Regular Expressions for Data Words

Leonid Libkin and Domagoj Vrgo¢

School of Informatics, University of Edinburgh

Abstract. In data words, each position carries not only a letter formnéefi
alphabet, as the usual words do, but also a data value comong dn infi-
nite domain. There has been a renewed interest in them duygptizations in
querying and reasoning about data models with complex tstalcproperties,
notably XML, and more recently, graph databases. Logicah&disms designed
for querying such data often require concise and easilynstaledable presenta-
tions of regular languages over data words.

Our goal, therefore, is to define and study regular expressir data words. As
the automaton model, we take register automata, which asguasah analog of
NFAs for data words. We first equip standard regular expoesswith limited
memory, and show that they capture the class of data wordsedefiiy register
automata. The complexity of the main decision problemsliesé expressions
(nonemptiness, membership) also turns out to be the samer asdister au-
tomata. We then look at a subclass of these regular expnss#iat can define
many properties of interest in applications of data words, show that the main
decision problems can be solved efficiently for it.

1 Introduction

Data words are words that, in addition to a letter from a finifghabet, have data
valuefrom an infinite domain associated with each position. Fameple, (¢) (3) (%)
is a data word over an alphabBt= {a, b} andN as the domain of values. It can be
viewed as the ordinary worgbb in which the first and the third positions are equipped
with valuel, and the second position with val@e

These were introduced in [13] which proposed a natural sibe@nof finite au-
tomata for them, calledegister automataData words have become an active subject
of research lately due to their applications in XML, in peutar in static analysis of
logic and automata-based XML specifications, and in queajyuation tasks. Indeed,
paths in XML trees should account not only for the labels (Xkas) but values of
attributes, which can come from an infinite domain, suctNa$Vhile logic and au-
tomata models are well-understood by now for the strucfaal of XML (i.e., trees)
[15,17,22], adding data values required a concentratextdtir finding good logics
and their associated automata [4, 6, 5, 10, 20, 23]. Cororechietween logical and au-
tomata formalisms have been explored as well, usually wigfdcus on finding logics
with decidable satisfiability problem. A well-known resolt[5] shows that F®, the
two-variable fragment of first-order logic extended by dijuaest for data values, is
decidable over data words. Another account of this was gngR0], where various
data word automata models are compared to fragments of FO1&@l with regard

to their expressive power. Recently, the problem was stuitig3, 8]; in particular it
was shown that the guarded fragment of MSO defines data wogliées that are
recognized by non-deterministic register automata.

Data words appear in other areas as well, in particular gati€in, and querying
databases. In several applications, one would like to déhl eoncise and easy-to-
understand representations of languages of data wordseTa@ be used, for example,
in extending languages for XML navigation that take intocaot data values. Another
possible example is in the field of verification, in partisitam modeling infinite-state
systems with finite control [9, 12]. Here having a concisaespntation of system prop-
erties is much preferred to long and unintuitive specifaaigiven by e.g. automata.

The need for a good representation mechanism for data wogiidaes is partic-
ularly apparent in the area of querying graph databases[dlata model that is in-
creasingly common in applications including social netwobiology, Semantic Web,
and RDF. Many properties of interest in such databases aressed by regular path
queries [18], asking for the existence of a path conforming given regular expres-
sion, or their extensions [7, 2]. Typical queries are spegifiy the closure of atomic

formulaez = y underA and3; the atoms ask for the existence of a path whose la-
bel is in a regular language between: andy [7]. Typically, such logical languages
have been studied without taking data values into accowetteftly, however, logical
languages that extend regular conditions from words to Watas appeared [16]; for
such languages we need a concise way of representing réandaiages, which is most
commonly done by regular expressions (as automata tend riather cumbersome to
be used in a query language).

The most natural extension of the usual NFAs to data wordsgister automata
first introduced in [13] and studied, for example, in [9, ZIhese are in essence finite
state automata equipped with a set of registers that allemtto store data values
and make a decision about their next step based not only ocuthent state and the
letter in the current position, but also by comparing therenitr data value with the
ones previously stored in registers. They were originaityoduced as a mechanism to
reason about words over an infinite alphabet (that is, witlioe: finite part), but they
easily extend to describe data word languages. Note thatietwaf other automata
formalisms for data words exist, for example, pebble autarf0, 25], data automata
[5], and class automata [6]. In this paper we concentrateaoguages specified by
register automata, since they are the most natural geratiah of finite state automata
to languages over data words.

As mentioned earlier, if we think of a specification of a datasManguage, register
automata are not the most natural way of providing them: ¢, fven over the usual
words, regular languages are easier to describe by regipaessions than by NFAs.
For example, in XML and graph database applications, sgegifpaths via regular
expressions is completely standard. In many XML specificeti(e.g., XPath), data
value comparisons are fairly limited: for instance, oneosisef two paths ends with
the same value. On the other hand, in graph databases, @mengfeds to specify a
path using both labels and data values that occur in it. Fasettpurposes, we need
a language for describing regular languages of data worels,languages accepted
by register automata. In [16] we started looking at such esgions, but in a context

slightly different from data words. Our goal now is to pretsgrlean account of regular
expressions for data words that would:

1. capture the power of register automata over data wordsagithe usual regular
expressions capture the power of regular languages;

2. have good algorithmic properties, at least matchingglobsegister automata; and

3. admit expressive subclasses with very good (efficiegfrithmic properties.

Note that an attempt to find such regular expressions hasrhada in [14], but it
fell short of even the first goal. In fact, the expressionslaf][are not very intuitive,
and they fail to capture some very simple languages likeek@mple, the language
{(4)(5) | d # d'}. In our formalism this language will be described by a regula
expressiorfa|z) - (a[z7]). This expression says: bindto be the data value seen while
readinga, move to the next position, and check that the symbal @nd that the data
value differs from the one in. The idea of binding is, of course, common in formal
language theory, but here we do not bind a letter or a subvasdfér example, in
regular expressions with backreferencing) but ratherasftom an infinite alphabet.

We shall call such expressioregjular expressions with memoiy/e formally define
their semantics, give examples, prove that they capturistezgautomata and share
their algorithmic properties. We then introduce a différend of regular expressions,
regular expressions with equalityhe previous language, for example, will be captured
by the expressiofua)., saying that the finite part of the data word readsand the
data values at the beginning and at the end are differenthdie that such expressions
are strictly weaker than expressions with memory, but enjog algorithmic properties.

Organization. In Section 2 we define register automata, and list their coptop-
erties and complexity results about nonemptiness and nsiipe In Section 3 we
introduce regular expressions with memory and show that dedine the same class
of languages as register automata. In Section 4 we introckgedar expressions with
equality, show that while they are strictly weaker than s&ggi automata, they admit
faster algorithms for decision problems that are based ecltise connection of these
expressions with pushdown automata. Due to space limitgti@ome proofs are only
sketched, and complete proofs will appear in the full versibthe paper.

2 Register automata over data words

A data word is simply a finite string over the alphahEBtx D, whereX is a finite set of
letters andD an infinite set of data values. That is, in each position a datal carries
a letter fromX’ and a data value fror®. We will denote data words b@). (Z"),
wherea; € X andd; € D. The set of all data words over the aIphaﬁMnd set of data
valuesD is denoted by [D]*. A data word language is simply a subge€ X' [D]*.

Register automata are an analog of NFAs for data words. Tl fitom one state
to another by reading the appropriate letter from the firlppha@bet and comparing the
data value to ones previously stored into the registers veision of register automata
will use comparisons which are boolean combinations of atem+~ comparisons of
data values.

To define such conditions formally, assume that, for dach0, we have variables
x1,-..., k. Then the set of conditior; is given by the grammar:

c = tt|ff|xi:|a:f|c/\c|c\/c|ﬂc, 1<i<k.

The satisfaction is defined with respect to a data value D and a tupler =
(dy,...,dy) € D* as follows:

—d,7 Ettandd, T}~ £1;

—d, 7 a7 iff d = dj;

—d, 7 a7 iff d#d;;

—d,TEca ANeaiff d,7 = ¢ andd, T £ ¢o (and likewise fore; V eo);
—d, 7 E—ciff d, 7 E ¢

In what follows, [k] is a shorthand fof1, ..., k}.

Definition 1 (Register data word automata).Let X be a finite alphabet ané a nat-
ural number. Ak-register data word automatia tupleA = (Q, qo, F, T'), where:

— Q is afinite set of states;

— qo € Q is the initial state;

— F C Qs the set of final states;

— T is afinite set of transitions of the for(g, a,¢) — (I, ¢’), whereq, ¢’ are states,
ais alabel,I C [k], andc is a condition inC.

Intuitively the automaton traverses a data word from leftgbt, starting ingg, with
all registers empty. If it read@) in stateg with register configuration, it may apply a
transition(q, a,c¢) — (I,¢’) if d, 7 = ¢; it then enters stat¢ and changes contents of
registers, withi € I, tod.

To define acceptance formally we first define a configuratioa kfregister data
word automatond on data wordw = (Zi) e (‘;:) as a triple(q, j, 7), whereg is the
current state of4, j is the current position of the symbol in that .4 reads and- is
the current state of the registers. We use the synibtd indicate that a register is
unassigned; that ig; is a k-tuple overD, = D U {L}. The initial configuration is
(qo, 1,70), whereryp = (L, ..., 1), and any configuratiofy, j, 7) with ¢ € F'is a final
configuration.

From a configuratiofiq, j, 7) we can move to a configuratidn’, j + 1, 7/) if:

- (q,a4,¢) — (I,q¢") is atransition inA,
—dj, 7= cand
— 7' is obtained fronr by replacing data values in registers frdrby d;.

We say thatd acceptsv if there is a sequence of configurationéfonw that leads
A from the initial to a final configuration while reading

RemarkGiven ak-register data word automatos and a tupler € D%, we can turn
A into an automatord(7) defined just asd but starting withr as the register config-
uration. Such an extension does not affect the class of tatégnguages, but will be
useful in inductive constructions when automata need ot gfith all registers unas-
signed.

A useful property of register automata that will be neededughout this paper is
that, intuitively, such automata can only keep track of asiyndata values as can be
stored in their registers. Formally, we have:

Lemma 1. Let A be ak-register data word automaton. JA recognizes some word of
lengthn, then it recognizes a word of lengththat uses at most + 1 different data
values.

Proof. We first set some notation. We will say that twaegister assignmentsand7
are of the same equality type if we hawv@) = 7(j) if and only if 7(i) = 7(3), for all
i,j < k. Note that this also implies tha{i) # 7(j) if and only if 7(i) # 7(j).

We will prove a slightly more general claim, allowing our anitata to start with
an nonempty assignment of the registers. 4ét;) = (Q, qo, F,T) be ak-register
data word automaton, starting with the initial assignmentin the registers and
w= (). (5") aword that it accepts. This means that there is a sequentates s
q0,q1, - - -, qn, With ¢,, € F and a sequence of register assignmegts, , . .., 7, such
that (¢;—1,a;,¢;) — (I;,q;) € T, thatr,_1,d; | ¢; andr; is obtained fromr;_; by
replacing all registers fromy with d;, fori =1...n

Now letS = {ry(i) : 1 <14 < k} —{L}. ThatisS contains all the data values from
the initial assignment, except the one denoting that thistergs empty.

Let S be any set of data values such thét= k + 1 andS C S.

We prove by induction o < n that we can define a data wotd, of lengthz,
such thatw; (dl) ... (‘;) whereay, . ..a; are fromw andd:, ..., d: are froms.

We then show that for thig; there is a sequence of assignmetjts, . .. 7/ such that
eachr; is of the same equality type ag, wherej < i and it holds that; 1, d; = c;,
forall j <iand each’ is obtained from;_, by replacing all the data vaIues from

by d;. Note that this actually means thdtgoes through the same sequence of states
Wh|le readingw; as it did while readingv. But thenw,, is the desired word from the
statement of the lemma.

To prove this we first assume that= 1. We setr), = 7y and selectl € S such that
70, d |= ¢1 (note that this is possible since we have 1 values at disposal and test only
for equality or inequality with a fixed set @f elements) and such that andr{ are of
the same equality type, wher¢ is obtained fromy{, by replacing all data values from
I, by d. Again, this is possible since the origin&l (from w) could have either been
different from all data values iny or equal to some of them, a choice we can simulate
with elements fronf. We now seto; = (%}).

Assume now that the claim holds for< n. We prove the claim fof + 1. By the
induction hypothesis we know that there exists a data were (gj) ... (%) with data
values fromS and a sequence of assignments each one obtained from theysrey
the condition dictated by the original accepting run thival4 to go through the states
90,41, - - -, q;- We now pickd € S suchthat/, d |= c;;1 andr/,, obtained from] by
replacing all data values frotf),; by d, has the same equality type as:. Note that
this is possible since; andr! have the same equality type by the induction hypothesis
and we have enough data values at our disposal (again, wedpigk d so that it is in
the same relation to data values frafrasd, 1 from w was to data values from, but
this is possible since each assignment can remember atinuzgt values). Now we

simply definew; 1 = w; - (“7‘;1). Note that thisv; ; has all the desired properties and
can takeA from gg t0 g; 1.
This concludes the proof of the lemma. |

We now show that we can view register automata as NFAs whérictes only to
a finite set of data values.

Let A = (Q, qo, F,T) be ak-register data word automatop, a finite set of data
values, andD; = D U {L}. We transformA into an NFAAp = (Q’, ¢, F’,) over
the alphabet’ x D as follows:

- Q' =Q x D¥;
- gy = (qo, L"*);
- F' = F x Dk;

— Whenever we have a transitiéq, a, c) — (I, ¢’) in T, we add the transition

a

(@ (5). @7

to T if d, 7 = cand7’ is obtained fromr by puttingd in positions from the set.

It is straightforward to check thad accepts a data word over x D if and only if
Ap does. That is we obtain the following.

Lemma 2. Let D be afinite set of data values anta register automaton ovex. Then
there exists a finite state automatdn, over the alphabel’ x D such thatv € L(Ap)
iff w € L(A), for everyw with data values fronD. Moreover,4, is of size exponential
in the size of4 and polynomial in the size db.

Since register automata closely resemble classical fitétie utomata, it is not
surprising that some (although not all) constructionsdvedir NFAs can be carried over
to register automata. We now recall results about closumespties of register automata
[13]. Although our notion of automata is slightly differethtan the one used there, all
constructions from [13] can be easily modified to work in te#iag proposed here.

Fact1 ([13]) 1. The setof languages recognized by register automatasedliunder
union, intersection, concatenation and Kleene star.
2. Languages recognized by register automata are not cloedér complement.
3. Languages recognized by register automata are closednaittomorphisms: that
is, if f : D — D is an automorphism and is accepted by, then the data word
f(w) in which every data valué is replaced byf (d) is also accepted by.

Membership and nonemptiness are some of the most importardability prob-
lems related to formal languages. We now recall the exacptmity of these problems
for register automata. Since the model of register automatase here differs slightly
from the one in previous work, we sketch how these resulty @aer to our model.

Recall that nonemptiness problem for an automatbnis checking whether
L(A) # 0.

Fact 2 ([9]) The nonemptiness problem for register data word automatsBaCE
complete.

The lower bound will follow from Theorem 1 and PropositionFar the upper
bound we convert out-register automatod into an NFAAp over the alphabet x D
(as in the Lemma 2), wher® = {0, ...,k + 1}. We know thatdp, recognizes all data
words fromL(.A) using only data values fro». By Lemma 1 and invariance under
automorphisms, we know that checkiggfor nonemptiness is equivalent to checking
Ap for nonemptiness. Using on-the-fly construction we get #nsréd result (note that
Ap can not be created before checking it for nonemptiness).

The membership problem asks, for an automatiband a wordw, whetherw €
L(A).

Fact 3 ([21]) The membership problem for register data word automataNB-
complete.

The lower bound will follow from Theorem 1 and PropositionFar the upper
bound it simply suffices to guess an accepting run of the aatom

3 Regular expressions with memory

In this section we develop regular expressions capturigster automata in the same
way as the usual regular expressions capture regular lgegu@o do this notice that
register automata could be pictured as finite state autowladae transitions between
states have labels of the forafc] | I, wherel is a set of registers. Such an automaton
can move from one state to another using an awf if the letter it sees i, and
the data value (together with the current register assigiinsatisfies the condition It
then proceeds to the next state and updates the registevatinthe current data value.
This suggests that the basic building blocks for our exjpoasswill be expressions of
the forma[c]| 1.

Definition 2 (Expressions with memory).Let X be a finite alphabetand,, ...,z a
finite set of variables. Regular expressions with memory &e, . . ., 2| are defined
inductively as follows:

— ¢ and() are expressions;
— alc]l1 is an expression; here € X, cis a condition inCy, andl C {x1,...,z};
— If e, e1, e5 are expressions, then so are+ e», eg - ea, ande™.

For convenience we will write justif I = () and the conditiom = tt and similarly
when only one of them can be ignored. Also] iE {z}, we writea|c]]x, or alz when
¢ = tt, instead ofu[c]|].

To define the semantics, we first define what it means for anesgfme over
Ylz1,...xx), a data wordw and a tuples € D* to infer another tuple”’ € Dk,
viewed as partial assignment of values to variables. We idartHuctively one.

- (e,w,0) ko' iff w=eando’ =o.

- (aldlI,w,0) o iff w = ({) ando, d = cando’ is obtained fromy by assigning
dtoeachr; € I.
— (e1 - ea,w,0) F o iff w = w; - wo and there exists a valuatiar’ such that
(e1,w1,0) F o’ and(eq, ws,0”) F o’.
— (e1 + e, w,0) F oiff (e1,w,0) F o’ or (e, w,0) F o'
— (e*,w,0) b o iff
1. w=¢e¢ando = o/, 0r
2. w = w - wy and there exists a valuatierf’ such that(e, w;, o) F ¢’ and
(e*,we,0”) ko'

We say that a regular expressierinducesa tuplec € D% on a data wordy if
(e,w, LF) - 0. We then defind.(e), the language of, as the set of all data words on
which e induces some tuple. A regular expression with memoeyis well-formedif
every variable is bound before being used in a conditionrFnow on we will assume
that all our expressions are well-formed.

Example 1.We now give a few examples of data word languages definabledylar
expressions with memory.

1. The expressio(ulz)- (b[z7])* defines the language of data words where word part
readszb* and such that the first data value is different from all othiétsinds while
reading the first;, and then it proceeds checking that the lettdr &d condition
=7 is satisfied, which is expressed tfy:*]; the expression is then put in the scope
of * to indicate that the number of such values is arbitrary.

2. The language of data words in which two data values areaime $s given by the
expressio* - (X|x)- X* - (X[27])- X*, whereX is the shorthand fat; +. . . +ay,
wheneverX = {a4,...,q;} andX |z is a shorthand fod, |z + . .. 4+ a;]x. It says:
at some point, bind:;, and then check that after one or more letters, we have the
same data value.

3. The language of data words in which the last two data vabaesr elsewhere in
the word with labek is defined by~ * - (alz) - X* - (aly) - X* - (X[~ + X[y7]) -
(2] + [y

3.1 Equivalence with register automata

In this section we prove that every language recognized digter automata can also
be described by a regular expression with memory and vicgavén fact, we show a
tighter connection, from which the equivalence will folldvet L (e, o, o’) be the set of

all data wordsw such thate, w, o) F o/, and letL(A, o, ¢’) be the set of all data words

w such thatw is accepted byd(c), and there exists an accepting run that ends with a
register configuration’.

Theorem 1. 1. For every regular expression with memergver X[z, . .., 2] there
exists (and can be constructed in logarithmic spacé}@gister data word au-
tomatonA, such thatl(e, o, 0’) = L(A.,0,0") for everys, o’ € D% .

2. For everyk-register data word automatad there exists (and can be constructed in
exponential time) a regular expression with memejgyoverzy, ..., x; such that
L(ea,o,0") = L(A,0,0") for everyo, o’ € D% .

The structure of the proof follows of course the standard Mé&gular expressions
equivalence, cf. [24], with all the necessary adjustmemtsandle transitions induced
by a[c] | I. Details can be found in the complete version of the papecesi(e¢) =
U, L(e, L¥, o) andL(A) = |, L(A, L*,), we obtain:

Corollary 1. The classes of languages of data words definable-lggister data word
automata, and by regular expressions with memory dvier, . . ., x| are the same.

3.2 Properties of regular expressions with memory

Corollary 1 and closure properties of register automata edhiately imply that lan-
guages defined by regular expressions with memory are closger union, intersec-
tion, concatenation, Kleene star, but ad closed under complement.

We now turn to the nonemptiness problem, i.e., checking névéi(.A) # (. Since
going from expressions to automata is polynomial, we get@aBEeupper bound (see
Fact 2). One can also prove a matching lower bound, by adpfahniques used in a
different but related setting [16] for combined complexityunds on query evaluation
over graph databases and obtain:

Proposition 1. The nonemptiness problem for regular expressions with memso
PspPACEcomplete.

Next we move to the membership problem, i.e., checking wdrethe L(e). Again,
sincee can be translated efficiently into an equivalent automadpnFact 3 gives an
NP upper bound. We can prove a matching lower bound as well:

Proposition 2. The membership problem for regular expressions with memsdxyP-
complete.

Proof. For the lower bound we do a reduction from 3-SAT.

Letp = (a1 Vb1 Ver) Aag Vb V). .. A(ag Vb Veg), be an arbitrary 3-CNF
formula. We will construct a data word and a regular expression with memaryoth
of length linear in the length af, such thatp is satisfiable if and only ifv € L(e).

Letxy,zs,...,x, be all the variables occurring ip. We definew as the following

data word:
a\ [b\\" ai by c1 ar by CL
o= () O G @) - (@) @))
whered,,, = 1, if a; = x;, for somej € {1,...n} and0, if a; = T; and similarly for
dy, , d., (note that every;, b;, ¢; is of the forx;, orz;, so this is well defined).

Also note that we are using, b;, ¢; both for literals inp and for letters of our finite
alphabet, but this should not arise any confusion. The igganbl this data word is
that with the first part that corresponds to the variablesyiith ((7) (%)™, we guess a
satisfying assignment and the next part corresponds to@aghnct inp and its data
value is set such that if we stop at any point for comparisog@te true literal in this
conjunct.

We now define as the following regular expression with memory:

e = (alr1 + ablr1) - b" - (alwz + ablwz) - b* - (alws + ablws) - -
b* - (alx,, + ablx,) - b* - clause - clause . . . clause,

where each clauseorresponds to theth conjunct ofy in the following manner.
If ith conjunct uses variables, , z;,, =, (possibly with repetitions), then

clause = a;[x},] - bi - ci + a; - bi[x})] - ci + @i - bi - cifxg].

We now prove thap is satisfiable if and only ifv € L(e).

Assume first that is satisfiable. Then there’'s a way to assign a value to each
such that for every conjunct ipp at least one literal is true. This means that we can
traverse the first part ab to chose the corresponding values for variables bounded in
Now with this choice we can make one of the literals in eactwmwst true, so we can
traverse every clausesing one of the tree possibilities.

Assume now thatv € L(e). This means that after choosing the data values for
variables (and thus a valuation fgr, since all data values are either 0 or 1), we are
able to traverse the second partwfusing these values. This means that for every
clause there is a letter after which the data value is the same asthéounded to the
corresponding variable. Since data values in the secoriebparcorrespond to literal
in the corresponding conjunct gfto evaluate to 1, we know that this valuation satisfies
our formulap.]

4 Regular expressions with equality

In this section we define yet another kind of expressionsjleegexpressions with
equality, that will have significantly better algorithmicoperties that regular expres-
sions with memory and register automata, while still retajrmuch of their expressive
power. The idea is to allow checking for (in)equality of detdues at the beginning and
at the end of subwords conforming to subexpressions.

Definition 3 (Expressions with equality).Let X be a finite alphabet. Theregular
expressions with equaligre defined by the grammar:

e =0]elalete]eel|et |es]ex 1)

wherea ranges over alphabet letters. The langudge) of data words denoted by a
regular expression with equalityis defined as follows.

_L():
L(é‘):{é‘}
= L(a) = {(3) | d € D}.
— L(e-€')=L(e) - L(¢).
- Lle+e€) = ()UL(n.
— L(et) ={wy - -wy | k > 1and eachw; € L(e)}.
= Lle=) ={(3) - (1) € L(e) [dr = dn}.

= Liez) ={(3)--- (37) € L(e) | dv # dn}.

Without any syntactic restrictions, there may be “pathaatj expressions that,
while formally defining the empty language, should nonetbgbe excluded as really
not making sense. For exampde, is formally an expression, and sodg, although it
is clear they cannot denote any data word. We exclude thenefiying well-formed
expressions as follows. We say that the usual regular esipresreduces ta (respec-
tively, to singletons) ifL(e) is e or §) (or |w| < 1 forall w € L(e)). Then we say that
regular expression with equality vgell-formedif it contains no subexpressions of the
forme_ ore., wheree reduces te, or to singletons. From now on we will assume that
all our expressions are well formed.

Note that we use€ instead of« for iteration. This is done for technical purposes
(the ease of translation) and does not reduce expresssjesiese we can always use
e* as shorthand far* + .

We now provide two examples. The expressioh- (X - X*)_ - X* denotes the
language of data words that contain two different positiwith the same data value.
The language of data words in which the first and the last daltzevare different is
given by (X - X1)..

4.1 Properties of regular expressions with equality

As expected regular expressions with equality will be sufesdi by register automata,
but unlike expressions with memory, they will be less exgikes as illustrated by the
following result.

Proposition 3. Regular expressions with equality are strictly weaker thegular ex-
pressions with memory.

When proving this, we simply show that regular expressioitls quality can be
translated into register automata using an easy inductimstouction. Moreover, this
translation can be carried inTRME (in fact in NLOGSPACH. To show they are strictly
weaker than expressions with memory or register automaahew that they cannot
define the language 6)z)-(a[z7])*. To do so, we introduce another kind of automata,
called weak register automata, and show that they cannognéze that language and
that they can define any language described by expressitmeguality.

As immediately follows from their definition, languages d&ed by regular expres-
sions with equality are closed under union, concatenatind,Kleene star. Also, it is
straightforward to see that they are closed under autonmrsh However:

Proposition 4. Languages recognized by regular expressions with equaltiynot
closed under intersection and complement.

Proof sketchObserve first that the expressiatt - (X - X 1)_ - * defines a language
of data words containing two positions with the same dataevalhe complement of
this language is the set of all data words where all data sadwe different, which is
not recognizable by register automata [13]. By Proposifidhis implies that regular
expressions with memory are not closed under complement.

To see that they are not closed under intersection we first it the language

b {(;) (;2) (;3) ‘ dy # dy, dy # d3 anddy # d3}

is not recognizable by any regular expression with equalityprove this we simply
try out all possible combinations of expressions that usea@t three concatenated
occurrences ofi. Note that we can eliminate any expression with more thatetths,
or one that use$ (since this results in arbitrary long words), or union (sirevery
member of the union would have to define words from this lagguend since we do
not use constants we cannot just split the language into twioooe parts). Also, ne-
can occur in our expression (for subexpressions of lenglihaat 2). This reduces the
number of potential expressions to denote the languageitelyimany possibilities,
and we simply try them all.

Now observe that the expressien= ((a - a)+ - a)» defines the language

1 {(2))) om0}

Similarly e = a - (a - a), defines

{0 (@) (&) |7 o)

Note that. = L, N Lo, so if regular expressions with equality were closed under
intersection they would also have been able to define theikyey.. O

To obtain fast membership and nonemptiness testing atgositfor expressions
with equality, we first show how to reduce them to pushdowrata when only
finite alphabets are involved.

Assume that we have a finite sbtof data values. We now inductively construct
PDAs P, p for all regular expressions with equality The words recognized by these
automata will be precisely the words frabte) whose data values come frabh

We construct these PDAs so that they accept by final state watttefmore have
the property that only transitions of the kirigy, (g),X, a, q) leave the initial state
(that is any transition leaving the initial state will conse a letter) and every transition
entering a final state will consume a letter. We will mainthiese properties throughout
the inductive construction.

It is quite clear how to construct the automata o= c,¢ = () ande = a. For
e1+eo,e1-€ andef we use standard constructions, whiledoe (e;)—, ore = (eq)»
we push the first data value on the stack, mark it by a new stawkal and then proceed
with the run of the automaton fer; which exists by the induction hypothesis. Every
time we enter a final state of that automaton we simply emmystack until we reach
the first data value (here we use the new stack symbol) and amnitpfor equality or
inequality with the last data value of the input word. Theiiddal assumptions are
here to assure that the construction works correctly. Betdithe proof can be found
in the full version.

Lemma 3. The language of words accepted by each PRA is equal to the set of
data words inL(e) whose data values come frabh Moreover, the PDAP, p has at
mostO(|e|) states andD(|e| x (|D|*> + |e|)) transitions, and can be constructed in
polynomial time.

From this and Lemma 1 it is easy to obtain the following.

Theorem 2. The nonemptiness problem for regular expressions with lggua in
PTIME.

To see this, take an arbitrary expression with equalépd convert it to a-register
data word automatort that recognizes the same language. From the translation, we
know thatn will be at most the number of times and # appear ine. Now do the
construction from Lemma 3 far andD = {0,1,...,n + 1} to obtain a PDAP, p.
Proposition 3 and Lemma 1 now imply that checkinglife) # 0 is equivalent to
checkingP. p for nonemptiness. Since this automaton is of polynomia,size can
check it for nonemptiness inTAVE thus obtaining the desired result.

Proposition 5. The membership problem for regular expressions with etyuaiin
PTIME.

As in the proof of Theorem 2, we construct a PODA p for e and D =
{0,1,...,n}, wheren is the length of the input word. By invariance under auto-
morphisms we can assume that data values @ome from the seb. Next we simply
check that the word is accepted By p and since this can be done imimE we get the
desired result. The correctness of this algorithm followesf Lemma 3.

It is natural to ask whether NFAs could not have been use@adsbf pushdown
automata. The answer is that they can be used to capturedgegwof data words de-
scribed by regular expressions with equality over a finito$data values, but the cost
is necessarily exponential, and hence we cannot possibléhes to derive Theorem
2. That is, we can first show:

Proposition 6. For every regular expression with equalityover the alphabet’ and
a finite setD of data values there exists an NE&. p, of the size exponential |,
recognizing precisely those data words frdrte) that use data values from.

Proof sketchWe prove this by structural induction on regular expressieith equal-
ity. All of the standard cases are carried out as usual. Tleusmy have to describe the
construction for subexpressions of the formande-. In both cases by the induction
hypothesis we know that there is an NEA p recognizing words irnL(e) with data
values fromD. The automaton for., p (and likewise forA._ p) will consist of | D|
disjoint copies ofA. p, each designated to remember the first data value read when
processing the input. According to this, whenever our aatom would enter a final
state we test that the current data value is different (oséime) to the one correspond-
ing to this copy of the original automaton. This is done in anm&x analogous to the
one used in the proof of Proposition 3.]
However, the exponential lower bound is the best we can doeigéneral case. To
see this, we define a sequence of regular expressions wittorg€iay, } .<n, over the

alphabet” = {a}, and each of length linear in. We then show that fob = {0, 1}
every regular expression over the alphabet D recognizing precisely those data
words fromL(e,,) with data values irD has length exponential i, |.

To prove this we will use the following theorem for provingver bounds of NFAs
[11]. Let L C X* be a regular language and suppose there existsia sef (z;, y;) :
1 <4 < n} of pairs such that:

1. x;-y; € L, foreveryi =1,...n,and
2. x;-y; ¢ L, forl <i,j <nmandi# j.

Then any NFA accepting has at least states.

Thus to prove our claim it suffices to find such a set of size agptial in the length
of e,,.

Next we define the expressioas inductively as follows:

—e1 = (a-a)=,

—ent1 = (a-e,-a).

Itis easy to check that(e,,) = {w-w™! : w € (¥ x {0,1})"}, wherew~! denotes
the reverse ofv.

Now letwy, ... wsn be alist of all the elements i x {0,1})™ in arbitrary order.
We define the pairs i as follows:

— Ty = Wy,
-y = (w;) " h

Since these pairs satisfy the above assumptions 1) and 2jpmaude, using the
result of [11], that any NFA recognizingy(e,,) has at leasD (2!~ |) states, so no regular
expression describing it can be of length polynomigkif.

5 Conclusions and future work

Here we addressed the problem of finding analogs of regulaessgions for register
automata, and explored their language-theoretic pra@seiie also defined an expres-
sive subclass with good algorithmic properties. In the feitwe would like to try and
find an intermediate class of expressions that could be wsextdgnize a larger class
of languages than regular expressions with equality, liltetain low complexity of
nonemptiness and membership checking. We would also likgptore how these new
classes of expressions behave as query languages in griaplasamodels. Since lan-
guage nonemptiness is closely related to query evaluatitrat context we are hopeful
to obtain fast and expressive query languages based ontbesdasses of expressions.
AcknowledgmentWork partially supported by EPSRC grant G049165 and FETROpe
Project FoX, grant agreement 233599.

References

10.
11.

12.
13.
14.
15.
16.
17.
18.

19.
20.

21.

22.
23.

24.
25.

R. Angles, C. Gutiérrez. Survey of graph database moda{SM Comput. Surv0(1):
(2008).

. P. Barcel6, C. Hurtado, L. Libkin, P. Wood. Expressiveglaages for path queries over

graph-structured data. PODS'1Q pages 3-14.

. M. Benedikt, C. Ley, G. Puppis. Automata vs. logics on dedads. InCSL 2010 pages

110-124.

. M. Bojanczyk, P. Parys. XPath evaluation in linear timePODS’08 pages 241-250.
. M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, L. Sedin. Two-variable logic on

words with dataACM TOCL12(4): (2011).

. M. Bojanczyk, S. Lasota. An extension of data automataddatures XPath. 1bICS 2010

pages 243-252.

. D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi. Réng of regular expressions

and regular path queriedCSS64(3):443-465, 2002.

. Thomas Colcombet, Clemens Ley, Gabriele Puppis. On taetiguards for logics with

data.MFCS 2011 pages 243-255.

. S. Demri, R. Lazic. LTL with the freeze quantifier and régriautomataACM TOCL10(3):

(2009).

D. Figueira. Satisfiability of downward XPath with datpelity tests PODS’09 197-206.

I. Glaister, J. Shallit. A lower bound technique for tlieesof nondeterministic finite au-
tomata.IPL 59:75-77, 1996.

O. Grumberg, O. Kupferman, S. Sheinvald. Variable aatanover infinite alphabets. In
LATA'10, pages 561-572.

M. Kaminski and N. Francez. Finite memory automaiéeoretical Computer Science
134(2):329-363, 1994.

M. Kaminski and T. Tan. Regular expressions for langsager infinite alphabet&undam.
Inform,, 69(3):301-318, 2006.

L. Libkin. Logics for unranked trees: an overvielogical Methods in Computer Science
2(3): (2006).

L. Libkin, D. Vrgo€. Regular path queries on graphs vdtta. InICDT 2012 to appear.

M. Marx. Conditional XPathACM TODS 30 (2005), 929-959.

A. O. Mendelzon, P. T. Wood. Finding regular simple pathgraph databasesSIAM J.
Comput 24(6):1235-1258 (1995).

F. Neven. Automata theory for XML researches$GMOD Record31(3):39?46, 2002.

F. Neven, Th. Schwentick, V. Vianu. Finite state machiioe strings over infinite alphabets.
ACM TOCL5(3):403-435 (2004).

H. Sakamoto and D. lkeda., Intractability of decisioolppems for finite-memory automata.
Theor. Comput. Sck31, 2, 297-308, 2000.

T. Schwentick. Automata for XML — A surveyCSS73(3): 289-315 (2007).

L. Segoufin. Automata and logics for words and trees owenfinite alphabet. IlCSL'06
pages 41-57.

M. Sipser, Introduction to the Theory of Computation. $Rublishing, 1997.

T. Tan. Graph reachability and pebble automata oveitefiphabets. ILICS 2009 pages
157-166.

