

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE INGENIERIA DEPARTAMENTO DE CIENCIA DE LA COMPUTACION

Complexity Theory, Semester I 2017 - IIC3242 Homework 2 Deadline: Tuesday, April 4th, 2017

1 A cool reduction [7 points]

Usual regular expressions use the operators of union, concatenation and Kleene star to define sets of words over some finite alphabet Σ . In this problem we will explore what happens when we extend these expressions with two additional operators: intersection and mixing.

An extended regular expression (ER) over an alphabet Σ is defined as follows.

- 1. ε is an ER;
- 2. Every $a \in \Sigma$ is an ER;
- 3. If e_1 and e_2 are ERs, then so is $e_1 + e_2$ (union);
- 4. If e_1 and e_2 are ERs, then so is $e_1 \cdot e_2$ (concatenation);
- 5. If e_1 and e_2 are ERs, then so is $e_1 \cap e_2$ (intersection);
- 6. If e_1 and e_2 are ERs, then so is $e_1\&e_2$ (mixing); and
- 7. If e is an ERs, then so is e^* (Kleene star).

Every extended regular expression e defines a set of words L(e) in the following way:

- 1. If $e = \varepsilon$ then $L(e) = \{\varepsilon\}$;
- 2. If $e = a \in \Sigma$ then $L(e) = \{a\}$;
- 3. If $e = e_1 + e_2$ then $L(e) = L(e_1) \cup L(e_2)$;
- 4. If $e = e_1 \cdot e_2$ then $L(e) = \{w | w = w_1 \cdot w_2 \text{ and } w_1 \in L(e_1), w_2 \in L(e_2)\};$
- 5. If $e = e_1 \cap e_2$ then $L(e) = L(e_1) \cap L(e_2)$;
- 6. If $e = e_1 \& e_2$ then $L(e) = \{w_1 \& w_2 | w_1 \in L(e_1), w_2 \in L(e_2)\}$; where the mixing of two words x, y over Σ , denoted x & y, is defined as the set of all words of the form $x_1 \cdot y_1 \cdots x_k \cdot y_k$, where:

• k > 0 and

- x_i, y_i are words over Σ (they can be ε) and
- $x = x_1 \cdot x_2 \cdots x_k$ and
- $y = y_1 \cdot y_2 \cdots y_k$.

7. If $e = e_1^*$ then $L(e) = \{w_1 \cdot w_2 \cdots w_k | k \ge 1 \text{ and } w_i \in L(e_1) \text{ for } i = 1 \dots k\} \cup \{\varepsilon\}.$

To give an example of how the new operations work consider the alphabet $\Sigma = \{a, b, c\}$ and an expression e = ab&cca. Then we have that $accba \in L(e)$, since we can decompose x = ab as $x_1 = a$ and $x_2 = b$; and we can decompose y = cca as $y_1 = cc$ and $y_2 = a$. Similarly we have that $accab \in L(e)$, but this time y = cca is decomposed as $y_1 = cca$ and $y_2 = \varepsilon$. It is also easy to check that e.g. *cbaca* does not belong to L(e), since it does not have an *a* before a *b*, thus it is not possible to construct the word *ab*. Similarly $abc\&(\Sigma \cup \varepsilon)^n$ will mix any length *n* word over Σ into *abc*.

We define the following problem:

MEMBERSHIP = {
$$\langle \Sigma, e, w \rangle$$
 | e is an ER over Σ and $w \in L(e)$ }.

By giving a reduction from the problem 3SAT show that MEMBERSHIP(Σ) is NP-hard (6.5 points). Notice that one input to MEMBERSHIP is the alphabet Σ . Argue why this is not necessary and why you can prove NP-hardness even for one particular finite alphabet (0.5 points).

Hint: It's easy. You might want to make heavy use of ε and intersection. It is possible to use the mixing operator | only once (although you are allowed to use it as many times as you wish). One way is to try and check the membership of a word $v_1 \cdot v_2 \cdots v_k$, which is simply a concatenation of all the variables appearing in a 3CNF formula (assuming Σ equals the set of variables in your formula). You could then, for each clause *i*, define an expression C_i which contains all words *w* of length at most *n* such that: (1) at least one positive literal from C_i appears as a symbol in *w*; or (2) there is at least one negative literal $\neg v_i$ in C_i such that v_i does not appear in *w*. From here it is quite easy to get the required expression using intersections and interleaving.