
The polynomial hierarchy

IIC3242

IIC3242 – The polynomial hierarchy 1 / 77

Motivation: Exact solutions

When studying NP we consider “existential” problems

I Is there a truth assignment satisfying a propositional formula?

I Is there a subset of a given set of numbers that sums up to a
given target number?

I Is there a Hamiltonian path in a graph?

So does the complexity change once we ask exact questions?

I Is there precisely one truth assignment satisfying a
propositional formula?

I What is the complexity of this problem? Is the problem in NP?

IIC3242 – The polynomial hierarchy 2 / 77

Motivation: Exact solutions

When studying NP we consider “existential” problems

I Is there a truth assignment satisfying a propositional formula?

I Is there a subset of a given set of numbers that sums up to a
given target number?

I Is there a Hamiltonian path in a graph?

So does the complexity change once we ask exact questions?

I Is there precisely one truth assignment satisfying a
propositional formula?

I What is the complexity of this problem? Is the problem in NP?

IIC3242 – The polynomial hierarchy 2 / 77

Motivation: Exact solutions

When studying NP we consider “existential” problems

I Is there a truth assignment satisfying a propositional formula?

I Is there a subset of a given set of numbers that sums up to a
given target number?

I Is there a Hamiltonian path in a graph?

So does the complexity change once we ask exact questions?

I Is there precisely one truth assignment satisfying a
propositional formula?

I What is the complexity of this problem? Is the problem in NP?

IIC3242 – The polynomial hierarchy 2 / 77

Exact solutions: The class DP

To answer questions like that we need to define a new complexity
class.

Idea behind this class: The notion of the exact solution can be
reduced to two queries.

I Is it true that there is a truth assignment that satisfies the
propositional formula ϕ?

I Is it true that there are not at least two truth assignment
satisfying ϕ?

Definition (The class DP)

L ∈ DP if and only if there are two languages, L1 ∈ NP and
L2 ∈ co-NP, such that L = L1 ∩ L2.

IIC3242 – The polynomial hierarchy 3 / 77

Exact solutions: The class DP

To answer questions like that we need to define a new complexity
class.

Idea behind this class: The notion of the exact solution can be
reduced to two queries.

I Is it true that there is a truth assignment that satisfies the
propositional formula ϕ?

I Is it true that there are not at least two truth assignment
satisfying ϕ?

Definition (The class DP)

L ∈ DP if and only if there are two languages, L1 ∈ NP and
L2 ∈ co-NP, such that L = L1 ∩ L2.

IIC3242 – The polynomial hierarchy 3 / 77

unique-SAT and the class DP

The first problem we will study is the following:

unique-SAT = {ϕ | ϕ is a propositional formula such that

there exists precisely one truth assignment satisfying ϕ}

Exercise

Show that unique-SAT ∈ DP.

Is unique-SAT complete for DP?

I This is an open problem

I So are there complete problems for this class?

IIC3242 – The polynomial hierarchy 4 / 77

unique-SAT and the class DP

The first problem we will study is the following:

unique-SAT = {ϕ | ϕ is a propositional formula such that

there exists precisely one truth assignment satisfying ϕ}

Exercise

Show that unique-SAT ∈ DP.

Is unique-SAT complete for DP?

I This is an open problem

I So are there complete problems for this class?

IIC3242 – The polynomial hierarchy 4 / 77

unique-SAT and the class DP

The first problem we will study is the following:

unique-SAT = {ϕ | ϕ is a propositional formula such that

there exists precisely one truth assignment satisfying ϕ}

Exercise

Show that unique-SAT ∈ DP.

Is unique-SAT complete for DP?

I This is an open problem

I So are there complete problems for this class?

IIC3242 – The polynomial hierarchy 4 / 77

unique-SAT and the class DP

The first problem we will study is the following:

unique-SAT = {ϕ | ϕ is a propositional formula such that

there exists precisely one truth assignment satisfying ϕ}

Exercise

Show that unique-SAT ∈ DP.

Is unique-SAT complete for DP?

I This is an open problem

I So are there complete problems for this class?

IIC3242 – The polynomial hierarchy 4 / 77

A DP-complete problem

Let 3-CNF-SAT-UNSAT be the following language:

3-CNF-SAT-UNSAT = {(ϕ,ψ) | ϕ and ψ are conjunctions

of 3 literals, ϕ is satisfiable and ψ is not satisfiable}

Theorem

3-CNF-SAT-UNSAT is DP-complete.

Exercise

Prove the theorem.

IIC3242 – The polynomial hierarchy 5 / 77

A DP-complete problem

Let 3-CNF-SAT-UNSAT be the following language:

3-CNF-SAT-UNSAT = {(ϕ,ψ) | ϕ and ψ are conjunctions

of 3 literals, ϕ is satisfiable and ψ is not satisfiable}

Theorem

3-CNF-SAT-UNSAT is DP-complete.

Exercise

Prove the theorem.

IIC3242 – The polynomial hierarchy 5 / 77

A DP-complete problem

Let 3-CNF-SAT-UNSAT be the following language:

3-CNF-SAT-UNSAT = {(ϕ,ψ) | ϕ and ψ are conjunctions

of 3 literals, ϕ is satisfiable and ψ is not satisfiable}

Theorem

3-CNF-SAT-UNSAT is DP-complete.

Exercise

Prove the theorem.

IIC3242 – The polynomial hierarchy 5 / 77

A (natural) DP-complete problem

Notation

clique-number(G) = max{k | G has a clique of size k}

We use this number to define two problems about graphs:

CLIQUE = {(G , k) | clique-number(G) ≥ k}
exact-CLIQUE = {(G , k) | clique-number(G) = k}

What is the complexity of CLIQUE?

I Are the complexities of CLIQUE and exact-CLIQUE different?

IIC3242 – The polynomial hierarchy 6 / 77

A (natural) DP-complete problem

Notation

clique-number(G) = max{k | G has a clique of size k}

We use this number to define two problems about graphs:

CLIQUE = {(G , k) | clique-number(G) ≥ k}
exact-CLIQUE = {(G , k) | clique-number(G) = k}

What is the complexity of CLIQUE?

I Are the complexities of CLIQUE and exact-CLIQUE different?

IIC3242 – The polynomial hierarchy 6 / 77

A (natural) DP-complete problem

Theorem

exact-CLIQUE is DP-complete.

Proof: First we need to show that exact-CLIQUE ∈ DP

I How is this done?

Now we have to show that exact-CLIQUE is DP-hard.

I We will reduce 3-CNF-SAT-UNSAT to exact-CLIQUE

IIC3242 – The polynomial hierarchy 7 / 77

A (natural) DP-complete problem

Theorem

exact-CLIQUE is DP-complete.

Proof: First we need to show that exact-CLIQUE ∈ DP

I How is this done?

Now we have to show that exact-CLIQUE is DP-hard.

I We will reduce 3-CNF-SAT-UNSAT to exact-CLIQUE

IIC3242 – The polynomial hierarchy 7 / 77

A (natural) DP-complete problem

Theorem

exact-CLIQUE is DP-complete.

Proof: First we need to show that exact-CLIQUE ∈ DP

I How is this done?

Now we have to show that exact-CLIQUE is DP-hard.

I We will reduce 3-CNF-SAT-UNSAT to exact-CLIQUE

IIC3242 – The polynomial hierarchy 7 / 77

exact-CLIQUE is DP-hard: the proof

We will use a reduction from 3-CNF-SAT to CLIQUE introduced
earlier.

I Let us recall this reduction using an example:

β = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

IIC3242 – The polynomial hierarchy 8 / 77

exact-CLIQUE is DP-hard: the proof

We will use a reduction from 3-CNF-SAT to CLIQUE introduced
earlier.

I Let us recall this reduction using an example:

β = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

IIC3242 – The polynomial hierarchy 8 / 77

exact-CLIQUE is DP-hard: the proof

We will use a reduction from 3-CNF-SAT to CLIQUE introduced
earlier.

I Let us recall this reduction using an example:

β = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

IIC3242 – The polynomial hierarchy 8 / 77

exact-CLIQUE is DP-hard: the proof

We have that: β ∈ 3-CNF-SAT if and only if (Gβ, 3) ∈ CLIQUE

More generally, if ϕ = C1 ∧ · · · ∧ Cn, where each Ci is a clause,
then:

ϕ ∈ 3-CNF-SAT if and only if (Gϕ, n) ∈ CLIQUE

We will use this reduction in our proof.

I But first, we need to define some operations over graphs.

IIC3242 – The polynomial hierarchy 9 / 77

exact-CLIQUE is DP-hard: the proof

We have that: β ∈ 3-CNF-SAT if and only if (Gβ, 3) ∈ CLIQUE

More generally, if ϕ = C1 ∧ · · · ∧ Cn, where each Ci is a clause,
then:

ϕ ∈ 3-CNF-SAT if and only if (Gϕ, n) ∈ CLIQUE

We will use this reduction in our proof.

I But first, we need to define some operations over graphs.

IIC3242 – The polynomial hierarchy 9 / 77

exact-CLIQUE is DP-hard: the proof

We have that: β ∈ 3-CNF-SAT if and only if (Gβ, 3) ∈ CLIQUE

More generally, if ϕ = C1 ∧ · · · ∧ Cn, where each Ci is a clause,
then:

ϕ ∈ 3-CNF-SAT if and only if (Gϕ, n) ∈ CLIQUE

We will use this reduction in our proof.

I But first, we need to define some operations over graphs.

IIC3242 – The polynomial hierarchy 9 / 77

exact-CLIQUE is DP-hard: the proof

Given graphs G1 = (N1,A1) and G2 = (N2,A2)

Notation

G1] G2, the disjoint union of G1 and G2, is defined as

G1] G2 = (N1 ∪ N2,A1 ∪ A2)

We are assuming that N1 ∩ N2 = ∅.

If N1 ∩ N2 6= ∅: we can rename the nodes of G2 in such a way that
they are disjoint from N1

IIC3242 – The polynomial hierarchy 10 / 77

exact-CLIQUE is DP-hard: the proof

Given graphs G1 = (N1,A1) and G2 = (N2,A2)

Notation

G1] G2, the disjoint union of G1 and G2, is defined as

G1] G2 = (N1 ∪ N2,A1 ∪ A2)

We are assuming that N1 ∩ N2 = ∅.

If N1 ∩ N2 6= ∅: we can rename the nodes of G2 in such a way that
they are disjoint from N1

IIC3242 – The polynomial hierarchy 10 / 77

exact-CLIQUE is DP-hard: the proof

Given graphs G1 = (N1,A1) and G2 = (N2,A2)

Notation

G1] G2, the disjoint union of G1 and G2, is defined as

G1] G2 = (N1 ∪ N2,A1 ∪ A2)

We are assuming that N1 ∩ N2 = ∅.

If N1 ∩ N2 6= ∅: we can rename the nodes of G2 in such a way that
they are disjoint from N1

IIC3242 – The polynomial hierarchy 10 / 77

exact-CLIQUE is DP-hard: the proof

Notation

G1 × G2 = (N1 × N2,A), where:

A = {((a1, a2), (b1, b2)) | (a1, b1) ∈ A1 and (a2, b2) ∈ A2, or

a1 = b1 and (a2, b2) ∈ A2, or

(a1, b1) ∈ A1 y a2 = b2}

Exercise

If G1 and G2 have cliques with n1 and n2 elements, respectively,
than what do we know about cliques in G1 × G2?

IIC3242 – The polynomial hierarchy 11 / 77

exact-CLIQUE is DP-hard: the proof

Notation

G1 × G2 = (N1 × N2,A), where:

A = {((a1, a2), (b1, b2)) | (a1, b1) ∈ A1 and (a2, b2) ∈ A2, or

a1 = b1 and (a2, b2) ∈ A2, or

(a1, b1) ∈ A1 y a2 = b2}

Exercise

If G1 and G2 have cliques with n1 and n2 elements, respectively,
than what do we know about cliques in G1 × G2?

IIC3242 – The polynomial hierarchy 11 / 77

exact-CLIQUE is DP-hard: the proof

Now we have all the ingredients needed to reduce
3-CNF-SAT-UNSAT to exact-CLIQUE.

Given (ϕ,ψ), we will construct (G(ϕ,ψ), k(ϕ,ψ)) such that:

(ϕ,ψ) ∈ 3-CNF-SAT-UNSAT
if and only if

(G(ϕ,ψ), k(ϕ,ψ)) ∈ exact-CLIQUE

Assume that ϕ and ψ consist of m and n clauses, respectively,
where m ≥ 2, n ≥ 2 and m 6= n.

I Why can we assume that m ≥ 2, n ≥ 2 and m 6= n?

IIC3242 – The polynomial hierarchy 12 / 77

exact-CLIQUE is DP-hard: the proof

Now we have all the ingredients needed to reduce
3-CNF-SAT-UNSAT to exact-CLIQUE.

Given (ϕ,ψ), we will construct (G(ϕ,ψ), k(ϕ,ψ)) such that:

(ϕ,ψ) ∈ 3-CNF-SAT-UNSAT
if and only if

(G(ϕ,ψ), k(ϕ,ψ)) ∈ exact-CLIQUE

Assume that ϕ and ψ consist of m and n clauses, respectively,
where m ≥ 2, n ≥ 2 and m 6= n.

I Why can we assume that m ≥ 2, n ≥ 2 and m 6= n?

IIC3242 – The polynomial hierarchy 12 / 77

exact-CLIQUE is DP-hard: the proof

Now we have all the ingredients needed to reduce
3-CNF-SAT-UNSAT to exact-CLIQUE.

Given (ϕ,ψ), we will construct (G(ϕ,ψ), k(ϕ,ψ)) such that:

(ϕ,ψ) ∈ 3-CNF-SAT-UNSAT
if and only if

(G(ϕ,ψ), k(ϕ,ψ)) ∈ exact-CLIQUE

Assume that ϕ and ψ consist of m and n clauses, respectively,
where m ≥ 2, n ≥ 2 and m 6= n.

I Why can we assume that m ≥ 2, n ≥ 2 and m 6= n?

IIC3242 – The polynomial hierarchy 12 / 77

exact-CLIQUE is DP-hard: the proof

Let:

G(ϕ,ψ) = (Gϕ] Km−1)× (Gψ] Kn−1)

k(ϕ,ψ) = m · (n − 1)

Then the following holds:

ϕ ψ The size of the largest clique in G(ϕ,ψ)

CNF-SAT CNF-SAT m · n
CNF-SAT CNF-SAT m · (n − 1)

CNF-SAT CNF-SAT (m − 1) · n
CNF-SAT CNF-SAT (m − 1) · (n − 1)

IIC3242 – The polynomial hierarchy 13 / 77

exact-CLIQUE is DP-hard: the proof

Let:

G(ϕ,ψ) = (Gϕ] Km−1)× (Gψ] Kn−1)

k(ϕ,ψ) = m · (n − 1)

Then the following holds:

ϕ ψ The size of the largest clique in G(ϕ,ψ)

CNF-SAT CNF-SAT m · n
CNF-SAT CNF-SAT m · (n − 1)

CNF-SAT CNF-SAT (m − 1) · n
CNF-SAT CNF-SAT (m − 1) · (n − 1)

IIC3242 – The polynomial hierarchy 13 / 77

exact-CLIQUE is DP-hard: the proof

Since m 6= n: m · (n − 1) 6= (m − 1) · n

Therefore, since (m − 1) · (n − 1) < m · (n − 1) < m · n, we can
conclude that:

(ϕ,ψ) ∈ 3-CNF-SAT-UNSAT
if and only if

(G(ϕ,ψ), k(ϕ,ψ)) ∈ exact-CLIQUE

To finish the proof we need to check that the reduction is doable
in PTIME (or LOGSPACE if you prefer).

I How can we show this?

IIC3242 – The polynomial hierarchy 14 / 77

exact-CLIQUE is DP-hard: the proof

Since m 6= n: m · (n − 1) 6= (m − 1) · n

Therefore, since (m − 1) · (n − 1) < m · (n − 1) < m · n, we can
conclude that:

(ϕ,ψ) ∈ 3-CNF-SAT-UNSAT
if and only if

(G(ϕ,ψ), k(ϕ,ψ)) ∈ exact-CLIQUE

To finish the proof we need to check that the reduction is doable
in PTIME (or LOGSPACE if you prefer).

I How can we show this?

IIC3242 – The polynomial hierarchy 14 / 77

Relation between NP and DP

It is easy to see that NP ⊆ DP and co-NP ⊆ DP.

I How can we show this?

What is the relation between NP and DP?

I Is NP 6= DP?

I This is an open problem, and there is a very good reason for
this!

IIC3242 – The polynomial hierarchy 15 / 77

Relation between NP and DP

It is easy to see that NP ⊆ DP and co-NP ⊆ DP.

I How can we show this?

What is the relation between NP and DP?

I Is NP 6= DP?

I This is an open problem, and there is a very good reason for
this!

IIC3242 – The polynomial hierarchy 15 / 77

Relation between NP and DP

Theorem

NP = DP if and only if NP = co-NP.

Proof: (⇐) Assume first that NP = co-NP.

If L ∈ DP: L = L1 ∩ L2, with L1 ∈ NP and L2 ∈ co-NP.

I By the assumption: L2 ∈ NP

Therefore: L = L1 ∩ L2, where L1, L2 ∈ NP.

But NP is closed under intersection.

I How does this follow?

I Thus, we have that L ∈ NP

IIC3242 – The polynomial hierarchy 16 / 77

Relation between NP and DP

Theorem

NP = DP if and only if NP = co-NP.

Proof: (⇐) Assume first that NP = co-NP.

If L ∈ DP: L = L1 ∩ L2, with L1 ∈ NP and L2 ∈ co-NP.

I By the assumption: L2 ∈ NP

Therefore: L = L1 ∩ L2, where L1, L2 ∈ NP.

But NP is closed under intersection.

I How does this follow?

I Thus, we have that L ∈ NP

IIC3242 – The polynomial hierarchy 16 / 77

Relation between NP and DP

(⇒) Assume that NP = DP.

Since co-NP ⊆ DP: co-NP ⊆ NP

Therefore we have that NP ⊆ co-NP:

L ∈ NP ⇒ L ∈ co-NP

⇒ L ∈ NP (we showed that co-NP ⊆ NP)
⇒ L ∈ co-NP

IIC3242 – The polynomial hierarchy 17 / 77

Relation between NP and DP

(⇒) Assume that NP = DP.

Since co-NP ⊆ DP: co-NP ⊆ NP

Therefore we have that NP ⊆ co-NP:

L ∈ NP

⇒ L ∈ co-NP

⇒ L ∈ NP (we showed that co-NP ⊆ NP)
⇒ L ∈ co-NP

IIC3242 – The polynomial hierarchy 17 / 77

Relation between NP and DP

(⇒) Assume that NP = DP.

Since co-NP ⊆ DP: co-NP ⊆ NP

Therefore we have that NP ⊆ co-NP:

L ∈ NP ⇒ L ∈ co-NP

⇒ L ∈ NP (we showed that co-NP ⊆ NP)
⇒ L ∈ co-NP

IIC3242 – The polynomial hierarchy 17 / 77

Relation between NP and DP

(⇒) Assume that NP = DP.

Since co-NP ⊆ DP: co-NP ⊆ NP

Therefore we have that NP ⊆ co-NP:

L ∈ NP ⇒ L ∈ co-NP

⇒ L ∈ NP (we showed that co-NP ⊆ NP)

⇒ L ∈ co-NP

IIC3242 – The polynomial hierarchy 17 / 77

Relation between NP and DP

(⇒) Assume that NP = DP.

Since co-NP ⊆ DP: co-NP ⊆ NP

Therefore we have that NP ⊆ co-NP:

L ∈ NP ⇒ L ∈ co-NP

⇒ L ∈ NP (we showed that co-NP ⊆ NP)
⇒ L ∈ co-NP

IIC3242 – The polynomial hierarchy 17 / 77

Practical motivation: Optimisation problems

A tour π in a graph G is a sequence of edges (a1, a2), . . .,
(ak−1, ak), (ak , a1) in G such that:

I ai 6= aj for each i 6= j ,

I {a1, . . . , ak} is the set of all nodes in G .

I (Recall Hamiltonian paths)

Notation
I A cost function for a graph G = (N,A) is a function

cost : A→ N.

I The cost of a tour π in G is defined as:

cost(π) =

(k−1∑
i=1

cost((ai , ai+1))

)
+ cost((ak , a1))

IIC3242 – The polynomial hierarchy 18 / 77

Practical motivation: Optimisation problems

The travelling salesman problem is defined as:

TSP = {(G , cost, k) | there is a tour π in G with cost(π) ≤ k}

What is the complexity of TSP?

Theorem

TSP is NP-complete.

IIC3242 – The polynomial hierarchy 19 / 77

Practical motivation: Optimisation problems

The travelling salesman problem is defined as:

TSP = {(G , cost, k) | there is a tour π in G with cost(π) ≤ k}

What is the complexity of TSP?

Theorem

TSP is NP-complete.

IIC3242 – The polynomial hierarchy 19 / 77

Practical motivation: Optimisation problems

TSP is a decision problem.

I There is also an optimisation variant of TSP: Find the
smallest k such that (G , cost, k) ∈ TSP

I The optimisation variant of the problem is at least as difficult
as the decision variant

I If we can solve TSP in polynomial time, can we also solve its
optimisation variant in polynomial time?

I TSP has to be used polynomially many times

IIC3242 – The polynomial hierarchy 20 / 77

Practical motivation: Optimisation problems

TSP is a decision problem.

I There is also an optimisation variant of TSP: Find the
smallest k such that (G , cost, k) ∈ TSP

I The optimisation variant of the problem is at least as difficult
as the decision variant

I If we can solve TSP in polynomial time, can we also solve its
optimisation variant in polynomial time?

I TSP has to be used polynomially many times

IIC3242 – The polynomial hierarchy 20 / 77

Practical motivation: Optimisation problems

TSP is a decision problem.

I There is also an optimisation variant of TSP: Find the
smallest k such that (G , cost, k) ∈ TSP

I The optimisation variant of the problem is at least as difficult
as the decision variant

I If we can solve TSP in polynomial time, can we also solve its
optimisation variant in polynomial time?

I TSP has to be used polynomially many times

IIC3242 – The polynomial hierarchy 20 / 77

Practical motivation: Optimisation problems

TSP is a decision problem.

I There is also an optimisation variant of TSP: Find the
smallest k such that (G , cost, k) ∈ TSP

I The optimisation variant of the problem is at least as difficult
as the decision variant

I If we can solve TSP in polynomial time, can we also solve its
optimisation variant in polynomial time?

I TSP has to be used polynomially many times

IIC3242 – The polynomial hierarchy 20 / 77

Practical motivation: Optimisation problems

TSP is a decision problem.

I There is also an optimisation variant of TSP: Find the
smallest k such that (G , cost, k) ∈ TSP

I The optimisation variant of the problem is at least as difficult
as the decision variant

I If we can solve TSP in polynomial time, can we also solve its
optimisation variant in polynomial time?

I TSP has to be used polynomially many times

IIC3242 – The polynomial hierarchy 20 / 77

Practical motivation: Optimisation problems

a tour is optimal if there is no other tour with a smaller cost.

I We can have more than one optimal tour

Another version of TSP:

unique-TSP = {(G , cost) | there is just one optimal tour for G}

This is a decision problem, and it seems more difficult than TSP.

I If we can solve TSP in polynomial time, can we also solve
unique-TSP in polynomial time?

I Again, TSP has to be used polynomially many times

IIC3242 – The polynomial hierarchy 21 / 77

Practical motivation: Optimisation problems

a tour is optimal if there is no other tour with a smaller cost.

I We can have more than one optimal tour

Another version of TSP:

unique-TSP = {(G , cost) | there is just one optimal tour for G}

This is a decision problem, and it seems more difficult than TSP.

I If we can solve TSP in polynomial time, can we also solve
unique-TSP in polynomial time?

I Again, TSP has to be used polynomially many times

IIC3242 – The polynomial hierarchy 21 / 77

Practical motivation: Optimisation problems

a tour is optimal if there is no other tour with a smaller cost.

I We can have more than one optimal tour

Another version of TSP:

unique-TSP = {(G , cost) | there is just one optimal tour for G}

This is a decision problem, and it seems more difficult than TSP.

I If we can solve TSP in polynomial time, can we also solve
unique-TSP in polynomial time?

I Again, TSP has to be used polynomially many times

IIC3242 – The polynomial hierarchy 21 / 77

Oracles make a comeback

What do all these problems have in common?

I We can solve the using an answer to a NP problem
polynomially many times

I In the case of DP: two times

I If we find a polynomial algorithm for some NP-complete
problem, then these problems can be solved in polynomial time

I An NP-complete problem can be seen as an oracle for these
problems

So we will recall the notion of an oracle machine.

I We will show that oracles can be used to characterise these
problems, and many more interesting problems

IIC3242 – The polynomial hierarchy 22 / 77

Oracles make a comeback

What do all these problems have in common?

I We can solve the using an answer to a NP problem
polynomially many times

I In the case of DP: two times

I If we find a polynomial algorithm for some NP-complete
problem, then these problems can be solved in polynomial time

I An NP-complete problem can be seen as an oracle for these
problems

So we will recall the notion of an oracle machine.

I We will show that oracles can be used to characterise these
problems, and many more interesting problems

IIC3242 – The polynomial hierarchy 22 / 77

Oracles make a comeback

What do all these problems have in common?

I We can solve the using an answer to a NP problem
polynomially many times

I In the case of DP: two times

I If we find a polynomial algorithm for some NP-complete
problem, then these problems can be solved in polynomial time

I An NP-complete problem can be seen as an oracle for these
problems

So we will recall the notion of an oracle machine.

I We will show that oracles can be used to characterise these
problems, and many more interesting problems

IIC3242 – The polynomial hierarchy 22 / 77

Oracles make a comeback

What do all these problems have in common?

I We can solve the using an answer to a NP problem
polynomially many times

I In the case of DP: two times

I If we find a polynomial algorithm for some NP-complete
problem, then these problems can be solved in polynomial time

I An NP-complete problem can be seen as an oracle for these
problems

So we will recall the notion of an oracle machine.

I We will show that oracles can be used to characterise these
problems, and many more interesting problems

IIC3242 – The polynomial hierarchy 22 / 77

Oracles make a comeback

What do all these problems have in common?

I We can solve the using an answer to a NP problem
polynomially many times

I In the case of DP: two times

I If we find a polynomial algorithm for some NP-complete
problem, then these problems can be solved in polynomial time

I An NP-complete problem can be seen as an oracle for these
problems

So we will recall the notion of an oracle machine.

I We will show that oracles can be used to characterise these
problems, and many more interesting problems

IIC3242 – The polynomial hierarchy 22 / 77

Oracles make a comeback

What do all these problems have in common?

I We can solve the using an answer to a NP problem
polynomially many times

I In the case of DP: two times

I If we find a polynomial algorithm for some NP-complete
problem, then these problems can be solved in polynomial time

I An NP-complete problem can be seen as an oracle for these
problems

So we will recall the notion of an oracle machine.

I We will show that oracles can be used to characterise these
problems, and many more interesting problems

IIC3242 – The polynomial hierarchy 22 / 77

Oracles make a comeback

What do all these problems have in common?

I We can solve the using an answer to a NP problem
polynomially many times

I In the case of DP: two times

I If we find a polynomial algorithm for some NP-complete
problem, then these problems can be solved in polynomial time

I An NP-complete problem can be seen as an oracle for these
problems

So we will recall the notion of an oracle machine.

I We will show that oracles can be used to characterise these
problems, and many more interesting problems

IIC3242 – The polynomial hierarchy 22 / 77

Oracle machines

Definition

A deterministic TM with input tape and an oracle for A ⊆ Σ∗:
MA = (Q,Σ, Γ, δ, q0, qaccept , qreject)

I Q a finite set of states with q?, qyes , qno ∈ Q

I Σ a finite alphabet with B 6∈ Σ

I Γ a finite alphabet with Σ ∪ {B,`} ⊆ Γ

I q0, qaccept , qreject ∈ Q as before

I δ is a partial function:

δ : Q × Γ× Γ2 → Q × {←,�,→}× Γ2 × {←,�,→}2

The third tape is the query tape

A is called the oracle

IIC3242 – The polynomial hierarchy 23 / 77

How do oracle machines work?

Easy to extend the previous definition to multiple work tapes and
to non-determinism.

An oracle machine MA work as an ordinary TM, but when it enters
the state q?:

I The query tape has: wBB · · · , for some w ∈ Σ∗

I M uses the oracle for A, and its next state is qyes or qno
I The state is qyes iff w ∈ A

IIC3242 – The polynomial hierarchy 24 / 77

Oracle machines: examples

The execution time is defined as for ordinary TMs

I A query to the oracle counts as one step

For our initial examples:

3-CNF-SAT-UNSAT : is accepted by MSAT that runs in time
O(n)

exact-CLIQUE : is accepted by MCLIQUE that runs in
time O(n)

unique-TSP : is accepted by MTSP that runs in time
O(nk)

IIC3242 – The polynomial hierarchy 25 / 77

Oracle machines: examples

The execution time is defined as for ordinary TMs

I A query to the oracle counts as one step

For our initial examples:

3-CNF-SAT-UNSAT : is accepted by MSAT that runs in time
O(n)

exact-CLIQUE : is accepted by MCLIQUE that runs in
time O(n)

unique-TSP : is accepted by MTSP that runs in time
O(nk)

IIC3242 – The polynomial hierarchy 25 / 77

Oracle machines: examples

The execution time is defined as for ordinary TMs

I A query to the oracle counts as one step

For our initial examples:

3-CNF-SAT-UNSAT : is accepted by MSAT that runs in time
O(n)

exact-CLIQUE : is accepted by MCLIQUE that runs in
time O(n)

unique-TSP : is accepted by MTSP that runs in time
O(nk)

IIC3242 – The polynomial hierarchy 25 / 77

Oracle machines: examples

The execution time is defined as for ordinary TMs

I A query to the oracle counts as one step

For our initial examples:

3-CNF-SAT-UNSAT : is accepted by MSAT that runs in time
O(n)

exact-CLIQUE : is accepted by MCLIQUE that runs in
time O(n)

unique-TSP : is accepted by MTSP that runs in time
O(nk)

IIC3242 – The polynomial hierarchy 25 / 77

Complexity classes with an oracle

A complexity class defined using oracle machines:

Definition

PTIMEA: All languages L such that there exists an oracle machine
MA with L = L(MA) and MA runs in time O(nk).

We have already seen that:
I 3-CNF-SAT-UNSAT, exact-CLIQUE and unique-TSP are in

PTIMESAT

I They are also in PTIMEA, for any NP-complete problem A

I NP, co-NP and DP are contained in PTIMESAT

IIC3242 – The polynomial hierarchy 26 / 77

Complexity classes with an oracle

A complexity class defined using oracle machines:

Definition

PTIMEA: All languages L such that there exists an oracle machine
MA with L = L(MA) and MA runs in time O(nk).

We have already seen that:

I 3-CNF-SAT-UNSAT, exact-CLIQUE and unique-TSP are in
PTIMESAT

I They are also in PTIMEA, for any NP-complete problem A

I NP, co-NP and DP are contained in PTIMESAT

IIC3242 – The polynomial hierarchy 26 / 77

Complexity classes with an oracle

A complexity class defined using oracle machines:

Definition

PTIMEA: All languages L such that there exists an oracle machine
MA with L = L(MA) and MA runs in time O(nk).

We have already seen that:
I 3-CNF-SAT-UNSAT, exact-CLIQUE and unique-TSP are in

PTIMESAT

I They are also in PTIMEA, for any NP-complete problem A

I NP, co-NP and DP are contained in PTIMESAT

IIC3242 – The polynomial hierarchy 26 / 77

Complexity classes with an oracle

A complexity class defined using oracle machines:

Definition

PTIMEA: All languages L such that there exists an oracle machine
MA with L = L(MA) and MA runs in time O(nk).

We have already seen that:
I 3-CNF-SAT-UNSAT, exact-CLIQUE and unique-TSP are in

PTIMESAT

I They are also in PTIMEA, for any NP-complete problem A

I NP, co-NP and DP are contained in PTIMESAT

IIC3242 – The polynomial hierarchy 26 / 77

Complexity classes with an oracle

A complexity class defined using oracle machines:

Definition

PTIMEA: All languages L such that there exists an oracle machine
MA with L = L(MA) and MA runs in time O(nk).

We have already seen that:
I 3-CNF-SAT-UNSAT, exact-CLIQUE and unique-TSP are in

PTIMESAT

I They are also in PTIMEA, for any NP-complete problem A

I NP, co-NP and DP are contained in PTIMESAT

IIC3242 – The polynomial hierarchy 26 / 77

Complexity classes with an oracle

A more general definition:

Definition

PTIMENP =
⋃

A∈NP
PTIMEA

But in reality, this is not more general than:

Proposition

PTIMENP = PTIMESAT

Exercise

Prove the proposition.

IIC3242 – The polynomial hierarchy 27 / 77

Complexity classes with an oracle

A more general definition:

Definition

PTIMENP =
⋃

A∈NP
PTIMEA

But in reality, this is not more general than:

Proposition

PTIMENP = PTIMESAT

Exercise

Prove the proposition.

IIC3242 – The polynomial hierarchy 27 / 77

Complexity classes with an oracle

A more general definition:

Definition

PTIMENP =
⋃

A∈NP
PTIMEA

But in reality, this is not more general than:

Proposition

PTIMENP = PTIMESAT

Exercise

Prove the proposition.

IIC3242 – The polynomial hierarchy 27 / 77

Relationships between complexity classes

What is the relations between PTIMENP and the classes we
defined so far?

Why does it hold that PTIMENP ⊆ PSPACE? (Recall limits of
diagonalisation)

Do we have enough complexity classes in our life?

I Sorry, but there are many other natural problems between
PTIMENP and PSPACE

IIC3242 – The polynomial hierarchy 28 / 77

Relationships between complexity classes

What is the relations between PTIMENP and the classes we
defined so far?

Why does it hold that PTIMENP ⊆ PSPACE? (Recall limits of
diagonalisation)

Do we have enough complexity classes in our life?

I Sorry, but there are many other natural problems between
PTIMENP and PSPACE

IIC3242 – The polynomial hierarchy 28 / 77

Relationships between complexity classes

What is the relations between PTIMENP and the classes we
defined so far?

Why does it hold that PTIMENP ⊆ PSPACE? (Recall limits of
diagonalisation)

Do we have enough complexity classes in our life?

I Sorry, but there are many other natural problems between
PTIMENP and PSPACE

IIC3242 – The polynomial hierarchy 28 / 77

Relationships between complexity classes

What is the relations between PTIMENP and the classes we
defined so far?

Why does it hold that PTIMENP ⊆ PSPACE? (Recall limits of
diagonalisation)

Do we have enough complexity classes in our life?

I Sorry, but there are many other natural problems between
PTIMENP and PSPACE

IIC3242 – The polynomial hierarchy 28 / 77

A problem from Artificial Intelligence: Knowledge revision

A fundamental problem: Knowledge update.

I Given a knowledge base Σ and a new fact ϕ, we want to
update the knowledge in Σ with respect to the new fact ϕ

I We want to update what is necessary

I We do not want to lose the information that we do not need
to eliminate

Assumptions:

I Σ is a set of propositional formulas

I ϕ is a propositional formula

IIC3242 – The polynomial hierarchy 29 / 77

A problem from Artificial Intelligence: Knowledge revision

A fundamental problem: Knowledge update.

I Given a knowledge base Σ and a new fact ϕ, we want to
update the knowledge in Σ with respect to the new fact ϕ

I We want to update what is necessary

I We do not want to lose the information that we do not need
to eliminate

Assumptions:

I Σ is a set of propositional formulas

I ϕ is a propositional formula

IIC3242 – The polynomial hierarchy 29 / 77

A problem from Artificial Intelligence: Knowledge revision

A fundamental problem: Knowledge update.

I Given a knowledge base Σ and a new fact ϕ, we want to
update the knowledge in Σ with respect to the new fact ϕ

I We want to update what is necessary

I We do not want to lose the information that we do not need
to eliminate

Assumptions:

I Σ is a set of propositional formulas

I ϕ is a propositional formula

IIC3242 – The polynomial hierarchy 29 / 77

A problem from Artificial Intelligence: Knowledge revision

A fundamental problem: Knowledge update.

I Given a knowledge base Σ and a new fact ϕ, we want to
update the knowledge in Σ with respect to the new fact ϕ

I We want to update what is necessary

I We do not want to lose the information that we do not need
to eliminate

Assumptions:

I Σ is a set of propositional formulas

I ϕ is a propositional formula

IIC3242 – The polynomial hierarchy 29 / 77

Knowledge revision

Given Σ and ϕ: we want to generate a formula that describes the
update of Σ with respect to ϕ.

Notation

Σ ◦ ϕ

How can we do this?

I What would be {p, p → q} ◦ ¬q?

IIC3242 – The polynomial hierarchy 30 / 77

Knowledge revision

Given Σ and ϕ: we want to generate a formula that describes the
update of Σ with respect to ϕ.

Notation

Σ ◦ ϕ

How can we do this?

I What would be {p, p → q} ◦ ¬q?

IIC3242 – The polynomial hierarchy 30 / 77

Knowledge revision

A possible solution: Belief Revision

Notation
I models(Σ): the set of valuations σ that satisfy Σ

I ∆(σ1, σ2): the set of propositional variables p such that
σ1(p) 6= σ2(p)

I We assume all the valuation to have the same domain

Example

If σ1(p) = 1, σ1(q) = 1, σ2(p) = 1 and σ2(q) = 0, then
∆(σ1, σ2) = {q}
I ∆(σ1, σ2) measures the distance between σ1 and σ2

IIC3242 – The polynomial hierarchy 31 / 77

Knowledge revision

A possible solution: Belief Revision

Notation
I models(Σ): the set of valuations σ that satisfy Σ

I ∆(σ1, σ2): the set of propositional variables p such that
σ1(p) 6= σ2(p)

I We assume all the valuation to have the same domain

Example

If σ1(p) = 1, σ1(q) = 1, σ2(p) = 1 and σ2(q) = 0, then
∆(σ1, σ2) = {q}
I ∆(σ1, σ2) measures the distance between σ1 and σ2

IIC3242 – The polynomial hierarchy 31 / 77

Knowledge revision

A possible solution: Belief Revision

Notation
I models(Σ): the set of valuations σ that satisfy Σ

I ∆(σ1, σ2): the set of propositional variables p such that
σ1(p) 6= σ2(p)

I We assume all the valuation to have the same domain

Example

If σ1(p) = 1, σ1(q) = 1, σ2(p) = 1 and σ2(q) = 0, then
∆(σ1, σ2) = {q}
I ∆(σ1, σ2) measures the distance between σ1 and σ2

IIC3242 – The polynomial hierarchy 31 / 77

Knowledge revision

To update Σ with respect to ϕ: We update the models of Σ with
respect to ϕ.

For any σ such that σ(Σ) = 1, we want to select the models σ1 of
ϕ that are at a minimal distance from σ.

Notation

min(σ, ϕ) = {σ1 | σ1(ϕ) = 1 and there is no σ2 such that

σ2(ϕ) = 1 and ∆(σ, σ2) (∆(σ, σ1)}

IIC3242 – The polynomial hierarchy 32 / 77

Knowledge revision

To update Σ with respect to ϕ: We update the models of Σ with
respect to ϕ.

For any σ such that σ(Σ) = 1, we want to select the models σ1 of
ϕ that are at a minimal distance from σ.

Notation

min(σ, ϕ) = {σ1 | σ1(ϕ) = 1 and there is no σ2 such that

σ2(ϕ) = 1 and ∆(σ, σ2) (∆(σ, σ1)}

IIC3242 – The polynomial hierarchy 32 / 77

Knowledge revision

We define the models of Σ ◦ ϕ as the models of ϕ that are closest
to the models of Σ:

models(Σ ◦ ϕ) =
⋃

σ : σ(Σ)=1

min(σ, ϕ)

and we define Σ ◦ ϕ as any formula ψ such that
models(ψ) = models(Σ ◦ ϕ).

I Does this formula always exist? Is it unique?

I What is the complexity of determining if σ ∈ models(Σ ◦ ϕ)?

IIC3242 – The polynomial hierarchy 33 / 77

Knowledge revision

We define the models of Σ ◦ ϕ as the models of ϕ that are closest
to the models of Σ:

models(Σ ◦ ϕ) =
⋃

σ : σ(Σ)=1

min(σ, ϕ)

and we define Σ ◦ ϕ as any formula ψ such that
models(ψ) = models(Σ ◦ ϕ).

I Does this formula always exist? Is it unique?

I What is the complexity of determining if σ ∈ models(Σ ◦ ϕ)?

IIC3242 – The polynomial hierarchy 33 / 77

Knowledge revision

We define the models of Σ ◦ ϕ as the models of ϕ that are closest
to the models of Σ:

models(Σ ◦ ϕ) =
⋃

σ : σ(Σ)=1

min(σ, ϕ)

and we define Σ ◦ ϕ as any formula ψ such that
models(ψ) = models(Σ ◦ ϕ).

I Does this formula always exist? Is it unique?

I What is the complexity of determining if σ ∈ models(Σ ◦ ϕ)?

IIC3242 – The polynomial hierarchy 33 / 77

Knowledge revision

Example

Σ = {p, p → q} and ϕ = ¬q

models(Σ) = {σ}, σ(p) = σ(q) = 1
models(ϕ) = {σ1, σ2}, σ1(p) = 1, σ1(q) = 0

σ2(p) = 0, σ2(q) = 0

Minimal models:

∆(σ, σ1) = {q}
∆(σ, σ2) = {p, q}

min(σ, ϕ) = {σ1}
models(Σ ◦ ϕ) = {σ1}

Result: {p, p → q} ◦ ¬q = p ∧ ¬q

IIC3242 – The polynomial hierarchy 34 / 77

Knowledge revision: complexity

The main problem in the area: compute certain answers.

I ψ is a certain answer to Σ ◦ ϕ if for every σ ∈ models(Σ ◦ ϕ),
it is true that σ satisfies ψ

Example

p is a certain answer to {p, p → q} ◦ ¬q.

The problem we need to study:

CERTAIN-ANSWERS = {(Σ, ϕ, ψ) | ψ is a

certain answer to Σ ◦ ϕ}

IIC3242 – The polynomial hierarchy 35 / 77

Knowledge revision: complexity

The main problem in the area: compute certain answers.

I ψ is a certain answer to Σ ◦ ϕ if for every σ ∈ models(Σ ◦ ϕ),
it is true that σ satisfies ψ

Example

p is a certain answer to {p, p → q} ◦ ¬q.

The problem we need to study:

CERTAIN-ANSWERS = {(Σ, ϕ, ψ) | ψ is a

certain answer to Σ ◦ ϕ}

IIC3242 – The polynomial hierarchy 35 / 77

Knowledge revision: complexity

What is the complexity of CERTAIN-ANSWERS?

I Is it in NP? In co-NP?

I Is it in PTIMENP?

I Or at least in PSPACE?

Again, the notion of an oracle can help us to understand the
complexity of this problem.

IIC3242 – The polynomial hierarchy 36 / 77

Knowledge revision: complexity

What is the complexity of CERTAIN-ANSWERS?

I Is it in NP? In co-NP?

I Is it in PTIMENP?

I Or at least in PSPACE?

Again, the notion of an oracle can help us to understand the
complexity of this problem.

IIC3242 – The polynomial hierarchy 36 / 77

Knowledge revision: complexity

What is the complexity of CERTAIN-ANSWERS?

I Is it in NP? In co-NP?

I Is it in PTIMENP?

I Or at least in PSPACE?

Again, the notion of an oracle can help us to understand the
complexity of this problem.

IIC3242 – The polynomial hierarchy 36 / 77

Knowledge revision: complexity

What is the complexity of CERTAIN-ANSWERS?

I Is it in NP? In co-NP?

I Is it in PTIMENP?

I Or at least in PSPACE?

Again, the notion of an oracle can help us to understand the
complexity of this problem.

IIC3242 – The polynomial hierarchy 36 / 77

Knowledge revision: complexity

What is the complexity of CERTAIN-ANSWERS?

I Is it in NP? In co-NP?

I Is it in PTIMENP?

I Or at least in PSPACE?

Again, the notion of an oracle can help us to understand the
complexity of this problem.

IIC3242 – The polynomial hierarchy 36 / 77

Another complexity class defined with respect to oracles

Definition

I NPA: Languages L for which there is a nondeterministic TM
MA with L = L(MA) and MA runs in time O(nk)

I NPNP:
⋃

A∈NP

NPA

With this we can show where CERTAIN-ANSWERS is.

Exercise

Show that CERTAIN-ANSWERS ∈ co-NPNP. (Hint: to show that
ψ is not a certain answer, we guess a valuation that confirms this.
But to check that this is a model of the update we need NP.)

IIC3242 – The polynomial hierarchy 37 / 77

Another complexity class defined with respect to oracles

Definition

I NPA: Languages L for which there is a nondeterministic TM
MA with L = L(MA) and MA runs in time O(nk)

I NPNP:
⋃

A∈NP

NPA

With this we can show where CERTAIN-ANSWERS is.

Exercise

Show that CERTAIN-ANSWERS ∈ co-NPNP. (Hint: to show that
ψ is not a certain answer, we guess a valuation that confirms this.
But to check that this is a model of the update we need NP.)

IIC3242 – The polynomial hierarchy 37 / 77

Another complexity class defined with respect to oracles

Definition

I NPA: Languages L for which there is a nondeterministic TM
MA with L = L(MA) and MA runs in time O(nk)

I NPNP:
⋃

A∈NP

NPA

With this we can show where CERTAIN-ANSWERS is.

Exercise

Show that CERTAIN-ANSWERS ∈ co-NPNP. (Hint: to show that
ψ is not a certain answer, we guess a valuation that confirms this.
But to check that this is a model of the update we need NP.)

IIC3242 – The polynomial hierarchy 37 / 77

Where are we now?

What is the relationship between NPNP and the other classes we
defined?

Why is it true that NPNP ⊆ PSPACE?

We can generalise this construction.

I So we define the polynomial hierarchy

IIC3242 – The polynomial hierarchy 38 / 77

Where are we now?

What is the relationship between NPNP and the other classes we
defined?

Why is it true that NPNP ⊆ PSPACE?

We can generalise this construction.

I So we define the polynomial hierarchy

IIC3242 – The polynomial hierarchy 38 / 77

Where are we now?

What is the relationship between NPNP and the other classes we
defined?

Why is it true that NPNP ⊆ PSPACE?

We can generalise this construction.

I So we define the polynomial hierarchy

IIC3242 – The polynomial hierarchy 38 / 77

Where are we now?

What is the relationship between NPNP and the other classes we
defined?

Why is it true that NPNP ⊆ PSPACE?

We can generalise this construction.

I So we define the polynomial hierarchy

IIC3242 – The polynomial hierarchy 38 / 77

The polynomial hierarchy

We can generalise the previous definitions with respect to any
complexity class C.

Definition

I PTIMEC :
⋃
A∈C

PTIMEA

I NPC :
⋃
A∈C

NPA

IIC3242 – The polynomial hierarchy 39 / 77

The polynomial hierarchy

We can generalise the previous definitions with respect to any
complexity class C.

Definition

I PTIMEC :
⋃
A∈C

PTIMEA

I NPC :
⋃
A∈C

NPA

IIC3242 – The polynomial hierarchy 39 / 77

The polynomial hierarchy

Using this generalisation we define the polynomial hierarchy.

Definition (The polynomial hierarchy (PH))

ΣP
0 = PTIME

ΣP
n+1 = NPΣP

n n ≥ 0

∆P
n+1 = PTIMEΣP

n n ≥ 0

ΠP
n+1 = co-ΣP

n+1 n ≥ 0

IIC3242 – The polynomial hierarchy 40 / 77

The polynomial hierarchy

Using this generalisation we define the polynomial hierarchy.

Definition (The polynomial hierarchy (PH))

ΣP
0 = PTIME

ΣP
n+1 = NPΣP

n n ≥ 0

∆P
n+1 = PTIMEΣP

n n ≥ 0

ΠP
n+1 = co-ΣP

n+1 n ≥ 0

IIC3242 – The polynomial hierarchy 40 / 77

The polynomial hierarchy

Using this generalisation we define the polynomial hierarchy.

Definition (The polynomial hierarchy (PH))

ΣP
0 = PTIME

ΣP
n+1 = NPΣP

n n ≥ 0

∆P
n+1 = PTIMEΣP

n n ≥ 0

ΠP
n+1 = co-ΣP

n+1 n ≥ 0

IIC3242 – The polynomial hierarchy 40 / 77

The polynomial hierarchy

Using this generalisation we define the polynomial hierarchy.

Definition (The polynomial hierarchy (PH))

ΣP
0 = PTIME

ΣP
n+1 = NPΣP

n n ≥ 0

∆P
n+1 = PTIMEΣP

n n ≥ 0

ΠP
n+1 = co-ΣP

n+1 n ≥ 0

IIC3242 – The polynomial hierarchy 40 / 77

The polynomial hierarchy

Using this generalisation we define the polynomial hierarchy.

Definition (The polynomial hierarchy (PH))

ΣP
0 = PTIME

ΣP
n+1 = NPΣP

n n ≥ 0

∆P
n+1 = PTIMEΣP

n n ≥ 0

ΠP
n+1 = co-ΣP

n+1 n ≥ 0

IIC3242 – The polynomial hierarchy 40 / 77

The polynomial hierarchy

Using this generalisation we define the polynomial hierarchy.

Definition (The polynomial hierarchy (PH))

ΣP
0 = PTIME

ΣP
n+1 = NPΣP

n n ≥ 0

∆P
n+1 = PTIMEΣP

n n ≥ 0

ΠP
n+1 = co-ΣP

n+1 n ≥ 0

IIC3242 – The polynomial hierarchy 40 / 77

The polynomial hierarchy

How can we depict polynomial hierarchy graphically?

IIC3242 – The polynomial hierarchy 41 / 77

The polynomial hierarchy

How can we depict polynomial hierarchy graphically?

IIC3242 – The polynomial hierarchy 41 / 77

The polynomial hierarchy and PSPACE

Definition

PH =
⋃
k≥0

ΣP
k

What is the relationship between PH and PSPACE?

I PH ⊆ PSPACE

IIC3242 – The polynomial hierarchy 42 / 77

The polynomial hierarchy and PSPACE

Definition

PH =
⋃
k≥0

ΣP
k

What is the relationship between PH and PSPACE?

I PH ⊆ PSPACE

IIC3242 – The polynomial hierarchy 42 / 77

The polynomial hierarchy and PSPACE

Definition

PH =
⋃
k≥0

ΣP
k

What is the relationship between PH and PSPACE?

I PH ⊆ PSPACE

IIC3242 – The polynomial hierarchy 42 / 77

The polynomial hierarchy and PSPACE

Can it hold that PSPACE ⊆ PH?

I This would imply that PH has complete problems

What happens if PH has complete problems?

I Each class ΣP
k is closed under ≤log

m (or ≤P)

I If PH has a complete problem, then the polynomial hierarchy
collapses to some finite level.

Proposition

If the polynomial hierarchy does not collapse to a finite level, then
it holds that PH (PSPACE.

IIC3242 – The polynomial hierarchy 43 / 77

The polynomial hierarchy and PSPACE

Can it hold that PSPACE ⊆ PH?

I This would imply that PH has complete problems

What happens if PH has complete problems?

I Each class ΣP
k is closed under ≤log

m (or ≤P)

I If PH has a complete problem, then the polynomial hierarchy
collapses to some finite level.

Proposition

If the polynomial hierarchy does not collapse to a finite level, then
it holds that PH (PSPACE.

IIC3242 – The polynomial hierarchy 43 / 77

The polynomial hierarchy and PSPACE

Can it hold that PSPACE ⊆ PH?

I This would imply that PH has complete problems

What happens if PH has complete problems?

I Each class ΣP
k is closed under ≤log

m (or ≤P)

I If PH has a complete problem, then the polynomial hierarchy
collapses to some finite level.

Proposition

If the polynomial hierarchy does not collapse to a finite level, then
it holds that PH (PSPACE.

IIC3242 – The polynomial hierarchy 43 / 77

The polynomial hierarchy and PSPACE

Can it hold that PSPACE ⊆ PH?

I This would imply that PH has complete problems

What happens if PH has complete problems?

I Each class ΣP
k is closed under ≤log

m (or ≤P)

I If PH has a complete problem, then the polynomial hierarchy
collapses to some finite level.

Proposition

If the polynomial hierarchy does not collapse to a finite level, then
it holds that PH (PSPACE.

IIC3242 – The polynomial hierarchy 43 / 77

The polynomial hierarchy and PSPACE

Can it hold that PSPACE ⊆ PH?

I This would imply that PH has complete problems

What happens if PH has complete problems?

I Each class ΣP
k is closed under ≤log

m (or ≤P)

I If PH has a complete problem, then the polynomial hierarchy
collapses to some finite level.

Proposition

If the polynomial hierarchy does not collapse to a finite level, then
it holds that PH (PSPACE.

IIC3242 – The polynomial hierarchy 43 / 77

The polynomial hierarchy and PSPACE

Can it hold that PSPACE ⊆ PH?

I This would imply that PH has complete problems

What happens if PH has complete problems?

I Each class ΣP
k is closed under ≤log

m (or ≤P)

I If PH has a complete problem, then the polynomial hierarchy
collapses to some finite level.

Proposition

If the polynomial hierarchy does not collapse to a finite level, then
it holds that PH (PSPACE.

IIC3242 – The polynomial hierarchy 43 / 77

A bit of intuition about PH

Exercise

An integer expression is defined recursively as:

I Every a ∈ N is an integer expression.

I If E and F are integer expressions, then (E + F) and (E ∪ F)
are also integer expressions.

The set of natural numbers represented by an integer expressions is
defined recursively as:

I L(a) = {a}
I L(E + F) = {a + b | a ∈ L(E) y b ∈ L(F)}
I L(E ∪ F) = L(E) ∪ L(F)

What is the complexity of the problem of determining if
L(E) = L(F)?

IIC3242 – The polynomial hierarchy 44 / 77

Alternative characterisation of levels in PH

Notation

ΠP
0 = PTIME

Proposition

For every k ≥ 1: a language L over the alphabet Σ is in ΣP
k if and

only if there exists A ∈ ΠP
k−1 and a polynomial p(n) such that for

all w ∈ Σ∗ :

w ∈ L if and only if

there exists z ∈ Σ∗ such that |z | ≤ p(|w |) and (w , z) ∈ A.

Proof: Induction on k

IIC3242 – The polynomial hierarchy 45 / 77

Alternative characterisation of levels in PH

Notation

ΠP
0 = PTIME

Proposition

For every k ≥ 1: a language L over the alphabet Σ is in ΣP
k if and

only if there exists A ∈ ΠP
k−1 and a polynomial p(n) such that for

all w ∈ Σ∗ :

w ∈ L if and only if

there exists z ∈ Σ∗ such that |z | ≤ p(|w |) and (w , z) ∈ A.

Proof: Induction on k

IIC3242 – The polynomial hierarchy 45 / 77

Alternative characterisation of levels in PH

For k = 1: We need to prove that L ∈ NP if and only if
A ∈ PTIME and a polynomial p(n) such that:

w ∈ L
m

there exists z such that |z | ≤ p(|w |) and (w , z) ∈ A.

How do we prove this?

I The direction ⇐ is easy (why?)

I For the other direction which A can we use? (Recall the
alternative definition of NP)

IIC3242 – The polynomial hierarchy 46 / 77

Alternative characterisation of levels in PH

For k = 1: We need to prove that L ∈ NP if and only if
A ∈ PTIME and a polynomial p(n) such that:

w ∈ L
m

there exists z such that |z | ≤ p(|w |) and (w , z) ∈ A.

How do we prove this?

I The direction ⇐ is easy (why?)

I For the other direction which A can we use? (Recall the
alternative definition of NP)

IIC3242 – The polynomial hierarchy 46 / 77

Alternative characterisation of levels in PH

Assume that the statements holds for some k . We will prove that
it also holds for k + 1.

(⇐) Assume that there is a language A ∈ ΠP
k and a polynomial

p(n) such that:

w ∈ L if and only if
there exists z such that |z | ≤ p(|w |) and (w , z) ∈ A.

Therefore we have that L ∈ NPA

I So we conclude that: L ∈ ΣP
k+1

I (This follows since NPA ⊆ NPA)

IIC3242 – The polynomial hierarchy 47 / 77

Alternative characterisation of levels in PH

Assume that the statements holds for some k . We will prove that
it also holds for k + 1.

(⇐) Assume that there is a language A ∈ ΠP
k and a polynomial

p(n) such that:

w ∈ L if and only if
there exists z such that |z | ≤ p(|w |) and (w , z) ∈ A.

Therefore we have that L ∈ NPA

I So we conclude that: L ∈ ΣP
k+1

I (This follows since NPA ⊆ NPA)

IIC3242 – The polynomial hierarchy 47 / 77

Alternative characterisation of levels in PH

(⇒) Assume now that L ∈ ΣP
k+1.

It holds that L = L(MA), where

I A ∈ ΣP
k

I MA is polynomial time nondeterministic TM with an oracle
for A

Since A ∈ ΣP
k , by the induction hypothesis, there exists C ∈ ΠP

k−1

and a polynomial p(n) such that:

w ∈ A if and only if
there exists z such that |z | ≤ p(|w |) and (w , z) ∈ C .

IIC3242 – The polynomial hierarchy 48 / 77

Alternative characterisation of levels in PH

Let Γ be the tape alphabet of MA and assume that # 6∈ Γ.

Define the language D as the set of all pairs (w , z) such that
w ∈ Σ∗, z = α0#β0# · · ·#αm−1#βm−1#αm, and:

(a) α0 is the initial configuration of MA with input w

(b) αm an accepting configuration of MA

(c) for i ∈ [0,m − 1]: If the state of αi is not q?, then αi+1 is a
configuration that follows from αi in MA and βi = ε

IIC3242 – The polynomial hierarchy 49 / 77

Alternative characterisation of levels in PH

(d) for i ∈ [0,m − 1]: If the state of αi is q? and u ∈ Σ∗ is the
word on the query tape of αi , then αi+1 differs from αi only
in the state, and:

(d.1) the state of αi+1 is qNO, u 6∈ A and βi = ε; or

(d.2) the state of αi+1 is qYES, |βi | ≤ p(|u|) and (u, βi) ∈ C

Lemma

There is a polynomial q(n) such that for each w ∈ Σ∗:

w ∈ L if and only if

there is a z ∈ Σ∗ such that |z | ≤ q(|w |) and (w , z) ∈ D.

IIC3242 – The polynomial hierarchy 50 / 77

Alternative characterisation of levels in PH

(d) for i ∈ [0,m − 1]: If the state of αi is q? and u ∈ Σ∗ is the
word on the query tape of αi , then αi+1 differs from αi only
in the state, and:

(d.1) the state of αi+1 is qNO, u 6∈ A and βi = ε; or

(d.2) the state of αi+1 is qYES, |βi | ≤ p(|u|) and (u, βi) ∈ C

Lemma

There is a polynomial q(n) such that for each w ∈ Σ∗:

w ∈ L if and only if

there is a z ∈ Σ∗ such that |z | ≤ q(|w |) and (w , z) ∈ D.

IIC3242 – The polynomial hierarchy 50 / 77

Alternative characterisation of levels in PH

It remains to prove that D ∈ ΠP
k .

Let MC be a Turing machine with the oracle C which on input
(w , z) works as follows:

(1) Verify in polynomial time if (w , z) does not satisfy (a), (b) or
(c), and if this is the case MC accepts (w , z)

(2) If (1) is not true, then MC does the following for each
configuration αi with the state q?:

(2.1) If the state of αi+1 is neither qNO nor qYES, if αi and αi+1

differ in a symbol not corresponding to a state, or if the state
of αi+1 is qNO and βi 6= ε, then MC accepts (w , z)

IIC3242 – The polynomial hierarchy 51 / 77

Alternative characterisation of levels in PH

(2.2) If (2.1) does not hold, the state of αi+1 is qNO and u ∈ Σ∗ is
the word on the query tape of αi , then MC guesses v such
that |v | ≤ p(|u|), and then queries the oracle C with input
(u, v). If the oracle replies with YES, then MC accepts (w , z)

(2.3) If (2.1) and (2.2) do not hold, the state of αi+1 is qYES,
u ∈ Σ∗ is the word on the query tape of αi and |βi | > p(|u|),
then MC accepts (w , z)

(2.4) If (2.1), (2.2) and (2.3) do not hold, the state of αi+1 is qYES

and u ∈ Σ∗ is the word on the query tape of αi , then MC

queries the oracle C with input (u, βi). If the oracle replies
NO, the MC accepts (w , z)

It is easy to see that D = L(MC).

I How do we prove this?

IIC3242 – The polynomial hierarchy 52 / 77

Alternative characterisation of levels in PH

(2.2) If (2.1) does not hold, the state of αi+1 is qNO and u ∈ Σ∗ is
the word on the query tape of αi , then MC guesses v such
that |v | ≤ p(|u|), and then queries the oracle C with input
(u, v). If the oracle replies with YES, then MC accepts (w , z)

(2.3) If (2.1) and (2.2) do not hold, the state of αi+1 is qYES,
u ∈ Σ∗ is the word on the query tape of αi and |βi | > p(|u|),
then MC accepts (w , z)

(2.4) If (2.1), (2.2) and (2.3) do not hold, the state of αi+1 is qYES

and u ∈ Σ∗ is the word on the query tape of αi , then MC

queries the oracle C with input (u, βi). If the oracle replies
NO, the MC accepts (w , z)

It is easy to see that D = L(MC).

I How do we prove this?

IIC3242 – The polynomial hierarchy 52 / 77

Alternative characterisation of levels in PH

(2.2) If (2.1) does not hold, the state of αi+1 is qNO and u ∈ Σ∗ is
the word on the query tape of αi , then MC guesses v such
that |v | ≤ p(|u|), and then queries the oracle C with input
(u, v). If the oracle replies with YES, then MC accepts (w , z)

(2.3) If (2.1) and (2.2) do not hold, the state of αi+1 is qYES,
u ∈ Σ∗ is the word on the query tape of αi and |βi | > p(|u|),
then MC accepts (w , z)

(2.4) If (2.1), (2.2) and (2.3) do not hold, the state of αi+1 is qYES

and u ∈ Σ∗ is the word on the query tape of αi , then MC

queries the oracle C with input (u, βi). If the oracle replies
NO, the MC accepts (w , z)

It is easy to see that D = L(MC).

I How do we prove this?

IIC3242 – The polynomial hierarchy 52 / 77

Alternative characterisation of levels in PH

We conclude that D ∈ ΠP
k .

I This follows because MC is a polynomial-time
nondeterministic TM with an oracle C ∈ ΠP

k−1

To finish we just need to consider the alphabet of D.

I The input for D is of the form (w , z),where z ∈ (Γ ∪ {#})∗

But the use of the alphabet Γ∪ {#} is not essential for defining D.

I We can assume that z ∈ Σ∗. Why?

IIC3242 – The polynomial hierarchy 53 / 77

Alternative characterisation of levels in PH

We conclude that D ∈ ΠP
k .

I This follows because MC is a polynomial-time
nondeterministic TM with an oracle C ∈ ΠP

k−1

To finish we just need to consider the alphabet of D.

I The input for D is of the form (w , z),where z ∈ (Γ ∪ {#})∗

But the use of the alphabet Γ∪ {#} is not essential for defining D.

I We can assume that z ∈ Σ∗. Why?

IIC3242 – The polynomial hierarchy 53 / 77

Alternative characterisation of levels in PH

We conclude that D ∈ ΠP
k .

I This follows because MC is a polynomial-time
nondeterministic TM with an oracle C ∈ ΠP

k−1

To finish we just need to consider the alphabet of D.

I The input for D is of the form (w , z),where z ∈ (Γ ∪ {#})∗

But the use of the alphabet Γ∪ {#} is not essential for defining D.

I We can assume that z ∈ Σ∗. Why?

IIC3242 – The polynomial hierarchy 53 / 77

Alternative characterisation of ΣP
k

Theorem

For any k ≥ 1: a language L over the alphabet Σ is in ΣP
k if and

only if there exists A ∈ PTIME and a polynomial p(n) such that
for all w ∈ Σ∗ :

w ∈ L if and only if

(∃z1 ∈ Σ∗, |z1| ≤ p(|w |)) (∀z2 ∈ Σ∗, |z2| ≤ p(|w |)) · · ·
(Qkzk ∈ Σ∗, |zk | ≤ p(|w |)) (w , z1, z2, . . . , zk) ∈ A,

where Qk = ∃ if k is odd and Qk = ∀ if k is even.

Exercise

Prove this (hint: how do we characterise ΠP
k like in the previous

theorem).

IIC3242 – The polynomial hierarchy 54 / 77

Alternative characterisation of ΣP
k

Theorem

For any k ≥ 1: a language L over the alphabet Σ is in ΣP
k if and

only if there exists A ∈ PTIME and a polynomial p(n) such that
for all w ∈ Σ∗ :

w ∈ L if and only if

(∃z1 ∈ Σ∗, |z1| ≤ p(|w |)) (∀z2 ∈ Σ∗, |z2| ≤ p(|w |)) · · ·
(Qkzk ∈ Σ∗, |zk | ≤ p(|w |)) (w , z1, z2, . . . , zk) ∈ A,

where Qk = ∃ if k is odd and Qk = ∀ if k is even.

Exercise

Prove this (hint: how do we characterise ΠP
k like in the previous

theorem).

IIC3242 – The polynomial hierarchy 54 / 77

Collapsing PH

The previous characterisation will allow us to construct complete
problems for each ΣP

k .

I All of these problems are extensions of SAT (and restrictions
of TQBF)

But before we will show one fundamental result about PH

I We will talk about possible collapse of PH

I In the proof we will assume that complete problems for each
ΣP
k exist

IIC3242 – The polynomial hierarchy 55 / 77

Collapsing PH

The previous characterisation will allow us to construct complete
problems for each ΣP

k .

I All of these problems are extensions of SAT (and restrictions
of TQBF)

But before we will show one fundamental result about PH

I We will talk about possible collapse of PH

I In the proof we will assume that complete problems for each
ΣP
k exist

IIC3242 – The polynomial hierarchy 55 / 77

The collapse of the Polynomial hierarchy

Theorem

For all k ≥ 1:

(a) If ΣP
k = ΠP

k , then PH = ΣP
k

(b) If ΣP
k = ∆P

k , then PH = ∆P
k

Proof: We will need the following lemma:

Lemma

For all k ≥ 1 : NPΣP
k ∩ΠP

k = ΣP
k

IIC3242 – The polynomial hierarchy 56 / 77

The collapse of the Polynomial hierarchy

Theorem

For all k ≥ 1:

(a) If ΣP
k = ΠP

k , then PH = ΣP
k

(b) If ΣP
k = ∆P

k , then PH = ∆P
k

Proof: We will need the following lemma:

Lemma

For all k ≥ 1 : NPΣP
k ∩ΠP

k = ΣP
k

IIC3242 – The polynomial hierarchy 56 / 77

The collapse of the Polynomial hierarchy

Proof of the lemma:

(⊇) IF L ∈ ΣP
k , then L ∈ NPA, for some A ∈ ΣP

k−1.

Since ΣP
k−1 ⊆ ∆P

k ⊆ ΣP
k ∩ ΠP

k .

I We can conclude that L ∈ NPΣP
k ∩ΠP

k

(⊆) Assume now that L ∈ NPΣP
k ∩ΠP

k .

Then L ∈ NPA, for some A ∈ ΣP
k ∩ ΠP

k .

IIC3242 – The polynomial hierarchy 57 / 77

The collapse of the Polynomial hierarchy

Since A ∈ ΣP
k ∩ ΠP

k : A = L(MB
1) and A = L(MB

2), where:

I B is some complete problem for ΣP
k−1

I MB
1 and MB

2 are polynomial-time nondeterministic TMs with
an oracle for B

Therefore: L ∈ NPB

I Idea: Replace each call of MA to the oracle A with a
simultaneous call to MB

1 and MB
2

We conclude that L ∈ ΣP
k .

IIC3242 – The polynomial hierarchy 58 / 77

The collapse of the Polynomial hierarchy

Since A ∈ ΣP
k ∩ ΠP

k : A = L(MB
1) and A = L(MB

2), where:

I B is some complete problem for ΣP
k−1

I MB
1 and MB

2 are polynomial-time nondeterministic TMs with
an oracle for B

Therefore: L ∈ NPB

I Idea: Replace each call of MA to the oracle A with a
simultaneous call to MB

1 and MB
2

We conclude that L ∈ ΣP
k .

IIC3242 – The polynomial hierarchy 58 / 77

The collapse of the Polynomial hierarchy

Since A ∈ ΣP
k ∩ ΠP

k : A = L(MB
1) and A = L(MB

2), where:

I B is some complete problem for ΣP
k−1

I MB
1 and MB

2 are polynomial-time nondeterministic TMs with
an oracle for B

Therefore: L ∈ NPB

I Idea: Replace each call of MA to the oracle A with a
simultaneous call to MB

1 and MB
2

We conclude that L ∈ ΣP
k .

IIC3242 – The polynomial hierarchy 58 / 77

The collapse of the Polynomial hierarchy

Since A ∈ ΣP
k ∩ ΠP

k : A = L(MB
1) and A = L(MB

2), where:

I B is some complete problem for ΣP
k−1

I MB
1 and MB

2 are polynomial-time nondeterministic TMs with
an oracle for B

Therefore: L ∈ NPB

I Idea: Replace each call of MA to the oracle A with a
simultaneous call to MB

1 and MB
2

We conclude that L ∈ ΣP
k .

IIC3242 – The polynomial hierarchy 58 / 77

The collapse of the Polynomial hierarchy

Now we can complete the proof of the theorem.

(a) Assume that ΣP
k = ΠP

k .

We will prove by induction on j ≥ k that ΣP
j = ΠP

j = ΣP
k .

For j = k the property holds by the hypothesis.

Assume that the property holds for some j ≥ k , we next prove that
the property also holds for j + 1.

IIC3242 – The polynomial hierarchy 59 / 77

The collapse of the Polynomial hierarchy

We have that:

ΣP
j+1 = NPΣP

j

= NPΣP
j ∩ΠP

j since ΣP
j = ΠP

j

= ΣP
j by the lemma (j ≥ k ≥ 1)

= ΣP
k by the induction hypothesis

Furthermore, we have:

ΠP
j+1 = co-ΣP

j+1

= co-ΣP
k by the above proof

= ΣP
k by the hypothesis

IIC3242 – The polynomial hierarchy 60 / 77

The collapse of the Polynomial hierarchy

(b) Assume that ∆P
k = ΣP

k .

Since ∆P
k is closed under complement, we have that ΣP

k = ΠP
k .

I From (a) it follows that PH = ΣP
k

We conclude that PH = ∆P
k .

IIC3242 – The polynomial hierarchy 61 / 77

The collapse of the Polynomial hierarchy

Corollary

I If PTIME = NP, then PH = PTIME

I If NP = co-NP, then PH = NP

IIC3242 – The polynomial hierarchy 62 / 77

Complete problems for levels of PH

The language QBFi (i ≥ 1) is defined as the set of all true
quantified boolean formulas that are of the form:

∃x1,1 · · · ∃x1,m1

∀x2,1 · · · ∀x2,m2

∃x3,1 · · · ∃x3,m3

· · ·
Qixi ,1 · · ·Qixi ,mi

ϕ

where:

I Qi = ∃ if i is odd, and Qi = ∀ if i is even

I ϕ is a propositional formula using variables x1,1, . . ., x1,m1 ,
. . ., xi ,1, . . ., xi ,mi

IIC3242 – The polynomial hierarchy 63 / 77

A complete problem for ΣP
k

The sequence of problems {QBFi}i≥1 is enough to represent the
polynomial hierarchy.

Theorem

For every k ≥ 1, QBFk is ΣP
k -complete.

Proof: First we have to show that QBFk ∈ ΣP
k .

I How is this done?

IIC3242 – The polynomial hierarchy 64 / 77

A complete problem for ΣP
k

The sequence of problems {QBFi}i≥1 is enough to represent the
polynomial hierarchy.

Theorem

For every k ≥ 1, QBFk is ΣP
k -complete.

Proof: First we have to show that QBFk ∈ ΣP
k .

I How is this done?

IIC3242 – The polynomial hierarchy 64 / 77

A complete problem for ΣP
k

Next, we need to prove that QBFk is ΣP
k -hard.

I Take any L ∈ ΣP
k . We have to show that L is reducible to

QBFk (in LOGSPACE)

To simplify the proof we will assume that:

I L is defined over the alphabet {0, 1}
I k is odd

The proof is similar for an arbitrary alphabet and k even.

IIC3242 – The polynomial hierarchy 65 / 77

A complete problem for ΣP
k

Next, we need to prove that QBFk is ΣP
k -hard.

I Take any L ∈ ΣP
k . We have to show that L is reducible to

QBFk (in LOGSPACE)

To simplify the proof we will assume that:

I L is defined over the alphabet {0, 1}
I k is odd

The proof is similar for an arbitrary alphabet and k even.

IIC3242 – The polynomial hierarchy 65 / 77

A complete problem for ΣP
k

Next, we need to prove that QBFk is ΣP
k -hard.

I Take any L ∈ ΣP
k . We have to show that L is reducible to

QBFk (in LOGSPACE)

To simplify the proof we will assume that:

I L is defined over the alphabet {0, 1}

I k is odd

The proof is similar for an arbitrary alphabet and k even.

IIC3242 – The polynomial hierarchy 65 / 77

A complete problem for ΣP
k

Next, we need to prove that QBFk is ΣP
k -hard.

I Take any L ∈ ΣP
k . We have to show that L is reducible to

QBFk (in LOGSPACE)

To simplify the proof we will assume that:

I L is defined over the alphabet {0, 1}
I k is odd

The proof is similar for an arbitrary alphabet and k even.

IIC3242 – The polynomial hierarchy 65 / 77

A complete problem for ΣP
k

Next, we need to prove that QBFk is ΣP
k -hard.

I Take any L ∈ ΣP
k . We have to show that L is reducible to

QBFk (in LOGSPACE)

To simplify the proof we will assume that:

I L is defined over the alphabet {0, 1}
I k is odd

The proof is similar for an arbitrary alphabet and k even.

IIC3242 – The polynomial hierarchy 65 / 77

A complete problem for ΣP
k

We need to prove that there is a function f : {0, 1}∗ → {0, 1}∗
such that

I f is computable in LOGSPACE and;

I for every w ∈ {0, 1}∗: w ∈ L if and only if f (w) ∈ QBFk

Notación

f (w) = ϕw

IIC3242 – The polynomial hierarchy 66 / 77

A complete problem for ΣP
k

Since L ∈ ΣP
k , there exists A ∈ PTIME and a polynomial p(n) such

that for every w ∈ {0, 1}∗ :

w ∈ L if and only if

(∃z1 ∈ {0, 1}∗, |z1| = p(|w |))

(∀z2 ∈ {0, 1}∗, |z2| = p(|w |))

· · ·
(∃zk ∈ {0, 1}∗, |zk | = p(|w |)) w#z1#z2# . . .#zk ∈ A

This follows from the characterisation of ΣP
k .

I How do we achieve |z1| = |z2| = · · · = |zk | = p(|w |)?

IIC3242 – The polynomial hierarchy 67 / 77

A complete problem for ΣP
k

Since A ∈ PTIME, there exists a deterministic Turing machine
M = (Q = {q0, . . . , qm},Σ = {0, 1,#}, Γ = {0, 1,#, B,`
}, q0, δ, qaccept , qreject) where:

I M uses a single tape

I M halts on every input

I L = L(M)

I tM(n) is O(nc), for some natural number c

I M uses ` to mark the left end of the tape (no transition can
move left if it is reading this symbol and the symbol can not
be rewritten)

IIC3242 – The polynomial hierarchy 68 / 77

A complete problem for ΣP
k

Without the loss of generality we assume that:

I w = a1 · · · an, with each ai ∈ {0, 1}
I For each a ∈ Γ, the function δ(qaccept , a) is not defined

I For each a ∈ Γ, the function δ(qreject , a) is not defined

IIC3242 – The polynomial hierarchy 69 / 77

A complete problem for ΣP
k

Let ` = n + k · (1 + p(n))

I ` is the length of the input w#z1#z2# · · ·#zk of the TM M

To define ϕw we use the following propositional variables:

zi ,j : i ∈ [1, k] and j ∈ [1, p(n)]
st,p,a : t ∈ [0, tM(`)], p ∈ [0, tM(`) + 1] and a ∈ {0, 1,#, B,`}
ct,p : t ∈ [0, tM(`)] and p ∈ [0, tM(`) + 1]
et,q : t ∈ [0, tM(`)] and q ∈ Q

IIC3242 – The polynomial hierarchy 70 / 77

A complete problem for ΣP
k

Let ` = n + k · (1 + p(n))

I ` is the length of the input w#z1#z2# · · ·#zk of the TM M

To define ϕw we use the following propositional variables:

zi ,j : i ∈ [1, k] and j ∈ [1, p(n)]
st,p,a : t ∈ [0, tM(`)], p ∈ [0, tM(`) + 1] and a ∈ {0, 1,#, B,`}
ct,p : t ∈ [0, tM(`)] and p ∈ [0, tM(`) + 1]
et,q : t ∈ [0, tM(`)] and q ∈ Q

IIC3242 – The polynomial hierarchy 70 / 77

A complete problem for ΣP
k

The formula ϕw is defined as:

∃z1,1 · · · ∃z1,p(n)

∀z2,1 · · · ∀z2,p(n)

∃z3,1 · · · ∃z3,p(n)

· · ·
∃zk,1 · · · ∃zk,p(n)

∃s0,0,0 ∃s0,0,1 ∃s0,0,# ∃s0,0,B ∃s0,0,` · · · ∃stM(`),tM(`)+1,0

∃stM(`),tM(`)+1,1 ∃stM(`),tM(`)+1,# ∃stM(`),tM(`)+1,B ∃stM(`),tM(`)+1,`

∃c0,0 · · · ∃ctM(`),tM(`)+1 ∃e0,q0 · · · ∃e0,qm ∃etM(`),q0
· · · ∃etM(`),qm(

ϕI ∧ ϕC ∧ ϕδ ∧ ϕA

)

IIC3242 – The polynomial hierarchy 71 / 77

A complete problem for ΣP
k

ϕI : the initial state

c0,1 ∧ e0,q0∧ s0,0,` ∧
(n∧

p=1

s0,p,ap

)
∧

(k∧
i=1

s0,(n+1)+(i−1)·(p(n)+1),#

)
∧

(k∧
i=1

p(n)∧
j=1

¬zi,j → s0,(n+1)+(i−1)·(p(n)+1)+j,0

)
∧

(k∧
i=1

p(n)∧
j=1

zi,j → s0,(n+1)+(i−1)·(p(n)+1)+j,1

)
∧

(tM (`)+1∧
p=(n+1)+k·(p(n)+1)

s0,p,B

)

IIC3242 – The polynomial hierarchy 72 / 77

A complete problem for ΣP
k

ϕC : The machine works correctly

ϕC is a conjunction of four formulas. First, each cell can contain
only one symbol (recall Cook-Levin and tableaus):

tM(`)∧
t=0

tM(`)+1∧
p=0

(∨
a∈Γ

(st,p,a ∧
∧

b∈(Γ\{a})

¬st,p,b)

)

IIC3242 – The polynomial hierarchy 73 / 77

A complete problem for ΣP
k

Second, the machine is always in a unique state:

tM(`)∧
t=0

(∨
q∈Q

(et,q ∧
∧

q′∈(Q\{q})

¬et,q′)
)

Third, the head of the machine is always in a unique position:

tM(`)∧
t=0

(tM(`)+1∨
p=0

(ct,p ∧
∧

p′∈([0,tM(`)+1]\{p})

¬ct,p′)
)

IIC3242 – The polynomial hierarchy 74 / 77

A complete problem for ΣP
k

Fourth, the value of a cell on the work tape of the machine is not
changed is it was not under the head of the machine (in the
previous time point)

tM(`)−1∧
t=0

tM(`)+1∧
p=0

(
(¬ct,p)→

∧
a∈Γ

(st+1,p,a ↔ st,p,a)

)

IIC3242 – The polynomial hierarchy 75 / 77

A complete problem for ΣP
k

ϕδ: the relation δ defines how the machine moves from one
configuration to another (we represent ← as -1, � as 0 and → as
1)

tM(`)−1∧
t=0

tM(`)∧
p=0

[∧
δ(q,a)=(q′,b,X)

(
(et,q ∧ ct,p ∧ st,p,a) →

(et+1,q′ ∧ ct+1,p+X ∧ st+1,p,b)

)]
∧

tM(`)−1∧
t=0

tM(`)∧
p=0

[∧
δ(q,a) is not defined

(
(et,q ∧ ct,p ∧ st,p,a) →

(et+1,q ∧ ct+1,p ∧ st+1,p,a)

)]

IIC3242 – The polynomial hierarchy 76 / 77

A complete problem for ΣP
k

ϕA: The machine accepts w

etM(`),qaccept

To finish the proof we need:

I w ∈ L if and only if ϕw is true

I ϕw can be constructed in logarithmic space

Why does this hold?

IIC3242 – The polynomial hierarchy 77 / 77

A complete problem for ΣP
k

ϕA: The machine accepts w

etM(`),qaccept

To finish the proof we need:

I w ∈ L if and only if ϕw is true

I ϕw can be constructed in logarithmic space

Why does this hold?

IIC3242 – The polynomial hierarchy 77 / 77

A complete problem for ΣP
k

ϕA: The machine accepts w

etM(`),qaccept

To finish the proof we need:

I w ∈ L if and only if ϕw is true

I ϕw can be constructed in logarithmic space

Why does this hold?

IIC3242 – The polynomial hierarchy 77 / 77

A complete problem for ΣP
k

ϕA: The machine accepts w

etM(`),qaccept

To finish the proof we need:

I w ∈ L if and only if ϕw is true

I ϕw can be constructed in logarithmic space

Why does this hold?

IIC3242 – The polynomial hierarchy 77 / 77

A complete problem for ΣP
k

ϕA: The machine accepts w

etM(`),qaccept

To finish the proof we need:

I w ∈ L if and only if ϕw is true

I ϕw can be constructed in logarithmic space

Why does this hold?

IIC3242 – The polynomial hierarchy 77 / 77

