

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE INGENIERIA DEPARTAMENTO DE CIENCIA DE LA COMPUTACION

Complexity Theory, Semester I 2017 - IIC3242 Homework 2 Deadline: Tuesday, April 10, 2018

1 Isomorphic subgraphs [15 points]

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two undirected graphs. We will say that G_1 contains a subgraph $H = (V_H, E_H)$ that is *isomorphic* to G_2 if:

- $V_H \subseteq V_1$
- $E_H \subseteq E$
- $|V_H| = |V_2|$
- There exists a function $f: V_2 \to V_H$ such that:
 - -f is injective
 - $\{v, v'\} \in E_2$ if and only if $\{f(v), f(v')\} \in E_H$.

We define the following language:

SUBGRAPH ISOMORPHISM = { $\langle G_1, G_2 \rangle \mid G_1$ contains a subgraph H isomorphic to G_2 }.

Show that SUBGRAPH ISOMORPHISM is NP-complete.

2 Disconnected collections [45 points]

Let $C = \{S_1, \ldots, S_n\}$ be a collection of sets and ℓ a natural number. We will say that C is ℓ -disconnected if it contains ℓ different sets that are mutually disjoint. That is, we are asking if there exist numbers $i_1, \ldots, i_\ell \in \{1, 2, \ldots, n\}$ such that for all $j, k \in \{1, \ldots, \ell\}$ it holds that $S_{i_j} \cap S_{i_k} = \emptyset$, whenever $j \neq k$. In this problem we will consider the following language:

DISCONNECTED COLLECTION = { $\langle \mathcal{C} = \{S_1, \dots, S_n\}, \ell \rangle \mid \mathcal{C}$ contains ℓ different mutually disjoint sets}. Show that DISCONNECTED COLLECTION is NP-complete. For hardness use CLIQUE.