
Regular Expressions for Data Words

Leonid Libkin and Domagoj Vrgoč

School of Informatics, University of Edinburgh

Abstract. In data words, each position carries not only a letter form a finite
alphabet, as the usual words do, but also a data value coming from an infi-
nite domain. There has been a renewed interest in them due to applications in
querying and reasoning about data models with complex structural properties,
notably XML, and more recently, graph databases. Logical formalisms designed
for querying such data often require concise and easily understandable presenta-
tions of regular languages over data words.
Our goal, therefore, is to define and study regular expressions for data words. As
the automaton model, we take register automata, which are a natural analog of
NFAs for data words. We first equip standard regular expressions with limited
memory, and show that they capture the class of data words defined by register
automata. The complexity of the main decision problems for these expressions
(nonemptiness, membership) also turns out to be the same as for register au-
tomata. We then look at a subclass of these regular expressions that can define
many properties of interest in applications of data words, and show that the main
decision problems can be solved efficiently for it.

1 Introduction

Data words are words that, in addition to a letter from a finitealphabet, have adata
value from an infinite domain associated with each position. For example,

(

a

1

)(

b

2

)(

b

1

)

is a data word over an alphabetΣ = {a, b} andN as the domain of values. It can be
viewed as the ordinary wordabb in which the first and the third positions are equipped
with value1, and the second position with value2.

These were introduced in [13] which proposed a natural extension of finite au-
tomata for them, calledregister automata. Data words have become an active subject
of research lately due to their applications in XML, in particular in static analysis of
logic and automata-based XML specifications, and in query evaluation tasks. Indeed,
paths in XML trees should account not only for the labels (XMLtags) but values of
attributes, which can come from an infinite domain, such asN. While logic and au-
tomata models are well-understood by now for the structuralpart of XML (i.e., trees)
[15, 17, 22], adding data values required a concentrated effort for finding good logics
and their associated automata [4, 6, 5, 10, 20, 23]. Connections between logical and au-
tomata formalisms have been explored as well, usually with the focus on finding logics
with decidable satisfiability problem. A well-known resultof [5] shows that FO2, the
two-variable fragment of first-order logic extended by equality test for data values, is
decidable over data words. Another account of this was givenin [20], where various
data word automata models are compared to fragments of FO andMSO with regard

to their expressive power. Recently, the problem was studied in [3, 8]; in particular it
was shown that the guarded fragment of MSO defines data word languages that are
recognized by non-deterministic register automata.

Data words appear in other areas as well, in particular verification, and querying
databases. In several applications, one would like to deal with concise and easy-to-
understand representations of languages of data words. These can be used, for example,
in extending languages for XML navigation that take into account data values. Another
possible example is in the field of verification, in particular from modeling infinite-state
systems with finite control [9, 12]. Here having a concise representation of system prop-
erties is much preferred to long and unintuitive specifications given by e.g. automata.

The need for a good representation mechanism for data word languages is partic-
ularly apparent in the area of querying graph databases [1],a data model that is in-
creasingly common in applications including social networks, biology, Semantic Web,
and RDF. Many properties of interest in such databases are expressed by regular path
queries [18], asking for the existence of a path conforming to a given regular expres-
sion, or their extensions [7, 2]. Typical queries are specified by the closure of atomic

formulaex
L
→ y under∧ and∃; the atoms ask for the existence of a path whose la-

bel is in a regular languageL betweenx andy [7]. Typically, such logical languages
have been studied without taking data values into account. Recently, however, logical
languages that extend regular conditions from words to datawords appeared [16]; for
such languages we need a concise way of representing regularlanguages, which is most
commonly done by regular expressions (as automata tend to berather cumbersome to
be used in a query language).

The most natural extension of the usual NFAs to data words isregister automata,
first introduced in [13] and studied, for example, in [9, 21].These are in essence finite
state automata equipped with a set of registers that allow them to store data values
and make a decision about their next step based not only on thecurrent state and the
letter in the current position, but also by comparing the current data value with the
ones previously stored in registers. They were originally introduced as a mechanism to
reason about words over an infinite alphabet (that is, without the finite part), but they
easily extend to describe data word languages. Note that a variety of other automata
formalisms for data words exist, for example, pebble automata [20, 25], data automata
[5], and class automata [6]. In this paper we concentrate on languages specified by
register automata, since they are the most natural generalization of finite state automata
to languages over data words.

As mentioned earlier, if we think of a specification of a data word language, register
automata are not the most natural way of providing them: in fact, even over the usual
words, regular languages are easier to describe by regular expressions than by NFAs.
For example, in XML and graph database applications, specifying paths via regular
expressions is completely standard. In many XML specifications (e.g., XPath), data
value comparisons are fairly limited: for instance, one checks if two paths ends with
the same value. On the other hand, in graph databases, one often needs to specify a
path using both labels and data values that occur in it. For those purposes, we need
a language for describing regular languages of data words, i.e., languages accepted
by register automata. In [16] we started looking at such expressions, but in a context

slightly different from data words. Our goal now is to present a clean account of regular
expressions for data words that would:

1. capture the power of register automata over data words, just as the usual regular
expressions capture the power of regular languages;

2. have good algorithmic properties, at least matching those of register automata; and
3. admit expressive subclasses with very good (efficient) algorithmic properties.

Note that an attempt to find such regular expressions has beenmade in [14], but it
fell short of even the first goal. In fact, the expressions of [14] are not very intuitive,
and they fail to capture some very simple languages like, forexample, the language
{
(

a
d

)(

a
d′

)

| d 6= d′}. In our formalism this language will be described by a regular
expression(a↓x) · (a[x6=]). This expression says: bindx to be the data value seen while
readinga, move to the next position, and check that the symbol isa and that the data
value differs from the one inx. The idea of binding is, of course, common in formal
language theory, but here we do not bind a letter or a subword (as, for example, in
regular expressions with backreferencing) but rather values from an infinite alphabet.

We shall call such expressionsregular expressions with memory. We formally define
their semantics, give examples, prove that they capture register automata and share
their algorithmic properties. We then introduce a different kind of regular expressions,
regular expressions with equality. The previous language, for example, will be captured
by the expression(aa)6=, saying that the finite part of the data word readsaa, and the
data values at the beginning and at the end are different. We show that such expressions
are strictly weaker than expressions with memory, but enjoynice algorithmic properties.

Organization. In Section 2 we define register automata, and list their closure prop-
erties and complexity results about nonemptiness and membership. In Section 3 we
introduce regular expressions with memory and show that they define the same class
of languages as register automata. In Section 4 we introduceregular expressions with
equality, show that while they are strictly weaker than register automata, they admit
faster algorithms for decision problems that are based on the close connection of these
expressions with pushdown automata. Due to space limitations, some proofs are only
sketched, and complete proofs will appear in the full version of the paper.

2 Register automata over data words

A data word is simply a finite string over the alphabetΣ×D, whereΣ is a finite set of
letters andD an infinite set of data values. That is, in each position a dataword carries
a letter fromΣ and a data value fromD. We will denote data words by

(

a1

d1

)

. . .
(

an

dn

)

,
whereai ∈ Σ anddi ∈ D. The set of all data words over the alphabetΣ and set of data
valuesD is denoted byΣ[D]∗. A data word language is simply a subsetL ⊆ Σ[D]∗.

Register automata are an analog of NFAs for data words. They move from one state
to another by reading the appropriate letter from the finite alphabet and comparing the
data value to ones previously stored into the registers. Ourversion of register automata
will use comparisons which are boolean combinations of atomic =, 6= comparisons of
data values.

To define such conditions formally, assume that, for eachk > 0, we have variables
x1, . . . , xk. Then the set of conditionsCk is given by the grammar:

c := tt | ff | x=
i | x6=

i | c ∧ c | c ∨ c | ¬c, 1 ≤ i ≤ k.

The satisfaction is defined with respect to a data valued ∈ D and a tupleτ =
(d1, . . . , dk) ∈ Dk as follows:

– d, τ |= tt andd, τ 6|= ff;
– d, τ |= x=

i iff d = di;
– d, τ |= x6=

i iff d 6= di;
– d, τ |= c1 ∧ c2 iff d, τ |= c1 andd, τ |= c2 (and likewise forc1 ∨ c2);
– d, τ |= ¬c iff d, τ 2 c.

In what follows,[k] is a shorthand for{1, . . . , k}.

Definition 1 (Register data word automata).LetΣ be a finite alphabet andk a nat-
ural number. Ak-register data word automatonis a tupleA = (Q, q0, F, T), where:

– Q is a finite set of states;
– q0 ∈ Q is the initial state;
– F ⊆ Q is the set of final states;
– T is a finite set of transitions of the form(q, a, c) → (I, q′), whereq, q′ are states,

a is a label,I ⊆ [k], andc is a condition inCk.

Intuitively the automaton traverses a data word from left toright, starting inq0, with
all registers empty. If it reads

(

a

d

)

in stateq with register configurationτ , it may apply a
transition(q, a, c) → (I, q′) if d, τ |= c; it then enters stateq′ and changes contents of
registersi, with i ∈ I, to d.

To define acceptance formally we first define a configuration ofa k-register data
word automatonA on data wordw =

(

a1

d1

)

. . .
(

an

dn

)

as a triple(q, j, τ), whereq is the
current state ofA, j is the current position of the symbol inw thatA reads andτ is
the current state of the registers. We use the symbol⊥ to indicate that a register is
unassigned; that is,τ is a k-tuple overD⊥ = D ∪ {⊥}. The initial configuration is
(q0, 1, τ0), whereτ0 = (⊥, . . . ,⊥), and any configuration(q, j, τ) with q ∈ F is a final
configuration.

From a configuration(q, j, τ) we can move to a configuration(q′, j + 1, τ ′) if:

– (q, aj , c) → (I, q′) is a transition inA,
– dj , τ |= c and
– τ ′ is obtained fromτ by replacing data values in registers fromI by dj .

We say thatA acceptsw if there is a sequence of configuration ofA onw that leads
A from the initial to a final configuration while readingw.

RemarkGiven ak-register data word automatonA and a tupleτ ∈ Dk
⊥, we can turn

A into an automatonA(τ) defined just asA but starting withτ as the register config-
uration. Such an extension does not affect the class of accepted languages, but will be
useful in inductive constructions when automata need not start with all registers unas-
signed.

A useful property of register automata that will be needed throughout this paper is
that, intuitively, such automata can only keep track of as many data values as can be
stored in their registers. Formally, we have:

Lemma 1. LetA be ak-register data word automaton. IfA recognizes some word of
lengthn, then it recognizes a word of lengthn that uses at mostk + 1 different data
values.

Proof. We first set some notation. We will say that twok-register assignmentsτ andτ
are of the same equality type if we haveτ(i) = τ(j) if and only if τ (i) = τ (j), for all
i, j ≤ k. Note that this also implies thatτ(i) 6= τ(j) if and only if τ (i) 6= τ(j).

We will prove a slightly more general claim, allowing our automata to start with
an nonempty assignment of the registers. LetA(τ0) = (Q, q0, F, T) be ak-register
data word automaton, starting with the initial assignmentτ0 in the registers and
w =

(

a1

d1

)

. . .
(

an

dn

)

a word that it accepts. This means that there is a sequence of states
q0, q1, . . . , qn, with qn ∈ F and a sequence of register assignmentsτ0, τ1, . . . , τn such
that (qi−1, ai, ci) → (Ii, qi) ∈ T , thatτi−1, di |= ci andτi is obtained fromτi−1by
replacing all registers fromIi with di, for i = 1 . . . n.

Now letS = {τ0(i) : 1 ≤ i ≤ k}−{⊥}. That isS contains all the data values from
the initial assignment, except the one denoting that the register is empty.

Let S be any set of data values such that|S| = k + 1 andS ⊆ S.
We prove by induction oni ≤ n that we can define a data wordwi, of lengthi,

such thatwi =
(

a1

di

1

)

. . .
(

ai

di

i

)

, wherea1, . . . ai are fromw anddi
1, . . . , d

i
i are fromS.

We then show that for thiswi there is a sequence of assignmentsτ ′
0, τ

′
1, . . . τ

′
i such that

eachτ ′
j is of the same equality type asτj , wherej ≤ i and it holds thatτj−1, dj |= cj ,

for all j ≤ i and eachτ ′
j is obtained fromτ ′

j−1 by replacing all the data values fromIj

by dj . Note that this actually means thatA goes through the same sequence of states
while readingwi as it did while readingw. But thenwn is the desired word from the
statement of the lemma.

To prove this we first assume thati = 1. We setτ ′
0 = τ0 and selectd ∈ S such that

τ0, d |= c1 (note that this is possible since we havek+1 values at disposal and test only
for equality or inequality with a fixed set ofk elements) and such thatτ1 andτ ′

1 are of
the same equality type, whereτ ′

1 is obtained fromτ ′
0 by replacing all data values from

I1 by d. Again, this is possible since the originald1 (from w) could have either been
different from all data values inτ0 or equal to some of them, a choice we can simulate
with elements fromS. We now setw1 =

(

a1

d

)

.
Assume now that the claim holds fori < n. We prove the claim fori + 1. By the

induction hypothesis we know that there exists a data wordwi =
(

a1

di

1

)

. . .
(

ai

di

i

)

with data
values fromS and a sequence of assignments each one obtained from the previous by
the condition dictated by the original accepting run that allow A to go through the states
q0, q1, . . . , qi. We now pickd ∈ S such thatτ ′

i , d |= ci+1 andτ ′
i+1, obtained fromτ ′

i by
replacing all data values fromIi+1 by d, has the same equality type asτi+1. Note that
this is possible sinceτi andτ ′

i have the same equality type by the induction hypothesis
and we have enough data values at our disposal (again, we haveto pickd so that it is in
the same relation to data values fromτ ′

i asdi+1 from w was to data values fromτi, but
this is possible since each assignment can remember at mostk data values). Now we

simply definewi+1 = wi ·
(

ai+1

d

)

. Note that thiswi+1 has all the desired properties and
can takeA from q0 to qi+1.

This concludes the proof of the lemma. 2

We now show that we can view register automata as NFAs when restricted only to
a finite set of data values.

Let A = (Q, q0, F, T) be ak-register data word automaton,D a finite set of data
values, andD⊥ = D ∪ {⊥}. We transformA into an NFAAD = (Q′, q′0, F

′, δ) over
the alphabetΣ × D as follows:

– Q′ = Q × Dk
⊥;

– q′0 = (q0,⊥
k);

– F ′ = F × Dk
⊥;

– Whenever we have a transition(q, a, c) → (I, q′) in T , we add the transition

((q, τ),

(

a

d

)

, (q′, τ ′))

to T if d, τ |= c andτ ′ is obtained fromτ by puttingd in positions from the setI.

It is straightforward to check thatA accepts a data word overΣ × D if and only if
AD does. That is we obtain the following.

Lemma 2. LetD be a finite set of data values andA a register automaton overΣ. Then
there exists a finite state automatonAD over the alphabetΣ×D such thatw ∈ L(AD)
iff w ∈ L(A), for everyw with data values fromD. Moreover,AD is of size exponential
in the size ofA and polynomial in the size ofD.

Since register automata closely resemble classical finite state automata, it is not
surprising that some (although not all) constructions valid for NFAs can be carried over
to register automata. We now recall results about closure properties of register automata
[13]. Although our notion of automata is slightly differentthan the one used there, all
constructions from [13] can be easily modified to work in the setting proposed here.

Fact 1 ([13]) 1. The set of languages recognized by register automata is closed under
union, intersection, concatenation and Kleene star.

2. Languages recognized by register automata are not closedunder complement.
3. Languages recognized by register automata are closed under automorphisms: that

is, if f : D → D is an automorphism andw is accepted byA, then the data word
f(w) in which every data valued is replaced byf(d) is also accepted byA.

Membership and nonemptiness are some of the most important decidability prob-
lems related to formal languages. We now recall the exact complexity of these problems
for register automata. Since the model of register automatawe use here differs slightly
from the one in previous work, we sketch how these results carry over to our model.

Recall that nonemptiness problem for an automatonA is checking whether
L(A) 6= ∅.

Fact 2 ([9]) The nonemptiness problem for register data word automata isPSPACE-
complete.

The lower bound will follow from Theorem 1 and Proposition 1.For the upper
bound we convert ourk-register automatonA into an NFAAD over the alphabetΣ×D
(as in the Lemma 2), whereD = {0, . . . , k + 1}. We know thatAD recognizes all data
words fromL(A) using only data values fromD. By Lemma 1 and invariance under
automorphisms, we know that checkingA for nonemptiness is equivalent to checking
AD for nonemptiness. Using on-the-fly construction we get the desired result (note that
AD can not be created before checking it for nonemptiness).

The membership problem asks, for an automatonA and a wordw, whetherw ∈
L(A).

Fact 3 ([21]) The membership problem for register data word automata isNP-
complete.

The lower bound will follow from Theorem 1 and Proposition 2.For the upper
bound it simply suffices to guess an accepting run of the automaton.

3 Regular expressions with memory

In this section we develop regular expressions capturing register automata in the same
way as the usual regular expressions capture regular languages. To do this notice that
register automata could be pictured as finite state automatawhose transitions between
states have labels of the forma[c]↓I, whereI is a set of registers. Such an automaton
can move from one state to another using an arrowa[c]↓I if the letter it sees isa, and
the data value (together with the current register assignment) satisfies the conditionc. It
then proceeds to the next state and updates the registers inI with the current data value.
This suggests that the basic building blocks for our expressions will be expressions of
the forma[c]↓I.

Definition 2 (Expressions with memory).LetΣ be a finite alphabet andx1, . . . , xk a
finite set of variables. Regular expressions with memory over Σ[x1, . . . , xk] are defined
inductively as follows:

– ε and∅ are expressions;
– a[c]↓I is an expression; herea ∈ Σ, c is a condition inCk, andI ⊆ {x1, . . . , xk};
– If e, e1, e2 are expressions, then so aree1 + e2, e1 · e2, ande∗.

For convenience we will write justa if I = ∅ and the conditionc = tt and similarly
when only one of them can be ignored. Also, ifI = {x}, we writea[c]↓x, or a↓x when
c = tt, instead ofa[c]↓I.

To define the semantics, we first define what it means for an expressione over
Σ[x1, . . . xk], a data wordw and a tupleσ ∈ Dk

⊥ to infer another tupleσ′ ∈ Dk
⊥,

viewed as partial assignment of values to variables. We do this inductively one.

– (ε, w, σ) ⊢ σ′ iff w = ε andσ′ = σ.

– (a[c]↓I, w, σ) ⊢ σ′ iff w =
(

a

d

)

andσ, d |= c andσ′ is obtained fromσ by assigning
d to eachxi ∈ I.

– (e1 · e2, w, σ) ⊢ σ′ iff w = w1 · w2 and there exists a valuationσ′′ such that
(e1, w1, σ) ⊢ σ′′ and(e2, w2, σ

′′) ⊢ σ′.
– (e1 + e2, w, σ) ⊢ σ′ iff (e1, w, σ) ⊢ σ′ or (e2, w, σ) ⊢ σ′.
– (e∗, w, σ) ⊢ σ′ iff

1. w = ε andσ = σ′, or
2. w = w1 · w2 and there exists a valuationσ′′ such that(e, w1, σ) ⊢ σ′′ and

(e∗, w2, σ
′′) ⊢ σ′.

We say that a regular expressione inducesa tupleσ ∈ Dk
⊥ on a data wordw if

(e, w,⊥k) ⊢ σ. We then defineL(e), the language ofe, as the set of all data words on
which e induces some tupleσ. A regular expression with memorye is well-formedif
every variable is bound before being used in a condition. From now on we will assume
that all our expressions are well-formed.

Example 1.We now give a few examples of data word languages definable by regular
expressions with memory.

1. The expression(a↓x) ·(b[x6=])∗ defines the language of data words where word part
readsab∗ and such that the first data value is different from all others. It binds while
reading the firsta, and then it proceeds checking that the letter isb and condition
x6= is satisfied, which is expressed byb[x6=]; the expression is then put in the scope
of ∗ to indicate that the number of such values is arbitrary.

2. The language of data words in which two data values are the same is given by the
expressionΣ∗ ·(Σ↓x)·Σ∗ ·(Σ[x=])·Σ∗, whereΣ is the shorthand fora1+. . .+al,
wheneverΣ = {a1, . . . , al} andΣ↓x is a shorthand fora1↓x + . . . + al↓x. It says:
at some point, bindx, and then check that after one or more letters, we have the
same data value.

3. The language of data words in which the last two data valuesoccur elsewhere in
the word with labela is defined byΣ∗ · (a↓x) ·Σ∗ · (a↓y) ·Σ∗ · (Σ[x=] +Σ[y=]) ·
(Σ[x=] + Σ[y=]).

3.1 Equivalence with register automata

In this section we prove that every language recognized by register automata can also
be described by a regular expression with memory and vice versa. In fact, we show a
tighter connection, from which the equivalence will follow. LetL(e, σ, σ′) be the set of
all data wordsw such that(e, w, σ) ⊢ σ′, and letL(A, σ, σ′) be the set of all data words
w such thatw is accepted byA(σ), and there exists an accepting run that ends with a
register configurationσ′.

Theorem 1. 1. For every regular expression with memorye overΣ[x1, . . . , xk] there
exists (and can be constructed in logarithmic space) ak-register data word au-
tomatonAe such thatL(e, σ, σ′) = L(Ae, σ, σ′) for everyσ, σ′ ∈ Dk

⊥.
2. For everyk-register data word automatonA there exists (and can be constructed in

exponential time) a regular expression with memoryeA overx1, . . . , xk such that
L(eA, σ, σ′) = L(A, σ, σ′) for everyσ, σ′ ∈ Dk

⊥.

The structure of the proof follows of course the standard NFA-regular expressions
equivalence, cf. [24], with all the necessary adjustments to handle transitions induced
by a[c]↓I. Details can be found in the complete version of the paper. SinceL(e) =
⋃

σ L(e,⊥k, σ) andL(A) =
⋃

σ L(A,⊥k, σ), we obtain:

Corollary 1. The classes of languages of data words definable byk-register data word
automata, and by regular expressions with memory overΣ[x1, . . . , xk] are the same.

3.2 Properties of regular expressions with memory

Corollary 1 and closure properties of register automata immediately imply that lan-
guages defined by regular expressions with memory are closedunder union, intersec-
tion, concatenation, Kleene star, but arenotclosed under complement.

We now turn to the nonemptiness problem, i.e., checking whetherL(A) 6= ∅. Since
going from expressions to automata is polynomial, we get a PSPACEupper bound (see
Fact 2). One can also prove a matching lower bound, by adapting techniques used in a
different but related setting [16] for combined complexitybounds on query evaluation
over graph databases and obtain:

Proposition 1. The nonemptiness problem for regular expressions with memory is
PSPACE-complete.

Next we move to the membership problem, i.e., checking whetherw ∈ L(e). Again,
sincee can be translated efficiently into an equivalent automatonAe, Fact 3 gives an
NP upper bound. We can prove a matching lower bound as well:

Proposition 2. The membership problem for regular expressions with memoryis NP-
complete.

Proof. For the lower bound we do a reduction from 3-SAT.
Let ϕ = (a1 ∨ b1 ∨ c1)∧ (a2 ∨ b2 ∨ c2) . . .∧ (ak ∨ bk ∨ ck), be an arbitrary 3-CNF

formula. We will construct a data wordw and a regular expression with memorye, both
of length linear in the length ofϕ, such thatϕ is satisfiable if and only ifw ∈ L(e).

Let x1, x2, . . . , xn be all the variables occurring inϕ. We definew as the following
data word:

w =
(

(

a

0

)(

b

1

)

)n (

(

a1

da1

)(

b1

db1

)(

c1

dc1

)

)

. . .
(

(

ak

dak

)(

bk

dbk

)(

ck

dck

)

)

,

wheredai
= 1, if ai = xj , for somej ∈ {1, . . . n} and0, if ai = xj and similarly for

dbi
, dci

(note that everyai, bi, ci is of the forxj , or xj , so this is well defined).
Also note that we are usingai, bi, ci both for literals inϕ and for letters of our finite

alphabet, but this should not arise any confusion. The idea behind this data word is
that with the first part that corresponds to the variables, i.e. with (

(

a
0

)(

b
1

)

)n, we guess a
satisfying assignment and the next part corresponds to eachconjunct inϕ and its data
value is set such that if we stop at any point for comparison weget a true literal in this
conjunct.

We now definee as the following regular expression with memory:

e = (a↓x1 + ab↓x1) · b
∗ · (a↓x2 + ab↓x2) · b

∗ · (a↓x3 + ab↓x3) · · ·

b∗ · (a↓xn + ab↓xn) · b∗ · clause1 · clause2 . . . clausek,

where each clausei corresponds to thei-th conjunct ofϕ in the following manner.
If ith conjunct uses variablesxj1 , xj2 , xj3 (possibly with repetitions), then

clausei = ai[x
=
j1

] · bi · ci + ai · bi[x
=
j2

] · ci + ai · bi · ci[x
=
j3

].

We now prove thatϕ is satisfiable if and only ifw ∈ L(e).
Assume first thatϕ is satisfiable. Then there’s a way to assign a value to eachxi

such that for every conjunct inϕ at least one literal is true. This means that we can
traverse the first part ofw to chose the corresponding values for variables bounded ine.
Now with this choice we can make one of the literals in each conjunct true, so we can
traverse every clausei using one of the tree possibilities.

Assume now thatw ∈ L(e). This means that after choosing the data values for
variables (and thus a valuation forϕ, since all data values are either 0 or 1), we are
able to traverse the second part ofw using these values. This means that for every
clausei there is a letter after which the data value is the same as the one bounded to the
corresponding variable. Since data values in the second part of w correspond to literal
in the corresponding conjunct ofϕ to evaluate to 1, we know that this valuation satisfies
our formulaϕ. 2

4 Regular expressions with equality

In this section we define yet another kind of expressions, regular expressions with
equality, that will have significantly better algorithmic properties that regular expres-
sions with memory and register automata, while still retaining much of their expressive
power. The idea is to allow checking for (in)equality of datavalues at the beginning and
at the end of subwords conforming to subexpressions.

Definition 3 (Expressions with equality).Let Σ be a finite alphabet. Thenregular
expressions with equalityare defined by the grammar:

e := ∅ | ε | a | e + e | e · e | e+ | e= | e 6= (1)

wherea ranges over alphabet letters. The languageL(e) of data words denoted by a
regular expression with equalitye is defined as follows.

– L(∅) = ∅.
– L(ε) = {ε}.
– L(a) = {

(

a
d

)

| d ∈ D}.
– L(e · e′) = L(e) · L(e′).
– L(e + e′) = L(e) ∪ L(e′).
– L(e+) = {w1 · · ·wk | k ≥ 1 and eachwi ∈ L(e)}.
– L(e=) = {

(

a1

d1

)

. . .
(

an

dn

)

∈ L(e) | d1 = dn}.

– L(e 6=) = {
(

a1

d1

)

. . .
(

an

dn

)

∈ L(e) | d1 6= dn}.

Without any syntactic restrictions, there may be “pathological” expressions that,
while formally defining the empty language, should nonetheless be excluded as really
not making sense. For example,ε= is formally an expression, and so isa 6=, although it
is clear they cannot denote any data word. We exclude them by defining well-formed
expressions as follows. We say that the usual regular expressione reduces toε (respec-
tively, to singletons) ifL(e) is ε or ∅ (or |w| ≤ 1 for all w ∈ L(e)). Then we say that
regular expression with equality iswell-formedif it contains no subexpressions of the
form e= or e 6=, wheree reduces toε, or to singletons. From now on we will assume that
all our expressions are well formed.

Note that we use+ instead of∗ for iteration. This is done for technical purposes
(the ease of translation) and does not reduce expressiveness, since we can always use
e∗ as shorthand fore+ + ε.

We now provide two examples. The expressionΣ∗ · (Σ · Σ+)= · Σ∗ denotes the
language of data words that contain two different positionswith the same data value.
The language of data words in which the first and the last data value are different is
given by(Σ · Σ+)6=.

4.1 Properties of regular expressions with equality

As expected regular expressions with equality will be subsumed by register automata,
but unlike expressions with memory, they will be less expressive, as illustrated by the
following result.

Proposition 3. Regular expressions with equality are strictly weaker thanregular ex-
pressions with memory.

When proving this, we simply show that regular expressions with equality can be
translated into register automata using an easy inductive construction. Moreover, this
translation can be carried in PTIME (in fact in NLOGSPACE). To show they are strictly
weaker than expressions with memory or register automata, we show that they cannot
define the language of(a↓x)·(a[x6=])∗. To do so, we introduce another kind of automata,
called weak register automata, and show that they cannot recognize that language and
that they can define any language described by expressions with equality.

As immediately follows from their definition, languages denoted by regular expres-
sions with equality are closed under union, concatenation,and Kleene star. Also, it is
straightforward to see that they are closed under automorphisms. However:

Proposition 4. Languages recognized by regular expressions with equalityare not
closed under intersection and complement.

Proof sketch. Observe first that the expressionΣ∗ · (Σ · Σ+)= · Σ∗ defines a language
of data words containing two positions with the same data value. The complement of
this language is the set of all data words where all data values are different, which is
not recognizable by register automata [13]. By Proposition3 this implies that regular
expressions with memory are not closed under complement.

To see that they are not closed under intersection we first show that the language

L =

{(

a

d1

)(

a

d2

)(

a

d3

) ∣

∣

∣

∣

d1 6= d2, d1 6= d3 andd2 6= d3

}

is not recognizable by any regular expression with equality. To prove this we simply
try out all possible combinations of expressions that use atmost three concatenated
occurrences ofa. Note that we can eliminate any expression with more that threeas,
or one that uses∗ (since this results in arbitrary long words), or union (since every
member of the union would have to define words from this language and since we do
not use constants we cannot just split the language into two or more parts). Also, no=
can occur in our expression (for subexpressions of length atleast 2). This reduces the
number of potential expressions to denote the language to finitely many possibilities,
and we simply try them all.

Now observe that the expressione1 = ((a · a)6= · a)6= defines the language

L1 =

{(

a

d1

)(

a

d2

)(

a

d3

)
∣

∣

∣

∣

d1 6= d2 andd1 6= d3

}

.

Similarly e2 = a · (a · a)6= defines

L2 =

{(

a

d1

)(

a

d2

)(

a

d3

) ∣

∣

∣

∣

d2 6= d3

}

.

Note thatL = L1 ∩ L2, so if regular expressions with equality were closed under
intersection they would also have been able to define the languageL. 2

To obtain fast membership and nonemptiness testing algorithms for expressions
with equality, we first show how to reduce them to pushdown automata when only
finite alphabets are involved.

Assume that we have a finite setD of data values. We now inductively construct
PDAsPe,D for all regular expressions with equalitye. The words recognized by these
automata will be precisely the words fromL(e) whose data values come fromD.

We construct these PDAs so that they accept by final state and furthermore have
the property that only transitions of the kind(q0,

(

a

d

)

, X, α, q) leave the initial state
(that is any transition leaving the initial state will consume a letter) and every transition
entering a final state will consume a letter. We will maintainthese properties throughout
the inductive construction.

It is quite clear how to construct the automata fore = ε, e = ∅ ande = a. For
e1+e2, e1 ·e2 ande+

1 we use standard constructions, while fore = (e1)=, ore = (e1)6=
we push the first data value on the stack, mark it by a new stack symbol and then proceed
with the run of the automaton fore1 which exists by the induction hypothesis. Every
time we enter a final state of that automaton we simply empty the stack until we reach
the first data value (here we use the new stack symbol) and compare it for equality or
inequality with the last data value of the input word. The additional assumptions are
here to assure that the construction works correctly. Details of the proof can be found
in the full version.

Lemma 3. The language of words accepted by each PDAPe,D is equal to the set of
data words inL(e) whose data values come fromD. Moreover, the PDAPe,D has at
mostO(|e|) states andO(|e| × (|D|2 + |e|)) transitions, and can be constructed in
polynomial time.

From this and Lemma 1 it is easy to obtain the following.

Theorem 2. The nonemptiness problem for regular expressions with equality is in
PTIME.

To see this, take an arbitrary expression with equalitye and convert it to an-register
data word automatonA that recognizes the same language. From the translation, we
know thatn will be at most the number of times= and 6= appear ine. Now do the
construction from Lemma 3 fore andD = {0, 1, . . . , n + 1} to obtain a PDAPe,D.
Proposition 3 and Lemma 1 now imply that checking ifL(e) 6= ∅ is equivalent to
checkingPe,D for nonemptiness. Since this automaton is of polynomial size, we can
check it for nonemptiness in PTIME thus obtaining the desired result.

Proposition 5. The membership problem for regular expressions with equality is in
PTIME.

As in the proof of Theorem 2, we construct a PDAPe,D for e and D =
{0, 1, . . . , n}, wheren is the length of the input wordw. By invariance under auto-
morphisms we can assume that data values inw come from the setD. Next we simply
check that the word is accepted byPe,D and since this can be done in PTIME we get the
desired result. The correctness of this algorithm follows from Lemma 3.

It is natural to ask whether NFAs could not have been used instead of pushdown
automata. The answer is that they can be used to capture languages of data words de-
scribed by regular expressions with equality over a finite set of data values, but the cost
is necessarily exponential, and hence we cannot possible use them to derive Theorem
2. That is, we can first show:

Proposition 6. For every regular expression with equalitye over the alphabetΣ and
a finite setD of data values there exists an NFAAe,D, of the size exponential in|e|,
recognizing precisely those data words fromL(e) that use data values fromD.

Proof sketch.We prove this by structural induction on regular expressions with equal-
ity. All of the standard cases are carried out as usual. Thus we only have to describe the
construction for subexpressions of the forme= ande 6=. In both cases by the induction
hypothesis we know that there is an NFAAe,D recognizing words inL(e) with data
values fromD. The automaton forAe6=,D (and likewise forAe=,D) will consist of |D|
disjoint copies ofAe,D, each designated to remember the first data value read when
processing the input. According to this, whenever our automaton would enter a final
state we test that the current data value is different (or thesame) to the one correspond-
ing to this copy of the original automaton. This is done in a manner analogous to the
one used in the proof of Proposition 3. 2

However, the exponential lower bound is the best we can do in the general case. To
see this, we define a sequence of regular expressions with memory {en}n∈N, over the

alphabetΣ = {a}, and each of length linear inn. We then show that forD = {0, 1}
every regular expression over the alphabetΣ × D recognizing precisely those data
words fromL(en) with data values inD has length exponential in|en|.

To prove this we will use the following theorem for proving lower bounds of NFAs
[11]. Let L ⊆ Σ∗ be a regular language and suppose there exists a setP = {(xi, yi) :
1 ≤ i ≤ n} of pairs such that:

1. xi · yi ∈ L, for everyi = 1, . . . n, and
2. xi · yj /∈ L, for 1 ≤ i, j ≤ n andi 6= j.

Then any NFA acceptingL has at leastn states.
Thus to prove our claim it suffices to find such a set of size exponential in the length

of en.
Next we define the expressionsen inductively as follows:

– e1 = (a · a)=,
– en+1 = (a · en · a)=.

It is easy to check thatL(en) = {w ·w−1 : w ∈ (Σ×{0, 1})n}, wherew−1 denotes
the reverse ofw.

Now letw1, . . . w2n be a list of all the elements in(Σ × {0, 1})n in arbitrary order.
We define the pairs inP as follows:

– xi = wi,
– yi = (wi)

−1.

Since these pairs satisfy the above assumptions 1) and 2), weconclude, using the
result of [11], that any NFA recognizingL(en) has at leastO(2|en|) states, so no regular
expression describing it can be of length polynomial in|en|.

5 Conclusions and future work

Here we addressed the problem of finding analogs of regular expressions for register
automata, and explored their language-theoretic properties. We also defined an expres-
sive subclass with good algorithmic properties. In the future we would like to try and
find an intermediate class of expressions that could be used to recognize a larger class
of languages than regular expressions with equality, but still retain low complexity of
nonemptiness and membership checking. We would also like toexplore how these new
classes of expressions behave as query languages in graph database models. Since lan-
guage nonemptiness is closely related to query evaluation in that context we are hopeful
to obtain fast and expressive query languages based on thesenew classes of expressions.
AcknowledgmentWork partially supported by EPSRC grant G049165 and FET-Open
Project FoX, grant agreement 233599.

References

1. R. Angles, C. Gutiérrez. Survey of graph database models. ACM Comput. Surv.40(1):
(2008).

2. P. Barceló, C. Hurtado, L. Libkin, P. Wood. Expressive languages for path queries over
graph-structured data. InPODS’10, pages 3–14.

3. M. Benedikt, C. Ley, G. Puppis. Automata vs. logics on datawords. InCSL 2010, pages
110–124.

4. M. Bojanczyk, P. Parys. XPath evaluation in linear time. In PODS’08, pages 241-250.
5. M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, L. Segoufin. Two-variable logic on

words with data.ACM TOCL12(4): (2011).
6. M. Bojanczyk, S. Lasota. An extension of data automata that captures XPath. InLICS 2010,

pages 243–252.
7. D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi. Rewriting of regular expressions

and regular path queries.JCSS, 64(3):443–465, 2002.
8. Thomas Colcombet, Clemens Ley, Gabriele Puppis. On the use of guards for logics with

data.MFCS 2011, pages 243–255.
9. S. Demri, R. Lazic. LTL with the freeze quantifier and register automata.ACM TOCL10(3):

(2009).
10. D. Figueira. Satisfiability of downward XPath with data equality tests.PODS’09, 197-206.
11. I. Glaister, J. Shallit. A lower bound technique for the size of nondeterministic finite au-

tomata.IPL 59:75-77, 1996.
12. O. Grumberg, O. Kupferman, S. Sheinvald. Variable automata over infinite alphabets. In

LATA’10, pages 561–572.
13. M. Kaminski and N. Francez. Finite memory automata.Theoretical Computer Science,

134(2):329-363, 1994.
14. M. Kaminski and T. Tan. Regular expressions for languages over infinite alphabets.Fundam.

Inform., 69(3):301-318, 2006.
15. L. Libkin. Logics for unranked trees: an overview.Logical Methods in Computer Science

2(3): (2006).
16. L. Libkin, D. Vrgoč. Regular path queries on graphs withdata. InICDT 2012, to appear.
17. M. Marx. Conditional XPath.ACM TODS, 30 (2005), 929–959.
18. A. O. Mendelzon, P. T. Wood. Finding regular simple pathsin graph databases.SIAM J.

Comput, 24(6):1235-1258 (1995).
19. F. Neven. Automata theory for XML researchers.SIGMOD Record, 31(3):39?46, 2002.
20. F. Neven, Th. Schwentick, V. Vianu. Finite state machines for strings over infinite alphabets.

ACM TOCL5(3):403-435 (2004).
21. H. Sakamoto and D. Ikeda., Intractability of decision problems for finite-memory automata.

Theor. Comput. Sci.231, 2, 297-308, 2000.
22. T. Schwentick. Automata for XML – A survey.JCSS73(3): 289-315 (2007).
23. L. Segoufin. Automata and logics for words and trees over an infinite alphabet. InCSL’06,

pages 41-57.
24. M. Sipser, Introduction to the Theory of Computation. PWS Publishing, 1997.
25. T. Tan. Graph reachability and pebble automata over infinite alphabets. InLICS 2009, pages

157–166.

