
Turing Machines

IIC3242

IIC3242 – Turing Machines 1 / 65

Computational Complexity

Objective: Measure computational complexity of a problem.

That is: We want to measure computational resources needed to
solve a problem.

I Time

I Space

I ...

But first, let us define what a problem is.

IIC3242 – Turing Machines 2 / 65

Decision problems

Alphabet Σ: a finite set of symbols.

I Example: Σ = {0, 1}

Word w : a finite sequence of symbols from Σ.

I Example: w = 01101

Σ∗: The set of all words over the alphabet Σ.

Language L: a set of words.

I Example: L = {0n1n | n ∈ N}

IIC3242 – Turing Machines 3 / 65

Decision problems

Decision problem associated to a language L: Given w ∈ Σ∗,
decide if w ∈ L (or w /∈ L).

Example

We can view SAT as a decision problem. Assume that P = {p, q}:

I Σ = {p, q,¬,∧,∨,→,↔, (,)}
Some words in Σ∗ represent formulas, while others like ¬¬
and p¬q ∧ ∧ ∨ q do not.

I SAT = {w ∈ Σ∗ | w represents a formula and w is satisfiable}

IIC3242 – Turing Machines 4 / 65

Complexity of a problem

The complexity of a language L is the complexity of a decision
problem associated to L.

When can we say that L can be solved efficiently?

I When there is an efficient algorithm that decides L

Exercise

Show that L = {w ∈ {0, 1}∗ | w is a palindrome} can be solved
efficiently.

When can we say that L is an (intrinsically) difficult problem?

I When there is no algorithm that decides L efficiently.

IIC3242 – Turing Machines 5 / 65

What is an algorithm?

How can we show that a problem is difficult?

I To do this we need to formalize the notion of an algorithm

What is an algorithm? Can we define this formally?

IIC3242 – Turing Machines 6 / 65

What is an algorithm?

Maybe this?

IIC3242 – Turing Machines 7 / 65

What is an algorithm?

Or this?

IIC3242 – Turing Machines 8 / 65

What is an algorithm?

What is an algorithm? Can we define this formally?

I Turing machines: An intent to formalize this concept

Is it possible to show that Turing machines capture the notion of
an algorithm?

I No way. Algorithm is an intuitive concept.

IIC3242 – Turing Machines 9 / 65

Turing machines

Why do we believe that Turing machines are a good formalisation
of the notion of an algorithm?

I All programs of a Turing machine can be implemented

I All known algorithms can be implemented on a Turing machine

I All other attempts to formalise the concept are reducible to Turing
machines

I The best attempts are equivalent to Turing machines
I All “reasonable” formalisations are efficiently inter-reducible.

I Church-Turing thesis: Algorithm = Turing machine

IIC3242 – Turing Machines 10 / 65

Turing machines

Why do we believe that Turing machines are a good formalisation
of the notion of an algorithm?

I All programs of a Turing machine can be implemented

I All known algorithms can be implemented on a Turing machine

I All other attempts to formalise the concept are reducible to Turing
machines

I The best attempts are equivalent to Turing machines
I All “reasonable” formalisations are efficiently inter-reducible.

I Church-Turing thesis: Algorithm = Turing machine

IIC3242 – Turing Machines 10 / 65

Turing machines

Why do we believe that Turing machines are a good formalisation
of the notion of an algorithm?

I All programs of a Turing machine can be implemented

I All known algorithms can be implemented on a Turing machine

I All other attempts to formalise the concept are reducible to Turing
machines

I The best attempts are equivalent to Turing machines
I All “reasonable” formalisations are efficiently inter-reducible.

I Church-Turing thesis: Algorithm = Turing machine

IIC3242 – Turing Machines 10 / 65

Turing machines

Why do we believe that Turing machines are a good formalisation
of the notion of an algorithm?

I All programs of a Turing machine can be implemented

I All known algorithms can be implemented on a Turing machine

I All other attempts to formalise the concept are reducible to Turing
machines

I The best attempts are equivalent to Turing machines
I All “reasonable” formalisations are efficiently inter-reducible.

I Church-Turing thesis: Algorithm = Turing machine

IIC3242 – Turing Machines 10 / 65

Turing machines

Why do we believe that Turing machines are a good formalisation
of the notion of an algorithm?

I All programs of a Turing machine can be implemented

I All known algorithms can be implemented on a Turing machine

I All other attempts to formalise the concept are reducible to Turing
machines

I The best attempts are equivalent to Turing machines
I All “reasonable” formalisations are efficiently inter-reducible.

I Church-Turing thesis: Algorithm = Turing machine

IIC3242 – Turing Machines 10 / 65

Turing machines

Why do we believe that Turing machines are a good formalisation
of the notion of an algorithm?

I All programs of a Turing machine can be implemented

I All known algorithms can be implemented on a Turing machine

I All other attempts to formalise the concept are reducible to Turing
machines

I The best attempts are equivalent to Turing machines
I All “reasonable” formalisations are efficiently inter-reducible.

I Church-Turing thesis: Algorithm = Turing machine

IIC3242 – Turing Machines 10 / 65

Turing machines: the idea

I An infinite tape to read from and write to

I A read/write head that can move along the tape

I Accept/reject state to tell us if the word belongs to the
language or not

Note that the machine can go on forever

IIC3242 – Turing Machines 11 / 65

Definition of a Turing machine

Definition

A (deterministic) Turing machine: (Q,Σ, Γ, δ, q0, qaccept , qreject)

I Q is a finite set of states

I Σ is the input alphabet, where `, B 6∈ Σ

I Γ is the tape alphabet, where Σ ∪ {`, B} ⊆ Γ

I q0 ∈ Q is the initial state

I qaccept ∈ Q is the accepting state

I qreject ∈ Q is the rejecting state (qaccept 6= qreject)

I δ is a partial function:

δ : Q × Γ→ Q × Γ× {←,�,→}

δ is called the transition function

IIC3242 – Turing Machines 12 / 65

Computation of a Turing machine

The tape of a Turing machine is unbounded to the right

I The symbol ` marks the position 0 (leftmost position) of the
tape

We assume that:

I If δ(q,`) is defined: δ(q,`) = (q′,`,X), with X ∈ {→,�}
I If a ∈ (Γ\{`}) and δ(q, a) is defined: δ(q, a) = (q′, b,X),

with b ∈ (Γ\{`})

IIC3242 – Turing Machines 13 / 65

Computation of a Turing machine

Σ is the input alphabet and Γ is the tape alphabet.

I An input w ∈ Σ∗ of length n is placed in the positions 1, . . .,
n of the tape

I The positions (n + 1, n + 2, . . .) contain the symbol B

IIC3242 – Turing Machines 14 / 65

Computation of a Turing machine: configurations

The machine always starts in the state q0 and with the read/write
head over the position 1 of the tape.

As the machine computes, changes occur in the:

I Current state of the machine

I Current position of the head

I The content of the tape

A setting of these three components is called the configuration of
the machine.

IIC3242 – Turing Machines 15 / 65

Computation of a Turing machine: representing
configurations

Assume that:

I The current state of the machine is q

I The tape content is equal to uv , with u and v strings over Γ
(and all symbols after the last letter of v are B)

I The machine head is located over the first symbol of v

This configuration is then represented as C = uqv

IIC3242 – Turing Machines 16 / 65

For instance

If we have the following situation:

` 1 0 1 0 0 1 B B B · · ·

q3

Then this configuration is described using u =` 101 and v = 001

Thus resulting in a configuration C =` 101q3001

IIC3242 – Turing Machines 17 / 65

How does the computation work?

A configuration C1 yields a configuration C2:

We have a, b, c ∈ Γ, and u, v ∈ Γ∗ and qi , qj ∈ Q

uaqibv yields uqjacv , if we have δ(qi , b) = (qj , c,←);

uaqibv yields uacqjv , if we have δ(qi , b) = (qj , c,→);

uaqibv yields uaqjcv , if we have δ(qi , b) = (qj , c ,�).

IIC3242 – Turing Machines 18 / 65

How does the computation work?

The start configuration on input w is always q0w

In accepting configuration the state is qaccept

In rejecting configuration the state is qreject

The states qaccept and qreject are halting states

Halting states do not yield any further configurations

IIC3242 – Turing Machines 19 / 65

Accepting a string

A Turing machine M accepts an input w if:

There is a sequence of configurations C1,C2, . . . ,Ck such that:

1. C1 is the start configuration of M on w ,

2. Ci yields Ci+1 and

3. Ck is an accepting configuration.

Definition

The language accepted by the Turing machine M:

L(M) = {w ∈ Σ∗ | M accepts w}.

IIC3242 – Turing Machines 20 / 65

Is this enough?

A language is called Turing recognizable (recursively
enumerable) if it is accepted by some Turing machine.

On an input a Turing machine can: accept, reject, or loop (i.e.
run forever)

When a machine loops this is not very useful for deciding if string
is in the language or not

Namely, this does not give us an algorithm

First notion of algorithm = Turing machine that halts on every
input

IIC3242 – Turing Machines 21 / 65

Deciders

A Turing machine is a decider if it halts on every input

A language is Turing-decidable (recursive) if it is accepted by
some decider

Remark

From now on all the Turing machines we consider are going to be
deciders!

IIC3242 – Turing Machines 22 / 65

Example of a Turing machine

We will construct a Turing machine that checks if the number of
0s in a word is even: M = (Q,Σ, Γ, δ, q0, qaccept , qreject)

I Q = {q0, q1, qaccept , qreject}
I Σ = {0, 1}
I Γ = {0, 1,`, B}
I δ is defined as follows:

δ(q0, 0) = (q1, B,→)

δ(q0, 1) = (q0, B,→)

δ(q1, 0) = (q0, B,→)

δ(q1, 1) = (q1, B,→)

δ(q0, B) = (qaccept , B,→)

δ(q1, B) = (qreject , B,→)

IIC3242 – Turing Machines 23 / 65

Run of this machine

Assume that w = 00010:

Initial : ` 0 0 0 1 0 B B · · ·

q0

Step 1 : ` B 0 0 1 0 B B · · ·

q1

Step 2 : ` B B 0 1 0 B B · · ·

q0

IIC3242 – Turing Machines 24 / 65

Run of this machine

Step 3 : ` B B B 1 0 B B · · ·

q1

Step 4 : ` B B B B 0 B B · · ·

q1

Step 5 : ` B B B B B B B · · ·

q0

In the next step we go to qaccept
Conclusion: The machine accepts w = 00010

IIC3242 – Turing Machines 25 / 65

Language accepted by a TM

Example

For the machine M of previous three slides:

L(M) = {w ∈ {0, 1}∗ | w has an even number of 0}

Exercise

Construct a Turing machine that decides the language

L = {w ∈ {0, 1}∗ | w is a palindrome}.

IIC3242 – Turing Machines 26 / 65

Language accepted by a TM

Example

For the machine M of previous three slides:

L(M) = {w ∈ {0, 1}∗ | w has an even number of 0}

Exercise

Construct a Turing machine that decides the language

L = {w ∈ {0, 1}∗ | w is a palindrome}.

IIC3242 – Turing Machines 26 / 65

Complexity of an algorithm

Algorithm = TM that halts on every input

How do we measure the time taken by the algorithm?

For a TM with alphabet Σ:

I Step of M: Execute one instruction of the transition function
(one configuration yield)

I timeM(w): Number of steps that M executes on input
w ∈ Σ∗

IIC3242 – Turing Machines 27 / 65

Complexity of an algorithm

Definition

The time complexity of a TM M in the worst case is defined by
the function tM :

tM(n) = max{ timeM(w) | w ∈ Σ∗ and |w | = n }.

Exercise

Construct a TM with time complexity O(n2) that decides the
language

L = {w ∈ {0, 1}∗ | w is a palindrome}.

IIC3242 – Turing Machines 28 / 65

The model does not matter: TM with multiple tapes

Definition

TM (deterministic) with k tapes: (Q,Σ, Γ, δ, q0, qaccept , qreject)

I Q is a finite set of states

I Σ is the input alphabet, with `, B 6∈ Σ

I Γ is the tape alphabet, with Σ ∪ {`, B} ⊆ Γ

I q0 ∈ Q is the initial state

I qaccept , qreject ∈ Q are the accepting and rejecting state

I δ is a partial function:

δ : Q × Γk → Q × Γk × {←,�,→}k .

δ is called the transition function.

IIC3242 – Turing Machines 29 / 65

Multitape TM: how do they work

The machine has k tapes infinite to the right.

I We use ` to mark the position 0 of each tape

I No transition can rewrite this symbol, or move left from it

Σ is the input alphabet and Γ is the alphabet of the tapes.

I An input w ∈ Σ∗ of length n is placed in positions 1, . . ., n of
the first tape

I The positions (n + 1, n + 2, . . .) of the first tape have B

I The remaining tapes have B in positions 1, 2, 3, . . .

IIC3242 – Turing Machines 30 / 65

Multitape TM: how do they work

The machine has one read/write head per tape.

I At start the state of the machine is q0, and all the heads are
over the position 1 of their tape

The transition of the form

δ(q, a1, . . . , ak) = (q′, b1, . . . , bk ,X1, . . . ,Xk)

means that:

I The machine is in the state q,

I The heads 1 through k are reading symbols a1 through ak ,

I The state changes to q′,

I The machine writes b1 to tape 1, b2 to tape 2, etc.

I The head i moves as indicated by Xi

IIC3242 – Turing Machines 31 / 65

Multitape TM: configurations

Configurations are defined as before, but now we have k tapes

Thus we will need k pairs ui , vi ∈ Γ∗ to describe their content

The symbol # is used to denote the start of the tape

If the machine is in the state q and the tape contents are uivi a
configuration is:

#u1qv1#u2qv2# · · ·#ukqvk ,

where each head is over the first symbol of vi

Yield relation and acceptance are defined as for single-tape
machines

IIC3242 – Turing Machines 32 / 65

Multitape TM: complexity

As before:
L(M) = {w ∈ Σ∗ | M accepts w}.

(Recall that M is a decider for us.)

For a k-tape machine M with alphabet Σ:

I Step of M: Execute an instruction of the transition function
(change configuration)

I timeM(w): Number of steps M takes on input w ∈ Σ∗

I Worst case complexity of M:

tM(n) = max{ timeM(w) | w ∈ Σ∗ and |w | = n }

IIC3242 – Turing Machines 33 / 65

Multitape TM: example

Example

There is a 2-tape TM M that runs in time O(n) and accepts the
language L = {w ∈ {0, 1}∗ | w is a palindrome }.

Solution: Our machine M works as follows:

1. First it copies the input from tape 1 to the tape 2

2. Then it moves the head of the first tape to the beginning of
the input (the second head stays at the last symbol of the
second tape=input)

3. We then move one step forwards by the first head and one
backwards by the second

4. If the symbols are different reject, otherwise repeat step 3

5. If we come to the end of the input accept

IIC3242 – Turing Machines 34 / 65

Multitape TM: example

Example

There is a 2-tape TM M that runs in time O(n) and accepts the
language L = {w ∈ {0, 1}∗ | w is a palindrome }.

Solution: Our machine M works as follows:

1. First it copies the input from tape 1 to the tape 2

2. Then it moves the head of the first tape to the beginning of
the input (the second head stays at the last symbol of the
second tape=input)

3. We then move one step forwards by the first head and one
backwards by the second

4. If the symbols are different reject, otherwise repeat step 3

5. If we come to the end of the input accept

IIC3242 – Turing Machines 34 / 65

Multitape TM: example

Exercise

Define the TM from the previous slide formally. That is, describe
its states and the transition function.

Hint: Use different states to know which phase of the algorithm
you are in.

IIC3242 – Turing Machines 35 / 65

Did we get any power?

A language L is decided by a TM M if L = L(M).

I Can we decide more languages with additional tapes?

Theorem

If a language L is decided by a k-tape TM M, then it is also
decided by a single tape TM S .

IIC3242 – Turing Machines 36 / 65

Did we get any power?

A language L is decided by a TM M if L = L(M).

I Can we decide more languages with additional tapes?

Theorem

If a language L is decided by a k-tape TM M, then it is also
decided by a single tape TM S .

IIC3242 – Turing Machines 36 / 65

Simulating multitape machine with a single tape

Proof: k tapes of M are stored in the single tape of S

We use # to separate the content of different tapes

To know the head position, S will use ˜ over the tape symbol

E.g. if head is over a we will use ã to denote this

That is, S has ã in its tape alphabet, for a in tape alphabet of M

Think of this as virtual tapes and heads

We use # instead of ` to denote the first symbol of each tape

IIC3242 – Turing Machines 37 / 65

Simulating multitape machine with a single tape

` b a b b b B

` b b a B

` b a B

· · ·

· · ·

· · ·

M

Is the same as:

` # b ã b b b # b b ã # b ã # B B · · ·

S

IIC3242 – Turing Machines 38 / 65

Simulating multitape machine with a single tape

S = on input w = w1 · · ·wn :

1. Simulate the initial configuration of M on w :

` #w̃1w2 · · ·wn#B̃#B̃ · · ·#B̃#

2. To simulate a move of M our machine S scans the tape in
order to see where each head is. Then S does a second pass
to update the tapes according to the transition function of M.

3. If a virtual head moves right to # this means that M moves
its head to previously unread portion of the corresponding
tape (a B). So S writes B and shifts the content of its tape
from this position to the end one cell towards right.

IIC3242 – Turing Machines 39 / 65

Complexity of different models

A language L is decided by a TM M in time O(t(n)) if L = L(M)
and tM(n) is O(t(n)).

I The definition is identical for Ω(t(n)) and o(t(n))

This definition considers the TM to have k tapes, with k ≥ 1.

IIC3242 – Turing Machines 40 / 65

Notation reminder

I Big-O (≤): f (n) = O(g(n)) if:

∃c , n0 s.t. ∀n ≥ n0 f (n) ≤ c · g(n)

I Small-o (<): f (n) = o(g(n)) if:

lim
n→∞

f (n)

g(n)
= 0; that is,

∀c > 0∃n0 s.t. ∀ n ≥ n0f (n) < c · g(n)

IIC3242 – Turing Machines 41 / 65

Notation reminder

I Big-Omega (≥): f (n) = Ω(g(n)) if:

g(n) = O(f (n)), that is

∃c , n0 s.t. ∀n ≥ n0 g(n) ≤ c · f (n), that is

∃d , n0 s.t. ∀n ≥ n0 f (n) ≥ d · g(n)

IIC3242 – Turing Machines 42 / 65

Complexity of different models

Is the complexity smaller when we use more than one tape?

Theorem

If a language L is decided by a TM M with k tapes (k ≥ 2) in time
O(t(n)), where t(n) ≥ n, then L is decided by a single-tape TM S
in time O(t(n)2).

Exercise

Prove the theorem (see previous slides).

I Is it possible to reduce the complexity difference between M
and S?

IIC3242 – Turing Machines 43 / 65

Complexity of different models

Is the complexity smaller when we use more than one tape?

Theorem

If a language L is decided by a TM M with k tapes (k ≥ 2) in time
O(t(n)), where t(n) ≥ n, then L is decided by a single-tape TM S
in time O(t(n)2).

Exercise

Prove the theorem (see previous slides).

I Is it possible to reduce the complexity difference between M
and S?

IIC3242 – Turing Machines 43 / 65

Complexity of different models

Is the complexity smaller when we use more than one tape?

Theorem

If a language L is decided by a TM M with k tapes (k ≥ 2) in time
O(t(n)), where t(n) ≥ n, then L is decided by a single-tape TM S
in time O(t(n)2).

Exercise

Prove the theorem (see previous slides).

I Is it possible to reduce the complexity difference between M
and S?

IIC3242 – Turing Machines 43 / 65

No, not really!

Let L = {w ∈ {0, 1,#}∗ | w is a palindrome}.
I L is decided by a 2-tape TM in time O(n)

I Can L be decided in linear time by a one-tape TM?

Proposition

Let M be a one-tape TM. If L = L(M), then M runs in time Ω(n2).

Proof: Assume that L = L(M), with M a one-tape TM.

I Let Q be the set of states of M

IIC3242 – Turing Machines 44 / 65

No, not really!

Let L = {w ∈ {0, 1,#}∗ | w is a palindrome}.
I L is decided by a 2-tape TM in time O(n)

I Can L be decided in linear time by a one-tape TM?

Proposition

Let M be a one-tape TM. If L = L(M), then M runs in time Ω(n2).

Proof: Assume that L = L(M), with M a one-tape TM.

I Let Q be the set of states of M

IIC3242 – Turing Machines 44 / 65

No, not really!

Let L = {w ∈ {0, 1,#}∗ | w is a palindrome}.
I L is decided by a 2-tape TM in time O(n)

I Can L be decided in linear time by a one-tape TM?

Proposition

Let M be a one-tape TM. If L = L(M), then M runs in time Ω(n2).

Proof: Assume that L = L(M), with M a one-tape TM.

I Let Q be the set of states of M

IIC3242 – Turing Machines 44 / 65

Complexity of different models

Wlog, assume that M always reads the entire input word.

I Why can we assume this?

For w ∈ {0, 1,#}∗, let w r be w written in reverse.

Define Ln as the following language (n > 0 and divisible by 4):

Ln = {w#
n
2w r | w ∈ {0, 1}

n
4 }.

Clearly Ln ⊆ L.

IIC3242 – Turing Machines 45 / 65

Crossing sequences

Let w ∈ Ln and n
4 ≤ i ≤ 3n

4 . Denote by Ci (w) the sequence of
states [q1, . . ., qk] that M is in while passing the line between the
position i and i + 1 (in either direction) while running with w as
the input.

Let C (w) = {Ci (w) | n4 ≤ i ≤ 3n
4 }

IIC3242 – Turing Machines 46 / 65

Crossing sequences

Just to make sure what a crossing sequence is:

IIC3242 – Turing Machines 47 / 65

A little lemma

Lemma

If w1,w2 ∈ Ln and w1 6= w2, then C (w1) ∩ C (w2) = ∅.

Proof: Assume that the lemma is false. Then there are
i , j ∈ {n4 , . . . ,

3n
4 } such that Ci (w1) = Cj(w2).

Let u1 and v2 be the words consisting of the first i symbols of w1

and the last n − j symbols of w2, respectively.

Since Ci (w1) = Cj(w2), we have that u1v2 is accepted by M.

I How do we prove this?

But u1v2 is not a palindrome, thus giving us a contradiction.

IIC3242 – Turing Machines 48 / 65

Almost there (don’t fall asleep)

For w ∈ Ln, let sw be the shortest sequence in C (w).

I Sn = {sw | w ∈ Ln}

From the lemma it follows that sw1 6= sw2 if w1 6= w2.

I Therefore: |Sn| = |Ln| = 2
n
4

Let m the length of the longest sequence in Sn.

I The number of sequences of length at most m is:

m∑
i=0

|Q|i =
|Q|m+1 − 1

|Q| − 1

IIC3242 – Turing Machines 49 / 65

We finish here

From this we conclude that: |Q|
m+1−1
|Q|−1 ≥ 2

n
4 .

I Why? (Lemma ⇒ all the shortest sequences are different)

By taking logarithms we get that m is Ω(n).

I So there exists w0 ∈ Ln such that |sw0 | is Ω(n).

Therefore: All the sequences in C (w0) are of length Ω(n) (since
the shortest one is).

Conclusion: With input w0, the machine M takes time Ω(n2).

I Given that M has to generate n
2 sequences of states of length

Ω(n) (one for each crossing between n
4 and 3n

4)

IIC3242 – Turing Machines 50 / 65

Different models: nondeterminism

Definition

Nondeterministic Turing machine: (Q,Σ, Γ, δ, q0, qaccept , qreject)

I Q is a finite set of states

I Σ is the input alphabet, with `, B 6∈ Σ

I Γ is the tape alphabet, with Σ ∪ {`, B} ⊆ Γ

I q0 ∈ Q is the initial state

I qaccept , qreject ∈ Q are the accepting and rejecting states

I δ is a relation:

δ ⊆ Q × Γ× Q × Γ× {←,�,→}

IIC3242 – Turing Machines 51 / 65

Computing with nondeterminism

Initial state, configuration and tape content are same as before

But now we can have a choice where to go next:

Assume that the head is reading a and the state is q:

If (q, a, q′, b,�) and (q, a, q′′, a,→) are both in δ

I We can write b, change the state to q′ and keep the head as
it was; or

I Keep the a, change the state to q′′ and move to the right

IIC3242 – Turing Machines 52 / 65

Computing with nondeterminism: formally

A configuration C1 yields a configuration C2:

We have a, b, c ∈ Γ, and u, v ∈ Γ∗ and qi , qj ∈ Q

uaqibv yields uqjacv , if we have (qi , b, qj , c ,←) ∈ δ;

uaqibv yields uacqjv , if we have (qi , b, qj , c ,→) ∈ δ;

uaqibv yields uaqjcv , if we have (qi , b, qj , c ,�) ∈ δ.

IIC3242 – Turing Machines 53 / 65

Accepting a string

A nondeterministic TM M accepts an input w if:

There is a sequence of configurations C1,C2, . . . ,Ck such that:

1. C1 is the start configuration of M on w ,

2. Ci yields Ci+1 and

3. Ck is an accepting configuration.

Definition

The language accepted by the Turing machine M:

L(M) = {w ∈ Σ∗ | M accepts w}.

Note that some sequences can reject and some accept.

We only need one accepting sequence!
IIC3242 – Turing Machines 54 / 65

How to think about nondeterminism

IIC3242 – Turing Machines 55 / 65

Nondeterministic algorithms

Recall that we want to know if a string is or is not in the language.

With nondeterminism it can happen that some branch accepts, but
we don’t know when this happens.

A nondeterministic TM is a decider if all of its branches halt on all
inputs.

Nondeterministic algorithm = a nondeterministic TM that is a
decider

IIC3242 – Turing Machines 56 / 65

Complexity of nondeterministic algorithms

Let M be a NTM that is a decider

I Step of M: Execute one instruction of the transition relation
(one “change“ of configuration)

I timeM(w): Maximum number of steps that M takes on any
branch when run with the input w

Definition

The time complexity of a NTM M is defined by the function tM :

tM(n) = max{ timeM(w) | w ∈ Σ∗ and |w | = n }.

IIC3242 – Turing Machines 57 / 65

Complexity of nondeterministic algorithms

Equivalently, we say that:

Definition

The running time of a NTM M is a function tM : N→ N, where
tM(n) is the maximum number of steps that M uses on any branch
of computation on any input of length n.

IIC3242 – Turing Machines 58 / 65

The way to think of this

For any word of length n the following holds:

IIC3242 – Turing Machines 59 / 65

Can we accept more languages with NTM?

No, but we can do it more efficiently.

Theorem

Let t(n) be a function with t(n) ≥ n. Then for any
nondeterministic TM N running in time t(n) there is an equivalent
deterministic TM D running in time 2O(t(n)).

IIC3242 – Turing Machines 60 / 65

Let’s see how

Proof: The idea is to examine the computation tree of the NTM
using a deterministic one. If we stumble upon a branch that
accepts we do as well. If not, we keep on going.

We will simulate N using a 3-tape deterministic machine D:

I Tape 1 always contains the input w

I Tape 2 simulates one branch of N’s computation on w

I Tape 3 tells us which branch we are examining

IIC3242 – Turing Machines 61 / 65

Visually this means:

` 0 0 1 0 B

` x x # 0 1 B

` 1 2 3 3 2 1 2 B

· · · input tape

· · · simulation tape

· · · address tape

M

IIC3242 – Turing Machines 62 / 65

Let’s see how this is done

We will explore the computation tree using BFS (why?)

Let b be the largest number of choices we can make according to
N’s δ

Tape 3 will enumerate (lexicographically) strings over {1, 2, . . . , b}

This tells us where to go in the computation tree

Note that some addresses are meaningless

On Tape 2 we simulate this branch

IIC3242 – Turing Machines 63 / 65

Let’s see how

D works as follows:

1. Start with w on Tape 1. The other tapes are empty.

2. Copy Tape 1 to Tape 2.

3. Simulate N’s run according to choices from Tape 3. If it
accepts accept. Otherwise goto 4.

4. Replace the string with the lexicographically next string. Goto
2.

Almost good. But recall that we want a decider.

Since N is a decider we can do this easily. How?

IIC3242 – Turing Machines 64 / 65

Let’s see how

Next we analyse the complexity.

Note that going down each branch takes at most t(n) time.

The number of configuration we check is at most

t(n)∑
i=1

bi = O(bt(n))

So we take O(t(n)bt(n)) = 2O(t(n)) time

IIC3242 – Turing Machines 65 / 65

