
Complexity classes

IIC3242

IIC3242 – Complexity classes 1 / 105

Let us repeat the basics

We have defined various complexity classes. Now we want to see
how they relate one to another.

Computation model: Turing machines (deterministic or
nondeterministic) with various number of tapes.

I We defined the executions time of a machine.

I We defined the space complexity (here we used a machine
with an input tape).

IIC3242 – Complexity classes 2 / 105

A technical assumption

To avoid unintuitive behaviour we will need the following
assumption on the functions used to measure the complexity:

Assumption

A function f is a proper complexity function if f is
non-decreasing and there exists a deterministic TM M (with one
input tape and k ≥ 1 work tapes) such that:

I The time complexity tM of M is O(n + f (n))

I The space complexity sM of M is O(f (n))

I M halts on all inputs

I When started on any input of length n the machine M will
halt with the string 1f (n) written on its final work tape.

From now on all the functions we use are assumed to be proper.

IIC3242 – Complexity classes 3 / 105

Deterministic classes: time complexity

Input alphabet: Σ.

DTIME(t): the set of all languages L ⊆ Σ∗ that are decided by
some O(t) time deterministic Turing machine.

Two fundamental classes:

PTIME =
⋃
k∈N

DTIME(nk)

EXPTIME =
⋃
k∈N

DTIME(2n
k
)

PTIME: The set of all efficiently solvable problems.

IIC3242 – Complexity classes 4 / 105

Deterministic classes: time complexity

Input alphabet: Σ.

DTIME(t): the set of all languages L ⊆ Σ∗ that are decided by
some O(t) time deterministic Turing machine.

Two fundamental classes:

PTIME =
⋃
k∈N

DTIME(nk)

EXPTIME =
⋃
k∈N

DTIME(2n
k
)

PTIME: The set of all efficiently solvable problems.

IIC3242 – Complexity classes 4 / 105

Nondeterministic classes: time complexity

NTIME(t): the set of all languages L ⊆ Σ∗ that are decided by
some O(t) time nondeterministic Turing machine.

Two fundamental classes:

NP =
⋃
k∈N

NTIME(nk)

NEXPTIME =
⋃
k∈N

NTIME(2n
k
)

IIC3242 – Complexity classes 5 / 105

Deterministic classes: space complexity

DSPACE(s): the set of all languages L ⊆ Σ∗ that are decided by
some O(s) space deterministic Turing machine.

Three important classes:

LOGSPACE = DSPACE(log n)

PSPACE =
⋃
k∈N

DSPACE(nk)

EXPSPACE =
⋃
k∈N

DSPACE(2n
k
)

IIC3242 – Complexity classes 6 / 105

Nondeterministic classes: time complexity

NSPACE(s): the set of all languages L ⊆ Σ∗ that are decided by
some O(s) space nondeterministic Turing machine.

Three important classes:

NLOGSPACE = NSPACE(log n)

NPSPACE =
⋃
k∈N

NSPACE(nk)

NEXPSPACE =
⋃
k∈N

NSPACE(2n
k
)

IIC3242 – Complexity classes 7 / 105

Complement of a complexity class

Given a language L over the alphabet Σ:

L = {w ∈ Σ∗ | w 6∈ L}.

Definition

Given a complexity class C, the set of complements of languages in
C is defined as: co-C = {L | L ∈ C}

Example

A very well-known class: co-NP

I Give an example of a problem from this class.

I Is this class equal to NP?

IIC3242 – Complexity classes 8 / 105

Relations between complexity classes

We start with this:

IIC3242 – Complexity classes 9 / 105

Basic facts

The following results are straightforward:

I If C is a deterministic complexity class then co-C = C.

I If f is O(g) then:
I DTIME(f) ⊆ DTIME(g)
I NTIME(f) ⊆ NTIME(g)
I DSPACE(f) ⊆ DSPACE(g)
I NSPACE(f) ⊆ NSPACE(g)

I DTIME(f) ⊆ NTIME(f)

I DSPACE(f) ⊆ NSPACE(f)

So we can start reducing our figure

IIC3242 – Complexity classes 10 / 105

Basic facts

The following results are straightforward:

I If C is a deterministic complexity class then co-C = C.

I If f is O(g) then:
I DTIME(f) ⊆ DTIME(g)
I NTIME(f) ⊆ NTIME(g)
I DSPACE(f) ⊆ DSPACE(g)
I NSPACE(f) ⊆ NSPACE(g)

I DTIME(f) ⊆ NTIME(f)

I DSPACE(f) ⊆ NSPACE(f)

So we can start reducing our figure

IIC3242 – Complexity classes 10 / 105

Basic facts

The following results are straightforward:

I If C is a deterministic complexity class then co-C = C.

I If f is O(g) then:
I DTIME(f) ⊆ DTIME(g)
I NTIME(f) ⊆ NTIME(g)
I DSPACE(f) ⊆ DSPACE(g)
I NSPACE(f) ⊆ NSPACE(g)

I DTIME(f) ⊆ NTIME(f)

I DSPACE(f) ⊆ NSPACE(f)

So we can start reducing our figure

IIC3242 – Complexity classes 10 / 105

Basic facts

The following results are straightforward:

I If C is a deterministic complexity class then co-C = C.

I If f is O(g) then:
I DTIME(f) ⊆ DTIME(g)
I NTIME(f) ⊆ NTIME(g)
I DSPACE(f) ⊆ DSPACE(g)
I NSPACE(f) ⊆ NSPACE(g)

I DTIME(f) ⊆ NTIME(f)

I DSPACE(f) ⊆ NSPACE(f)

So we can start reducing our figure

IIC3242 – Complexity classes 10 / 105

Basic facts

The following results are straightforward:

I If C is a deterministic complexity class then co-C = C.

I If f is O(g) then:
I DTIME(f) ⊆ DTIME(g)
I NTIME(f) ⊆ NTIME(g)
I DSPACE(f) ⊆ DSPACE(g)
I NSPACE(f) ⊆ NSPACE(g)

I DTIME(f) ⊆ NTIME(f)

I DSPACE(f) ⊆ NSPACE(f)

So we can start reducing our figure

IIC3242 – Complexity classes 10 / 105

Basic facts

The following results are straightforward:

I If C is a deterministic complexity class then co-C = C.

I If f is O(g) then:
I DTIME(f) ⊆ DTIME(g)
I NTIME(f) ⊆ NTIME(g)
I DSPACE(f) ⊆ DSPACE(g)
I NSPACE(f) ⊆ NSPACE(g)

I DTIME(f) ⊆ NTIME(f)

I DSPACE(f) ⊆ NSPACE(f)

So we can start reducing our figure

IIC3242 – Complexity classes 10 / 105

Relations between complexity classes

We can eliminate some classes:

IIC3242 – Complexity classes 11 / 105

Relations between complexity classes

We can eliminate some classes:

IIC3242 – Complexity classes 11 / 105

relations between complexity classes

We also have some inclusions:

IIC3242 – Complexity classes 12 / 105

Relations between time and space

Theorem

NTIME(f (n)) ⊆ DSPACE(f (n))

Exercise

Prove this (we already said how).

Corollary

NP ⊆ PSPACE
co-NP ⊆ PSPACE

NEXPTIME ⊆ EXPSPACE
co-NEXPTIME ⊆ EXPSPACE

IIC3242 – Complexity classes 13 / 105

Relations between time and space

Theorem

NTIME(f (n)) ⊆ DSPACE(f (n))

Exercise

Prove this (we already said how).

Corollary

NP ⊆ PSPACE
co-NP ⊆ PSPACE

NEXPTIME ⊆ EXPSPACE
co-NEXPTIME ⊆ EXPSPACE

IIC3242 – Complexity classes 13 / 105

Relations between time and space

Theorem

NTIME(f (n)) ⊆ DSPACE(f (n))

Exercise

Prove this (we already said how).

Corollary

NP ⊆ PSPACE
co-NP ⊆ PSPACE

NEXPTIME ⊆ EXPSPACE
co-NEXPTIME ⊆ EXPSPACE

IIC3242 – Complexity classes 13 / 105

Relations between time and space

Theorem

If f (n) is Ω(log n) then:

NSPACE(f (n)) ⊆
⋃
k∈N

DTIME(2k·f (n))

Exercise

Prove this.

I Why do we require that f (n) is Ω(log n)?

IIC3242 – Complexity classes 14 / 105

Relations between time and space

Theorem

If f (n) is Ω(log n) then:

NSPACE(f (n)) ⊆
⋃
k∈N

DTIME(2k·f (n))

Exercise

Prove this.

I Why do we require that f (n) is Ω(log n)?

IIC3242 – Complexity classes 14 / 105

Relations between time and space

Corollary

NLOGSPACE ⊆ PTIME
co-NLOGSPACE ⊆ PTIME

NPSPACE ⊆ EXPTIME
co-NPSPACE ⊆ EXPTIME

IIC3242 – Complexity classes 15 / 105

Complexity classes

As a corollary of the previous results we get:

Can we reduce the figure even more?

IIC3242 – Complexity classes 16 / 105

Complexity classes

As a corollary of the previous results we get:

Can we reduce the figure even more?

IIC3242 – Complexity classes 16 / 105

Complexity classes

As a corollary of the previous results we get:

Savitch Savitch

Can we reduce the figure even more?

IIC3242 – Complexity classes 16 / 105

Complexity classes

As a corollary of the previous results we get:

Immerman-Szelepcsényi

Can we reduce the figure even more?

IIC3242 – Complexity classes 16 / 105

We already did: Savitch’s theorem

Theorem (Savitch)

NSPACE(f (n)) ⊆ DSPACE(f (n)2), for f (n) ≥ logn.

Corollary

PSPACE = NPSPACE
EXPSPACE = NEXPSPACE

Combined with previous results we get:

I PSPACE = NPSPACE = co-NPSPACE

I EXPSPACE = NEXPSPACE = co-NEXPSPACE

IIC3242 – Complexity classes 17 / 105

We already did: Savitch’s theorem

Theorem (Savitch)

NSPACE(f (n)) ⊆ DSPACE(f (n)2), for f (n) ≥ logn.

Corollary

PSPACE = NPSPACE
EXPSPACE = NEXPSPACE

Combined with previous results we get:

I PSPACE = NPSPACE = co-NPSPACE

I EXPSPACE = NEXPSPACE = co-NEXPSPACE

IIC3242 – Complexity classes 17 / 105

We already did: Savitch’s theorem

Theorem (Savitch)

NSPACE(f (n)) ⊆ DSPACE(f (n)2), for f (n) ≥ logn.

Corollary

PSPACE = NPSPACE
EXPSPACE = NEXPSPACE

Combined with previous results we get:

I PSPACE = NPSPACE = co-NPSPACE

I EXPSPACE = NEXPSPACE = co-NEXPSPACE

IIC3242 – Complexity classes 17 / 105

Complexity classes: what we get from Savitch

Next we resolve the question NLOGSPACE = co-NLOGSPACE?

I The answer to this does not follow from Savitch’s theorem.

IIC3242 – Complexity classes 18 / 105

Complexity classes: what we get from Savitch

Next we resolve the question NLOGSPACE = co-NLOGSPACE?

I The answer to this does not follow from Savitch’s theorem.

IIC3242 – Complexity classes 18 / 105

Complexity classes: what we get from Savitch

Next we resolve the question NLOGSPACE = co-NLOGSPACE?

I The answer to this does not follow from Savitch’s theorem.

IIC3242 – Complexity classes 18 / 105

Immerman-Szelepcsényi theorem

Theorem (Immerman-Szelepcsényi)

NLOGSPACE = co-NLOGSPACE

Proof: We show that PATH (the complement) is in NLOGSPACE.

Since PATH is NLOGSPACE-complete this is enough.

I Why?

Recall, in PATH we get G , s, t as input

We construct M that accepts iff there is no path from s to t

IIC3242 – Complexity classes 19 / 105

Immerman-Szelepcsényi theorem

For a graph G let m = |G | (number of nodes).

Let c be the number of nodes reachable from s

If we have c we can efficiently determine if G has no path from s
to t

Let us describe how this is done

IIC3242 – Complexity classes 20 / 105

Immerman-Szelepcsényi theorem: when I know c

M = On input G , s, t and c do:

1. d := 0

2. For each node u in G :

3. Nondeterministically guess if u is reachable from s

4. If you guess yes, then guess a path of length m

5. If path does not reach u reject

6. If path contains t reject

7. d + + [Count the number of nodes verified to be reachable]

8. If d 6= c reject, otherwise accept

Each guess is a new branch; we need only one to succeed

IIC3242 – Complexity classes 21 / 105

Immerman-Szelepcsényi theorem: computing c

Let Ai be the set of nodes reachable from s in at most i steps

Then A0 = {s} and Ai ⊆ Ai+1

Let ci = |Ai | (clearly c = cm)

We compute ci+1 from ci

The idea is the same as in M from previous slide (but nested twice)

To check that v ∈ Ai+1 we can use the previous algorithm knowing
ci

IIC3242 – Complexity classes 22 / 105

Immerman-Szelepcsényi theorem: computing c

Suppose we know ci ; to compute ci+1:

1. For each node v ∈ G : (checking if v ∈ Ai+1)

2. d = 0

3. For each u ∈ G :

4. Nondeterministically guess if u ∈ Ai

5. If you guess yes, then guess a path of length i

6. Reject if the path does not reach u

7. If path does reach u:

8. If (u, v) is an edge ci+1 + + [(v , v) is an edge]

9. d + + [Count the number of nodes verified to be in Ai]

10. If d 6= ci reject, otherwise goto next v in (1)

IIC3242 – Complexity classes 23 / 105

Immerman-Szelepcsényi algorithm

IIC3242 – Complexity classes 24 / 105

Immerman-Szelepcsényi theorem

What are the variables we have to keep track of?

I u and v (we always reuse space, so just the current one)

I ci and ci+1 (and not all ci s)

I The counters d and i

I The pointer to the position in the path we are guessing

Each of these needs only LOGSPACE

(We also accept improper inputs)

IIC3242 – Complexity classes 25 / 105

An easy generalisation

Corollary

If f (n) ≥ logn is a proper complexity function, then

NSPACE(f (n)) = co-NSPACE(f (n))

To prove this use the Immerman-Szelepcsényi algorithm and run it
over the configuration graph of the machine running in
NSPACE(f (n)).

IIC3242 – Complexity classes 26 / 105

Immerman-Szelepcsényi theorem: consequences

The figure now looks like this:

We still have many unknowns.

I Which inclusions are proper?

IIC3242 – Complexity classes 27 / 105

Immerman-Szelepcsényi theorem: consequences

The figure now looks like this:

We still have many unknowns.

I Which inclusions are proper?

IIC3242 – Complexity classes 27 / 105

Immerman-Szelepcsényi theorem: consequences

The figure now looks like this:

We still have many unknowns.

I Which inclusions are proper?

IIC3242 – Complexity classes 27 / 105

Separating complexity classes: diagonalisation

To separate classes we will use the diagonalisation method

We will also need to define universal Turing machines

Which are abstractions of an actual computer

So let’s start with this

IIC3242 – Complexity classes 28 / 105

Separating complexity classes: universal machine

We begin by considering deterministic space complexity classes.

I We will use the following assumptions.

First assumption

The input alphabet is always Σ = {0, 1}.

Second assumption

We only consider TMs with a single work tape (and an input tape)
with tape alphabet Γ = {0, 1, B,`}.

Why can we assume this?

IIC3242 – Complexity classes 29 / 105

Separating complexity classes: universal machine

We begin by considering deterministic space complexity classes.

I We will use the following assumptions.

First assumption

The input alphabet is always Σ = {0, 1}.

Second assumption

We only consider TMs with a single work tape (and an input tape)
with tape alphabet Γ = {0, 1, B,`}.

Why can we assume this?

IIC3242 – Complexity classes 29 / 105

Separating complexity classes: universal machine

We begin by considering deterministic space complexity classes.

I We will use the following assumptions.

First assumption

The input alphabet is always Σ = {0, 1}.

Second assumption

We only consider TMs with a single work tape (and an input tape)
with tape alphabet Γ = {0, 1, B,`}.

Why can we assume this?

IIC3242 – Complexity classes 29 / 105

Separating complexity classes: universal machine

We begin by considering deterministic space complexity classes.

I We will use the following assumptions.

First assumption

The input alphabet is always Σ = {0, 1}.

Second assumption

We only consider TMs with a single work tape (and an input tape)
with tape alphabet Γ = {0, 1, B,`}.

Why can we assume this?

IIC3242 – Complexity classes 29 / 105

Separating complexity classes: universal machine

Theorem

For every deterministic TM M1 with k work tapes there is a
deterministic TM M2 with one work tape such that:

I The tape alphabet of M2 is Γ = {0, 1, B,`}
I L(M1) = L(M2)

I sM2(n) is O(sM1(n))

Exercise

Prove this (we already saw how to remove tapes).

IIC3242 – Complexity classes 30 / 105

Separating complexity classes: universal machine

The idea of a universal Turing machine U:

U = on input 〈M,w〉, with M a TM and w a word

I Simulate M on w

I If M accepts accepts; if M rejects reject

(Note: It can run forever)

Universal TM is a computer.

I How do we describe its input 〈M,w〉?
I How do we execute M over w?

I How much space are we using?

IIC3242 – Complexity classes 31 / 105

Coding a TM as a string over {0, 1}∗

Let M = (Q,Σ, Γ, qinit , qaccept , qreject , δ) be a single tape TM with
input, where:

I Q = {q1, . . . , qm}
I Σ = {0, 1}
I Γ = {0, 1, B,`}
I δ : Q × Γ× Γ→ Q × {←,�,→}× Γ× {←,�,→}

(Here we use that first tape is input explicitly: no (re)writing)

The codification 〈M〉 of a TM M is a string over {0, 1}.
I We need this to pass it to U as input

IIC3242 – Complexity classes 32 / 105

Coding a TM as a string over {0, 1}∗

For M = (Q,Σ, Γ, qinit , qaccept , qreject , δ) with m states:

I We enumerate Q as q1, . . . , qm
I The first state on the list (q1) is the initial state qinit
I The last state (qm) is qaccept
I The next to last state (qm−1) is the reject state qreject

We code each state of M as:

I The state qi is represented by cod(qi) = 0i

I The initial state has code cod(qinit) = 0

I The accepting state has code cod(qaccept) = 0m

I The rejecting state has code cod(qreject) = 0m−1

IIC3242 – Complexity classes 33 / 105

Coding a TM as a string over {0, 1}∗

We use the following codes for symbols of M:

symbol representation

0 0

1 00

B 000

` 0000

symbol representation

← 0

� 00

→ 000

If we now have a transition t : δ(qi , a, b) = (qj ,D1, c ,D2), we
represent t as:

cod(t) = 0i︸︷︷︸
qi

1 0k1︸︷︷︸
a

1 0k2︸︷︷︸
b

1 0j︸︷︷︸
qj

1 0d1︸︷︷︸
D1

1 0l︸︷︷︸
c

1 0d2︸︷︷︸
D2

with i , j ∈ {1, . . . ,m}; l , d1, d2 ∈ {1, 2, 3}; k1, k2 ∈ {1, 2, 3, 4}

IIC3242 – Complexity classes 34 / 105

Coding a TM as a string over {0, 1}∗

For M = (Q,Σ, Γ, qinit , qaccept , qreject , δ) with m states:

I Q = {q1, . . . , qm} and

I δ = (t1, . . . , tk)

We define the coding 〈M〉 of M as:

〈M〉 =

m−times︷ ︸︸ ︷
0 . . . 0 111 cod(t1) 11 cod(t2) 11 · · · 11 cod(tk) 111

How do we know which states are initial, accepting, rejecting?

IIC3242 – Complexity classes 35 / 105

The universal machine U

We now define 〈M,w〉 = cod(M) · w

Our machine U uses five tapes:

I The first tape is the input tape containing cod(M) · w
I The second tape will contain the (single) work tape of M

I The third tape contains the state M is in

I The fourth tape contains the position in w that M is reading

I The fifth tape contains the position of M on the work tape

IIC3242 – Complexity classes 36 / 105

The universal machine U : how does it work

To initialize M the universal machine U does:

1. Check that the input is 〈M,w〉 for some TM M (if not reject)

2. Write 0 on the third tape (initial state)

3. Write the first position of w on the fourth tape

4. Write 1 on the fifth tape

IIC3242 – Complexity classes 37 / 105

The universal machine U : how does it work

To simulate a step of M the universal machine U does:

1. Look up the state qi on third tape

2. Look up symbols a and b (the info is on tapes 4,5)

3. Look for a transition δ(qi , a, b) = (qj ,D1, c ,D2) on the input
tape

4. Write qj on the third tape (erase other stuff)

5. Change the second tape (replace b with c)

6. Change the content of tape 4/5 according to D1 and D2

(make sure you stay on w)

7. If you see qaccept or qreject do the same

8. Otherwise goto 1 again

IIC3242 – Complexity classes 38 / 105

The universal machine U

It easily follows:

Theorem

The machine U accepts 〈M,w〉 iff M accepts w.

Diagonalisation: run U on 〈U, cod(U)〉 (but change U a bit)

IIC3242 – Complexity classes 39 / 105

Diagonalisation: slides stolen from Cristian Riveros

Technique invited by Georg Cantor to show that there is no
bijection between N and its powerset:

2N = {S | S ⊆ N}

IIC3242 – Complexity classes 40 / 105

Diagonalisation between N and 2N

Assume (to the contrary) that f is a bijection from N to 2N.

0 1 2 3 4 5 6 7 · · ·
f (0) 1 1 0 1 0 0 1 1
f (1) 0 0 1 1 1 0 0 1
f (2) 1 1 1 1 0 0 0 0
f (3) 1 0 1 0 0 1 0 1
f (4) 0 0 1 1 0 0 1 0 · · ·
f (5) 1 1 0 1 0 1 1 1
f (6) 1 0 0 0 0 0 1 0
f (7) 1 0 0 1 0 1 1 1

...
...

. . .

The position (i , j) is equal to 1 iff j ∈ f (i).

Each subset S ∈ 2N is a row of the matrix

IIC3242 – Complexity classes 41 / 105

Diagonalisation between N and 2N

Now consider the diagonal of the matrix:

0 1 2 3 4 5 6 7 · · ·
f (0) 1 1 0 1 0 0 1 1

f (1) 0 0 1 1 1 0 0 1

f (2) 1 1 1 1 0 0 0 0

f (3) 1 0 1 0 0 1 0 1

f (4) 0 0 1 1 0 0 1 0 · · ·
f (5) 1 1 0 1 0 1 1 1

f (6) 1 0 0 0 0 0 1 0

f (7) 1 0 0 1 0 1 1 1
...

...
. . .

I The diagonal subset is equal to D = {i ∈ N | i ∈ f (i)}.
I The complement of the diagonal is D̄ = {i ∈ N | i /∈ f (i)}.

IIC3242 – Complexity classes 42 / 105

Diagonalisation between N and 2N

Definition (complement of the diagonal)

D̄ = {i ∈ N | i /∈ f (i)}

Does D̄ appear as a row in the matrix?

NO, because D̄ differs from f (x) for all x ∈ N.

x ∈ f (x) iff x /∈ D̄

Therefore such bijection f between N and 2N does not exist.

IIC3242 – Complexity classes 43 / 105

Diagonalisation between N and 2N

Theorem

There is no bijection from N to 2N.

“I see it, but I don’t believe it!”

A letter from Cantor to Dedekind.

IIC3242 – Complexity classes 44 / 105

Diagonalisation of Turing machines

Consider the following problem:

ATM = {〈M,w〉 | M is a Turing machine and M accepts w}

Is this decidable?

Suppose that it is. Then there is H s.t:

H(〈M,w〉) =

{
accept if M is a TM accepting w

reject if M is not a TM, or M does not accept w

IIC3242 – Complexity classes 45 / 105

Diagonalisation of Turing machines

Let us diagonalize now. Consider the machine:

D = On input 〈M〉, for M a TM:

1. Run H on input 〈M, 〈M〉〉
2. If H accepts reject, if H rejects accept

Note that D is ”reverse” of our universal machine!

That is:

D(〈M〉) =

{
accept if M does not accept 〈M〉
reject if M is not a TM, or M accepts 〈M〉

IIC3242 – Complexity classes 46 / 105

Diagonalisation of Turing machines

Now comes the kicker!

So what does D do with 〈D〉?

D(〈D〉) =

{
accept if D does not accept 〈D〉
reject if D accepts 〈D〉

Contradiction, so no such H and D can not exist!

IIC3242 – Complexity classes 47 / 105

What was diagonal about that?

Clearly there are countably many TMs (strings over {0, 1})

Let M1,M2, . . . be a listing of all of them

Each 〈Mi 〉 is a string, so any Mj can be run with this input

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · ·
M1 accept reject accept
M2 accept accept accept accept
M3 · · ·
M4 accept accept

...
...

IIC3242 – Complexity classes 48 / 105

What was diagonal about that?

With H we can fill in the table:

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · ·
M1 accept reject accept
M2 accept accept accept accept
M3 · · ·
M4 accept accept

...
...

IIC3242 – Complexity classes 49 / 105

What was diagonal about that?

With H we can fill in the table:

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · ·
M1 accept reject reject accept
M2 accept accept accept accept
M3 reject reject reject reject · · ·
M4 accept accept reject reject

...
...

IIC3242 – Complexity classes 50 / 105

What was diagonal about that?

D looks what H does with 〈M, 〈M〉〉 as reverses it:

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · ·
M1 accept reject reject accept
M2 accept accept accept accept
M3 reject reject reject reject · · ·
M4 accept accept reject reject

...
...

IIC3242 – Complexity classes 51 / 105

What was diagonal about that?

D looks what H does with 〈M, 〈M〉〉 as reverses it:

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · ·
M1 reject reject reject accept
M2 accept accept accept accept
M3 reject reject reject reject · · ·
M4 accept accept reject reject

...
...

IIC3242 – Complexity classes 52 / 105

What was diagonal about that?

D looks what H does with 〈M, 〈M〉〉 as reverses it:

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · ·
M1 reject reject reject accept
M2 accept reject accept accept
M3 reject reject reject reject · · ·
M4 accept accept reject reject

...
...

IIC3242 – Complexity classes 53 / 105

What was diagonal about that?

D looks what H does with 〈M, 〈M〉〉 as reverses it:

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · ·
M1 reject reject reject accept
M2 accept reject accept accept
M3 reject reject accept reject · · ·
M4 accept accept reject reject

...
...

IIC3242 – Complexity classes 54 / 105

What was diagonal about that?

D looks what H does with 〈M, 〈M〉〉 as reverses it:

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · ·
M1 reject reject reject accept
M2 accept reject accept accept
M3 reject reject accept reject · · ·
M4 accept accept reject accept

...
...

IIC3242 – Complexity classes 55 / 105

What was diagonal about that?

What about D?

D is also a TM, so it should be in the table.

But running D on 〈D〉 has a result different than running any Mi

on 〈Mi 〉!

〈M1〉 〈M2〉 · · · 〈D〉 · · ·
M1 reject reject reject accept
M2 accept reject accept accept

...
...

...
...

... · · ·
D accept accept · · · ?
...

...

IIC3242 – Complexity classes 56 / 105

What was diagonal about that?

What about D?

D is also a TM, so it should be in the table.

But running D on 〈D〉 has a result different than running any Mi

on 〈Mi 〉!

〈M1〉 〈M2〉 · · · 〈D〉 · · ·
M1 reject reject reject accept
M2 accept reject accept accept

...
...

...
...

... · · ·
D accept accept · · · ?
...

...

IIC3242 – Complexity classes 56 / 105

Space hierarchy theorem

We will use diagonalisation to prove how to separate space
complexity classes.

I The machine D above will play a key role.

Theorem (Space hierarchy theorem)

If f (n) ≥ logn, then there is a language A decidable in space
O(f (n)), but not in space o(f (n)).

Recall: tM(n) = o(f (n)) if limn→∞
tM(n)
f (n) = 0

IIC3242 – Complexity classes 57 / 105

Space hierarchy theorem: proof

Proof: We describe the language A using a machine deciding it.

The machine B for A is similar to D from the undecidability proof.

It is the same as our universal machine U, but acts opposite of it.

To ensure the lower bound we make sure that:

I For any M running in o(f (n)) space

I B differs from M on the input 〈M〉

IIC3242 – Complexity classes 58 / 105

Space hierarchy theorem: proof

High level description of B:

I Input is 〈M〉 for a TM M (recall our assumptions)

I If input is not 〈M〉 then B rejects

I Otherwise run M on 〈M〉 within f (n) space

I If M halts (within f (n) space) B accepts iff M rejects

I If M does not halt reject

IIC3242 – Complexity classes 59 / 105

Space hierarchy theorem: proof

Two possible issues:

1. What is M halts after f (n) for small n?
I This happens before o(f (n)) definition has kicked in
I Solution: Inputs are 〈M〉01∗ (recall what is 〈M〉)
I So the problem is avoided on 〈M〉01k for some k

2. What if M does not halt within ascribed space (ever)?
I M is deterministic, so it would repeat a configuration
I At most 2o(f (n)) time used by a o(f (n)) space machine
I So just count up to 2f (n) if you exceed reject

IIC3242 – Complexity classes 60 / 105

Space hierarchy theorem: proof

To formalise B we modify the universal machine U:

I Add one tape to U (to count up to 2f (n))

I Add # to tape alphabet (to measure used space)

B = On input w

1. For n = |w | compute f (n) (f is proper)

2. Mark off f (n) space on each tape using #

3. If w 6= 〈M〉01∗ reject

4. ”Do what U does” (run M on w), but also:
I Count up to 2f (n) on the last tape (reject if exceeded)
I If you try to use a B reject (enforce f (n) space)
I If M accepts reject, if M rejects accept

IIC3242 – Complexity classes 61 / 105

Space hierarchy theorem: proof

B clearly uses f (n) space, so A ∈ DSPACE(f (n))

Assume A is decidable in o(f (n)) space by some M

Then M runs in g(n) = o(f (n)), so for some n0:

I If n ≥ n0 then g(n) < f (n)

Run B on 〈M〉01n0 (stage 4 completes), so B is different than M

So A is not decidable in o(f (n))

IIC3242 – Complexity classes 62 / 105

Space hierarchy theorem: consequences

This immediately gives us:

Corollary

For f1(n) = o(f2(n)), where f1, f2 ≥ logn are proper complexity
functions we have:

DSPACE(f1(n)) (DSPACE(f2(n)).

IIC3242 – Complexity classes 63 / 105

Space hierarchy theorem: consequences

Let’s separate some classes.

Corollary

For every natural number k ≥ 1:

DSPACE(nk) (DSPACE(nk+1)

DSPACE(2n
k
) (DSPACE(2n

k+1
)

Exercise

Prove this.

IIC3242 – Complexity classes 64 / 105

Space hierarchy theorem: consequences

Corollary

LOGSPACE (PSPACE (EXPSPACE

Proof:

I LOGSPACE ⊆ DSPACE(n) (DSPACE(n2) ⊆ PSPACE

I PSPACE ⊆ DSPACE(2n) (DSPACE(2n
2
) ⊆ EXPSPACE

IIC3242 – Complexity classes 65 / 105

Space hierarchy theorem: consequences

Corollary

LOGSPACE (PSPACE (EXPSPACE

Proof:

I LOGSPACE ⊆ DSPACE(n) (DSPACE(n2) ⊆ PSPACE

I PSPACE ⊆ DSPACE(2n) (DSPACE(2n
2
) ⊆ EXPSPACE

IIC3242 – Complexity classes 65 / 105

Space hierarchy theorem: consequences

We can also use the theorem to reason about nondeterministic
space.

Corollary

NLOGSPACE (PSPACE

Proof:

NLOGSPACE ⊆ NSPACE(n) ⊆ DSPACE(n2) (
DSPACE(n3) ⊆ PSPACE

IIC3242 – Complexity classes 66 / 105

Space hierarchy theorem: consequences

We can also use the theorem to reason about nondeterministic
space.

Corollary

NLOGSPACE (PSPACE

Proof:

NLOGSPACE ⊆ NSPACE(n) ⊆ DSPACE(n2) (
DSPACE(n3) ⊆ PSPACE

IIC3242 – Complexity classes 66 / 105

Separating complexity classes: Time hierarchy theorem

We can also use diagonalisation to separate time complexity
classes.

Theorem (Time hierarchy theorem)

For every t(n) ≥ n · log n there is a language A such that A is
decidable in time O(t(n)), but not in time o(t(n)/log t(n)).

How do we prove this?

I What’s with the t(n)/logt(n) term?

I How long does simulation of M by U take?

I Hint: you have to count a lot.

IIC3242 – Complexity classes 67 / 105

Separating complexity classes: Time hierarchy theorem

We can also use diagonalisation to separate time complexity
classes.

Theorem (Time hierarchy theorem)

For every t(n) ≥ n · log n there is a language A such that A is
decidable in time O(t(n)), but not in time o(t(n)/log t(n)).

How do we prove this?

I What’s with the t(n)/logt(n) term?

I How long does simulation of M by U take?

I Hint: you have to count a lot.

IIC3242 – Complexity classes 67 / 105

Separating complexity classes: Time hierarchy theorem

We can also use diagonalisation to separate time complexity
classes.

Theorem (Time hierarchy theorem)

For every t(n) ≥ n · log n there is a language A such that A is
decidable in time O(t(n)), but not in time o(t(n)/log t(n)).

How do we prove this?

I What’s with the t(n)/logt(n) term?

I How long does simulation of M by U take?

I Hint: you have to count a lot.

IIC3242 – Complexity classes 67 / 105

Time hierarchy theorem: consequences

Using the time hierarchy theorem we can separate some complexity
classes.

Corollary

For every natural number k ≥ 1:

DTIME(nk) (DTIME(nk+1)

DTIME(2n
k
) (DTIME(2n

k+1
)

Exercise

Prove the corollary.

IIC3242 – Complexity classes 68 / 105

Time hierarchy theorem: consequences

Corollary

PTIME (EXPTIME

Proof:

I PTIME ⊆ DTIME(2n) (DTIME(2n
2
) ⊆ EXPTIME

IIC3242 – Complexity classes 69 / 105

Time hierarchy theorem: consequences

Corollary

PTIME (EXPTIME

Proof:

I PTIME ⊆ DTIME(2n) (DTIME(2n
2
) ⊆ EXPTIME

IIC3242 – Complexity classes 69 / 105

What is truly inefficient?

Regular expressions:

R := ∅ | ε | a ∈ Σ | R · R | R + R | R∗

Regular expressions with exponents:

R := ∅ | ε | a ∈ Σ | R · R | R + R | R∗ | Rk(k ≥ 1)

Rk = R · R · · ·R︸ ︷︷ ︸
k−times

Easy to see: same expressive power

IIC3242 – Complexity classes 70 / 105

What is truly inefficient?

Natural problems:

EQREX = {〈Q,R〉 | Q,R are equivalent regular expressions}

Easy to see: This is PSPACE-complete

EQREX↑ = {〈Q,R〉 | Q,R are equivalent

regular expressions with exponents}

Theorem

EQREX↑ is EXPSPACE-complete.

So definitely not efficient.

IIC3242 – Complexity classes 71 / 105

What is truly inefficient?

Natural problems:

EQREX = {〈Q,R〉 | Q,R are equivalent regular expressions}

Easy to see: This is PSPACE-complete

EQREX↑ = {〈Q,R〉 | Q,R are equivalent

regular expressions with exponents}

Theorem

EQREX↑ is EXPSPACE-complete.

So definitely not efficient.

IIC3242 – Complexity classes 71 / 105

EXPSPACE-completeness: the upper bound

Proof: We start with the upper bound.
The following decides if two NFAs are not equivalent:

Runs in NSPACE(n), so also in DSPACE(n2).

IIC3242 – Complexity classes 72 / 105

EXPSPACE-completeness: the upper bound

To get the desired result we use the following:

E = On input 〈R1,R2〉, where R1,R2 are regexp with
exponentiation:

1. Convert R1 and R2 into equivalent regexp B1 and B2 that do
not use exponentiation

2. Convert B1 and B2 into equivalent NFAs N1,N2

3. Run N from previous slide on 〈N1,N2〉, output the opposite

Where is the exponential blowup?

IIC3242 – Complexity classes 73 / 105

EXPSPACE-completeness: the lower bound

For EXPSPACE-hardness take any A which is decidable in space
2n

k
, for some k (we’ll disregard the constant) on a machine M

Let Q be the states of M, and Γ its tape alphabet

A computation history of M on w is:

C1#C2#C3# . . .#Ck

Where:

I Each Ci is a configuration of M on w

I C1 is the initial configuration

I Ci+1 follows from Ci by transitions of M

I # does not appear in Γ

IIC3242 – Complexity classes 74 / 105

EXPSPACE-completeness: the lower bound

Accepting/rejecting computation history: according to Ck

Take ∆ = Q ∪ Γ ∪ {#}

We will construct R1,R2, which are regexp with exponents such
that:

R1 ≡ R2 iff M accepts w

Idea: M accepts w iff it has no rejecting computation histories of
M on w

IIC3242 – Complexity classes 75 / 105

EXPSPACE-completeness: the lower bound

We take R1 = ∆∗

R2 codes all strings that are not rejecting computation histories

Therefore R1 ≡ R2 iff M accepts w

Note that R2 has to be polynomial!

R2 = Rbad−start + Rbad−reject + Rbad−window

IIC3242 – Complexity classes 76 / 105

EXPSPACE-completeness: the lower bound

Rbad−start are all strings not starting with the initial configuration
of M on w

If w = w1 · · ·wn, then C1 =` q0w1 · · ·wnB · · · B#

Rbad−start = Sl + S0 + S1 + · · · Sn + Sb + S#

Notation: ∆−a is the union of all symbols in ∆, except for a

IIC3242 – Complexity classes 77 / 105

EXPSPACE-completeness: the lower bound

Sl = ∆−`∆∗

S0 =` ·∆−q0∆∗

Si =` ·∆i∆−wi ∆
∗, for 1 ≤ i ≤ n

Sb =` ·∆n+1(∆ + ε)2
nk−n−2∆−B∆∗

S# = ∆2n
k
+1∆−#∆∗

Similarly, Rbad−reject = ∆∗−qreject

IIC3242 – Complexity classes 78 / 105

EXPSPACE-completeness: the lower bound

For Rbad−window we use the notion of a window from Cook-Levin
proof

I.e. Ci yields Ci+1 if all three cell windows in doth are legal

Rbad−window =
⋃

bad(abc,def)

∆∗abc∆2n
k−2def ∆∗

Here bad(abc, def) means that the top row abc can not yield def
in the bottom row

IIC3242 – Complexity classes 79 / 105

On P vs NP

Is every problem in NP either NP-complete, or solvable in PTIME?

There are three possibilities:

1. There is A ∈ NP that is not NP-complete, nor in PTIME

2. Every A ∈ NP is either NP-complete, or in PTIME

3. PTIME = NP, so every A ∈ NP is complete

IIC3242 – Complexity classes 80 / 105

On P vs NP: Ladner’s theorem

Theorem (Ladner)

If PTIME 6= NP, then there exists a language A such that:

I A is in NP,

I A is not NP-complete; and

I A is not solvable in PTIME.

Proof: We will use many ideas here (but it’s really easy).

Basic idea: Define A by removing elements from SAT

Assume {0, 1} as the input alphabet and usual stuff

IIC3242 – Complexity classes 81 / 105

Ladner’s theorem: proof

Notation: M a TM and x a word, then M(x) is accept/reject

Let M be the set of all (deterministic) TMs (countable)

The set M× N is also countable

Define a TM Mi as follows (i ∈ N):

I The ith element of M× N is (M, j)

I Mi (x) runs M(x) for at most |x |j steps

The sequence M1,M2, . . . enumerates all poly-time DTMs

I (Single tape deciders that run in poly-time)

IIC3242 – Complexity classes 82 / 105

Ladner’s theorem: proof

Similarly we can enumerate all poly-time reductions F1,F2, . . .

I These compute functions, so have an output tape

Our language A has the following two properties:

I A /∈ PTIME

I A is not NP-complete

The first one means that A 6= L(Mi) for all i

The second one that Fi is not a reduction from SAT to A

IIC3242 – Complexity classes 83 / 105

Ladner’s theorem: double diagonalisation

To achieve the two properties we have two (infinite) set of
requirements that need to be fulfilled:

1. NotPoli : A 6= L(Mi)

2. NotCompli : ∃x s.t.
I x ∈ SAT and Fi (x) /∈ A; or
I x /∈ SAT and Fi (x) ∈ A

This is done by (double) delayed diagonalisation

IIC3242 – Complexity classes 84 / 105

Ladner’s theorem: proof

A = {x | x ∈ SAT ∧ f (|x |) is even}

The proof is in defining f

f will be defined by the machine Mf computing it

Start with f (0) = f (1) = 2

Let MSAT be a DTM for SAT (exponential one)

IIC3242 – Complexity classes 85 / 105

Ladner’s theorem: proof

On input 1n(n > 1) our machine Mf works in two stages:

First stage: Do the following for n steps:

I Compute f (0), f (1), . . . until you run out of time

I Assume you stopped with f (x) = k

I The output will be k or k + 1 depending on

Second stage: Do the following for n steps:

I If k = 2i try to make sure that NotPoli holds

I If k = 2i − 1 try to make sure that NotCompli holds

IIC3242 – Complexity classes 86 / 105

Ladner’s theorem: second stage

Second stage: Do the following for n steps:

If k = 2i try to make sure that NotPoli holds:

I We need z ∈ {0, 1}∗ s.t. Mi (z) is wrong

I (That is Mi (z) accepts and z /∈ A, or the opposite)
I For all z in lexicographical order compute:

I Mi (z), MSAT(z) and f (|z |)
I If z that confirms NotPoli is found (in n steps) output k + 1
I Otherwise output k

IIC3242 – Complexity classes 87 / 105

Ladner’s theorem: second stage

Second stage: Do the following for n steps:

If k = 2i − 1 try to make sure that NotCompli holds:

I We need z ∈ {0, 1}∗ s.t. Fi (z) is wrong

I (That is z ∈ SAT and Fi (z) /∈ A, or the opposite)
I For all z in lexicographical order compute:

I Fi (z), MSAT(z),MSAT(Fi (z)) and f (|Fi (z)|)
I If z that confirms NotCompli is found (in n steps) output k + 1
I Otherwise output k

IIC3242 – Complexity classes 88 / 105

Ladner’s theorem: why it works

By definition Mf is polynomial (also f (n + 1) ≥ f (n))

Since A = {x | x ∈ SAT ∧ f (|x |) is even}

We get that A ∈ NP:

I Compute f (|x |) which is poly; if result is even:

I Do a guess and check for x ∈ SAT

IIC3242 – Complexity classes 89 / 105

Ladner’s theorem: why it works

We claim that A /∈ PTIME

Assume the contrary, i.e. A = L(Mi) for some i

Then second stage of Mf with k = 2i never finds the needed z

But then f never reaches the value k + 1

So f is odd for only finitely many n

So A and SAT are the same apart for finitely many elements

So SAT ∈ PTIME, but we assumed PTIME 6= NP contradiction

IIC3242 – Complexity classes 90 / 105

Ladner’s theorem: the end

We claim that A is not NP-complete:

If yes, then some Fi reduces SAT to A

As before, Mf with k = 2i − 1 never moves to k + 1

So f is even for only finitely many n

So A is finite set, thus A ∈ PTIME contradiction

IIC3242 – Complexity classes 91 / 105

Can we prove P vs NP using diagonalisation?

For space/time hierarchy we can diagonalise against all o(f (n))
machines

It is not clear how to do this on a single branch in NP computation

In fact, separating P and NP using diagonalisation is not likely

Why?

I Enter Oracle machines (not the company)

IIC3242 – Complexity classes 92 / 105

Oracle machines

Idea: machine with access to a black-box

The black box decides a language O

Oracle machine can ask if a w ∈ O:

I Black box answers in one step

IIC3242 – Complexity classes 93 / 105

Oracle machines

Definition

A deterministic TM with input tape and an oracle for A ⊆ Σ∗:
MA = (Q,Σ, Γ, δ, q0, qaccept , qreject)

I Q a finite set of states with q?, qyes , qno ∈ Q

I Σ a finite alphabet with B 6∈ Σ

I Γ a finite alphabet with Σ ∪ {B,`} ⊆ Γ

I q0, qaccept , qreject ∈ Q as before

I δ is a partial function:

δ : Q × Γ× Γ2 → Q × {←,�,→}× Γ2 × {←,�,→}2

The third tape is the query tape

A is called the oracle

IIC3242 – Complexity classes 94 / 105

How do oracle machines work?

Easy to extend the previous definition to multiple work tapes and
to non-determinism.

An oracle machine MA works as an ordinary TM, but when it
enters the state q?:

I The query tape has: wBB · · · , for some w ∈ Σ∗

I M uses the oracle for A, and its next state is qyes or qno
I The state is qyes iff w ∈ A

The execution time is defined as for ordinary TMs

I A query to the oracle counts as one step

IIC3242 – Complexity classes 95 / 105

Greeting from Delphi: PTIMESAT

Oracle complexity classes: PTIMEA and NPA (for now):

I E.g. L ∈ PTIMEA if there is a poly-time TM M s.t. w ∈ L iff
MA accepts w

PTIMESAT decides all problems in NP:

I If B ∈ NP our machine M is just a reduction f from B to SAT

I On input w it computes f (w)

I And asks this to the oracle

I It accepts iff f (w) ∈ SAT iff w ∈ B

IIC3242 – Complexity classes 96 / 105

More Greek postcards: PTIMETQBF

Theorem

PTIMETQBF = NPTQBF .

I First, NPTQBF ⊆ NPSPACE:
I TQBF solvable in PSPACE, so every oracle call is unravelled

like this

I Second, NPSPACE = PSPACE (Savitch)

I Third, PSPACE ⊆ PTIMETQBF

I Again, we just use the reduction from any PSPACE problem to
TQBF

IIC3242 – Complexity classes 97 / 105

Oracle = relativisation

For any two complexity classes A,B we can define the oracle
version AO and BO , for any oracle O

If some result holds for A,B does it also hold for AO and BO?

If so the result relativises

IIC3242 – Complexity classes 98 / 105

Limits of diagonalisation

Diagonalisation for TMs:

1. TMs can be represented by strings (we can enumerate them)

2. One TM can simulate another one (with polynomial
overhead)

Results proved via diagonalisation relativise

Proof: Just plug in the oracle and nothing changes

Therefore if we show equal/different using diagonalisation, we can
just plug in the oracle and the proof still holds

IIC3242 – Complexity classes 99 / 105

Limits of diagonalisation: Baker, Gill, Solovay

Theorem (Baker, Gill, Solovay 1975)

There exist oracles A and B such that:

1. PTIMEA = NPA and;

2. PTIMEB 6= NPB .

Proof: We already proved the first claim (A = TQBF)

For the second claim we use diagonalisation (Oh the irony!)

We construct B as follows

IIC3242 – Complexity classes 100 / 105

Limits of diagonalisation: Baker, Gill, Solovay

For any oracle X define

UX = {1n | ∃x ∈ X s.t. |x | = n}

Clearly UX ∈ NPX for any X :

I Just guess a string of equal length and ask the oracle

Let M1,M2, . . . be an enumeration of all oracle poly-time TMs

I Note that these do not depend on the oracle

We construct B such that:

I UB 6= L(MB
i), for all i (the diagonal)

I I.e. UB /∈ PTIMEB , but UB ∈ NPB

IIC3242 – Complexity classes 101 / 105

Limits of diagonalisation: Baker, Gill, Solovay

M1,M2, . . . our enumeration of poly-time oracle machines

I Wlog. assume that Mi runs in time ni , and that Σ = {0, 1}

Start with i = 0 and B = ∅

We construct B in stages such that:

I Stage i ensures that MB
i doesn’t decide UB

I Each stage puts a finite amount of strings into B

I We begin with stage 1

IIC3242 – Complexity classes 102 / 105

Limits of diagonalisation: Baker, Gill, Solovay

stage i : We know only finitely many elements of B

Chose n s.t.

I 2n > ni (recall Mi runs in ni time)

I n is larger then length of anything already in B
(or decided to be outside B)

Idea: extend B s.t. MB
i accepts 1n iff 1n /∈ UB

Construction: run MB
i on 1n and reply to oracle queries as follows:

I If it asks about y and we already know y ∈ B reply YES

I If we still don’t know about y reply NO

IIC3242 – Complexity classes 103 / 105

Limits of diagonalisation: Baker, Gill, Solovay

stage i : continued

Let w1, . . . ,wk be all strings that Mi used to query the oracle (on
our input 1n)

We know k < ni < 2n, so there is w0 ∈ {0, 1}n different from all
w1, . . . ,wk

Expand B:

I If Mi accepts 1n, then no string of length n is in B

I If Mi rejects 1n, then put w0 in B

Move to i + 1

In the end lengths no considered: outside of B

IIC3242 – Complexity classes 104 / 105

Limits of diagonalisation: Baker, Gill, Solovay

Why does this work?

In stage i :

I We chose our n

I MB
i is polynomial, so it can’t query all w ∈ {0, 1}n

I So it queried only w1, . . . ,wk , with k < 2n

I We answered NO to all queries of length n (so they are not in
B)

I If it accepted, we make no string of length n inside B

I If it rejected, we put one it didn’t ask for inside B

I Therefore L(MB
i) 6= UB

IIC3242 – Complexity classes 105 / 105

