 P JA2Kd. Finally, since all common marker transitions are performed by both
automata at the same union transitions, then µρ1 „ µρ2 and therefore µ “ µρ1 Y µρ2 P JA1Kd ’ JA2Kd.

To show that JA1Kd ’ JA2Kd Ď JA’Kd, let µ1 P JA1Kd, µ2 P JA2Kd such that µ1 „ µ2 and ρµ1 and ρµ2 be
their corresponding runs. Since they are compatible mappings, then both runs use each marker in MarkerspV’q in
the same positions of d. Therefore, by merging the marker transitions made in each run, the corresponding union
transitions must exists in A’ and used to construct a run ρ in A’. Finally, since ρ1 and ρ2 are accepting, valid,
and total, then ρ is also accepting, valid and total for varpA1q Y varpA2q, that is, µρ P JA’Kd. It is easy to see that
µρ “ µ1 Y µ2, and therefore µ1 Y µ2 P JA’Kd.

To show that A’ is also functional, let ρ be an accepting run in A’ for d. Thanks to the construction, and as
shown before, corresponding runs in A1 and A2 can be produced from ρ that are also accepting, and therefore valid
and total since they are functional. Since all common markers are used in the same positions and precisely once in
the corresponding runs, this is also true for ρ. Also, all variables are used in runs of A1 and A2, therefore ρ is valid
and total for varpA1q Y varpA2q. Regarding the size of A’, one can verify that A’ has |Q1| ˆ |Q2| states and at
most Op|δ1| ˆ |δ2|q transitions. Therefore, A’ is quadratic in size.

Projection of functional extended VA

To prove this, for the sake of simplification we use the notion of ε-transitions in eVA, as the usual notion for regular
NFA, namely, transition of the form pq, ε, pq. As it is standard in automata theory, if a run uses an ε-transition, this
produces no effect on the document read or variables that are opened or closed, and only the current state of the
automaton changes from q to p. Furthermore, in the semantics of ε-transitions we assume that no two consecutive
ε-transitions can be used. Clearly, ε-transitions do not add expressivity to the model and only help to simplify the
construction of the projection.

Let A “ pQ, q0, F, δq be a feVA and Y Ă V. Let U “ MarkersV zMarkersY be markers for unprojected variables,
then Aπ “ pQ, q0, F, δ

1q where pq, a, pq P δ1 whenever pq, a, pq P δ for every a P Σ, pq, SzU, pq P δ1 whenever pq, S, pq P δ
and SzU ‰ H, and pq, ε, pq P δ1 whenever pq, S, pq P δ and SzU “ H.

The equivalence between A and Aπ is straightforward. For every µ P JAKd, there exists an accepting and valid
run ρ in A over d. For ρ there exists a run ρ1 in Aπ formed by the same sequence of states, but extended marker
or ε-transitions are used that only contain markers from Y . Moreover, ρ1 must also be valid since it maintains the
order of Y -variables used in ρ. This shows that πY JAKd Ď JAπKd. The other direction, JAπKd Ď πY JAKd, follows
from the fact that A1 has no additional accepting paths in comparison to A. It is also easy to see that Aπ must be
functional.

Finally, it is important to note that, as for classical NFAs, from A1 an equivalent ε-transition free eVA can
constructed using ε-closure over states.

Union of functional extended VA

This construction is the standard disjoint union of automaton, with ε-transitions to each corresponding initial state.
Let A1 “ pQ1, q

1
0 , F1, δ1q and A2 “ pQ2, q

2
0 , F2, δ2q be two feVA such Q1 XQ2 “ H. Then, AY “ pQ1 YQ2, q0, F1 Y

F2, δ1Yδ2Ytpq0, ε, q
1
0q, pq0, ε, q

2
0quq where q0 is a fresh new state. This simply adds a new initial state connected with

ε-transitions to the initial states of A1 and A2, respectively. Therefore every run in AY must produce a run from
A1 YA2 and vice versa. An equivalent ε-transition free automaton can be constructed as in the projection case.

Proof of Proposition 4.5
Let γ be a regular spanner in VAtπ,Y,’u that uses k functional VA as input, each of them with at most n states.
By Proposition 4.4, we know that we can construct the product between two automata with n and m states, and
the resulting automaton will have at most nm states and nm transitions. Moreover, projections and unions remain
linear in the size of the input automata. Therefore, if we apply the transformations of Proposition 4.4 in a bottom-up

fashion to γ, each algebraic operation will multiply the number of states and transitions of the resulting automaton
by n. It is trivial to prove then by induction that the final automaton will have at most nk states and nk transitions.

This automaton needs to be determinized at the end. By Proposition 4.3, the result will have 2n
k

states and n2k`|Σ|
transitions, concluding the proof.

Proof of Proposition 4.6
Contrary to the previous proposition, the idea here is to first determinize each automaton and then apply the join
and union construction of functional eVA. Given that each automaton will have size Op2nq after determinization,
then the product (e.g. join) of two automata of size Op2nq will have size Op22nq. Therefore, the number of states of
the whole construction will be Op2knq where k is the number of functional eVAs in the expression.

The only subtle point here is that each operation (i.e. join or union) must preserve the functional and deterministic
property of the input automata in order to avoid a determinization after the join and union operations are computed.
Indeed, one can easily check in the Proof of Proposition 4.4 that this is the case for the join of two deterministic
feVA. Unfortunately, the linear construction of the union of two feVA does not preserve the deterministic property of
the input automaton. For this reason, we need an alternative construction of the union that preserves determinism.
This is shown in the next lemma concluding the proof of the proposition.

Lemma B.2. Let A1 and A2 be two deterministic feVA. Then there exists a deterministic feVA AY such that
AY ” A1 YA2. Moreover, AY is of size |A1| ˆ |A2|, i.e. quadratic with respect to A1 and A2.

Proof. Let A1 “ pQ1, q
1
0 , F1, δ1q and A2 “ pQ2, q

2
0 , F2, δ2q be two feVA such Q1 X Q2 “ H. The intuition

behind the construction is to start running both automata in parallel, but add the possibility to branch off and
continue the run in just one automaton, only when both cannot simultaneously execute a transition. Formally, let
AY “ pQ, pq1

0 , q
2
0q, F, δq such that Q “ Q1 ˆQ2 YQ1 YQ2, F “ F1 ˆQ2 YQ1 ˆ F2 Y F1 Y F2, and δ satisfies that:

‚ δ1 Ď δ and δ2 Ď δ,

‚
`

pp1, p2q, o, pq1, q2q
˘

P δ whenever pp1, o, q1q P δ1, and pp2, o, q2q P δ2,

‚
`

pp1, p2q, o, q1

˘

P δ whenever pp1, o, q1q P δ1, and pp2, o, q2q R δ2 for every q2 P Q2, and

‚
`

pp1, p2q, o, q2

˘

P δ whenever pp2, o, q2q P δ2, and pp1, o, q1q R δ1 for every q1 P Q1.

To show JAYKd Ď JA1Kd Y JA2Kd, let µ P JAYKd be an arbitrary mapping and ρ be the corresponding run in AY.
Since ρ is accepting, the last state in the run can either be from Q1 ˆ Q2, Q1 or Q2. It is easy to see that either
case, a run for µ exists in the original automaton. More specifically, if it is from Q1 ˆQ2, then both automata have
complete runs defined for µ, if it is from Q1 or Q2, then A1 or A2, respectively, has a defined run for µ. Then, we
conclude that µ P JA1Kd Y JA2Kd.

To show JA1Kd Y JA2Kd Ď JAYKd, consider µ in either JA1Kd or JA2Kd. Without loss of generality, assume that
µ P JA1Kd. Then, a run ρ1 in A1 exists that produces µ. If we can also define a run ρ2 of A2 over d that outputs µ,
then the run ρ in AY can be constructed by coupling up states from ρ1 and ρ2. Since both use the same transitions,
then the last state in ρ must be in F1 ˆQ2 and is accepting. Otherwise, ρ2 cannot be defined, then some transition
in ρ1 is not defined in A2. This means that ρ in AY can be constructed by following first the transitions defined
in both A1 and A2, but, at the first undefined transition for A2, ρ can branch off and continue on states from Q1.
That transition exists since it does not exist for A2, but it does for A1. After that, ρ continues as ρ1, making ρ also
accepting. In both cases, we conclude that µ P JAYKd.

One can easily check that if A1 and A2 are functional, then AY is also functional, since every accepting run ρ
in AY has a corresponding accepting run either in A1, A2, or both. These runs are valid and total and, thus, ρ
must also be valid. From the construction, one can also check that if A1 and A2 are deterministic, then AY is also
deterministic. Finally, the size of AY is quadratic since it uses Op|Q1| ˆ |Q2|q states and at most Op|δ1| ˆ |δ2|q
transitions. This was to be shown.

C. PROOFS FROM SECTION 5

Proof of Theorem 5.1
The Count function in Algorithm 3 calculates |JAKd| given a deterministic seVA A “ pQ, q0, F, δq and a document
d “ a1 . . . an. This algorithm is a natural extension of Algorithm 1 in Section 3. Instead of keeping the set of list
tlistquqPQ where each list listq succinctly encodes all mappings of runs which end in state q, we keep an array N
where N rqs stores the number of runs that end in state q. Since A is sequential (i.e. every partial run encodes a
valid partial mapping) and deterministic (i.e. each partial run encodes a different partial mapping), we know that
the number of runs ending in state q is equal to the number of valid partial mappings in state q. Therefore, if N rqs
stores the number of runs at state q, then the sum of all values N rqs for every state q P F is equal to the number of
mappings that are output at the final states.

Algorithm 3 Count the number of mappings in JAKd over the document d “ a1 . . . an

1: function Count(A, a1 . . . an)
2: for all q P Qztq0u do
3: N rqs Ð 0

4: N rq0s Ð 1
5: for i :“ 1 to n do
6: Capturingpiq
7: Readingpiq

8: Capturingpn` 1q
9: return

ř

qPF N rqs

10: procedure Capturing(i)
11: N 1 Ð N
12: for all q P Q with N 1rqs ą 0 do
13: for all S P Markersδpqq do
14: pÐ δpq, Sq
15: N rps Ð N rps `N 1rqs

16: procedure Reading(i)
17: N 1 Ð N
18: N Ð 0
19: for all q P Q with N 1rqs ą 0 do
20: pÐ δpq, aiq
21: N rps Ð N rps `N 1rqs

As we said, Algorithm 3 is very similar to the constant delay algorithm. At the beginning (i.e. lines 2-4), the
array N is initialize with N rqs “ 0 for every q ‰ q0 and N rq0s “ 1, namely, the only partial run before reading
or capturing any variable is the run q0. Next, the algorithm iterates over all letters in the document, alternating
between Capturing and Reading procedures (lines 5-8). The purpose of the Capturingpiq procedure is to extend
runs by using extended variable transitions between letters ai´1 and ai. This procedure first makes a copy of N into
N 1 (i.e. N 1 will store the number of runs in each state before capturing) and then adds to N rps the number of runs
that reach q before capturing (i.e. N 1rqs) whenever there exists a transition pp, S, qq P δ for some S P Markersδpqq.
On the other side, the procedure Readingpiq is coded to extend runs by using a letter transition when reading ai.
Similar to Capturing, Reading starts by making a copy of N into N 1 (line 17) and N to 0 (line 18). Intuitively, N 1

will store the number of valid runs before reading ai and N will store the number of valid runs after reading ai. Then,
Reading procedure iterates over all states q that are reached by at least one partial run and adds N 1rqs to N rps
whenever there exists a letter transition pq, ai, pq P δ. Clearly, if there exists pq, ai, pq P δ, then all runs that reach q
after reading a1 . . . ai´1 can be extended to reach p after reading a1 . . . ai. After reading the whole document and
alternating between Capturingpiq and Readingpiq, we extend runs by doing the last extended variable transition
after reading the whole word, by calling Capturingpn ` 1q in line 8. Finally, the output is the sum of all values
N rqs for every state q P F , as explained before.

The correctness of Algorithm 3 follows by a straightforward induction over i. Indeed, the inductive hypothesis
states that after the i-iteration, N rqs has the number of partial runs of A over a1 . . . ai. Then, by following the
same arguments as in Lemma 3.3, one can show that N rqs store the number of partial runs of A after capturing and
reading the pi` 1q-th letter.

Proof of Theorem 5.2
Let us first define the class SpanL. Formally, let M be a non-deterministic Turing machine with output tape, where
each accepting run of M over an input produces an output. Given an input x, we define spanM pxq as the number of
different outputs when running M on x. Then, SpanL is the counting class of all functions f for which there exists
a non-deterministic logarithmic-space Turing machine with output such that fpxq “ spanM pxq for every input x.
We say that a function f is SpanL-complete if f P SpanL and every function in SpanL can be reduced into f by
log-space parsimonious reductions [2].

For the inclusion of CountrfVAs in Spanl, let M be a non-deterministic TM that receives A and d as input. The
work of M is more or less straightforward: it must simulate a run of A over d to generate a mapping µ P JAKd,
and it does so by alternating between extended variable transitions and letter transitions reading d and writing the
corresponding run on the output tape. At all times, M keeps a pointer (i.e. with log space) for the current state and
a pointer to the current letter. Furthermore, it starts and ends with a variable transition as defined in Section 3.

Whenever a variable transition is up, the machine must choose non-deterministically from all its outgoing variable
transitions from the current state. Recall that M can also choose to not take any variable transition, in which case
it stays in the same state without writing on the output tape. Instead, if pq, S, pq is chosen then M writes the set
of variables in S on the output tape and updates the current state. It does so maintaining a fixed order between
variables (either lexicographic or the order presented in the input). On the other hand, when a letter transition is
up, if a transition with the corresponding letter from d exists (defined by the current letter), then the current letter
is printed in the output tape and, the current state and letter are updated, changing to a capturing phase. If no
transition exists from the current state, then M stops and rejects. Once the last letter is read (the pointer to the
current letter is equal to |d|), then the last variable transition is chosen. Finally, if the final state is accepting, then M
accepts and outputs what is on the output tape. The correctness of M (i.e. |JAKd| “ spanM pA, dq) follows directly
from the functional properties of A. More precisely, we know that each accepting run is valid, and will therefore
produce an output. Finally, in case that A has two runs on x that produce the same output, by the definition of
Spanl this output will be counted only once, as required to compute |JAKd| correctly.

For the lower-bound, we show that the Census problem [2], which is SpanL-hard, can be reduced into CountrfVAs
via a parsimonious reduction in logarithmic-space. Formally, given a NFA B and length n, the Census problem asks
to count the number of words of length n that are accepted by B. We reduce an input of the Census problem pB, nq
into CountrfVAs by computing a functional VA AB,n and a document dB,n such that the number of words of length
n that B accepts, is equivalent to count how many mappings does AB,n generate over dB,n. Let B “ pQ,Σ,∆, q0, F q
be an NFA with Σ “ ta, bu. Define dB,n “ p#ccq

n and AB,n “ pQ
1, q10, F

1, δ1q over the alphabet tc,#u such that
Q1 “ Q ˆ t0, . . . , nu, q10 “ pq0, 0q, F

1 “ F ˆ tnu. Furthermore, for the sake of simplification we define δ1 by using
extended transitions as follows:

pq, a, pq P ∆ then
´

pq, i´ 1q, # ¨ xi$ ¨ c ¨ %xi ¨ c, pp, iq
¯

P δ1 for all i P t1, . . . , nu

pq, b, pq P ∆ then
´

pq, i´ 1q, # ¨ c ¨ xi$ ¨ c ¨ %xi, pp, iq
¯

P δ1 for all i P t1, . . . , nu

In the previous definition, a transition of the form ppq, i´ 1q, w, pp, iqq means that the VA will go from state pq, i´ 1q
to the state pp, iq by following the sequence of operations in w. For example the sequence # ¨ xi$ ¨ c ¨ %xi ¨ c means
that an #-symbol will be read, followed by open xi, read c, close xi, and read c. Clearly, extended transitions like
above can be encoded in any standard VA by just adding more states.

Note that to get to a state pp, iq the only option is to start from the state pq, i´ 1q. Since all runs start at pq0, 0q
and final states are of the form pp, nq, an accepting run of AB,n over dB,n must traverse n`1 states of the form pq, iq,
one for each i P t0, . . . , nu, and therefore assign all n variables xi. Also, between two consecutive states the transition
always captures a span of length 1 (i.e. xi$ ¨ c ¨ %xi) and read three characters, starting with an #-symbol which
is never captured. Therefore, all accepting runs assign all n variables, and xi is either assigned to r3i ´ 1, 3iy or
r3i, 3i` 1y. Since all the variables are opened and closed correctly between each pq, i´ 1q and pp, iq, we can conclude
that AB,n is functional.

One can easily check that the reduction of pB, nq to pAB,n, dB,nq can be done with logarithmic space. To prove
that the reduction is indeed parsimonious (i.e. |tw P Σn | w P LpBqu| “ |JAB,nKdB,n

|), we show that there exists a
bijection between words of length n accepted by B and mappings in JAB,nKdB,n

. Specifically, consider the function
f : tw P Σn | w P LpBqu Ñ JAB,nKdB,n

such that fpwq is equivalent to the mapping µw : tx1, . . . , xnu Ñ spanpdA,nq:

µwpxiq “

"

r3i´ 1, 3iy, if wi “ a

r3i, 3i` 1y, if wi “ b

for every word w “ w1 . . . wn P LpBq. To see that f is indeed a bijection, note that for every word w P LpBq of length
n we have an accepting run of length n in A and we can build a mapping in JAB,nKdB,n

. Note that all accepting runs
for w give the same mapping. Moreover, note that for two different words, different mapping are defined and then
f is an injective function. In the other direction, for every mapping in JAB,nKdB,n

we can build some word of length
n that is accepted by B and, thus, f is surjective. Therefore, f is a bijection and the reduction from the Census
problem into CountrfVAs is a parsimonius reduction. This completes the proof.

