
Property Paths over Linked Data:
Can it be Done and How to Start?

Jorge Baier, Dietrich Daroch, Juan L. Reutter, and Domagoj Vrgoč

PUC Chile and Center for Semantic Web Research

Abstract. One of the advantages that Linked Data offers over the clas-
sical database setting is the ability to connect and navigate through
different datasets. At the moment the standard mechanism for exploring
navigational properties of the Semantic Web data are SPARQL property
paths. However, the semantics of property paths is only defined assuming
one evaluates them over a single local database, and it is still not clear
what is the correct way to implement them over the Web of Linked Data,
nor if this is even feasible. In this paper we explore this topic in more
depth and gauge the merits of different approaches of executing property
paths over Linked Data. To this end we test how property paths perform
if the Linked Data is assumed to be available locally, through endpoints,
or if it is accessed directly through dereferencing IRIs.

1 Introduction

The Web of Linked Data comprises a wide variety of datasets that have been
published under a set of best practices and standards that aim to improve the
interconnection of these datasets and allow computers to search for information
the way humans do with webpages (see e.g. [3]). The adoption of the linked data
standard and the creation of this new web has brought up several challenges,
one of the most important being how to query the Web of Linked Data.

In order to express queries, the recommendation is to use SPARQL, the
default language for querying RDF datasets. Unfortunately, the official semantics
of SPARQL assumes that we are dealing with a single dataset, and there is still
no standard semantics for SPARQL queries over the Web of Linked Data. The
main problem is that the open-world nature of the Web does not couple well with
some fragments of SPARQL, as the answers to certain queries may be invalidated
when dereferencing additional tuples. For this reason, most previous work has
focused on simple, monotonic fragments of SPARQL (see e.g. [4, 10, 9]).

On the other hand, one of the more interesting features of Linked Data is
the ability to traverse RDF datasets by navigating from one node to another
using the properties connecting them inside an RDF triple, and to cross be-
tween different datasets utilizing these types of links. The standard mechanism
for exploring navigational properties of RDF data are Property Paths, a new fea-
ture made available in SPARQL 1.1 [8]. Unfortunately, the semantic of property
paths suffers from the same shortcomings as ordinary SPARQL queries when

considered over Linked Data, and the topic of evaluating them in this context
remains mostly unexplored. There has been some work about navigation within
Linked Data (see e.g. [11, 6, 5]), but the first proposal for semantics was pub-
lished less than a year ago [12]. Therefore, the main focus of this paper is to
examine different options for evaluating property paths over Linked Data, and
to provide good recommendations of when this is practically feasible, and when
we might run into some issues.

To this end, we identified the following four initial approaches for evaluating
property path queries over the LOD cloud:

1. Through endpoints: The first option we have is to find an appropriate
SPARQL endpoint and execute our property path query there. To illustrate
this by an example, suppose that we want to find a list of actors with a
finite Bacon number1. If we decide to use the SPARQL endpoint of the
YAGO dataset [17], the desired information (limited to e.g. 100 actors) can
be retrieved using the following query:

PREFIX yago: <http://yago-knowledge.org/resource/>

SELECT * WHERE {

?x (yago:actedIn/^yago:actedIn)* yago:Kevin_Bacon

} LIMIT 100

the intuition is that actors are connected with movies via the yago:actedIn

property, and thus a co-actor of Kevin Bacon is someone that witnesses
the pattern {?x yago:actedIn/^yago:actedIn yago:Kevin_Bacon}. The
star is then use to retrieve co-actors of a co-actor of Kevin Bacon, and the
co-actors of them, and so on.

2. Keeping a local copy of the data: When endpoints fail, there is also
an option of simply keeping an (updated) copy of the LOD cloud locally
and ask the desired query over this dataset using a SPARQL engine. In the
example above we might dispense with the “whole LOD cloud” and simply
use YAGO, or another dataset we consider to contain sufficient information
to answer our query.

3. Live querying: On the other hand, we can rely instead on the Linked Data
infrastructure, and perform a search by dereferencing IRIs. In this paper
we implement this approach using breadth-first search to evaluate property
paths (when at least one end of the path is known, such as in the example
above). This approximates the semantics for property paths on Linked Data
given in [12], and might currently be the only feasible option available to
evaluate property path queries which utilize more than one dataset.

4. Hybrid approaches: Finally, we explore how the approaches above can
be combined to overcome some of their shortcomings when considered in
isolation. In the paper we experiment with two possible combinations:

1 Actors have Bacon number 1 if they have acted in a movie with Kevin Bacon, and
Bacon number n if they have acted together with an actor with Bacon number n−1.

– Endpoints + local data: Instead of having all of the data locally,
we can also try to obtain only the data needed to answer a particular
query. For instance, in the query above we do not really need the entire
YAGO database, but only the part of it containing yago:actedIn links,
so a smarter alternative is to retrieve only those links from YAGO, and
nothing more, and then run the query locally. In other words, we can
issue the query

PREFIX yago: <http://yago-knowledge.org/resource/>

CONSTRUCT WHERE {?x yago:actedIn ?y}

to YAGO’s public endpoint, which gives us all the information about
actors and movies where they acted, and then load this database into a
SPARQL engine to run the query.

– Live querying + endpoints: When running queries live over Linked
Data one immediately observes some issues with dereferencing. This is
most notable when working with inverses, since it is well known that
publishers include only about a half of the triples where the requested
IRI appears as the object [13], which can lead to incomplete answers. One
workaround to this is using endpoints in order to retrieve the triples
where the needed IRI appears as the object in order to compute the
inverse links, so we also explore how this approach fares in practice.

In this paper we do a detailed comparison on the 4 approaches, and based
on empirical evidence discuss their strengths and limitations when evaluating
property path queries in the context of Linked Data.

Preliminaries: Let I, L, and B be countably infinite disjoint sets of IRIs,
literals, and blank nodes, respectively. The set of RDF terms T is I ∪ L ∪ B.
An RDF triple is a triple (s, p, o) from T × I × T , where s is called subject,
p predicate, and o object. An (RDF) graph is a finite set of RDF triples. We
assume familiarity with SPARQL queries and specially with Property Paths, as
defined in [8]. We also assume basic knowledge of the Linked Data infrastructure,
including the notion of IRI dereferencing.

2 Experimental Setup

Here we describe the queries used in evaluating the four approaches discussed
above, and also describe how each approach is executed.

2.1 Queries

To test the functionalities of property paths over Linked Data we selected three
queries. The number is low on purpose: mainly for brevity, but also because most
property path queries fall into these categories, thus exhibiting similar behaviour
in the evaluation scenarios we present (for an extensive list of navigational queries
which are relevant in this context please see [1]). In our evaluation we focus

exclusively on queries utilizing the star operator ∗, since star-free property paths
can be rewritten into ordinary SPARQL queries.

Notice that in order to execute a property path query in the context of
Linked Data we have to have the starting point (or the ending point) of the
path (see e.g. [12, 10, 11, 14] for discussion on the subject). If this is not the
case, we immediately exclude all the approaches that do not have the LOD
cloud available locally. Because of this, we will have three versions of each query
(apart the final one), with property paths starting in YAGO [17], DBpedia [2],
and WikiData [16], respectively.

Our first query, Q1, is the one we mentioned in the introduction, that finds all
the actors with a finite Bacon number. The intention of this query is to test how
property paths work over a single well-known dataset, using a single property,
but going in both directions. In the case of YAGO the query is as follows (for
the DBpedia and WikiData versions see the online appendix [1]):

SELECT * WHERE

{ yago:Kevin_Bacon (^yago:actedIn/yago:actedIn)* ?x }

We draw the second query (Q2) from previous work in benchmarking prop-
erty path implementations [7]. This query retrieves all types of geographic enti-
ties that have something to do with Berlin, or some other entity where Berlin
is located in, and is intended to utilize several different properties. The YAGO
version of the query is:

SELECT * WHERE

{ yago:Berlin yago:isLocatedIn*/yago:dealsWith/rdf:type ?y }

Our final query (Q3) is intended to push the evaluation of property paths
into the (true) realm of Linked Data by allowing them to utilize more than one
dataset to obtain the answer. To this end, we modify the query (Q1) to find
the actors with a finite Bacon number in either YAGO or DBpedia2. In order to
jump between datasets, we take advantage of the owl:sameAs triples in them,
assuming that two resources connected by this triples are actually the same
entity (in this case an actor). This query is important because it can retrieve
actors which are not stored YAGO, but are in DBPedia. The query is given
below (assuming standard YAGO and DBpedia prefixes):

SELECT * WHERE

{ yago:Kevin_Bacon owl:sameAs*/

((^dbo:starring/dbo:starring) | owl:sameAs |

(yago:actedIn/^yago:actedIn))* ?x }

Note also that we take into the account the fact that the property names change
(e.g. actedIn becomes starring in DBpedia), as well as the direction (actedIn
links movies to their actors, but starring links in the opposite direction, from
actors to movies).

2 On can easily add WikiData to this mix, but since WikiData does not support Linked
Data through dereferencing we exclude it from this comparison.

2.2 Evaluation Approaches

The four different evaluation approaches are set up as follows:

Using endpoints. For Q1 and Q2 we test a version of each query on the
appropriate endpoint. In particular:

– For YAGO we use: https://linkeddata1.calcul.u-psud.fr/sparql;
– For DBpedia: http://dbpedia.org/sparql; and
– For WikiData: https://query.wikidata.org/.

In order to execute the query Q3 we need to use the SERVICE functionality
of SPARQL, but unfortunately mixing SERVICE with the star operator is not
supported.

Local testing. For local testing we set up the Virtuoso 7.20.321 RDF datastore
on two different servers:

– Server 1: This machine has 4GB of main memory and a Intel i5-4670 CPU
processor running up to date Manjaro Linux

– Server 2: Is a machine with 192GB memory and 4 AMD Opteron(tm) 6366
H processors running Ubuntu 14 LTS.

To keep the presentation manageable, we ran local experiments only over
the YAGO dataset (experiments over DBpedia and WikiData will be available
in the journal version of the paper). To this end, we loaded a piece of the YAGO
database of size 4.1GB containing the properties used in the tested queries.

Live querying: Our next option obtains the answers by dereferencing IRIs, thus
computing them using only the linked data infrastructure (without endpoints).

To compute property paths, we view the Web of Linked Data as an edge la-
belled graphs, where IRIs are the nodes, and whenever a triple (u, p, v) appears in
some dataset, we say that there is a p-labelled edge between u and v (for a full for-
malisation see e.g. [9]). A path in this graph of the form u1p1u2p2u3p3 · · · pk−1uk

implies that one can deduce the triple (u1, p1, u2) by dereferencing u1, (u2, p2, u3)
by dereferencing u2, and so on. The idea is then to use the standard breadth
first search (BFS) to look for paths such as the above where the corresponding
triples satisfy the property path.

For example, in YAGO version of query Q1 we start by dereferencing the IRI
yago:Kevin Bacon, obtaining a document which contains a number of triples of
the form (yago:Kevin Bacon, yago:actedIn, u) (and many other triples); each
of these IRIs u is a movie in which Kevin Bacon acted. Since we do BFS, we
first list all such movies, say {u1, . . . , un}. One by one, we dereference each ui,
obtaining documents which contain triples of the form (a, yago:actedIn, ui),
telling us that a is a co-star of Kevin Bacon, and thus we can output it as part
of our answer. The BFS algorithm continues, dereferencing now each new actor
a that is found, obtaining new movies, new actors, and so on.

Note that, unless we are assured to obtain all relevant triples when derefer-
encing (as happens with e.g. DBpedia, but not YAGO), this procedure is not

guaranteed to obtain all the answers for the query, and thus in a sense our BFS
algorithm is simply an approximation of the query. This is especially the case
when we consider the inverse links (such as the ^yago:actedIn in Q1 above),
as it is well known that publishers include only about a half of the triples where
the requested IRI appears as the object [13]. We will try to partially remedy this
issue with one of our hybrid approaches.

We implement the BFS-based evaluation in Python using the RDFlib library
to dereference IRIs. All the experiments using this approach were ran on Server
1, but since the resources needed here are very low, similar results can be ob-
tained on a much weaker machine.

Hybrid Approach 1 (Endpoints + local data): To avoid downloading a
large amount of data which will not be used and then computing our queries over
an unnecessarily big database, we use endpoints to obtain only the data needed
in our queries. More precisely, if a property path uses the set {p1, . . . , pn} of
properties, we issue the following query (including of course the relevant pre-
fixes):

CONSTRUCT {?x1 p1 ?y1 ?xn pn ?yn}

WHERE {

{?x1 p1 ?y1} UNION ... UNION {?xn pn ?yn}

}

The endpoint will give us a turtle file with the constructed triples. These are
then loaded into Virtuoso on Server 1 and Server 2 and queries Q1, Q2 and
Q3 are executed using a database containing only this data and nothing more.
As in the case of local testing, we only consider the YAGO version of the queries.

Hybrid Approach 2 (Live querying + endpoints): Finally, to reduce the
incomplete information resulting when the dereferenced IRI does not contain all
inverses in the BFS-based implementation, we can use endpoints. More precisely,
while running the BFS algorithm above, if we are processing the label ˆp (that
is, we want to follow p in the reverse direction), each time we dereference an
IRI u we do not consider only the triples obtained by dereferencing, but also the
answers to the SPARQL query SELECT ?s WHERE {?s p u} posed over YAGO
and/or DBPedia endpoint (depending on the query). For instance in the YAGO
version of Q1 we add the answer to SELECT ?s WHERE {?s yago:actedIn u}
to the triples obtained by dereferencing u, each time we want to traverse this
property in reverse (from u). In our extended BFS implementation this is hard-
coded into the queries so that they consult the appropriate endpoint each time
we need to process an inverse edge and the tests are run on Server 2.

We would like to note that the community is already building an infrastruc-
ture that would eliminate this mismatch: the Linked Data Fragments initiative
[15], which aims to study different ways of publishing linked data on the web.
Specifically, one of the proposals of this initiative is to build an infrastructure
that can support the answer of any SPARQL triple pattern [14]. With this in-
frastructure up we could directly ask for the reverse links (since this can be
expressed as a SPARQL triple pattern), thus giving us a lightweight option to

retrieve inverses, without having to resort to endpoints whose address we may
not even know.

3 Analysis of the Results

In this section we report on our findings when experiments from Section 2 were
executed according the strategies described in the introduction. We report (when
possible) the amount of memory used, total execution time, and the number
of triples received while executing the data. Next, we discuss the merits and
shortcomings of each approach in more detail. We would like to stress once
again that this analysis applies only to property path queries (using the star
operator ∗), and not to general SPARQL queries.

3.1 Using Endpoints

The results of our endpoints run are given in Table 1. As we see, our experiments
show that property path queries are often not supported on current implementa-
tions of SPARQL endpoints. For both DBpedia and YAGO, the execution of Q1
does not complete due to an exceeded memory limit (1GB), and on WikiData
due to an exceeded time limit. Further experimentation shows that the imple-
mentation of the star operator is the likely culprit3; namely, when one rewrites
this query into a union of patters which obtain actors with a Bacon number 1,
2, 3, all the way up to 7, the resulting pattern4 executes with no substantial
problems5. Next, the query Q3 is not supported, since querying two datasets
inside a single property path is not possible, even using the SERVICE operator.
On the other hand, the query Q2 runs very well on Yago and Wikidata, and
the execution is almost instantaneous, which suggests that when there are not
that many intermediate results, current SPARQL implementations can handle
property paths without problem.

Overall, it seems that running property paths on endpoints is costly in terms
of the memory used (although we could not measure the exact amount of memory
and processor time), and full use of Linked Data is not really supported. On
the other hand, when queries do run, they execute almost instantaneously, so
using endpoints seems to be a good alternative for property path queries which
are based in a single dataset and have relatively few intermediate results. In
summary, we can describe the pros and cons of this approach as follows:
Pros: Easy to use, virtually free for the user (in terms of required resources),
when it works it works well.
Cons: Unreliable, often not fully supported, based on a single dataset.

3 An alternative interpretation related to the semantics of property paths is given in
the online appendix [1].

4 Although this is not the complete query it is a good approximation.
5 It is important to state that this rewriting is not done using the iteration opera-

tor e{n}, where n is the number of iterations, but by explicitly writing the entire
property path of appropriate length.

Endpoint Query finishes

Yago Q1 no
Yago Q2 yes (< 1 sec)

DBpedia Q1 no
DBpedia Q2 no
Wikidata Q1 no
Wikidata Q2 yes (< 1 sec)

Table 1. Summary of queries when posed over three popular endpoints. We do not
show Q3 because the SERVICE operator is not supported in any of these endpoints.

3.2 Keeping the Data Locally

Even before executing the queries we can see that this approach to evaluating
property paths is extremely costly in terms of the resources required, since at the
very minimum one needs a dedicated machine. Next comes the cost of storage
and data transfer. The most complete option would be to keep an updated copy
of the entire LOD cloud and run the experiments on this dataset. Of course, if
Linked Data is to become a success, this solution would simply not be feasible
for a single user because of the sheer volume of the data available, and might be
supported only by a big centralised service provider. Next, even if we settle for
a single dataset this can provide costly since e.g. YAGO weighs around 100GB,
so downloading it on a regular basis is time consuming. Even the small part of
YAGO we used in our testing (parts of core, taxonomy and geonames) takes
around 4.1GB, which is not a trivial amount of data to transfer over the Web.
This is also one of the reasons we decided to run the tests only on the YAGO
dataset, and leave the other two sources for future work.

The behaviour is consistent to what we saw in the endpoints: the systems
cannot cope with neither Q1 nor Q3, while Q2 runs only on the high level server
(in our commodity server (Server 1) we could not even load the database). The
memory cost when computing Q2 was approximately 6GB, while the running
time was almost instantaneous (less than 1 second).

Overall, we can conclude that having Virtuoso locally with all the data nec-
essary to answer the queries basically simulates what is happening in endpoints,
but it does allow us a higher degree of control, and the ability to make use of
additional data. On the other hand, the total cost of maintaining this solution
is quite high even if we only want to execute simple queries such as the ones we
propose, as the total amount of transmitted data is rather big, and the compu-
tational power needed to make this approach run substantial. Despite of this,
once SPARQL engines are capable to run transitive closure efficiently (or use
more memory for intermediate results), the solution might have some merits for
a big service trying to centralise Linked Data. We summarise the pros and cons
of this approach as follows:

Pros: Full control over query execution, reliable, when it works it works well.

Cons: Requires a lot of resources, costly to keep it updated, performance seems
to suffer the same issues as endpoints do.

3.3 Live Querying using BFS

Here we run the BFS-based algorithm for evaluating property paths by fetching
the required documents by dereferencing IRIs. However, as we have discussed,
the main shortcoming is the fact that the answers we obtain are rather incom-
plete (even if we wait for all possible answers), mainly due to the fact that
dereferencing an IRI does not give us all the triples where it occurs as an ob-
ject (this fact is well documented over Linked Data, see e.g. [13]). In particular,
the YAGO linked data architecture does not deliver any inverse triples for our
queries, so all that could be retrieved was the starting point of the query. Worse,
Wikidata does not even support IRI dereferencing, so we could not access their
data in this way.

On the other hand, DBpedia returns much more complete data (see Table 2);
and the system memory usage, the amount of transmitted data and total query
execution time are very low, indicating that this solution can be quite efficient
to answer our queries, and one of the advantages it has over a SPARQL engine
is that once a single answer is found it can be returned immediately.

Starting Dataset query system memory time (sec.) transmitted triples

DBPedia Q1 77MB 36 74015
DBPedia Q2 57MB 15 22591
DBPedia Q3 80MB 182 82436

Table 2. Results of running a BFS search over DBPedia until 1000 answers are com-
puted. Results are not given for YAGO because only one answer is selected due to the
lack of inverses, nor for Wikidata because linked data is not supported.

Overall, we can see that this is a lightweight solution requiring very few
triples to be transmitted, and not a lot of system memory, but the query answer
times can be rather long, since they largely depend on internet traffic and server
response times. We summarise the pros and cons of this approach as follows:
Pros: Efficient, cheap, up-to-date, supports multiple datasets, incremental re-
sults.
Cons: Incomplete answers (dependent on the triples published as Linked Data),
performance depends on Internet traffic.

3.4 Hybrid Approach 1: Endpoints + Local Data

Using a CONSTRUCT query over an endpoint to retrieve only the data needed to
answer the query seems to completely avoid the huge download cost factor as
opposed to having all the data locally. One would also expect that computing

over such a small database would result in more efficient evaluation, but here is
where things get more complex.

First, Q1 returns the same error (1GB limit of temp memory exceeded) as
when ran over a much bigger piece of YAGO (on both servers), which is quite
surprising taking into the account the fact that the size of the loaded dataset is
less than 1MB. On the other hand, Q2 runs the same as before, taking less than
a second on both the laptop and the high level server. As before, since Q1 did
not run, we also do not execute Q3.

Overall, we see that not much is gained compared to having the data lo-
cally, although less resources are needed, and the amount of transmitted data
is substantial increased. The main problem of this approach, however, is that
query answers are again incomplete: the CONSTRUCT query form in endpoints has
a maximum of 10.000 triples, and anything above that is simply not returned,
without any warnings, so it is not easy to realise when a statement delivers all
triples or when is it just a fraction of them. In summary, we have:

Pros: Reliable, more control over execution than BFS-based approaches, amount
of transmitted data is reasonable.

Cons: A lot of computational power is still needed, same issues as having the
data locally, reliant on endpoints and Internet traffic, potentially incomplete
answers.

3.5 Hybrid Approach 2: Endpoints + BFS

As discussed in Subsection 3.3, when computing inverses in property paths, most
answers we get are incomplete, since dereferencing an IRI does not give us all
the triples where it appears as the object. One workaround to solve this problem
is described in Section 2, where we obtain reverse links is done by consulting the
appropriate endpoint.

The results of this approach are presented in Table 3. In particular, since
we can now use YAGO’s inverses (retrieved with the endpoint), we obtain much
more answers that with the vanilla BFS algorithm. We do, however, keep the
1000 answers limit in order to avoid overloading YAGO’s infrastructure. Note
that it does not make sense to run these algorithms over DBpedia, because it
already gives all the inverses when dereferencing. Furthermore, once again we
leave Wikidata out since it does not support live querying in this way.

In summary, we can obtain many more answers at a slightly higher cost, thus
allowing us to keep the advantages of the BFS-based approach, but also retrieve
more answers than in that case. Pros and cons are classified as follows:

Pros: Efficient, cheap, up-to-date, supports multiple datasets, more complete
answers than pure BFS.

Cons: Still incomplete answers, performance depends on Internet traffic, extra
overhead for contacting endpoints, usage of endpoints has to be hard-coded.

Starting Dataset query system memory time (sec.) transmitted triples

Yago Q1 62MB 101 52791
Yago Q2 - - -
Yago Q3 62MB 101 52791

Table 3. Results of running a BFS search over YAGO, asking endpoints for inverses.
Results are the same for Q1 and Q3 because YAGO does not include sameAs links
when dereferencing triples, and Q2 is simply not supported in the live part of YAGO.
For DBPedia results see Table 2 (they are the same because DBPedia gives all inverses
when dereferencing IRIS). Results are not given for Wikidata because linked data is
not supported.

4 Conclusions and Future Work

In this paper we tested out several possible options of evaluating property path
queries over Linked Data. Overall, we can see that there are no clear winners
when it comes to selecting a single approach. On the one hand, the endpoint
infrastructure does not support mixing data from different datasets inside a
single property path, and the current SPARQL implementations still seem to
be having some issues when executing the star operator, possibly because the
way they interpret the semantics of property paths. On the other hand, ad-hoc
approaches such as live querying seem to be quite cost effective, but they suffer
from incomplete answers. Finally, hybrid approaches seem to run better, but
also partially suffer from the same issues as their base counterparts.

Although no one-solution-fits-all seems to be available, it seems that once
algorithms for evaluating the star operator are improved, running a dedicated
server with a SPARQL engine might be a good solution for a high end user
wishing to provide centralised support for property paths, especially when they
are meant to be executed over a single dataset. Similarly, for a user requiring a
more lightweight solution and is not concerned in obtaining only partial answers,
using live querying might be a good option.

Therefore, we plan to purse future work on two fronts. First, we wish to look
into improving the current algorithms for evaluating the star operator in existing
systems, which would allow us to have an out-of-the-box solution for a broad
range of uses of property paths. A good way to do this is to use the automata
theoretic approach for evaluation of the star operator, which would avoid the
exhaustive search which seems to take place in current implementations (see [1]
for an example). And second, since live querying with a simple algorithm such as
BFS already seems to work quite well, and supports having more than a single
dataset, we plan to look into more sophisticated algorithms for performing a
Linked Data search based on a property path query. One promising direction
here is to use the famous A* algorithm utilized in AI search and we already have
some preliminary results on this (see our online appendix [1]).

Acknowledgements. Work funded by the Millennium Nucleus Center for Se-
mantic Web Research under Grant NC120004.

References

1. Online appendix. http://dvrgoc.ing.puc.cl/Planning/COLD/ (2016)
2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia:

A nucleus for a web of open data. Springer (2007)
3. Berners-Lee, T., Bizer, C., Heath, T.: Linked data-the story so far. International

Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)
4. Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach,

J., Lerer, A., Sheets, D.: Tabulator: Exploring and analyzing linked data on the
semantic web. In: SWUI Workshop (2006)

5. Fionda, V., Gutierrez, C., Pirrò, G.: The swget portal: Navigating and acting on
the web of linked data. J. Web Sem. 26, 29–35 (2014)

6. Fionda, V., Pirrò, G., Gutierrez, C.: NautiLOD: A Formal Language for the Web
of Data Graph. TWEB 9(1), 5:1–5:43 (2015)

7. Gubichev, A., Bedathur, S.J., Seufert, S.: Sparqling kleene: fast property paths in
RDF-3X. In: GRADES (2013)

8. Harris, S., Seaborne, A.: SPARQL 1.1 query language. W3C (2013)
9. Hartig, O.: Sparql for a web of linked data: Semantics and computability. In: The

Semantic Web: Research and Applications, pp. 8–23. Springer (2012)
10. Hartig, O., Bizer, C., Freytag, J.C.: Executing SPARQL queries over the web of

linked data. Springer (2009)
11. Hartig, O., Pérez, J.: Ldql: A query language for the web of linked data. In: The

Semantic Web-ISWC 2015, pp. 73–91. Springer (2015)
12. Hartig, O., Pirrò, G.: A context-based semantics for SPARQL property paths over

the web. In: ESWC 2015. pp. 71–87 (2015)
13. Hogan, A., Umbrich, J., Harth, A., Cyganiak, R., Polleres, A., Decker, S.: An

empirical survey of linked data conformance. J. Web Sem. 14, 14–44 (2012)
14. Verborgh, R., Hartig, O., Meester, B.D., Haesendonck, G., Vocht, L.D., Sande,

M.V., Cyganiak, R., Colpaert, P., Mannens, E., de Walle, R.V.: Querying datasets
on the web with high availability. In: ISWC 2014. pp. 180–196 (2014)

15. Verborgh, R., Vander Sande, M., Colpaert, P., Coppens, S., Mannens, E., Van de
Walle, R.: Web-scale querying through linked data fragments. In: LDOW (2014)

16. Wikimedia: Wikidata: The Free Knowledge Base. http://www.wikidata.org (Oc-
tober 2015)

17. YAGO: A High-Quality Knowledge Base. http://www.mpi-inf.mpg.de/

departments/databases-and-information-systems/research/yago-naga/

yago/

Appendix

A All versions of our queries

Q1: We have one version for YAGO, one for DBpedia and one for WikiData:

– YAGO:

SELECT * WHERE

{ yago:Kevin_Bacon (^yago:actedIn/yago:actedIn)* ?x }

– DBpedia:

SELECT * WHERE

{ dbr:Kevin_Bacon (^dbo:starring/dbo:starring)* ?x }

– WikiData:

SELECT * WHERE

{ wd:Q3454165 (^wdt:P161/wdt:P161)* ?movie }

Q2: We have one version for YAGO, one for DBpedia and one for WikiData:

– YAGO:

SELECT * WHERE

{ yago:Berlin yago:isLocatedIn*/yago:dealsWith/rdf:type ?y }

– DBpedia:

SELECT * WHERE

{ dbr:Berlin (^dbo:locatedInArea/dbo:locatedInArea)*/dct:subject ?z }

– WikiData:

SELECT * WHERE

{ wd:Q64 wdt:P131*/wdt:P463 ?z }

Q3: As explained in the paper we have only one version of this query.

B Kleene star on virtuoso

We have found a simple small database that suggests that Virtuoso does not
implement the official semantics of property paths using the Kleene star operator.

Consider the following database,

{(X, a, Y) | X,Y ∈ {“A”, . . . , “Z”} ∧X < Y }

where Characters follow the usual lexicographic order.

SPARQL standard requires that the following query,

select * where {

A a* ?x

}

computes only {“B”, . . . , “Z”}, as duplicates using Kleene star should be
avoided.

However, the query will raise a memory limit error on an instance with 2GB
available to Virtuoso.

To understand what happens, we ran,

select count(*) where {

C a* ?x

}

Which returned 8 388 608 = 223 = 2“Z”−“C”.

