
Incorporating API data into
SPARQL query answers

Juan L. Reutter, Adrián Soto, and Domagoj Vrgoč

PUC Chile and Center for Semantic Web Research

Abstract. Although the amount of RDF data has been steadily increas-
ing over the years, the majority of information on the Web is still residing
in other formats, and is often not accessible to Semantic Web services.
A lot of this data is available through APIs serving JSON. In this work
we propose a way of extending SPARQL with the option to connect to
JSON APIs and integrate the obtained information into SPARQL query
answers, thus allowing to bring data from the “traditional” Web to the
Semantic Web.

1 Introduction

Semantic Web provides a platform for publishing data on the Web via the Re-
source Description Framework (RDF) [13]. Having a common format for data
dissemination allows for applications of increasing complexity since it enables
them to access data obtained from different sources, or describing different en-
tities. Over the past years billions of facts have been published using RDF,
containing an increasing amount of data coming from corporate institutions
(e.g. BBC, The New York Times), bioinformatics (e.g. Bio2RDF), or govern-
ment bodies (e.g. data.gov). One of the biggest contributors to this explosion of
semantic data on the Web has been the Linked Open Data community, whose
efforts resulted in a huge amount of interconnected datasets being made freely
available through public repositories such as DBpedia, YAGO, WikiData, and
many other sources. In fact, it has now been long established that Linked Data
is the correct way of publishing data on the Semantic Web [15].

However, the majority of data available on the Web today is still not acces-
sible to Semantic Web services, be it because it is not published in the RDF
format, or because there is currently no way of converting it to RDF. Huge
amount of this data is made available through Web APIs which use a variety of
different formats to provide data to the users. It would therefore be opportune to
make all of this data available to Semantic Web technologies, thus allowing them
to consume this wealth of information and create a truly connected Web. The
need for this is further illustrated by the W3C’s vision for data on the Web [19],
which states that “To achieve and create Linked Data, technologies should be
available for a common format (RDF), to make either conversion or on-the-fly
access to existing databases (relational, XML, HTML, etc).”

One way of achieving this is to allow SPARQL, the standard language for
accessing data on the Semantic Web [11], to consult Web APIs and incorporate

their results into its output. In this paper we make a first step in this direction by
extending SPARQL with the capability of communicating with JSON APIs. We
picked JSON because it is currently the most popular data format in Web APIs,
however, the results presented in the paper can easily be extended to any API
format; we stick with JSON simply to keep the presentation manageable. By
allowing SPARQL to connect to an API we can utilise not just the information
that is available locally, but also extend the query answer with data obtained
from a Web service. Use cases for such an extensions are numerous and can be
particularly practical when the data obtained from the API changes very often
(such as current weather conditions, state of the traffic, opening times for venues,
etc.). To illustrate this let us consider the following example.

Example 1. Suppose that you are travelling around Japan in order to do some
skiing. You find yourself at the Hokkaido island and wish to find all the ski
resorts close to your location. This is easily achievable by evaluating the following
SPARQL query over YAGO (in the paper we use the standard set of YAGO and
DBPedia prefixes available at http://dbpedia.org/sparql?nsdecl).

SELECT ?x WHERE {

?x yago:isLocatedIn yago:Hokkaido .

?x rdf:type yago:wikicat_Ski_areas_and_resorts_in_Japan }

Although this information gives you a good starting point, you will probably
want to go skiing in a resort where the weather conditions are favourable (i.e.
it is not raining nor snowing). Instead of looking up weather conditions one
by one based on the listing obtained by the previous query, you would like to
automatically integrate these answers with the information of a weather service
provided through an API called weather.api, and filter out those locations
where the weather is not good. The API implements HTTP requests, so for
example to retrieve the weather in Sapporo you use the URL:

http://weather.api/request?q=Sapporo,

to which the API responds with a JSON document containing weather informa-
tion, say of the form

{"timestamp": "14/04/2016 11:59:07",

"temperature": 11, "description": "Sunny"},

Thus, all you need is to produce one call to the weather api for each ski
centre in Hokkaido, and filter out all those where the description is not Sunny.
To achieve this we extend SPARQL with the BIND API operator, which allows
us to obtain the desired information via the following query.

SELECT ?x ?n WHERE {

?x yago:isLocatedIn yago:Hokkaido .

?x rdf:type yago:wikicat_Ski_areas_and_resorts_in_Japan .

?x rdfs:label ?n

BIND_API <http://weather.api/request?q={?n}>

(["description"]) AS (?t)

FILTER regex(?t,"Sunny")

}

The first part of our query is executed over the database and obtains the IRI
representing the resort and the label of its location (we need the label because
APIs do not accept IRIs). We pass the label of the location as a parameter
to the URL used to consult the API. The newly introduced operator BIND API

takes this URL and upon executing the API call processes the received JSON
document using an expression ["description"], which obtains the value of the
key description of the received JSON, and binds it to the variable ?t. Generally,
the answer we receive is going to be a collection of key-value pairs, so we need
to specify which value we want to obtain and store using the BIND API operator.

In this paper we discuss how such a binding operator should be implemented by
extending the functionality of the standard BIND operator available in SPARQL.
As a proof of concept, we extend the Jena framework [12] with an extra module
for handling API calls, thus showing how this extension of the language can be
achieved without much overhead on top of currently available SPARQL engines
(the source code is available at [2]). To demonstrate that our implementation
is indeed feasible we test it against several real-world examples and show that
we can usually obtain the query answer in reasonable time. As it turns out,
the bottleneck for evaluation is almost always the number of API calls, so we
provide several optimisations that reduce this number. Based on experimental
data we also provide recommendations on when it makes sense to apply these
optimisations.

Related work. Although there has been a lot of work on enabling SPARQL as
an API [3,5,9] (most importantly through the idea of endpoints), not much has
been done on bringing the information made available by various Web APIs to
SPARQL. Some notable exceptions to this have been [14,16,18], where the idea
of building a wrapper for JSON documents and APIs has been introduced, thus
transforming JSON data into RDF in order to make it available for SPARQL
to consume. What we propose, on the other hand, is a way for SPARQL to
obtain API data in a way that will not depend on a particular codification into
RDF, but can be controlled freely by the user. The line of work most similar to
ours is [6], where both an RDF wrapper for existing APIs, and an extension of
SPARQL that allows calls to REST services is described. The main difference of
this work and the one we present is in the fact that [6] uses many assumptions on
the return format of API calls, which would make it uncompatible with modern
JSON APIs, and the fact that the implementation we propose fits by its very
definition into Jena pipeline as an extension of the standard BIND clause.

2 Notation

RDF Graphs. Let I, L, and B be infinite disjoint sets of IRIs, literals, and
blank nodes, respectively. The set of RDF terms T is I∪L∪B. An RDF triple is
a triple (s, p, o) from T×I×T, where s is called subject, p predicate, and o object.
An (RDF) graph is a finite set of RDF triples. For simplicity we assume that

RDF databases consist of a single RDF graph. In this way we avoid dealing with
extra cases generated by the use of the GRAPH operator, although our proposal
can easily be extended to deal with datasets with more graphs.

SPARQL Syntax and Semantics. We assume the reader is familiar with the
syntax and semantics of SPARQL 1.1 query language. We recall here the general
structure of SPARQL patterns, its semantics, and provide the details for a few
operators that are heavily used in the paper.

We distinguish three types of syntactic building blocks— expressions, pat-
terns, and queries, built over terms T and an infinite set V = {?x, ?y, . . .} of
variables, disjoint from T. The official documentation for SPARQL 1.1 defines
the syntax for expressions, as well as the syntax for graph patterns (or just pat-
terns). As for queries, we will only focus on what is known as SELECT queries,
but our results are independent of which query form is used (see the standard [11]
for more details). We assume readers are familiar with the syntax of expressions,
patterns and queries, as well as their semantics. In what follows we just recall the
workings of the BIND and VALUES operators, and fix some notation regarding
the semantics of expressions, patterns and queries.

If P is a graph pattern, R is an expression and ?x is a variable that does not
appear in P , then P BIND (R AS ?x) is a pattern, called a bind pattern. More-
over, if ?x1 ?x2 · · · ?xn is a list of variables and l1, . . . , lm are lists of elements from
T∪{UNDEF}, each of size n, then VALUES (?x1 ?x2 · · · ?xn) {(l1) (l2) · · · (lm)}
is also a pattern, called a values pattern.

The semantics of graph patterns is defined in terms of mappings [11]; that is,
partial functions from the set of variables V to IRIs I. The domain dom(µ) of a
mapping µ is the set of variables on which µ is defined. Two mappings µ1 and
µ2 are compatible (written as µ1 ∼ µ2) if µ1(?x) = µ2(?x) for all variables ?x in
dom(µ1)∩ dom(µ2). If µ1 ∼ µ2, then we write µ1 ∪ µ2 for the mapping obtained
by extending µ1 according to µ2 on all the variables in dom(µ2) \ dom(µ1). If ?x
is a variable and t ∈ T, we use ?x 7→ t to denote the mapping that assigns t to
?x and does not assign values to any other variable.

Given a mapping µ and an expression R, we denote by JRKµ the result
of evaluating the expression with respect to µ. This can be either a value
from T ∪ {error}, if R is some sort of algebraic expression, or a value in
{true, false, error}, if R is a boolean expression. Moreover, given a graph G
and a pattern P , we denote the evaluation of a graph pattern P over G as JP KG.
Note that the semantics of patterns includes SELECT queries, since these queries
can now be understood as patterns, following the addition of nested queries in
the latest version of the standard. We can now define the semantics of BIND, for
P a graph pattern, R an expression and ?x a variable not in P :

JP BINDRAS ?xKG =
{
µ′ | µ ∈ JP KG, µ′ =

µ ∪ {?x 7→ JRKµ}, JRKµ 6= error
}
∪
{
µ | µ ∈ JP KG, JRKµ = error

}
Likewise, the following is the semantics of VALUES, for a list ?x1 ?x2 · · · ?xn

of variables and lists l1, . . . , lm of elements from T ∪ {UNDEF}, each of size n.

Here (?x1 ?x2 · · · ?xn) 7→ lj refers to a mapping that assigns the i-th element of
lj to the variable ?xi, for each 1 ≤ i ≤ n.

JVALUES (?x1 · · · ?xn) {(l1) · · · (lm)}KG =
⋃

1≤j≤m

{(?x1 · · · ?xn) 7→ lj}

JSON documents and navigation instructions. The JSON format [7] de-
fines the following types of values. First, true, false and null are JSON values.
Any decimal number (e.g. 3.14, 23) is also a JSON value, called a number. Fur-
thermore, if s is a string of unicode characters then "s" is a JSON value, called
a string value. Next, if v1, . . . , vn are JSON values and s1, . . . , sn are pairwise
distinct string values, then o = {s1 : v1, . . . , sn : vn} is a JSON value, called
an object. In this case, each si : vi is called a key-value pair of o. Finally, if
v1, . . . , vn are JSON values then a = [v1, . . . , vn] is a JSON value called an ar-
ray. In this case v1, . . . , vn are called the elements of a. Numeric values, strings
and the boolean values true, and false are called basic JSON values.

We sometimes use the term JSON document (or just document) to refer
to JSON values. The following syntax is normally used to navigate through
JSON documents. If J is an object, then J [“key”] is the value of J whose key is
the string “key”. Likewise, if J is an array, then J [n], for a natural number n,
contains the (n-1)-th element of J . Both [“key”] and [n], for some string key, and
a natural number n, are called JSON navigation instructions. Since a value of a
key can again be a JSON document, we allow stacking navigation instructions,
thus resulting in expressions like e.g. [”key1”][7][”key2”], which assumes that
the value of key1 is an array of JSON documents, and that the 7th element
of this array is a JSON document which contains a key named key2. Such a
concatenation of navigation expressions is again a JSON navigation expression.

3 Enabling SPARLQ to make JSON calls

In this section we define the syntax and the semantics of API calls made available
in our framework. We begin by describing how JSON APIs function, and then
describe a SPARQL operator which can incorporate the data obtained from APIs
into SPARQL query answers. We illustrate the utility of this new operator using
a set of real world examples.

3.1 JSON APIs, requests and navigating JSON documents

While theoretically one can use our ideas to connect SPARQL to any Web API,
we concentrate on the so-called REST Web APIs, which communicate via HTTP
requests. To describe our ideas we adopt in this section a simplified view of
requests where we only focus on the request IRI. Of course, any implementation
needs to take care of all the other details when connecting to APIs; we discuss
this issue in the following section. Finally, we assume that all API responses
are JSON documents. We focus on JSON APIs because it is arguably the most
popular format to send responses over the HTTP protocol.

As an example of how a JSON API would work, consider an application
containing information about weather conditions around the world. The appli-
cation provides an API to allow other software to access this information. A
hypothetical call to this API may be a request containing this URL:

http://weather.api/request?q=Santiago,CL

by which a client is requesting the current weather conditions in Santiago, Chile.
The API gives back an HTTP response containing the following JSON file:

{ "City": "Santiago", "Country": "Chile",

"coord": {"lat": 33.27, "long": 70.40},

"temperature": 25, "description": "Sunny"},

indicating that the temperature is 25 degrees and the day is sunny. To obtain
these facts we need to navigate through the retrieved JSON document, using
JSON navigation instructions. If we denote the JSON file above by J , then the
current temperature and the weather description can be fetched using the in-
structions J ["temperature"] and J ["description"], respectively. Note that the
value of the key coord is again a JSON document. Therefore if we wanted to
obtain e.g. the latitude of the city, we would need to navigate first to this docu-
ment, and then to the value of the appropriate key. For the document J above,
this is done using the instruction J ["coord"]["lat"], which first retrieves the
value of the key "coord" (this is again a JSON document), and then navigates
to the key "lat" inside the JSON document retrieved by J ["coord"].

We always assume that the general structure of the JSON response is known
by users; this can be achieved, for example, by including the schema of the
response in the documentation of the API (see e.g. [4, 8, 17]).

3.2 The API call operator

A parameterised IRI is an IRI in which the query part may contain substrings of
the form {?x}, for ?x in V. For example, the following are parameterised IRIs:

http://weather.api/request?q={?city}
http://other.api/request?q={?city},{?country}

A parameterised URL is just a parameterised IRI which is also a URL. When
talking about API calls we use the term IRI and URL interchangeably, with the
former being more general. Given a parameterised IRI u, we denote by var(u)
the set of variables between brackets that are contained in u, and we generally
say that u uses variables var(u). For example, the sets of variables of the IRIs
above are {?city} and {?city, ?country}, respectively.

We now define the syntax of our BIND-from-API operator. Let P1 be a graph
pattern, U a parameterised IRI, ?x1, . . . , ?xm a sequence of pairwise distinct
variables, and N1, . . . , Nm a sequence of JSON navigation instruction. Then the
following is a SPARQL pattern, that we call a BIND-from-API pattern

P1 BIND API U (N1, N2, . . . , Nm) AS (?x1, ?x2, . . . , ?xm) (1)

The intuition behind the evaluation of this operator over a graph G is the fol-
lowing. For each mapping µ in JP1KG we instantiate every variable ?y in the
parameterised IRI U with the value µ(?y), thus obtaining an IRI which is a
valid API call. We call the API with this instantiated IRI, obtaining a JSON
document, say J . We then apply the navigation instruction N1 to J and store
the obtained value into ?x1. Similarly, the value of N2 applied to J is stored into
?x2, etc. After this is done, the mapping µ is extended with the new variables
?x1, . . . , ?xm, which have been assigned values according to J and Nis.

By our definition BIND-from-API patterns can appear anywhere usual
SPARQL patterns can. For instance, in Example 1, we showcased how such
patterns can be used inside a WHERE clause to obtain weather conditions from a
climate API. Notice that in (1) the pattern P1 can again be a BIND-from-API
pattern, which allows us to use several BIND API operators in order to obtain
results from one or more APIs inside a single query. Some use cases utilizing this
functionality are displayed in Section 3.4 below.

3.3 Semantics

The semantics of a BIND-from-API pattern is defined in terms of the instanti-
ation of a parameterised IRI U with respect to a mapping µ (denoted µ(U)),
which is simply the IRI that results by replacing each construct {?x} in U with
µ(?x), if ?x is in dom(µ), or with the empty string in case ?x is not in dom(µ).

Thus, every different mapping produces a different IRI, which we then use
to produce an HTTP request to the API in the body of the IRI. Formally, given
a parameterised IRI U and a mapping µ, we denote by call(U, µ) the result of
the following process:

1. Instantiate U with respect to µ, obtaining the IRI µ(U).
2. Produce a request to the API signed by (µ(U)), obtaining either a JSON

document (in case the call is successful) or an error.

Informally, we refer to this process as the call to U with respect to the mapping
µ. Note that we adopt the convention that HTTP requests that do not give back
a JSON document result in an error, that is, call(U, µ) = error whenever the
request using U does not result in a valid JSON document.

For instance, if we have a mapping µ, such that µ(?y) = Santiago,CL,
and a parameterised IRI U = <http://weather.api/request?q={?y}>, then
µ(U) = <http://weather.api/request?q=Santiago,CL>. When this request
is executed against the weather API in the IRI, the answer result is either a
JSON document similar to the one from Example 1, describing the weather
conditions in Santiago, Chile, or it is an error.

The evaluation of a BIND-from-API pattern P of the form (1) is defined as:

JP KG =
{
µ′ | µ ∈ JP1KG,

µ′ = µ
⋃

1≤j≤m

{?xj 7→ call(U, µ)[Nj]}, if call(U, µ) is a JSON document,

and call(U, µ)[Nj] returns a basic JSON value,

∅, otherwise.

Let us briefly discuss the idea of this definition. Consider a pattern P1 =
?x rdf:type dbo:Place . ?x rdfs:label ?y, and a parameterised IRI U =
<http://weather.api/request?q={?y}>. Then the pattern

P = P1 BIND API U (["temperature"]) AS (?t)

forms a BIND-from-API pattern. Suppose that we are evaluating P over some
RDF graph G, and that we know that JP1KG contains the following mappings.

µ1
?x ?y

dbr:Tokio Tokyo
µ2

?x ?y
dbr:Berlin Berlin

The evaluation of P over G is then obtained by extending mappings in JP1KG
using U . That is, we iterate over µ ∈ JP1KG one by one, execute the call call(U, µ),
and store the value call(U, µ)["temperature"] into the variable ?t, in case that
the obtained JSON value is a string, a number, or a boolean value, and leave ?t

unbound otherwise. For example, if we assume that the calls are as follows,

call(µ1, U) = {"temperature": 22 } call(µ2, U) = error

then the evaluation JP KG will contain the following two mappings

µ1
?x ?y ?t

dbr:Tokio Tokyo 22
µ2

?x ?y ?t
dbr:Berlin Berlin

Note that ?t would also remain unbound if call(U, µ2) returned a JSON
document not containing the key "temperature", or if the value of this key is
not a basic JSON value.
Safety conditions. When considering a BIND-from-API pattern of the form
(1), there are a few syntactic conditions which can help us avoid unnecessary
API calls, or contradictory information. First, we require that all the variables
appearing in the parameterised IRI U are also mentioned in the pattern P1, in
order to avoid API calls with completely unspecified values. We also forbid the
variables ?x1, . . . , ?xm to appear in the pattern P1, to avoid the scenario where
we are trying to rewrite the existing piece of information with the value obtained
from the API. In the remainder of the paper, and in our implementation, we will
always assume that the BIND-from-API patterns satisfy these two restrictions.

3.4 Further use-cases

In this subsection we provide several use cases where incorporating API data into
SPARQL query answers could be useful. We begin with an example showing how
the BIND API operator can be used to combine multiple APIs in a single query.

Example 2. We find ourselves in London and want to visit a museum. We can use
DBPedia to obtain standard information about London’s museums, but we would
also like to know which museums are currently open, and which ones are the most
interesting. Thus, we set up to augment our answers with API information. We
shall collect the opening times using the Yelp API, while the user feedback about

the venue will be the most relevant tweet provided by Twitter API. YELP API
allows a search for terms, and returns an object with key "business" that
contains an array of places, ordered by relevance to the term. We select the first
item, and then retrieve the value of "is closed", which is true or false depending
on whether the museum is open or closed at the moment. Summing up, we
navigate the response using [businesses][0][is closed]. Twitter works in a
similar way. When a search is requested, the API responds with an object with
key "statuses", containing several tweets ordered by relevance. We select the
first status and look for the value of "text", all of which corresponds to the
instruction ["statuses"][0]["text"]. The query is shown below1:

SELECT ?x ?n ?h ?t WHERE {

?x dbo:subject dbp:Museums_in_London .

?x rdfs:label ?n

BIND_API <https://api.yelp.com/v2/search?term={?n}>

(["businesses"][0]["is_closed"]) AS (?h)

BIND_API <https://api.twitter.com/1.1/search/tweets.json?q={?n}>

(["statuses"][0]["text"]) AS (?t)

}

Figure 1 shows a sample answer for this query. ut

Next, we use Yelp information in order to obtain restaurant recommendation
based on our current location. This query also illustrates how the information
obtained from a JSON API can be stored into multiple variables simultaneously.

Example 3. We are planning a visit to Chile, and would not want to miss the
opportunity to try Chilean burgers. Since we do not know our itinerary, we
decide to look for the best burger bars in each of Chile’s cities and landmarks.
We can use YAGO to fetch all the locations in Chile, and YELP will take care
of choosing the best burger place at each location. The query is given below.

SELECT ?x ?n ?b ?r WHERE {

?x yago:isLocatedIn yago:Chile .

?x rdf:type yago:wikicat_Communes_of_Chile .

?x rdf:label ?n

BIND_API <https://api.yelp.com/search?term=Burguers&location={?n}>

(["businesses"][0]["name"], ["businesses"][0]["rating"])

AS (?b, ?r)

}

Figure 2 shows a sample answer for this query. This query also showcases how
to retrieve multiple values from a single API call, by parsing the same JSON
response with different navigation expressions (separated by commas), and bind-
ing the result of each instruction to a different variable. In this particular case,
the first value is stored into ?b, and the second one into ?r. ut

In our next use case we show how to combine the information on geographical
location of world cities with the Open Weather API, in order to find climactic

1 Some of the queries have been simplified to fit into the paper. For full queries please
see [2]. All the queries use standard DBPedia and YAGO prefixes.

?x ?n ?h ?t

dbr:Chisenhale Gallery Chisenhale Gallery false

Nothing to see here: the
artist giving gallery staff a

month off work

Fig. 1. Results from query in Example 2. Variable ?x stores the IRI of the museum,
?n its name, ?h is true when the museum is closed (and false otherwise), and ?t stores
the latest relevant tweet about the museum.

?x ?n ?b ?r

yago:Santiago Santiago de Chile La Burgueśıa 4.5
yago:Torres del Paine, Chile Torres del Paine Masay 4.5

yago:Ŕıo Bueno, Chile Ŕıo Bueno Mcdonald’s 2.0

Fig. 2. Results from query in Example 3. Variable ?x stores the IRI of the location, ?n
its name, ?b stores the name of the restaurant and ?r its rating.

?x ?y ?xtemp ?ytemp

dbr:Xinyi, Guangdong dbr:Calama, Chile 289 288
dbr:Wuhai dbr:Valdivia 283 281

Fig. 3. Results from query in Example 4. Variables ?x and ?y store the IRI of the
antipode cities, and ?xtemp and ?ytemp their respective temperature (in Kelvin).

antipodes guaranteed by the famous Borsuk-Ulam theorem [1], which states that
on the surface of the Earth there are always two point which are antipodes (i.e.
they are on opposite sides of the planet), and which have the same temperature
and air pressure. For simplicity our query finds antipodes with the same temper-
ature. Extending the result to include air pressures as well is straightforward.

Example 4. We use a function ANTIPODE(?xLat,?xLon,?yLat,?yLon) that re-
ceives pairs of geographical coordinates (?xLat,?xLon) and (?yLat,?yLon) , and
outputs true if these coordinates are antipodes on Earth, with a possible error
margin of 0.25 degrees for both latitude and longitude. For full details see [2].

SELECT ?x ?y ?xtemp ?ytemp WHERE {

?x rdf:type dbo:City . ?x rdfs:label ?xname .

?x geo:long ?xlon . ?x geo:lat ?xlat .

?y rdf:type dbo:City . ?y rdfs:label ?yname .

?y geo:long ?ylon . ?y geo:lat ?ylat .

FILTER ANTIPODE(?xLat,?xLon,?yLat,?yLon)

BIND_API <http://api.openweathermap.org/data/2.5/weather?q={?x2}>

(["main"]["temp"]) AS (?t)

BIND_API <http://api.openweathermap.org/data/2.5/weather?q={?y2}>

(["main"]["temp"]) AS (?t2)

FILTER ((?t >= 0.9*?t2) && (?t <= 1.1*?t2))

}

After obtaining all pairs of cities from DBPedia, we filter out those which are
not antipodes, and then use BIND-from-API calls to retrieve the temperature of
both cities, filtering again those in which the temperature is not the same (we
allow a 10% error margin). Figure 3 shows a sample answer for this query. ut

4 Implementing API calls

There are two main challenges behind the implementation of our proposal. First,
there is a security component: the communication to APIs usually involves some
authentication protocol which can be either a special key that needs to be re-
quested beforehand or a more involved process like oauth [10]. Thus, in order to
enable SPARQL systems to process API calls we need a way of providing such
strategies. We discuss how to do this in the following section.

The second issue is how to process queries that use the BIND-from-API
operator. The straightforward way of doing this is of course to extend the way
systems process BIND assignments. However, we provide here a more lightweight
option that can be mounted on top of a SPARQL processor, and whose processing
can be optimised in a much cleaner way. We discuss the main algorithm in Section
4.2 and some optimisation options in Section 5.

Full details and the source code of our implementation are available at [2].

4.1 Communication and authentication

As we have mentioned, the communication with APIs usually requires some
degree of authentication. While there are several authentication protocols that
are widely used, there is still no standard for this process. In our opinion there
are two protocols that really stand out in terms of popularity: authentication via
an API key, and OAuth. The first protocol is based on a token that is obtained
either from a Web Service or is given directly to the users. This token is then
passed in the IRI of each request to the API, and the authorisation depends
only on the validity of the token. The OAuth protocol can be seen as a safer
alternative to the API key. Here, the user needs to obtain various keys and secret
tokens associated to these keys. Before a particular request can be done to the
API, the user needs to request a specific token key for that request, attaching all
the necessary credentials. Once these credentials are verified, the API responds
with the access token, which can now be used to proceed with the API call.

Regardless of the popularity of the protocols above, in order to provide a
general framework, we abstract from a particular process, and instead provide
a general solution based on the assumption that all access protocols are carried
over with HTTP requests. Under these assumptions, any different strategy can
then be implemented following the same principles: for each strategy a number
of keys are required to the user, and, whenever there is more than one API call,
each request URL must be assigned to a precise strategy (the system can also
learn which strategy needs to be associated simply by trial and error). In our
implementation [2] we have decided to store these tuning values in a separate
JSON file, but without much effort one could devise a way of integrating them
into queries, (for example by providing an extra form in a SPARQL endpoint).

4.2 Query Evaluation

Our implementation does not modify the inner workings of the BIND operator
in Jena, but focuses instead on obtaining first all mappings that will generate an

API call, and then evaluating all of these calls at once. As we see in the following
section, this algorithm allows us to define a number of rules for optimising queries
with API calls in a clear way. The other advantage of this approach is that it
can be implemented (as we did) with just minor modifications into the query
engines of existing SPARQL systems. To do this, whenever a pattern of the form

P ≡ P1 BIND API U (N1, N2, . . . , Nm) AS (?x1, ?x2, . . . , ?xm)

is found, we process it over our local database G as follows:

1. First, we evaluate JP1KG by running ‘SELECT * WHERE {P1}’;
2. In the next stage we do the following steps for each µ ∈ JP1KG:
3. Execute call(U, µ) using the appropriate strategy (see Section 4.1);
4. For 1 ≤ i ≤ n, extend µ with ?xi, execute Ni over call(U, µ) and, if a

proper SPARQL literal is obtained, store this literal into ?xi.
5. Now serialise the (extended) mappings obtained in the first four steps using

the VALUES operator, to allow it to be used by the next graph pattern inside
the WHERE clause in which it appears.

Regarding the final step, the obtained mappings need to be serialised in case
P is followed by another graph pattern P2. In particular, if we are processing a
query of the form SELECT * WHERE {P . P2}, with P as above, then P2 needs
to be able to access the values from the mappings matched to P .

5 Experiments and Optimisation

API calls require a completely different treatment that the rest of SPARQL, as
it is conceivable that the time required to process API calls is going to dominate
query processing times by a huge margin. To illustrate this we ran the four
queries from Example 1 thorough Example 4 over a piece of YAGO database of
size 300 MB (queries from Examples 1 and 3) and a piece of DBPedia database
of size 1.3GB (queries in Examples 2 and 4). Our implementation of the BIND-
from-API operator was carried out using the Apache Jena framework [12] as an
add-on to the ARQ SPARQL query engine, and all the experiments were ran
on a MacBook Air with an Intel Core i5 1.3 GHz processor and 4GB of main
memory. Figure 4 shows how much time is consumed by API calls in comparison
to the total runtime of the queries (the time is averaged over five runs). As we
can see, API calls can require up to 99% of total query processing time (as was
the case with Examples 2 and 3), and even when just a few calls are needed this
may end up taking at least a third of the total processing time.

Thus, the bottleneck when evaluating queries enabling API calls will most
likely be the amount of calls the query makes. This is due to the fact that in
general we have no control over how quickly we receive the data from the API, as
this depends on the efficiency of the API server and on the internet connection:
two factors that we can never control. It is therefore reasonable to consider
optimisations that minimise the number of API calls a query can make. In the
following we describe three approaches for doing this: avoiding duplicate calls,
reformulating query plans, and caching.

0%	

20%	

40%	

60%	

80%	

100%	

Example	 1	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
(total	 2.7	 s.)	

Example	 2	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
(total	 160	 s.)	

Example	 3	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
(total	 914	 s.)	 	

Example	 4	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
(total	 48	 s.)	

Database	 ;me	

Api	 ;me	

Fig. 4. Proportion of the query processing time consumed by the API (blue) against
the database (white), for queries in Example 1 thorough Example 4. Values are the
average of several runs, total query time is indicated between brackets.

5.1 Removing duplicate calls

In many scenarios we might end up with several API calls for the same URL.
For example, a simple query of the form

SELECT ?x ?t WHERE {?x ex:label1 ?z . ?x ex:label2 ?n

BIND_API <http://localhost:3000/{n}/5>(["time"]) AS (?t) }

might contain several mappings where the same value is bound to the variable
?n, resulting in several calls using the same value, which is clearly suboptimal.
To eliminate this behaviour we proceed as follows. We produce first a value of
all distinct values ?n that can be produced in the query, produce one call for
each value, and then join with the result of the rest of the query. More generally,
we can replace any BIND-from-API pattern P of the form

P1 BIND API U (N1, N2, . . . , Nm) AS (?x1, ?x2, . . . , ?xm), (2)

where U uses variables y1, . . . , yn, with the SPARQL pattern

{SELECT var(P1) WHERE {P1}} .
{SELECT DISTINCT y1, . . . , yn WHERE P1}

BIND API U (N1, N2, . . . , Nm) AS (?x1, ?x2, . . . , ?xm)}

It is easy to see that these patterns are equivalent. However, this transformation
introduces a significant increase of the workload of our local database, so the
usage depends heavily on how slow we expect APIs to respond: the slower the
API response time, the better that this optimisation performs.

We test this optimisation by posing the query in the example above over four
different synthetic databases, while varying the response time of APIs. The syn-
thetic databases contain 10.000 triples, and are constructed so that the amount
of duplicates in the query answer equals 0%, 25%, 50% and 75%, respectively.
We show the results in two cases: when the response time is instantaneous (Fig-
ure 5, left) and when the response time is 10 milliseconds (Figure 5, right). As
the figures indicate, this optimisation is pointless when API times are dismal,
but becomes crucial as the time for API responses increases.

0	

10	

20	

30	

D0	 D25	 D50	 D75	

Ti
m
e	
(s
)	

Instantaneous	 Response	

0	

50	

100	

150	

200	

D0	 D25	 D50	 D75	

Ti
m
e	
(s
)	

10ms	 Delay	

OPTIMISED	

Plain	

Fig. 5. Query times for the query from Section 5.1 over databases D0, D25, D50, D75
(the number indicates the percentage of duplicates), under two settings: when API
response is instantaneous (left) and when each response takes 10 milliseconds (right).

5.2 Reducing API calls by optimising query plans

Even if we ensure that no duplicate API calls are to be made, one could still
reduce the number of calls by producing an equivalent reformulation of the query
that nevertheless reduces the amount of calls. In general, the idea is as follows.
Given a pattern of the form {P1 BIND API U N1 AS ?x1} . P2, where U mentions
variables ?y1, . . . , ?yn, obtain patterns Q1 and Q2 such that (1) queries P1 . P2

and Q1 . Q2 are equivalent (that is, they give the same answer independently of
the graph) and such that the size of the set of tuples {(µ(?y1), . . . , µ(?yn)) | µ ∈
JQ1KG} is minimal for every graph G. Unfortunately, it is not difficult to show
that this decomposition in general may not exist. However, as a starting point
we point out some simple heuristics, but we believe this is a very interesting
direction for further research.

Pushing Filters. This optimisation applies on all patterns P . P2, where P is
a BIND-from-API pattern of the form (2), and P2 uses a FILTER clause which
does not mention the variables introduced in BIND API, and is not nested using
UNION or OPTIONAL. Then we can safely apply this FILTER clause to the mappings
obtained by evaluating P1 (the base part of P). This will generally reduce the
number of API calls, since we now have fewer mappings to process.

Rearranging joins. Rearrangement of joins, in general, is not guaranteed to re-
duce the number of total mappings. However, if we only care for distinct bindings
of the variables used in BIND API calls, then all we need is a greedy rearrange-
ment of triples. To see this, consider the following three equivalent patterns:

Q1: ?x ex:a ?y BIND_API <http://api.org/?q={?x}> (["value"]) AS (?v)

?x ex:b ?z

Q2: ?x ex:b ?z BIND_API <http://api.org/?q={?x}> (["value"]) AS (?v)

?x ex:a ?y

Q3: ?x ex:a ?y . ?x ex:b ?z

BIND_API <http://api.org/?q={?x}> (["value"]) AS (?v)

None of these queries can be guaranteed to give the least amount of mappings.
However, query Q3 is minimal in terms of bindings for ?x: regardless of the RDF
graph to which is posed, it will always give a lower or equal number of distinct
bindings for ?x when compared to the other two queries.

Thus, by combining a greedy search with our strategy to remove duplicates
we can devise the following rule for rearranging joins. Given a pattern P . P2,
where P is a BIND-from-API pattern of the form (1), and P2 is a concatenation
of triple and filter patterns, rewrite P1 by adding all filter and triple patterns in
P2 that do not mention any of the variables in {?x1, . . . , ?xm}.

5.3 Reducing API calls by caching

Clearly the best way of reducing API calls is to not do them at all, because we
already have them in the system. This is important even if we are dealing with
just a single query, as several mappings may actually require the same API calls.
For example, recall the query of Example 4. The SPARQL part of this query
uses geo locations to compute all pairs (c1, c2) of cities that are antipodes. Then,
for each pair a call to Open Weather API was used to retrieve the temperature
in both cities. Now obviously c1 is an antipode of c2 if and only if c2 is an
antipode from c1, so at the very least this query will make two calls per each
pair of antipode cities, and we cannot get rid of this double call by removing
duplicates, since (c1, c2) and (c2, c1) are different pairs. If we put each queried
city in a cache, this results in a reduction of at least 50% in calls (there is even
more repetition thanks to the 0.25 degree margin we allow for antipodes).

This is precisely what we do: every time a call to an API is produced, we
cache the exact IRI that was used in this call, as well as the resulting JSON
document (if the call was successful). Thus, before each call we first retrieve the
IRI in the cache (which is a very fast operation since we maintain an index on
the cache), and only proceed with the call if we cannot find the answer. Note
that since at the moment we are only caching answers during a single query
execution, we do not loose generality nor freshness in our answers. However, we
could also decide to maintain a cache over time, ranging across the execution of
different queries, at the sacrifice of freshness of answers.

Our experiments with the implemented cache confirm this intuition: We were
able to reduce the average time that it took us to compute the query of Example
4 by 35%, from almost 48 seconds to 31 seconds, thanks to a 55% decrease in
the portion of the query time that was consumed by the calls (details in the
appendix). We did not try parallelising requests in order to maintain a reasonable
level of politeness when calling the API services.

6 Conclusions and Future Work

In this paper we propose a way to extend the functionality of SPARQL by
allow it to connect to REST APIs returning JSON. We describe the syntax and
the semantics of this extension, and show how it can be implemented on top
of existing SPARQL engines. Although in the presentation we focus on JSON
APIs, the BIND-from-API operator can easily be extended to support different
return formats without changing the underlying SPARQL engine.

In future work we would like to demonstrate how API calls can be supported
in a public SPARQL endpoint. The way we envision this is by an interface in
which we combine a predefined set of supported APIs with the option to enter
new authentication tokens for other APIs. Another line of work we plan to pursue
is to support automatic entity resolution based on an API answer, thus allowing
us to transform API information back into IRIs to be used again by SPARQL,
instead of just literals. In this way we will be able to determine if the JSON we
obtain represents the same entity as an IRI already existing in our database, thus
providing us with extra information. Finally, another limitation that we would
like to overcome is the possibility of generating several mappings form a single
JSON document (such as, for example, generating a new mapping for each of
the top 5 burger joints in each location of Chile). In order to do this we need the
support of a proper query language for JSON documents, which unfortunately
does not exist at the moment in a standardised form.

References

1. Borsuk-Ulam Theorem. https://en.wikipedia.org/wiki/Borsuk-Ulam theorem.
2. Online Appendix. http://dvrgoc.ing.puc.cl/APIs.
3. Open Data Portal. https://open-data.europa.eu/en/linked-data.
4. Swagger: The World’s Most Popular Framework for APIs. http://swagger.io/, 2015.
5. C. B. Aranda, A. Hogan, J. Umbrich, and P. Vandenbussche. SPARQL web-

querying infrastructure: Ready for action? In ISWC 2013, pages 277–293, 2013.
6. R. Battle and E. Benson. Bridging the semantic web and web 2.0 with represen-

tational state transfer (REST). J. Web Sem., 6(1):61–69, 2008.
7. T. Bray. The javascript object notation (json) data interchange format. 2014.
8. F. Galiegue and K. Zyp. Json schema: Core definitions and terminology. Internet

Engineering Task Force (IETF), 2013.
9. P. T. Groth, A. Loizou, A. J. G. Gray, C. A. Goble, L. Harland, and S. Pettifer.

Api-centric linked data integration: The open PHACTS discovery platform case
study. J. Web Sem., 29:12–18, 2014.

10. D. Hardt. The oauth 2.0 authorization framework. 2012.
11. S. Harris and A. Seaborne. SPARQL 1.1 query language. W3C Recommendation,

21, 2013.
12. The Apache Jena Manual. http://jena.apache.org, 2015.
13. G. Klyne and J. Carrol. Resource Description Framework (RDF): Concepts and

Abstract Syntax, February 2004.
14. N. Kobayashi, M. Ishii, S. Takahashi, Y. Mochizuki, A. Matsushima, and T. Toy-

oda. Semantic-json: a lightweight web service interface for semantic web contents
integrating multiple life science databases. Nucleic Acids Research, 39(Web-Server-
Issue):533–540, 2011.

15. T. B. Lee. Linked data. https://www.w3.org/DesignIssues/LinkedData.html, 2007.
16. H. Müller, L. Cabral, A. Morshed, and Y. Shu. From restful to SPARQL: A case

study on generating semantic sensor data. In ISWC 2013, pages 51–66, 2013.
17. F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoč. Foundations of JSON

Schema. In WWW 2016, pages 263–273, 2016.
18. L. Rietveld and R. Hoekstra. YASGUI: not just another SPARQL client. In ESWC

2013, pages 78–86, 2013.
19. W3C. Linked data. https://www.w3.org/standards/semanticweb/data, 2015.

https://en.wikipedia.org/wiki/Borsuk-Ulam_theorem
http://dvrgoc.ing.puc.cl/APIs
https://open-data.europa.eu/en/linked-data
http://swagger.io/
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/standards/semanticweb/data

Average query execution times
Query total time API time DB time num. of mappings

Ski Hokkaido 2.7093 1.5010 1.2084 8
Museums 159.8161 157.9474 1.8687 34

Hamburgers 914.0295 911.5008 2.5287 463
Antipodes 47.7115 15.9211 32.5852 45

Ski Hokkaido total time API time DB time num. of mappings
1 3.6404 2.5657 1.0747 8
2 2.3282 1.2398 1.0884 8
3 2.3691 1.2341 1.1350 8
4 2.6122 1.2399 1.3723 8
5 2.5968 1.2254 1.3714 8

Museums total time API time DB time num. of mappings
1 154.2847 152.6703 1.6144 34
2 169.2832 166.7504 2.5328 34
3 158.8432 157.5133 1.3299 34
4 156.6222 155.1668 1.4554 34
5 160.0472 157.6362 2.4110 34

Hamburgers total time API time DB time num. of mappings
1 922.0850 919.4614 2.6236 463
2 935.0920 933.5253 1.5667 463
3 884.9116 881.5157 3.3959 463

Antipodes total time API time DB time num. of mappings
1 46.2403 14.5797 31.6606 45
2 48.5434 14.3401 34.2033 45
3 45.2993 14.2187 31.0806 45
4 47.2659 14.2752 32.9907 45
5 51.2084 22.1919 32.9907 45

Cached Antipode query
C. Antipodes total time API time DB time num. of mappings

1 37.8760 7.3416 30.5344 45
2 39.9109 8.0415 31.8694 45
3 38.7690 6.8254 31.9436 45
4 36.7499 6.8144 29.9355 45
5 38.5756 6.8010 31.7746 45

AVG 38.3763 7.1648 31.2115 45

	Incorporating API data into SPARQL query answers

