
Time complexity

IIC3242

IIC3242 – Time and space complexity I 1 / 114

When is something efficiently computable?

Efficient = polynomial time

Does this make sense?

I We focus on distinction between e.g. n3 and 2n

I Exponential = brute-force search

I Polynomial = a bit smarter

I Polynomial = realistically solvable
I All deterministic models polynomially equivalent
I Once we drop from exp to poly we gained some fundamental

insight about the problem
I All known poly = low degree poly

IIC3242 – Time and space complexity I 2 / 114

Complexity classes

How we define (any) complexity class?

Definition

Let t : N→ N be a function. We define the (deterministic) time
complexity class DTIME(t(n)) as:

DTIME(t(n)) = {L | L is decided by an O(t(n))

time deterministic Turing machine}.

For instance we have seen that the language of all palindromes
belongs to DTIME(n2).

IIC3242 – Time and space complexity I 3 / 114

Complexity class PTIME

PTIME= the class of all languages decidable in deterministic
polynomial time on a single-tape TM

Definition

PTIME =
⋃
k

DTIME(nk).

IIC3242 – Time and space complexity I 4 / 114

Some conventions

We will use high-level description of a TM and then illustrate how
each step can be implemented in polynomial time on a TM

Recall that we always talk about languages

I To talk about graphs, numbers, etc. we will use encodings

I If G is a graph we use 〈G 〉 for its string representation

I For a number x we use 〈x〉

Encoding is reasonable if:

I We can go from the natural representation to encoding in
polynomial time

I For graphs this is the adjacency matrix, or list representation

I For numbers = base b ≥ 2, but not unary

IIC3242 – Time and space complexity I 5 / 114

Examples of PTIME problems: PATH

PATH = {〈G , s, t〉 | G is a directed graph with a path from s to t}.

Brute-force = try all paths (exponential)

Poly-time algorithm:

1. Check that 〈G , s, t〉 is a directed graph with nodes s and t

2. Place mark on node s

3. Repeat the following until no new mark is produced:

4. Scan edges of G . If (a, b) is an edge with a marked and b not
marked, then mark b.

5. If t is marked accept, otherwise reject.

IIC3242 – Time and space complexity I 6 / 114

Examples of PTIME problems: PATH

PATH = {〈G , s, t〉 | G is a directed graph with a path from s to t}.

Brute-force = try all paths (exponential)

Poly-time algorithm:

1. Check that 〈G , s, t〉 is a directed graph with nodes s and t

2. Place mark on node s

3. Repeat the following until no new mark is produced:

4. Scan edges of G . If (a, b) is an edge with a marked and b not
marked, then mark b.

5. If t is marked accept, otherwise reject.

IIC3242 – Time and space complexity I 6 / 114

Another problem in PTIME: RELPRIME

RELPRIME = {〈x , y〉 | x and y are relatively prime}.

Note that the length of the input is logarithmic in the size of the
number, so trying out all the possible divisors is exponential

Poly-time algorithm (compute the g.c.d. using Euclid’s algorithm):

R = On input 〈x , y〉 with x and y numbers in binary:

1. Repeat until y = 0

2. Assign x ← x mod y

3. Exchange x and y

4. If x = 1 accept, otherwise reject

IIC3242 – Time and space complexity I 7 / 114

Another problem in PTIME: RELPRIME

RELPRIME = {〈x , y〉 | x and y are relatively prime}.

Note that the length of the input is logarithmic in the size of the
number, so trying out all the possible divisors is exponential

Poly-time algorithm (compute the g.c.d. using Euclid’s algorithm):

R = On input 〈x , y〉 with x and y numbers in binary:

1. Repeat until y = 0

2. Assign x ← x mod y

3. Exchange x and y

4. If x = 1 accept, otherwise reject

IIC3242 – Time and space complexity I 7 / 114

Another problem in PTIME: RELPRIME

To see we are in PTIME we need to show that steps 1–3 are
executed logarithmic number of times in the size of the numbers

Observation: In stage 2 we cut x in half

I Apart maybe in the first time

I After this x > y in stage 2 (we use mod in 2 and exchange
them in 3)

I Then if x/2 ≥ y ⇒ x mod y < y ≤ x/2, so x halves

I If x/2 < y ⇒ x mod y = x − y < x/2, so x halves

Now, as x and y get exchanged in stage 3, each drops by half in
stage 2. So we run steps 2–3 min{log2x , log2y} times = poly in
the length of the input.

IIC3242 – Time and space complexity I 8 / 114

Another problem in PTIME: RELPRIME

To see we are in PTIME we need to show that steps 1–3 are
executed logarithmic number of times in the size of the numbers

Observation: In stage 2 we cut x in half

I Apart maybe in the first time

I After this x > y in stage 2 (we use mod in 2 and exchange
them in 3)

I Then if x/2 ≥ y ⇒ x mod y < y ≤ x/2, so x halves

I If x/2 < y ⇒ x mod y = x − y < x/2, so x halves

Now, as x and y get exchanged in stage 3, each drops by half in
stage 2. So we run steps 2–3 min{log2x , log2y} times = poly in
the length of the input.

IIC3242 – Time and space complexity I 8 / 114

Another problem in PTIME: RELPRIME

To see we are in PTIME we need to show that steps 1–3 are
executed logarithmic number of times in the size of the numbers

Observation: In stage 2 we cut x in half

I Apart maybe in the first time

I After this x > y in stage 2 (we use mod in 2 and exchange
them in 3)

I Then if x/2 ≥ y ⇒ x mod y < y ≤ x/2, so x halves

I If x/2 < y ⇒ x mod y = x − y < x/2, so x halves

Now, as x and y get exchanged in stage 3, each drops by half in
stage 2. So we run steps 2–3 min{log2x , log2y} times = poly in
the length of the input.

IIC3242 – Time and space complexity I 8 / 114

More examples: now from logic

Consider the following restriction of SAT

Notation

I A literal is a propositional variable or its negation: p and ¬q
I A clause is a disjunction of literals: (p ∨ q) and (s ∨ ¬q ∨ ¬r)

I A Horn clause is a clause that has at most one positive literal
(of the form p).

I (s ∨ ¬q ∨ ¬r) is a Horn clause and (p ∨ q) is not

I HORN-SAT = {ϕ | ϕ is a conjunction of Horn clauses and ϕ
is satisfiable}

IIC3242 – Time and space complexity I 9 / 114

More examples: now from logic

Consider the following restriction of SAT

Notation
I A literal is a propositional variable or its negation: p and ¬q

I A clause is a disjunction of literals: (p ∨ q) and (s ∨ ¬q ∨ ¬r)

I A Horn clause is a clause that has at most one positive literal
(of the form p).

I (s ∨ ¬q ∨ ¬r) is a Horn clause and (p ∨ q) is not

I HORN-SAT = {ϕ | ϕ is a conjunction of Horn clauses and ϕ
is satisfiable}

IIC3242 – Time and space complexity I 9 / 114

More examples: now from logic

Consider the following restriction of SAT

Notation
I A literal is a propositional variable or its negation: p and ¬q
I A clause is a disjunction of literals: (p ∨ q) and (s ∨ ¬q ∨ ¬r)

I A Horn clause is a clause that has at most one positive literal
(of the form p).

I (s ∨ ¬q ∨ ¬r) is a Horn clause and (p ∨ q) is not

I HORN-SAT = {ϕ | ϕ is a conjunction of Horn clauses and ϕ
is satisfiable}

IIC3242 – Time and space complexity I 9 / 114

More examples: now from logic

Consider the following restriction of SAT

Notation
I A literal is a propositional variable or its negation: p and ¬q
I A clause is a disjunction of literals: (p ∨ q) and (s ∨ ¬q ∨ ¬r)

I A Horn clause is a clause that has at most one positive literal
(of the form p).

I (s ∨ ¬q ∨ ¬r) is a Horn clause and (p ∨ q) is not

I HORN-SAT = {ϕ | ϕ is a conjunction of Horn clauses and ϕ
is satisfiable}

IIC3242 – Time and space complexity I 9 / 114

More examples: now from logic

Consider the following restriction of SAT

Notation
I A literal is a propositional variable or its negation: p and ¬q
I A clause is a disjunction of literals: (p ∨ q) and (s ∨ ¬q ∨ ¬r)

I A Horn clause is a clause that has at most one positive literal
(of the form p).

I (s ∨ ¬q ∨ ¬r) is a Horn clause and (p ∨ q) is not

I HORN-SAT = {ϕ | ϕ is a conjunction of Horn clauses and ϕ
is satisfiable}

IIC3242 – Time and space complexity I 9 / 114

More examples: HORN-SAT

Theorem

HORN-SAT is in PTIME.

Proof: Follows by unit-propagation.

I Unit clause = consists of a single literal

I Repeat until no unit clauses are left:

I Pick a unit clause `

I Remove every clause containing ` (apart the unit one)

I Remove ¬` from any clause containing it

I If we get ` and ¬` at some stage reject

I Accept otherwise

IIC3242 – Time and space complexity I 10 / 114

How do we prove that a problem is difficult?

Poly-time is efficient, but what if a problem is intrinsically difficult
(sometimes we know only an exponential algorithm).

Let us consider the following problem:

HAMPATH = {〈G , s, t〉 | G is a directed graph with a

Hamiltonian path from s to t}.

(Hamiltonian path = the one that passes each node precisely once)

IIC3242 – Time and space complexity I 11 / 114

Polynomial verifiability

An easy exponential algorithm: generate all paths of length n
(number of nodes) and check if one is Hamiltonian

I Note that checking if a path is Hamiltonian = PTIME

I We don’t know how to discover a HP quickly

This is called polynomial verifiability

IIC3242 – Time and space complexity I 12 / 114

Polynomial verifiability

Verifying if a path is Hamiltonian is much easier than determining
if one exists.

Path = witness (certificate, proof) for the property

And this happens often:

COMPOSITES = {〈x〉 | x = pq, for integers p, q > 1}.

Determining if a number is composite is difficult, but verifying if
some other number is its divisor is easy

IIC3242 – Time and space complexity I 13 / 114

Polynomially verifiable problems

Definition

A verifier for a language L is a deterministic Turing machine V
such that

L = {w | V accepts 〈w , c〉 for some string c}.

A polynomial time verifier V runs in time that is polynomial in
w . A language is polynomially verifiable if it has a polynomial
time verifier.

The string c = witness, certificate of membership in L
(for poly-time verifiers c is clearly polynomial)

For HAMPATH the witness is the Hamiltonian path, for
COMPOSITES it is a divisor, and for SAT it is the satisfying
assignment

IIC3242 – Time and space complexity I 14 / 114

The class NP

Since poly-verifiability is such a fundamental property let us
consider the class of all the problems having this property

Definition

NP is the class of all languages that have polynomial time verifiers.

Contains many (most) problems of practical importance

But NP actually comes from nondeterministic polynomial time

IIC3242 – Time and space complexity I 15 / 114

The class NP

Here is an NTM deciding HAMPATH:
N = On input 〈G , s, t〉, where G is a directed graph with nodes s
and t:

1. Nondeterministically select a list p1, . . . , pm of nodes from G ,
where m is the number of nodes in G .

2. Check if some node is repeated in the list. If yes, reject.

3. If s 6= p1, or t 6= pm reject.

4. Check that (pi , pi+1) is an edge in G . If not reject. Otherwise
accept.

This clearly runs in poly-time.

And this is the general trend.

IIC3242 – Time and space complexity I 16 / 114

The class NP: not a misnomer

Theorem

A language is in NP (has a poly-time verifier) if and only if it is
decided by some nondeterministic Turing machine running in
polynomial time.

Proof: First let L ∈ NP and let V be its verifier (a TM). Let V
run in time d · nk , with d and k natural numbers. An equivalent
NTM works as follows:

N = On input w of length n:

1. Nondeterministically select a string c of length d · nk .

2. Run V on input 〈w , c〉.
3. If V accepts accept, otherwise reject.

IIC3242 – Time and space complexity I 17 / 114

The class NP: not a misnomer

For the other direction, assume that a NTM N decides L in
poly-time. The verifier V works as follows:

V = On input 〈w , c〉, with w and c strings:

1. Simulate N on input w using c as the description of the
nondeterministic branch we are using (recall the proof that
TM = NTM).

2. If this branch accepts accept, otherwise reject.

IIC3242 – Time and space complexity I 18 / 114

Defining NP via NTMs

Often it is easier to work with the following definition of NP:

Definition

NP =
⋃
k

NTIME(nk).

As with deterministic TMs, here:

NTIME(t(n)) = {L | L is a language decided by a O(t(n))

time nondeterministic Turing machine }.

(Same comments about nondeterministic models as when dealing
with deterministic ones)

IIC3242 – Time and space complexity I 19 / 114

More NP problems: CLIQUE

A clique in a graph is a subgraph where every pair of nodes is
connected by an edge. A k-clique is a clique of size k.

CLIQUE = {〈G , k〉 | G is an undirected graph with a k− clique}.

A poly-time verifier for CLIQUE:

V = On input 〈〈G , k〉, c〉:
1. Check that c is a set of k nodes in G .

2. Check that G contains an edge connecting each pair of nodes
in c .

3. If both pass accept, otherwise reject.

IIC3242 – Time and space complexity I 20 / 114

More NP problems: CLIQUE

Alternatively, this can be done by a NTM:

V = On input 〈G , k〉:
1. Nondeterministically guess a subset c of k nodes in G .

2. Check that c is a clique.

3. If it is accept, otherwise reject.

Idea: Polynomial guess followed by a polynomial check

IIC3242 – Time and space complexity I 21 / 114

PTIME vs NP and all that good stuff

Informally:

I PTIME = languages where membership is decided quickly

I NP = languages where membership can be verified quickly

Million dollar question

So is PTIME = NP?

We have no idea. Note that if not the best way to solve difficult
problems is by brute-force search.

So how do we solve NP problems on a real computer?

I We already showed this (TM = NTM): using exponential time

NP ⊆ EXPTIME =
⋃
k

DTIME(2n
k
)

IIC3242 – Time and space complexity I 22 / 114

Reductions and hardness

If a problem is in NP this does still not rule out that there is a
PTIME algorithm solving it (even if PTIME 6= NP)

So when do we say that a problem is difficult?

Good attempt: when it is as hard to solve as any problem in NP

This is called NP-hardness

IIC3242 – Time and space complexity I 23 / 114

Completeness

Also interesting: when does a problem represent a complexity
class?

When solving it allows us to solve the entire class

This is called completeness for the class (e.g. NP-completeness)

For this the problem has to be hard for the class and belong to it

IIC3242 – Time and space complexity I 24 / 114

Reductions

To define hardness and completeness we need to be able to
transform (reduce) one problem to another

I.e. we need to make an algorithm transforming an instance of
problem A to an instance of problem B and this needs to be
efficient

Note that here we actually compute a function, not just decide if a
word is inside a language

IIC3242 – Time and space complexity I 25 / 114

Reductions

Definition (Computable functions)

A function f : Σ∗ → Σ∗ is a polynomial time computable
function if some polynomial time Turing machine exists that halts
with just f (w) on its tape, when started with the input w ∈ Σ∗.

Definition (Karp reductions)

Language A is polynomial time Karp reducible to language B,
written A ≤P B, if there is a polynomial time computable function
f : Σ∗ → Σ∗ such that:

w ∈ A⇐⇒ f (w) ∈ B.

IIC3242 – Time and space complexity I 26 / 114

How do reductions work?

Consider the following two problems:

3SAT = {〈ϕ〉 | ϕ is a satisfiable propositional formula in 3CNF}.

3CNF = three literals per clause (e.g. x1 ∨ x2 ∨ x7)

CLIQUE = {〈G , k〉 | G is an undirected graph with a k− clique}.

Theorem

3SAT is polynomial time reducible to CLIQUE.

IIC3242 – Time and space complexity I 27 / 114

Converting formulas to graphs

Take
ϕ = (a1 ∨ b1 ∨ c1) ∧ · · · ∧ (ak ∨ bk ∨ ck).

The reduction f produces 〈G , k〉, with G as follows:

I G has k groups of 3 nodes

I Each triple corresponds to one clause of ϕ

I Each node is labelled as the literals in the corresponding clause

I No edges between nodes in one triple

I No edges between x and x

I All other nodes have an edge

IIC3242 – Time and space complexity I 28 / 114

Converting formulas to graphs

If
ϕ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

Then we get:

IIC3242 – Time and space complexity I 29 / 114

Converting formulas to graphs

Recall that we need to show that w ∈ 3SAT ⇐⇒ f (w) ∈ CLIQUE

If ϕ has a satisfying assignment, then we just select a single node
in each triple that is true under this assignment.

If G has a k-clique, then this clique selects precisely one node from
each triple. If we make this literal true we get a satisfying
assignment.

Consequence: If we know how to solve CLIQUE we know how to
solve 3SAT

IIC3242 – Time and space complexity I 30 / 114

Hardness and completeness

When is a problem as hard as any problem in NP?

Definition (Hardness)

A language B is NP-hard if for any A ∈ NP we have A ≤P B.

When does a problem represent NP?

Definition (Completeness)

A language B is NP-complete if B is NP-hard and B ∈ NP.

IIC3242 – Time and space complexity I 31 / 114

Why is this important?

Proposition

1. (Transitivity) If A ≤P B and B ≤P C then A ≤P C.

2. If A is NP-hard and A ∈ PTIME then PTIME = NP.

3. If A is NP-complete, then A ∈ PTIME if and only if
PTIME = NP.

4. If A is NP-complete and A ≤P B, for B ∈ NP, then B is
NP-complete.

Why is each of these items important?

IIC3242 – Time and space complexity I 32 / 114

The Cook-Levin theorem

So do we know of a problem that is NP-complete?

Theorem

SAT is NP-complete.

Recall:

SAT = {〈ϕ〉 | ϕ is a satisfiable propositional formula.}

Proof: Computer circuitry uses AND, OR and NOT, just as
boolean formulas.

IIC3242 – Time and space complexity I 33 / 114

The Cook-Levin theorem: proof

Take arbitrary A ∈ NP

Let N be a NTM deciding A in time nk , for some k

Wlog we assume that N works in time nk − 3

I If you want to be very precise replace this by tM(n)

I And show that for every NTM M there is an equivalent one
that takes precisely tM(n) steps on every branch on every
input of length n

I The same holds for deterministic machines

We describe a branch of computation of N using a tableau

IIC3242 – Time and space complexity I 34 / 114

The Cook-Levin theorem: proof

A tableau:

IIC3242 – Time and space complexity I 35 / 114

The Cook-Levin theorem: proof

A tableau is an nk × nk table:

I Rows are configurations of N on input w

I Rows start and end with #

I First row is the initial configuration

I Each row yields the next one

I A tableau is accepting if some row is an accepting
configuration

N accepts w iff there is an accepting tableau of N on w

IIC3242 – Time and space complexity I 36 / 114

The Cook-Levin theorem: proof

For a word w we construct a formula ϕw such that:

There is an accepting tableau of N on w iff ϕw is satisfiable

Let C = Q ∪ Γ ∪ {#}, with Q, Γ from N

ϕw uses variables xi ,j ,s , where i , j ∈ {1, . . . , nk} and s ∈ C

Each entry of a tableau is called a cell

I cell [i , j] is the cell at position (i , j)

Our formula will be:

ϕw = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕaccept

IIC3242 – Time and space complexity I 37 / 114

The Cook-Levin theorem: proof

xi ,j ,s = 1 means that cell [i , j] = s

ϕcell makes sure that each cell has precisely one symbol in it:

ϕcell =
∧

1≤i ,j≤nk

[(∨
s∈C

xi ,j ,s
)
∧
(∧
s,t∈C
s 6=t

(xi ,j ,s ∨ xi ,j ,t)
)]

IIC3242 – Time and space complexity I 38 / 114

The Cook-Levin theorem: proof

ϕstart codes the initial configuration in the first row:

ϕstart = x1,1,# ∧ x1,2,` ∧ x1,3,q0∧
x1,4,w1 ∧ x1,5,w2 ∧ · · · ∧ x1,n+3,wn∧
x1,n+4,B ∧ · · · ∧ x1,nk−1,B ∧ x1,nk ,#

Here we assume w = w1 · · ·wn

IIC3242 – Time and space complexity I 39 / 114

The Cook-Levin theorem: proof

ϕaccept makes sure there is an accepting configuration:

ϕaccept =
∨

1≤i ,j≤nk
xi ,j ,qaccept

IIC3242 – Time and space complexity I 40 / 114

The Cook-Levin theorem: proof

ϕmove codes how the machine N works

Namely, it makes sure that each row yields the next one

This is done by making sure that each 2× 3 window of cells is legal

A window is legal if it does not violate N’s transition function

IIC3242 – Time and space complexity I 41 / 114

The Cook-Levin theorem: proof

Say that in N we have:

I δ(q1, a) = {(q1, b,→)} and

I δ(q1, b) = {(q2, c ,←), (q2, a,→)}

These are legal windows:

Why?

IIC3242 – Time and space complexity I 42 / 114

The Cook-Levin theorem: proof

Say that in N we have:

I δ(q1, a) = {(q1, b,→)} and

I δ(q1, b) = {(q2, c ,←), (q2, a,→)}

These windows are not legal:

Why?

IIC3242 – Time and space complexity I 43 / 114

The Cook-Levin theorem: proof

Claim

If the top row of the tableau is the initial configuration and every
window in the tableau is legal, then each row of the tableau is a
configuration that legally follows from the preceding one.

Hint: Look at the central cell of the top row in a window.

IIC3242 – Time and space complexity I 44 / 114

The Cook-Levin theorem: proof

Now we can define ϕmove easily:

ϕmove =
∧

1<i≤nk ,1<j<nk

(the (i , j) window is legal)

The formula the (i , j) window is legal simply codes any legal
configuration:

∨
a1,...,a6

is a legal window

(xi ,j−1,a1∧xi ,j ,a2∧xi ,j+1,a3∧xi+1,j−1,a4∧xi+1,j ,a5∧xi+1,j+1,a6)

Note: the six cells of each window can be only set in a predefined
way (i.e. this is polynomial)

IIC3242 – Time and space complexity I 45 / 114

The Cook-Levin theorem: proof

Clearly ϕw is satisfiable iff N accepts w

To finish the proof we need to make sure that ϕw can be
computed in polynomial time

But this is easy: homework

IIC3242 – Time and space complexity I 46 / 114

The Cook-Levin theorem: consequences

Now we have a real problem that is NP-complete

To show another problem in NP to be NP-complete we can now
just give a reduction from SAT to his problem (no need to code
Turing machines)

Instead of SAT we will often use 3SAT

Proposition

3SAT is NP-complete.

Prove this!

(Note that this also means that CLIQUE is NP-complete)

IIC3242 – Time and space complexity I 47 / 114

More NP-complete problems: HAMPATH

Recall:

HAMPATH = {〈G , s, t〉 | G is a directed graph with a

Hamiltonian path from s to t}.

Theorem

HAMPATH is NP-complete.

Proof: We already know that HAMPATH is in NP

For NP-hardness we do a reduction from 3SAT to HAMPATH

IIC3242 – Time and space complexity I 48 / 114

More NP-complete problems: HAMPATH

For a 3CNF formula ϕ we construct a directed graph G with nodes
s, t such that:

ϕ is satisfiable iff G has a Hamiltonian path fro s to t

ϕ = (u1 ∨ v1 ∨ w1) ∧ (u2 ∨ v2 ∨ w2) ∧ · · · ∧ (uk ∨ vk ∨ wk)

I ui , vi ,wi are variables xi of xi
I x1, . . . , x` are all the variables in ϕ

I c1, . . . , ck are the k clauses of ϕ

IIC3242 – Time and space complexity I 49 / 114

More NP-complete problems: HAMPATH

Variable xi is represented by a diamond structure:

and a clause cj by a single node:

IIC3242 – Time and space complexity I 50 / 114

More NP-complete problems: HAMPATH

The structure of the graph G is as follows:

IIC3242 – Time and space complexity I 51 / 114

More NP-complete problems: HAMPATH

We need to connect diamonds (variables) with the clauses

For this we use the horizontal rows in each diamond:

I They consist of 3k + 3 nodes

I Two outer ones and 3k + 1 inside

I One pair for each clause, plus one separating each pair

IIC3242 – Time and space complexity I 52 / 114

More NP-complete problems: HAMPATH

If xi appears in the clause cj we do the following:

IIC3242 – Time and space complexity I 53 / 114

More NP-complete problems: HAMPATH

If xi appears in the clause cj we do the following:

IIC3242 – Time and space complexity I 54 / 114

More NP-complete problems: HAMPATH

G can obviously be computed in polynomial time (it terms of ϕ),
so we only need to prove that the reduction works.

Namely, that:

ϕ is satisfiable iff G has a Hamiltonian path from s to t

IIC3242 – Time and space complexity I 55 / 114

More NP-complete problems: HAMPATH

Suppose that ϕ is satisfiable

Hamiltonian path: start at s and:

I zig-zag if xi is true

I zag-zig if it is false

To go to clauses pick one literal that is true and go to the clause

IIC3242 – Time and space complexity I 56 / 114

More NP-complete problems: HAMPATH

Assume that there is a Hamiltonian path from s to t

If the path is like in the previous direction of the proof we can get
an assignment making ϕ true

But all Hamiltonian paths in G are like this

We prove this by contradiction

IIC3242 – Time and space complexity I 57 / 114

More NP-complete problems: HAMPATH

That is, a path not of that shape does the following:

Show that such path can not be Hamiltonian

IIC3242 – Time and space complexity I 58 / 114

More NP-complete problems: SUBSETSUM

Not just formulas and graphs are NP-hard:

SUBSETSUM = {〈S , t〉 | S = {x1, . . . , xk} and there is a subset

{y1, . . . , y`} such that Σ`
i=1yi = t}.

Here we are basically asking if a set of numbers has a subset
summing up to a value t

Theorem

SUBSETSUM is NP-complete.

Proof: The upper bound is trivial (guess and check)

IIC3242 – Time and space complexity I 59 / 114

More NP-complete problems: SUBSETSUM

To show NP-hardness we reduce 3SAT to SUBSETSUM

Let ϕ be a 3CNF formula with:

I x1, . . . x` variables of ϕ

I c1, . . . , ck clauses of ϕ

Our set S will have the numbers:

I y1, z1, . . . y`, z` to code the variables

I g1, h1, . . . , gk , hk to code the clauses

The following table has numbers in S in decimal notation

(for ϕ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ . . .) ∧ · · · ∧ (x3 ∨ . . . ∨ . . .))

IIC3242 – Time and space complexity I 60 / 114

More NP-complete problems: SUBSETSUM

IIC3242 – Time and space complexity I 61 / 114

More NP-complete problems: SUBSETSUM

So in the table yi , zi have two parts (representing xi):

I On the left they have 1 followed by `− i 0s

I On the right yi has 1 in position j if xi appears in clause j , 0
otherwise

I On the right zi has 1 in position j if xi appears in clause j , 0
otherwise

The numbers gj , hj represent clauses and are equal:

I One 1 followed by k − j 0s

The target t is ` 1s followed by k 0s

IIC3242 – Time and space complexity I 62 / 114

More NP-complete problems: SUBSETSUM

Clearly polynomial, so we need to show:

ϕ is satisfiable iff S has a subset summing up to t

Assume that ϕ is satisfiable:

I If xi is true select yi , otherwise select zi
I This gives us 1 in first ` positions

I In last k we always have between 1 and 3 (each clause has at
least one and at most 3 true literals)

I Select as many gs and hs as needed to get 3 in each position

I We have a solution to SUBSETSUM

IIC3242 – Time and space complexity I 63 / 114

More NP-complete problems: SUBSETSUM

Conversely, assume that a subset of S sums to t.

I Then we always select either yi or zi
I No carry when summing digits (decimal) occurs

I xi is true if we selected yi , false otherwise

I In the final k columns we always get 3

I Here at most 2 can come from gs and hs

I But this corresponds to the literal being made to true in a
clause

I So ϕ is satisfiable

IIC3242 – Time and space complexity I 64 / 114

What about PTIME-completeness?

Let’s try!

A problem A is PTIME-complete if:

I A belongs to PTIME; and

I For every B ∈ PTIME we have that B ≤P A (i.e. B
polynomially reduces to A)

Will this work?

IIC3242 – Time and space complexity I 65 / 114

What about PTIME-completeness?

Consider the following problem:

ZERO = {〈n〉 | n is a natural number and n = 0}.

Under the previous definition ZERO is PTIME-complete:

I It is clearly inside PTIME
I If B is in PTIME, then B polytime reduces to ZERO:

I Take M a PTIME machine for B:
I On input w compute M(w)
I If M accepts map to zero
I Otherwise map to 1

This can be shown for any language A 6= ∅,Σ∗

IIC3242 – Time and space complexity I 66 / 114

What about PTIME-completeness?

The issue: our reduction is too hard

To talk about reductions inside a complexity class, the reduction
should be easier than the problems it reduces from and to

I.e. complete problem: the most difficult one in a sense that we
can get from any problem in the class to the complete problem
easily and then use it to solve the original problem

IIC3242 – Time and space complexity I 67 / 114

Solution: LOGSPACE reductions

So our reductions need to be easier than PTIME

We will use LOGSPACE reductions

When is a function LOGSPACE computable?

Enters space complexity

IIC3242 – Time and space complexity I 68 / 114

LOGSPACE reductions

If we define space complexity as for time we get:

I A machine uses space f (n) if it scans only O(f (n)) cells when
processing an input of length n

So LOGSPACE reductions cannot even read the input

Which does not make that much sense (i.e. then what is the input
for?)

What does it mean to work with some space? (Think of
palindromes)

IIC3242 – Time and space complexity I 69 / 114

Turning machines with input and output

Definition

A (deterministic) k-tape Turing machine with input and
output is an ordinary k-string Turing machine where for each
δ(q, a1, . . . , ak) = (q′, b1, . . . , bk ,D1, . . . ,Dk) we have:

1. a1 = b1 (the first tape is read only)

2. Dk 6=←; and bk 6= B⇒ ak = B (the last tape is write only)

3. If a1 = B then D1 =← (don’t wonder off the input).

We can read the input and provide the output

I First tape = read-only input tape

I Last tape = write-only output tape

I Tapes 2 to k − 1 are work tapes

IIC3242 – Time and space complexity I 70 / 114

Turning machines with input and output

So we can define space complexity without charging for reading
the input/writing the output:

Definition

If M is a k-tape Turing machine with input and output, then the
space used by M on input w is the total number of cells accessed
by the heads of M on its work tapes (tapes 2 through k − 1).

IIC3242 – Time and space complexity I 71 / 114

Turning machines with input and output

When talking about space complexity we will be using machines
with input/output

(Deterministic) Space complexity classes:

Definition

The space complexity class DSPACE(f (n)) consists all languages L
that are decided by some k-tape Turing machine with input and
output that uses at most O(f (n)) space.

Note that we allow any k(≥ 3). Why?

When do we not need the output tape? (Deciders)

IIC3242 – Time and space complexity I 72 / 114

LOGSPACE reductions

Definition

A function f : Σ∗ → Σ∗ is LOGSPACE-computable if there is a
k-tape Turing machine with input and output which, when started
with w on the input tape terminates with f (w) on its output tape
and the space used by the machine is O(logn), for n = |w |.

Definition

A language A is LOGSPACE-reducible to the language B, written
A ≤L B, if there is a LOGSPACE-computable function f such that:

w ∈ A⇐⇒ f (w) ∈ B.

IIC3242 – Time and space complexity I 73 / 114

PTIME-completeness

Now it will make sense:

Definition

A problem B is PTIME-complete if B ∈ PTIME and for every
other A ∈ PTIME we have that A ≤L B.

Now we can not overshoot with the reduction.

IIC3242 – Time and space complexity I 74 / 114

PTIME-completeness

The usual properties of reductions still hold.

Proposition

1. If A ≤L B and B ∈ PTIME, then A ∈ PTIME.

2. If A ≤L B and B ≤L C, then A ≤L C.

Proof: It is enough to show transitivity. Note that the
composition of reductions is a reduction. But just computing the
result of the first reduction and feeding it to the second one might
use too much space.

I Question: In LOGSPACE reductions how big can the output
string be?

IIC3242 – Time and space complexity I 75 / 114

Reductions compose: continued

I f reduction from A to B and Mf the machine computing it

I g reduction from B to C and Mg the machine computing it

The idea is to simulate Mg on Mf (w) without writing Mf (w):

I We write the cursor position in Mf (w) that Mg needs

I If the cursor goes right: produce the next bit of Mf (w) (i.e.
run Mf until it does so)

I If the cursor moves left: run Mf from the start until the
needed bit is produced

I Key observation: |f (w)| is poly in |w |, so the cursor is of size
O(log |w |)

(Picture on the whiteboard)

IIC3242 – Time and space complexity I 76 / 114

Fun fact

All the Karp reductions we used are/can be made LOGSPACE

In fact, the theory of NP-completeness works the same with
LOGSPACE reductions (Why?)

For classes above NP polynomial-time reductions are fine

For PTIME and below we use LOGSPACE

Please be confused by this (at least a bit)!

IIC3242 – Time and space complexity I 77 / 114

A PTIME-complete problem

Recall:

Notation
I A literal is a propositional variable or its negation: p and ¬q
I A clause is a disjunction of literals: (p ∨ q) and (s ∨ ¬q ∨ ¬r)

I A Horn clause is a clause that has at most one positive literal
(of the form p).

I (s ∨ ¬q ∨ ¬r) is a Horn clause and (p ∨ q) is not

I HORN-SAT = {ϕ | ϕ is a conjunction of Horn clauses and ϕ
is satisfiable}

IIC3242 – Time and space complexity I 78 / 114

PTIME-completeness: HORN-SAT

Theorem

HORN-SAT is PTIME-complete.

Proof: We already showed that HORN-SAT ∈ PTIME.

To show that HORN-SAT is PTIME-hard.

I We will show that HORN-SAT, the complement of
HORN-SAT is PTIME-hard

I Why is this enough?

IIC3242 – Time and space complexity I 79 / 114

PTIME-completeness: HORN-SAT

Theorem

HORN-SAT is PTIME-complete.

Proof: We already showed that HORN-SAT ∈ PTIME.

To show that HORN-SAT is PTIME-hard.

I We will show that HORN-SAT, the complement of
HORN-SAT is PTIME-hard

I Why is this enough?

IIC3242 – Time and space complexity I 79 / 114

PTIME-completeness: HORN-SAT

Theorem

HORN-SAT is PTIME-complete.

Proof: We already showed that HORN-SAT ∈ PTIME.

To show that HORN-SAT is PTIME-hard.

I We will show that HORN-SAT, the complement of
HORN-SAT is PTIME-hard

I Why is this enough?

IIC3242 – Time and space complexity I 79 / 114

PTIME-completeness: HORN-SAT

Theorem

HORN-SAT is PTIME-complete.

Proof: We already showed that HORN-SAT ∈ PTIME.

To show that HORN-SAT is PTIME-hard.

I We will show that HORN-SAT, the complement of
HORN-SAT is PTIME-hard

I Why is this enough?

IIC3242 – Time and space complexity I 79 / 114

PTIME-completeness: HORN-SAT

Theorem

HORN-SAT is PTIME-complete.

Proof: We already showed that HORN-SAT ∈ PTIME.

To show that HORN-SAT is PTIME-hard.

I We will show that HORN-SAT, the complement of
HORN-SAT is PTIME-hard

I Why is this enough?

IIC3242 – Time and space complexity I 79 / 114

HORN-SAT is PTIME-hard

Take L ∈ PTIME. We have to show that L is logspace reducible to
HORN-SAT.

That is: there is a function f : Σ∗ → Σ∗ such that

I f is computable in LOGSPACE and;

I for every w ∈ Σ∗: w ∈ L if and only if f (w) ∈ HORN-SAT

Notation

f (w) = ϕw

IIC3242 – Time and space complexity I 80 / 114

HORN-SAT is PTIME-hard

Since L ∈ PTIME, there is a deterministic TM
M = (Q,Σ, Γ, δ, q0, qaccept , qreject) such that:

I M halts on every input

I L = L(M)

I tM(n) is O(nc), with c > 0 a natural number

We we simulate the run of M on input w using the formula ϕw : M
accepts w if and only if ϕw is not satisfiable.

IIC3242 – Time and space complexity I 81 / 114

HORN-SAT is PTIME-hard

To simulate M we use the following variables:

st,p,a : t ∈ [0, tM(n)], p ∈ [0, tM(n)] and a ∈ Γ
ct,p : t ∈ [0, tM(n)] and p ∈ [0, tM(n)]
et,q : t ∈ [0, tM(n)] and q ∈ Q

I st,p,a is 1 if the symbol as time t in position p is a

I ct,p is 1 if the head position at time t is p

I et,q is 1 if the state at time t is q

ϕw is defined as ϕI ∧ ϕN ∧ ϕδ

IIC3242 – Time and space complexity I 82 / 114

HORN-SAT is PTIME-hard

ϕI : The initial state.

We assume that the input w = a1 · · · an

e0,q0 ∧ c0,1 ∧ s0,0,` ∧
(n∧

p=1

s0,p,ap

)
∧
(tM(n)∧

p=n+1

s0,p,B

)

IIC3242 – Time and space complexity I 83 / 114

HORN-SAT is PTIME-hard

ϕN : The machine does not accept w

tM(n)∨
t=0

et,qreject

IIC3242 – Time and space complexity I 84 / 114

HORN-SAT is PTIME-hard

But this is not a Horn-formula!!!

ϕN : The machine does not accept w

tM(n)∧
t=0

¬et,qaccept

IIC3242 – Time and space complexity I 85 / 114

HORN-SAT is PTIME-hard

ϕδ defines how the machine works (we represent ← as -1, � as 0
and → as 1):

tM (n)−1∧
t=0

tM (n)−1∧
p=0

∧
(q,a,q′,b,`)∈δ[(

¬et,q ∨ ¬ct,p ∨ ¬st,p,a ∨ et+1,q′

)
∧(

¬et,q ∨ ¬ct,p ∨ ¬st,p,a ∨ ct+1,p+`

)
∧(

¬et,q ∨ ¬ct,p ∨ ¬st,p,a ∨ st+1,p,b

)
∧∧

p′∈([0,tM (n)]\{p})

∧
d∈Γ

(
¬et,q ∨ ¬ct,p ∨ ¬st,p,a ∨ ¬st,p′,d ∨ st+1,p′,d

)]

IIC3242 – Time and space complexity I 86 / 114

HORN-SAT is PTIME-hard

We need to prove that w ∈ L if and only if ϕw is not satisfiable.

I Do this as an exercise!

We also need the following:

I ϕw is a conjunction of Horn clauses

I ϕw can be constructed in LOGSPACE(log tM(n) is O(log n))

IIC3242 – Time and space complexity I 87 / 114

Practice time

Exercise

Modify the previous proof to show that SAT is NP-complete.

IIC3242 – Time and space complexity I 88 / 114

Another PTIME-complete problem

A system of integer linear inequalities is of the form:

A~x ≤ ~b

where:

I A is an integer matrix of size m × n

I ~x is a vector of variables of size n × 1

I ~b is a vector of integers of size m × 1

A vector ~c of real numbers of size n× 1 is a solution to the system
if A~c ≤ ~b.

IIC3242 – Time and space complexity I 89 / 114

PTIME-completeness: Linear programming

A fundamental problem in engineering:

PROG-LIN = {(A, ~b) | A~x ≤ ~b is a system of

integer linear equations that have a solution}

Theorem

PROG-LIN is PTIME-complete.

IIC3242 – Time and space complexity I 90 / 114

Proof

The difficult part: PROG-LIN ∈ PTIME.

I First algorithm: Khachiyan (1979)

Not used in practice due to the high degree polynomial

I A better algorithm: Karmarkar (1984)

Easy direction: PROG-LIN is PTIME-hard.

I We will show that HORN-SAT ≤L PROG-LIN

IIC3242 – Time and space complexity I 91 / 114

Proof

The difficult part: PROG-LIN ∈ PTIME.

I First algorithm: Khachiyan (1979)

Not used in practice due to the high degree polynomial

I A better algorithm: Karmarkar (1984)

Easy direction: PROG-LIN is PTIME-hard.

I We will show that HORN-SAT ≤L PROG-LIN

IIC3242 – Time and space complexity I 91 / 114

Proof

The difficult part: PROG-LIN ∈ PTIME.

I First algorithm: Khachiyan (1979)

Not used in practice due to the high degree polynomial

I A better algorithm: Karmarkar (1984)

Easy direction: PROG-LIN is PTIME-hard.

I We will show that HORN-SAT ≤L PROG-LIN

IIC3242 – Time and space complexity I 91 / 114

Proof

The difficult part: PROG-LIN ∈ PTIME.

I First algorithm: Khachiyan (1979)

Not used in practice due to the high degree polynomial

I A better algorithm: Karmarkar (1984)

Easy direction: PROG-LIN is PTIME-hard.

I We will show that HORN-SAT ≤L PROG-LIN

IIC3242 – Time and space complexity I 91 / 114

Proof

The difficult part: PROG-LIN ∈ PTIME.

I First algorithm: Khachiyan (1979)

Not used in practice due to the high degree polynomial

I A better algorithm: Karmarkar (1984)

Easy direction: PROG-LIN is PTIME-hard.

I We will show that HORN-SAT ≤L PROG-LIN

IIC3242 – Time and space complexity I 91 / 114

Proof

Let ϕ be a conjunction of Horn clauses.

We will construct a system of linear equations A~x ≤ ~b such that:

ϕ is satisfiable iff A~x ≤ ~b has a solution.

Each variable in ϕ is a variable in the equation system.

I For each variable p we include the equations:

−p ≤ 0

p ≤ 1

IIC3242 – Time and space complexity I 92 / 114

Proof

Furthermore, they system has the following equations:

I If p is a conjunction in ϕ:

−p ≤ −1

I If (¬p1 ∨ · · · ∨ ¬pn ∨ q) is a conjunction in ϕ:(n∑
i=1

pi

)
− q ≤ n − 1

I If (¬p1 ∨ · · · ∨ ¬pn) is a conjunction in ϕ:(n∑
i=1

pi

)
≤ n − 1

IIC3242 – Time and space complexity I 93 / 114

Small changes for NP-completeness

If we require that the solution to consist only of integers, the
problem becomes NP-complete.

In this case the problem is called integer linear programming.

IIC3242 – Time and space complexity I 94 / 114

More PTIME-complete problems: Boolean circuits

A Boolean circuit is a directed acyclic graph where:

I Every node without in-edges has the label 0 or 1
I Every node with in-edges has the label ¬, ∧ o ∨

I A node labelled ¬ has just one in-edge

Notation
I Input node: No in-edges

I Interior node: With in-edges

I Output node: No out-edges

IIC3242 – Time and space complexity I 95 / 114

Boolean circuits: example

IIC3242 – Time and space complexity I 96 / 114

Boolean circuits as functions

We can view a Boolean circuit as a function:

I The input are the values of input nodes

I Assign to each interior node N the result of evaluating the
label of N with the values associated to nodes that have an
edge entering N

I The result are the values of output nodes

IIC3242 – Time and space complexity I 97 / 114

Boolean circuits as functions

We can view a Boolean circuit as a function:

I The input are the values of input nodes

I Assign to each interior node N the result of evaluating the
label of N with the values associated to nodes that have an
edge entering N

I The result are the values of output nodes

IIC3242 – Time and space complexity I 97 / 114

Boolean circuits as functions

We can view a Boolean circuit as a function:

I The input are the values of input nodes

I Assign to each interior node N the result of evaluating the
label of N with the values associated to nodes that have an
edge entering N

I The result are the values of output nodes

IIC3242 – Time and space complexity I 97 / 114

Boolean circuits as functions

We can view a Boolean circuit as a function:

I The input are the values of input nodes

I Assign to each interior node N the result of evaluating the
label of N with the values associated to nodes that have an
edge entering N

I The result are the values of output nodes

IIC3242 – Time and space complexity I 97 / 114

Circuits as functions: an example

IIC3242 – Time and space complexity I 98 / 114

Circuits as functions

The previous circuit represents a function

f (x1, x2, y1, y2) =

{
1 x1 = y1 and x2 = y2

0 otherwise

To define a function associated to a circuit

I replace the values 0/1 with variables

I To indicate output we use an edge that does not enter any
node

IIC3242 – Time and space complexity I 99 / 114

Circuits as functions

IIC3242 – Time and space complexity I 100 / 114

Circuit problems

Boolean circuit defines a value

Boolean circuit with variables defines a function

Theorem

For any function f : {0, 1}n → {0, 1}m there is a boolean circuit
with n inputs and m outputs that computes f .

Prove this for homework (start small)

IIC3242 – Time and space complexity I 101 / 114

Circuit problems

Two natural problems associated to circuits:

CIRCUIT VALUE = {〈C 〉 | C is a Boolean circuit that evaluates to 1}

CIRCUIT SAT = {〈C 〉 | C is a Boolean circuit with variables

and there is an assignment of variables such that C evaluates to 1}

IIC3242 – Time and space complexity I 102 / 114

PTIME-completeness: circuits

Theorem

CIRCUIT VALUE is PTIME-complete.

Proof. The upper bound is easy.

For PTIME-hardness take any L ∈ PTIME and let M be the
machine deciding L in PTIME.

As in the Cook-Levin theorem we use a tableau to describe the
computation of M (note that M is deterministic, so for each input
there is only one tableau)

IIC3242 – Time and space complexity I 103 / 114

PTIME-completeness: circuits

For convenience we modify the tableau representation as follows:

I First and last column are #

I The alphabet of the tableau has the machine alphabet plus
the symbols aq, for each a in the alphabet of M and state q

I Head position is represented by aq
I The last row always has 1qaccept or 0qreject in the third position

which signals that the machine accepts/rejects

I The machine always does precisely tM(n) steps for an input of
length n

I Tableau accepts iff the machine does

IIC3242 – Time and space complexity I 104 / 114

PTIME-completeness: circuits

Tableau selfie:

` 0q0 1 1 1 B B
` 0 1q1 1 1 B B
` 0 1 1q1 1 B B
` 0 1 1 1q1 B B
` 0 1 1 1 Bq1 B
` 0 1 1 1q3 B B
` 0 1 1q3 1 B B
` 0 1q3 1 1 B B
` 0q3 1 1 1 B B
`q3 0 1 1 1 B B
` 0qreject 1 1 1 B B

IIC3242 – Time and space complexity I 105 / 114

PTIME-completeness: circuits

For a string w we will construct a circuit R(w) such that M
accepts w iff R(w) evaluates to 1

Ti ,j the cell in the tableau at position i , j

I The value of Ti ,j depends only on:

I The values of Ti−1,j−1,Ti−1,j and Ti−1,j+1

I Some formalities with border cases

IIC3242 – Time and space complexity I 106 / 114

PTIME-completeness: circuits

Let A contain all the symbols appearing on the tableau:

I Each a ∈ A is represented using a vector
(s1, . . . , sm) ∈ {0, 1}m

I Here m : dlog2|A|e

Our tableau in position Ti ,j actually has entries Si ,j ,`, with
` = 1 . . .m

Each Si ,j ,` depends on 3m binary entries:

I Si−1,j−1,1, . . . ,Si−1,j−1,m

I Si−1,j ,1, . . . ,Si−1,j ,m

I Si−1,j+1,1, . . . ,Si−1,j+1,m

IIC3242 – Time and space complexity I 107 / 114

PTIME-completeness: circuits

That is, there exist binary functions F1, . . .Fm such that for each
i , j

Si ,j ,` = F`(Si−1,j−1,1, . . . ,Si−1,j−1,m,Si−1,j ,1, . . . ,Si−1,j+1,m)

Every boolean function can be computed by a circuit:

I There is C with 3m entries

I C computes (the binary encoding of) Ti ,j (for any i , j)

I When its input are encodings of Ti−1,j−1,Ti−1,j ,Ti−1,j+1

C depends only on M and not on the input string

Remember valid windows from Cook-Levin

IIC3242 – Time and space complexity I 108 / 114

PTIME-completeness: circuits

Visually:

IIC3242 – Time and space complexity I 109 / 114

PTIME-completeness: circuits

Visually in a bit more detail:

IIC3242 – Time and space complexity I 110 / 114

PTIME-completeness: circuits

For input word w we define the circuit R(w):

I We have tM(|w |)2 copies of C

I Each copy is for one Ti ,j

I The number is a bit smaller, as first row/column are not there

I Ci ,j the (i , j)-th copy of C

I The input gates of Ci ,j are the output gates of
Ci−1,j−1,Ci−1,j ,Ci−1,j+1

I The input gates of the circuit is the first row and first/last
column

I The output gate is the first output of the circuit CtM(|w |),2
(recall the initial assumption)

IIC3242 – Time and space complexity I 111 / 114

PTIME-completeness: circuits

The whole circuit:

IIC3242 – Time and space complexity I 112 / 114

PTIME-completeness: circuits

To finish:

I Show that M accepts W iff R(w) is true

I Show that R(w) is computable in LOGSPACE

I For latter recall that C is fixed

I And recall that to construct the input gates you only need to
count up to tM(|w |)

IIC3242 – Time and space complexity I 113 / 114

More cool stuff with circuits

Exercise

Modify the previous proof to show that CIRCUIT SAT is
NP-complete.

IIC3242 – Time and space complexity I 114 / 114

