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Abstract

Applications of description logics (DLs) such as OWL 2
and ontology-based data access (OBDA) require understand-
ing of how to pose database queries over DL knowledge
bases. While there have been many studies regarding tradi-
tional relational query formalisms such as conjunctive queries
and their extensions, little attention has been paid to graph
database queries, despite the fact that graph databases have
essentially the same structure as DLs. In particular, not much
is known about the interplay between DLs and XPath. The
last is a powerful formalism for querying semistructured data:
it is in the core of most practical query languages for XML
trees, and it is also gaining popularity in theory and practice
of graph databases. In this paper we make a step towards cou-
pling knowledge bases and graph databases by studying how
to answer powerful XPath-style queries over DL-Lite and EL.
We start with adapting the definition of XPath to the DL con-
text, and then proceed to study the complexity of evaluat-
ing XPath queries over knowledge bases. Results show that,
while query answering is undecidable for the full XPath, by
carefully tuning the amount of negation allowed in the queries
we can arrive to XPath fragments that have a potential to be
used in practical applications.

Introduction
Satisfiability and model checking have long been two central
problems in the knowledge representation community. How-
ever new applications of description logics (DLs for short),
such as the Web Ontology Language (OWL) (Motik et al.
2012) and ontology-based data access (OBDA), are forcing
us to develop algorithms solving more complex data manip-
ulation and extraction tasks, and in particular, require under-
standing how to answer database-style queries over knowl-
edge bases that are specified by DLs (Glimm et al. 2013).

The literature on knowledge bases usually considers rela-
tional queries, mostly focusing on conjunctive queries (CQs)
and their extensions with union (Calvanese et al. 2007; Ar-
tale et al. 2009), forms of negation (Rosati 2007; Gutiérrez-
Basulto et al. 2013), and aggregates (Calvanese et al. 2008;
Kostylev and Reutter 2013). Yet arguably the most natural
database paradigm for querying DLs is graph databases, as
these share the same structure with DL knowledge bases:
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they use unary and binary predicates (that is concepts and
roles in DL terminology) to represent graph nodes and
edges. While the idea of using graph queries in knowledge
bases is not new (see e.g., (Calvanese et al. 2000)), we are
only starting to understand how such queries can be fine
tuned for various ontology languages. So far the specific
research on this topic has primarily been concerned with
the class of regular path queries (RPQs; see e.g. (Barceló
2013)), one of the most basic graph query languages. We
now know how to evaluate such queries over various de-
scription logics (Calvanese, Eiter, and Ortiz 2007), how to
deal with some of their extensions (Bienvenu, Ortiz, and
Šimkus 2013; Bienvenu et al. 2014) and understand how to
solve their containment problem in the presence of DL con-
straints (Calvanese, Ortiz, and Šimkus 2011).

There are of course many other languages for querying
graph and semi-structured data, the most notable amongst
them being XPath. Originally designed to extract data from
XML trees (XPath 2.0 2010), XPath has recently been
adapted to work over graph databases (Libkin, Martens,
and Vrgoč 2013) and was shown to retain good evalua-
tion properties while at the same time being more pow-
erful than RPQs and many of their extensions. Moreover,
XPath also subsumes navigational graph querying features
of SPARQL 1.1 (Harris and Seaborne 2013), such as prop-
erty paths, and other commercial graph query languages (see
e.g., Neo4j (Robinson, Webber, and Eifrem 2013)). There-
fore we can view XPath as a unifying formalism containing
all of the usual querying primitives for graph data.

To get an impression of the type of queries one can ask
in XPath consider the following: ‘Can I fly from city A to
city B making stops only in cities with UNESCO World
Heritage Sites which are endangered?’ If we assume that
our ontology is modelled in a natural way (by having one
binary predicate representing direct flights, another repre-
senting cities with UNESCO sites, and one unary predicate
signifying if a site is endangered) this query cannot be ex-
pressed by RPQs, but can be expressed using XPath. Addi-
tionally, using XPath also allows us to reason about negated
properties, such as requiring that none of the intermediate
stops in the query above are listed under cultural criteria in
the UNESCO classification—a feature not available in e.g.
nested RPQs (Bienvenu et al. 2014).

Given that XPath is capable of expressing virtually all rel-



evant querying primitives for graphs and is widely used by
XML practitioners it is natural to ask whether it may have
the same impact as a language for DL knowledge bases. But,
as several studies in OBDA reveal, implementing standard
database query languages over DLs is far from straightfor-
ward. Answering, for example, SQL queries over even the
simplest of knowledge bases is known to be an undecidable
task. In the same spirit, it is not unreasonable to think that
the full XPath language might be too powerful to be used in
DLs, and that first we need to find which fragments can be
used efficiently (or indeed be used at all) in this context. In
particular, XPath contains expressive primitives such as tran-
sitive closure and negation, and these are known to bring in
conceptual difficulties even when studied in isolation.

The first step towards the acquisition of XPath technolo-
gies in the DL context is, then, to understand the interplay
between XPath and DLs, pinpointing the features that might
cause problems and identifying fragments for which their
answers can be computed within reasonable complexity. To
that extent, we first adapt the XPath query language to work
over ontologies, arriving to DLXPath—an expressive lan-
guage designed specifically for DL knowledge bases. To get
a flavour of the interplay between DLXPath and DLs, we
then study the problem of evaluating DLXPath queries over
DL-LiteR and DL-Litecore ontologies. Finally, we show how
most of our techniques can then be applied to study query
answering for ontologies belonging to the EL family. The
choice for these particular families of DLs is twofold: they
are simple enough to start such a research, but they are also
quite important in practice, since they underly OWL 2 QL
and OWL 2 EL profiles (Motik et al. 2012).

In this paper we distinguish two flavours of DLXPath:
the core fragment, denoted by DLXPathcore, and the regular
fragment, denoted by DLXPathreg. The two are designed to
match the duality present in the standard XPath query lan-
guage (XPath 2.0 2010), and while the core fragment allows
transitive closure only over basic role names, the regular
fragment lifts this restriction, allowing us to post more gen-
eral path queries. Regarding negation, we will distinguish
full fragments, which allow both unary and binary negation,
path-positive fragments with only the unary one, and posi-
tive fragments without any negation.

As usual when gauging the usefulness of a new query
language for ontologies, we start by considering data com-
plexity of the query answering problem, where one assumes
that the query and the terminological knowledge (TBox)
are fixed, while the only input is the assertional knowl-
edge (ABox). Although we show that for the most general
case the problem is undecidable, by limiting the amount of
negation we obtain expressive languages whose queries can
be answered in CONP and even NLOGSPACE, both over
DL-LiteR and DL-Litecore. We then move to studying the
combined complexity, where all of the knowledge base and
query form the input. Here we obtain bounds ranging from
NP-complete (thus matching the ones for ordinary CQs),
to EXPTIME-complete, and undecidable for the full lan-
guage. We would like to note that some of the results are
obtained using the deep connection between DLs, DLXPath
and propositional dynamic logic, thus providing some in-

teresting new techniques for answering queries over ontolo-
gies. In the end we also show how our techniques can be
extended to work over DLs of the EL family, including
ELHI⊥, that is the DL subsuming both DL-Lite and plain
EL, thus providing an extensive overview of the behaviour
of XPath based languages over lightweight DLs.

Due to the space restrictions, in the main version of this
paper we only give ideas for the proofs of presented results.
This is an extended version with an appendix containing full
details of the proofs, submitted as supplemented material.

Preliminaries
The language of DL-LiteR (and DL-Litecore) (Calvanese et
al. 2007; Artale et al. 2009) contains individuals c1, c2, . . .,
concept namesA1, A2, . . ., and role names P1, P2, . . .. Con-
cepts B and roles R are defined by the grammar

B ::= Ai | ∃R, R ::= Pj | P−j .

A DL-LiteR TBox is a finite set of concept and role inclu-
sions of the form

B1 v B2, B1uB2 v ⊥, R1 v R2, R1uR2 v ⊥.

A DL-Litecore TBox contains only concept inclusions. An
ABox is a finite set of assertions of the form Ai(ck) and
Pj(ck, c`). A knowledge base (KB) is a pair (T ,A), where
T is a TBox and A an ABox.

An interpretation I = (∆I , ·I) is a nonempty domain
∆I of elements with an interpretation function ·I that as-
signs an element cIk ∈ ∆I to each individual ck, a subset
AIi of ∆I to each concept name Ai, and a binary relation
P Ij ⊆ ∆I × ∆I to each role name Pj . When dealing with
DL-Lite it is usual to adopt the unique name assumption
(UNA), and we do so here by requiring that cIk 6= cI` , for all
individuals ck 6= c`. Our results, however, do not depend on
UNA. The interpretation function ·I is extended to roles and
concepts in the following standard way:

(∃R)I =
{
d ∈ ∆I | there is d′ ∈ ∆I with (d, d′) ∈ RI

}
,

(P−j )I = {(d′, d) ∈ ∆I ×∆I | (d, d′) ∈ P Ij }.

The satisfaction relation |= for TBox inclusions and ABox
assertions is also standard:

I |= B1 v B2 iff BI1 ⊆ BI2 ,
I |= B1 uB2 v ⊥ iff BI1 ∩BI2 = ∅,
I |= R1 v R2 iff RI1 ⊆ RI2 ,
I |= R1 uR2 v ⊥ iff RI1 ∩RI2 = ∅,
I |= Ai(ck) iff cIk ∈ AIi ,
I |= Pj(ck, c`) iff (cIk , c

I
` ) ∈ P Ij .

A KB K = (T ,A) is satisfiable if there is an interpreta-
tion I satisfying all inclusions of T and assertions of A. In
this case we write I |= K and say that I is a model of K.

DLXPath: XPath for Knowledge Bases
As mentioned in the introduction, the family of DL-Lite was
designed not only to keep satisfiability and model checking



problems simple, but mainly to keep the complexity of con-
junctive query answering the same as in the case of rela-
tional databases, while simultaneously maximising the ex-
pressive power of the ontological language. This allows to
use DL-Lite as a foundation for practical data managing ap-
plications, such as OWL 2 QL and OBDA. However, this
does not automatically mean that other useful query for-
malisms with good evaluation properties over databases also
have good properties when posed over DL-Lite knowledge
bases. Hence, each class of queries which can be useful in
knowledge base applications requires a separate research on
its computational properties.

In this paper we concentrate on an adaptation of XPath
query language for XML trees to knowledge bases. Recently
it was shown that (a version of) XPath can be successfully
used for querying graph databases (Libkin, Martens, and
Vrgoč 2013). Every interpretation of a DL-Lite vocabulary
can be seen as a graph, and hence every DL-Lite KB is an
incomplete description of a graph. That is why we expect
our adaptation DLXPath for querying knowledge bases to
be useful in practical applications.

In what follows, we will consider several fragments of
DLXPath. We start with DLXPathcore, the fragment which
corresponds to core XPath, the theoretical foundation of
most practical languages for querying XML trees.1

Definition 1 Node formulas ϕ,ψ and path formulas α, β of
DLXPathcore are expressions satisfying the grammar

ϕ,ψ := A | ¬ϕ | ϕ ∧ ψ |ϕ ∨ ψ | 〈α〉 ,
α, β := ε | R | [ϕ] | α ∪ β | α · β | α | R+,

(1)

whereA ranges over concept names andR ranges over roles
(i.e., role names and their inverses).

Semantics J·KI of DLXPathcore for an interpretation I as-
sociates subsets of ∆I to node formulas and binary relations
on ∆I to path formulas as given in Table 1.

As usual when dealing with ontologies, our interest is not
query answering for a particular interpretation, but comput-
ing those answers that are true in all possible models of the
knowledge base. Formally, let K = (T ,A) be a knowl-
edge base and α a DLXPath path formula. The certain an-
swers of α over K, denoted Certain(α,K), is the set of all
pairs (c1, c2) of individuals such that (cI1 , c

I
2 ) ∈ JαKI for

all models I of K. Similarly, one can define certain answers
Certain(ϕ,K) for a DLXPath node formula ϕ as the set of
all individuals c such that cI ∈ JϕKI , for all I models of K.
In the paper all of the results will be stated for path formulas
(queries from here on), however, they remain unchanged for
node formulas.

Example 2 Coming back to the example from the introduc-
tion, consider role names HasDirectFlight, which connects
cities with a direct flight, and HasUNESCOSite, which con-
nects cities with their UNESCO world heritage sites, as well
as concept InDanger denoting that a particular site is endan-
gered. Let KB K represents the flight destination graph, as

1The subscript ‘core’ is used in this paper for two unrelated pur-
poses. This matching is historical and accidental, but we decided to
stay with conventional notation despite this undesired collision.

JAKI = AI

J¬ϕKI = ∆I \ JϕKI
Jϕ ∧ ψKI = JϕKI ∩ JψKI
Jϕ ∨ ψKI = JϕKI ∪ JψKI

J〈α〉KI = {d | there exists d′ such that (d, d′) ∈ JαKI}

JεKI = {(d, d) | d ∈ ∆I}
JRKI = RI

J[ϕ]KI = {(d, d) | d ∈ JϕKI}
Jα ∪ βKI = JαKI ∪ JβKI
Jα · βKI = JαKI ◦ JβKI

JαKI = (∆I ×∆I) \ JαKI
JR+KI is the transitive closure of RI

Table 1: Semantics of DLXPathreg. The symbol ‘\’ stands
for set-theoretic difference.

well as knowledge about heritage sites, partially explicitly
in the ABox, and partially implicitly, by means of TBox in-
clusions. Then checking whether it is possible to fly from
Edinburgh to a city that has an endangered UNESCO world
heritage site is equivalent to checking if Edinburgh is in
Certain(ϕ,K), where ϕ is a node formula

〈HasDirectFlight+[〈HasUNESCOSite[InDanger]〉]〉.

As already noted, the formalism of core XPath is in the
nutshell of the most widespread query languages for XML
trees. However, in (Libkin, Martens, and Vrgoč 2013) it was
shown that the corresponding graph language cannot express
certain properties that are deemed essential when querying
graphs. Thus, besides DLXPathcore we also consider its gen-
eralisation called regular DLXPath, or DLXPathreg, which
extends the core fragment by allowing the use of transitive
closure operator + over arbitrary path formulas. Formally,
path formulas of DLXPathreg satisfy the grammar

α, β := ε | R | [ϕ] | α ∪ β | α · β | α | α+,

while node formulas remain the same as for DLXPathcore
in grammar (1). As expected, the semantics Jα+KI over an
interpretation I is the transitive closure of JαKI .

Example 3 With full transitive closure we are now able
to post more complex queries than in the core fragment.
Consider again the knowledge base K from Example 2.
We can now ask if it is possible to fly from Liverpool to
Jerusalem, making stopovers only in places that have an en-
dangered UNESCO world heritage site by checking if the
pair (Liverpool, Jerusalem) is in Certain(α,K), where
α is a query

(HasDirectFlight[〈HasUNESCOSite[InDanger]〉])+.

Note that here we check if each of the cities along the
path has an endangered site. If we want to additionally re-
quire that the sites along the route are not included in the
UNESCO list under cultural criteria, we need to replace
[InDanger] with [InDanger ∧ ¬Cultural] in the query above.



Besides these two query languages, we will consider their
fragments, which will be introduced as needed.

Before passing on to the complexity of DLXPath query
evaluation, we briefly compare our languages with other for-
malisms. First, DLXPath is clearly incomparable with CQs.
However, all tree-shaped CQs and unions of CQs with no
more than two free variables can be written as DLXPathcore
queries. On the other hand, all negation-free and +-free
DLXPathreg queries can be written as unions of CQs, though
with a cost of exponential blow-up. If we allow negation
but only over concept and role names, then a query can
be written as a union of CQs with safe negation. Second,
DLXPathreg queries without negation and node tests [ϕ] are
2-way regular path queries (2RPQs), the standard formalism
for querying graph databases. If, additionally, role inverses
are not allowed as path formulas, it becomes plain RPQs,
that is, essentially, regular expressions. Some fragments of
DLXPath can be expressed in other description logic for-
malisms. For example, it is well-known that a unary tree-
shaped CQ with the corresponding tree being rooted and di-
rected, can be written as a concept of EL, a DL underlying
OWL 2 EL profile (Motik et al. 2012). Finally, DLXPathreg
node formulas without path negation are nothing else but
propositional dynamic logic with converse (CPDL) formu-
las; we will discuss this connection in more detail later on.

In the following sections we analyse the complexity of
evaluating DLXPath queries over DL-Lite knowledge bases.

Data Complexity
of DLXPath Query Evaluation

As it is widely accepted in theory and proved in practice,
the size of the query and TBox is usually much smaller than
the size of the ABox (see e.g., (Vardi 1982) for discussion in
the relational database context and (Calvanese et al. 2007)
for DLs). This is why one usually considers data complexity
of query answering, assuming that the TBox and the query
are fixed, and only ABox is part of the input. In this section
we study this problem for various fragments of DLXPath.
Formally, let T be a TBox and α a DLXPath query. We are
interested in the following family of problems.

CERTAIN ANSWERS (α, T )
Input: ABox A and pair (c1, c2) of individuals
Question: Is (c1, c2) ∈ Certain(α, (T ,A))?

As it was previously mentioned, data complexity of CQ
query answering over DL-LiteR knowledge bases is the
same as over relational databases, that is, in LOGSPACE
(Calvanese et al. 2007). At the first glance, one may ex-
pect a similar result in the case of DLXPath, where the
complexity is NLOGSPACE-complete over graph databases
(Libkin, Martens, and Vrgoč 2013). However, the combina-
tion of the open world assumption and allowing negation
in queries makes things quite different. In fact, the situation
here is more like in the case of CQ with safe negation, where
the complexity jump is dramatic: from polynomiality to un-
decidability (Gutiérrez-Basulto et al. 2013).

Theorem 4 There exists a DL-Litecore TBox T and a
DLXPathcore query α such that the problem CERTAIN AN-
SWERS (α, T ) is undecidable.

The proof uses similar techniques as the proof of Theo-
rem 1 in (Gutiérrez-Basulto et al. 2013), that shows the un-
decidability of the problem of computing certain answers
for conjunctive queries with safe negation over DL-LiteR
knowledge bases. In fact, the reduction can be done using
the empty TBox, which shows that undecidability is ‘con-
tained’ in the formulation of the fixed query.

Having this negative result, a natural direction is to search
for DLXPath fragments that have decidable certain answers
problem. Based on previous studies for XPath in XML and
graph databases (see e.g., (Benedikt, Fan, and Geerts 2008)),
the most problematic primitive seems to be the negation ᾱ
in path formulas. Indeed, we now show that removing this
primitive from the syntax leads to decidability of the certain
answers problem. We write DLXPathpath-pos

core for the fragment
of DLXPathcore that does not allow the negation ᾱ, for α a
path formula, and define the fragment DLXPathpath-pos

reg ac-
cordingly. We then have the following theorem.
Theorem 5 There exists a DL-Litecore TBox T and a
DLXPathpath-pos

core query α such that the problem CERTAIN
ANSWERS (α, T ) is CONP-hard. The problem is in CONP
for any DL-LiteR TBox T and DLXPathpath-pos

reg query α.

Similarly to the previous result, the reduction for hard-
ness can be done using the empty TBox. Moreover, the fixed
query does not use the transitive closure operator +.

While this theorem looks positive in light of the general
undecidability result, the complexity might still be too high
for practical applications, as it leads to algorithms which
run in exponential time in the size of the ABox. To lower
the complexity and obtain tractable algorithms, one could
also consider fragments of DLXPath that do not allow any
form of negation, neither in node nor in path formulas. We
denote such fragments of DLXPathcore and DLXPathreg by
DLXPathpos

core and DLXPathpos
reg , respectively. This last frag-

ment is nothing else but nested 2RPQs (Pérez, Arenas, and
Gutierrez 2010), a language that has already been stud-
ied for DL-Lite knowledge bases (Bienvenu et al. 2014),
where an NLOGSPACE tight complexity bound was shown
for the problem of computing certain answers for both DL-
Litecore and DL-LiteR. Furthermore, by adapting known re-
sults from graph databases, it is not difficult to extend this
result to show that the problem is already NLOGSPACE hard
even for DLXPathpos

core queries (see e.g., (Barceló 2013) for a
survey on such techniques). From these results we conclude
that nesting and inverse in regular expressions, as well as
fixed DL-LiteR TBoxes do not increase the tractable data
complexity of query evaluation.

Combined Complexity
of DLXPath Query Evaluation

Even if data complexity is the most important measure in
practice, combined complexity, that is complexity under the
assumption that both TBox, ABox and the query are given
as input, allows us to get a better understanding of the query



answering problem, and often provides a blueprint of how to
solve the problem in practice. That is why we continue our
study in this direction. Formally, we consider the following
family of problems, where X ranges over {core,R}, y over
{core, reg}, and z is either nothing, or ‘path-pos’, or ‘pos’.

DLXPathzy CERTAIN ANSWERS OVER DL-LiteX
Input: DL-LiteX KB K, DLXPathzy query α,

and pair (c1, c2) of individuals
Question: Is (c1, c2) ∈ Certain(α,K)?

As it immediately follows from Theorem 4, the prob-
lem remains undecidable for full DLXPathcore and, hence,
for full DLXPathreg. However, the last result also follows
from the connection of DLXPath with propositional dy-
namic logic (PDL) and some well known properties of PDL.
Since this connection will be heavily used in the remainder
of the paper we now discuss it in more detail.

First of all, we note that in PDL community a different
terminology is used: for example, interpretations are called
Kripke structures, concept names are called propositional
letters or variables, role names are atomic programs, and
inverse operator is converse. Though, to be consistent with
the rest of the paper we stay with the DL terminology.

As already mentioned, node formulas of DLXPathpath-pos
reg

are, essentially, PDL with converse (CPDL) formulas (see
(Harel, Kozen, and Tiuryn 2000) for a good introduc-
tion on the topic). Formally, the syntax of plain proposi-
tional dynamic logic (PDL) is the same as DLXPathpath-pos

reg

(i.e., CPDL), except that it does not allow the inverse P−j
of role names as path expressions. The standard problem in
the PDL community is the satisfiability of a node formula
ϕ; that is, checking whether there exists an interpretation I
and an element d in its domain such that ϕ holds in d.

Lutz et al. showed that the satisfiability of PDL formu-
las extended with arbitrary path negation (such a logic is de-
noted PDL¬) is undecidable (Lutz and Walther 2005), which
already implies the undecidability of the certain answers
problem DLXPathreg: indeed, a PDL¬ formula ϕ is satis-
fiable if and only if the DLXPathreg query [¬ϕ] has the cer-
tain answer (c, c) over the empty KB with individual c in the
language. Note, however, that it does not immediately imply
undecidability in data complexity shown in Theorem 4.

Turning our attention to the certain answers problem for
DLXPathpath-pos queries, we again use the connection with
the theory of PDL. It is well-known that the satisfiability
problem for PDL is EXPTIME-complete (Harel, Kozen,
and Tiuryn 2000). It remains in EXPTIME even if these
formulas are allowed to use the transitive closure opera-
tor + only over role names. The same holds for CPDL
(Harel, Kozen, and Tiuryn 2000) and PDL(¬), that is, the
extension of PDL which allows path negation in a limited
form—only on role names (Lutz and Walther 2005). Sim-
ilarly to the previous undecidability result, the EXPTIME
lower bounds for these classes of PDL formulas already im-
ply EXPTIME-hardness of the certain answers problem for
DLXPathpath-pos

core , even for empty KBs. Also, in (Bienvenu et
al. 2014) hardness was established even for DLXPathpos

reg .

The upper bound is, however, much more challenging.
To deal with DL-LiteR knowledge bases, in particular with
role inclusions, we join the aforementioned extensions of
PDL with inverse and negation on role names, and consider
the language CPDL(¬) whose node formulas obey the same
grammar (1) as PDL (and DLXPath), and path formulas are
defined as follows:

α, β := ε | R | [ϕ] | α ∪ β | α · β | R | α+.

We need the following result to establish complexity of
the certain answers problem.

Theorem 6 Checking satisfiability of a CPDL(¬) node for-
mula can be done in EXPTIME.

The proof makes use of ideas from (Lutz and Walther
2005) and (Vardi and Wolper 1986). Although it is not
strictly related to description logics and knowledge repre-
sentation, we state the result explicitly as we believe it might
be of interest to the PDL community.

Of course, satisfiability results do not transfer directly to
query answering over KBs. However, widening and recast-
ing the ideas from (De Giacomo and Lenzerini 1994) and
(De Giacomo and Lenzerini 1996), we obtain the desired
upper bound.

Lemma 7 The problem DLXPathpath-pos
reg CERTAIN AN-

SWERS OVER DL-LiteR is in EXPTIME.

Summing up, we obtain the following theorem (the hard-
ness results follows from (Harel, Kozen, and Tiuryn 2000)
and (Bienvenu et al. 2014) and are included just for com-
pleteness).

Theorem 8 The problem DLXPathpath-pos
reg CERTAIN AN-

SWERS OVER DL-LiteR is EXPTIME-complete. It remains
EXPTIME-hard for DLXPathpos

reg queries with DL-Litecore

KBs, and for DLXPathpath-pos
core even with empty KBs.

The only remaining fragment is that of DLXPathpos
core

queries, that is, the restriction of the DLXPathcore lan-
guage that use neither binary nor unary negation. In the
previous section we saw that data complexity of answer-
ing DLXPathpos queries is the same as answering RPQs and
2RPQs, regardless of whether we made use of the regular
or the core fragment. For combined complexity, the case is
now different. We have already seen that query answering
remains EXPTIME-hard for DLXPathpos. We now show
that the restriction to the core fragment decreases the com-
plexity by almost one exponential.

Theorem 9 The problem DLXPathpos
core CERTAIN AN-

SWERS OVER DL-LiteR is NP-complete. It remains NP-
hard for DL-Litecore.

It is worth to mention, that the result holds even if the
queries are not allowed to use the transitive closure opera-
tor + at all, being, essentially, very restricted form of unions
of CQs but with the same complexity of query answering.
Hence, the border between tractable and intractable com-
bined complexity of the problem lies somewhere very close
to here, leaving 2RPQs on one side and DLXPathpos

core with
CQs on the other.



DLXPathpos
core DLXPathpos

reg DLXPathpath-pos DLXPath
data combined data combined data combined data combined

DL-Lite NLOGSPACE-c NP-c NLOGSPACE-c EXPTIME-c CONP-c EXPTIME-c undec. undec.
EL PTIME-c EXPTIME-c∗/NP-c† PTIME-c EXPTIME-c CONP-c EXPTIME-c undec. undec.

Table 2: A summary of the complexity results. Here “-c” stands for “-complete” and “undec.” for “undecidable”. All the results
hold for both DLXPathcore and DLXPathreg unless a subscript core or reg has been added. The results in the first line hold for
both DL-Litecore and DL-LiteR. The results in the second line hold for all of EL, ELH⊥ and ELHI⊥, except for † that holds
up to ELH⊥. The EXPTIME bound in ∗ is shown for ELHI⊥. The new results of this paper are set off in bold.

More Expressive Logics
Another important family of lightweight DLs used in prac-
tice is EL and its extensions, which underlie the OWL 2 EL
profile (Motik et al. 2012). Here we look at one particular
logic from this family, denoted ELHI⊥, that is essentially
the minimal DL from the EL family that that subsumes DL-
LiteR. The increase in expressive power that comes with
ELHI⊥ does come with an exponential jump in answering,
for example, standard conjunctive queries. Surprisingly, the
situation is different for DLXPath queries and almost all the
results from the previous sections hold for all the range of
DLs from EL to ELHI⊥. It is interesting to note that for
these results we use the same base techniques outlined in
the previous sections, which suggests that the techniques in-
troduced in this paper are robust to the particular choice of
description logics.

Formally, the language of ELHI⊥ (Baader, Brandt, and
Lutz 2005; 2008) has the same roles as DL-LiteR, but allows
for complex concepts of the form:

C ::= > | Ai | ∃R.C | C1 u C2,

where Ai is a concept name and R a role. The interpretation
I is defined similarly as in the case of DL-Lite, with >I
denoting the universal relation, ⊥I the empty set and (C1 u
C2)I the intersection of CI1 and CI2 . Finally we define

(∃R.C)I =
{
d ∈ ∆I | ∃d′ ∈ ∆I : (d, d′) ∈ RI , d′ ∈ CI

}
.

An ELHI⊥ TBox is a set of concept inclusions of the
form

C1 v C2, C v ⊥
and role inclusions as in DL-LiteR. Plain EL allows only for
concept inclusions without ⊥ and role inverses, and ELH⊥
disallows role inverses.

When studying the complexity of DLXPath query an-
swering over ELHI⊥ we inherit all of the lower bound from
the results on DL-Lite, in particular we immediately obtain
that query answering is undecidable for the full language.
By carefully examining the proof of Theorem 4 we can also
observe that the result there also holds for plain EL.

What is more interesting is the fact that the EXPTIME al-
gorithm for combined complexity of DLXPathpath-pos is ro-
bust enough to extend to this setting. Complementing this
observation with the results for DLXPathpos

reg from (Bienvenu
et al. 2014), we can obtain the following theorem.

Theorem 10 Answering DLXPathpath-pos
reg queries over

ELHI⊥ KBs is EXPTIME-complete in combined com-
plexity, with the lower bound already holding for EL

and DLXPathpos
reg . In data complexity the problem is

CONP-complete for DLXPathpath-pos
reg and drops to PTIME-

complete for DLXPathpos
reg , again for both ELHI⊥ and EL.

The last remaining fragment we study is DLXPathpos
core.

Here we show that the rise in data complexity is similar to
the one in the previous theorem, that is, from NLOGSPACE-
complete to PTIME-complete. This can be attributed to the
expressive power of logics in the EL family, since hard-
ness results already hold for instance queries over simple
EL knowledge bases (Bienvenu, Ortiz, and Šimkus 2013).
The NP bound for combined complexity that we showed for
DL-LiteR holds for ELH⊥ as well, but for full ELHI⊥ the
problem becomes EXPTIME-complete.

Theorem 11 Answering DLXPathpos
core queries over ELH⊥

KBs is NP-complete in combined complexity. For ELHI⊥
KBs it becomes EXPTIME-complete. For both DLs the
problem is PTIME-complete in data complexity. Apart from
combined complexity for ELHI⊥ KBs the lower bounds al-
ready hold for EL.

Conclusions and Future Work
In this paper we conducted a detailed study about using the
XPath language to query ontologies of the DL-Lite and EL
families. The results, summarised in Table 2, show that al-
though the problem is generally undecidable, by limiting the
amount of negation we can get decidable and even tractable
fragments. The deep connection between XPath, DL and
PDL allowed us to use ideas developed in other areas and
gave insight on how query evaluation can be affected by
certain aspects of the language. Although this connection
was explored previously (see e.g., discussion in Chapters 13
and 14 in (Blackburn, Benthem, and Wolter 2006)), we be-
lieve that the time is ripe for a comprehensive survey de-
scribing how techniques from one area can be transferred to
another and hope that the results of this paper can motivate
such a survey.

From a practical point of view, we would like to find and
test the classes of queries that are of particular practical in-
terest and have either tractable general algorithms or reli-
able heuristics. Here we primarily want to tackle positive
and path-positive fragments of XPath, as these queries were
implemented and tested by the XML community, and many
good heuristics have been developed over the years.
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Appendix
In this appendix we give the proofs for all theorems of the paper. For presentational purposes of the paper, some of the proofs
refer to constructions from other proofs described after, but of course there are no circular references.

Theorem 4 There exists a DL-Litecore TBox T and a DLXPathcore query α such that the problem CERTAIN ANSWERS (α, T )
is undecidable.

Proof. In this proof we use intersection operator ∩ for DLXPath path formulas. This does not increase the expressive power of
the language, since the intersection α1 ∩ α2 can be written as ᾱ1 ∪ ᾱ2.

The proof is by reduction of the halting problem for deterministic Turing machines. In particular, given a Turing machine
M , we construct a DLXPathcore query α such that M does not accept an input ~w encoded as an ABox A~w and an element
c1 iff (c1, c1) /∈ Certain(α, (∅,A~w)). (Note that q depend on M but not on ~w, and we use only empty TBox). Applying this
construction to a fixed deterministic universal Turing machine, that is, a machine that accepts its input ~w iff the Turing machine
encoded by ~w accepts the empty input, we obtain the required undecidability result.

Let M = (Γ, Q, q0, q1, δ) be a deterministic Turing machine, where Γ is an alphabet (containing the blank symbol ), Q a
set of states, q0 ∈ Q and q1 ∈ Q are an initial and an accepting state, respectively, and δ : Q × Γ → Q × Γ × {−1, 1} is a
transition function. Computations of M can be thought of as sequences of configurations, with each configuration determined
by the contents of all (infinitely many) cells of the tape, the state and the head position. We are going to encode a computation
by domain elements arranged, roughly speaking, into a two-dimensional grid: one dimension is the tape and the other is time.

More precisely, we use a role T to point to the representation of the next cell on the tape (within the same configuration)
and a role S to point to the representation of the same cell in a successive configuration. Concepts Ca, for a ∈ Γ, encode the
contents of cells in the sense that a domain element belongs to Ca if the respective cell contains the symbol a. We use concepts
Hq , for q ∈ Q, to indicate both the position of the head and the current state: a domain element belongs to Hq if the respective
cell is under the head and the machine is in state q. We also use a concept H∅ to mark all other cells on the tape (that is, cells
that are not under the head of the machine). Finally, roles Pqa, for q ∈ Q and a ∈ Γ, are used to encode transitions; concepts
Dσ and roles T∅σ , for σ ∈ {−1,+1}, to propagate the no-head marker backwards and forwards along the tape; and role T0 to
make sure the tape is initially blank beyond the input word.

Let ϕ be DLXPathcore node formula

〈S∗ T ∗(α1 ∪ α2 ∪ α3 ∪ α4 ∪ α5 ∪ α6)〉 ,

where

α1 = [〈S− T S ∩ T̄ 〉],

α2 =
⋃

δ(q,a)=(q′,a′,σ)

[Hq ∧ Ca ∧
〈
S[Tσ ∩ P̄q′a′ ]

〉
],

α3 =
⋃
a∈Γ

[H∅ ∧ Ca ∧ 〈S[¬Ca]〉],

α4 =
⋃

σ∈{−1,+1}

[Dσ ∧ 〈Tσ ∩ T̄∅σ〉],

α5 = [〈T0 ∩ T̄ 〉] ∪ [〈T 〉 ∧ 〈S̄〉] ∪ [〈T−0 〉 ∧ 〈T̄0〉] ∪ [〈T−0 〉 ∧ ¬C ] ∪ [Hq1 ],

α6 =
⋃

q∈Q,a∈Γ

([〈P−qa〉 ∧ ¬Hq] ∪ [〈Pqa〉 ∧ ¬Ca]),

α7 =
⋃

q∈Q,σ∈{−1,+1}

([Hq ∧ ¬Dσ] ∪ [〈T−∅σ〉 ∧ ¬Dσ] ∪ [〈T−∅σ〉 ∧ ¬H∅]),

and Tσ(y, z) stands for T (y, z) if σ = +1 and for T (z, y) if σ = −1. For every input ~w = a1 . . . an ∈ Γ∗, we take the
following ABox A~w:

Hq0(c1), Cai(ci) and T (ci, ci+1), for 1 ≤ i ≤ n, T0(cn, cn+1).

It is now a matter of technicality to show that (c1, c1) ∈ Certain([ϕ], (∅,A~w)) iff M accepts ~w. q

Theorem 5 There exists a DL-Litecore TBox T and a DLXPathpath-pos
core query α such that the problem CERTAIN ANSWERS

(α, T ) is CONP-hard. The problem is in CONP for any DL-LiteR TBox T and DLXPathpath-pos
reg query α.



Proof. Let us start with the CONP-hardness of the problem. The proof will use the empty TBox. Fix the following query (note
that it does not use the transitive closure operator +):

α = [P
(
( 〈T1[¬A]〉 ∧ 〈T2[¬A]〉 ∧ 〈T3[¬A]〉 ) ∨
( 〈T1[¬A]〉 ∧ 〈T2[¬A]〉 ∧ 〈F3[A]〉 ) ∨
( 〈T1[¬A]〉 ∧ 〈F2[A]〉 ∧ 〈T3[¬A]〉 ) ∨
( 〈T1[¬A]〉 ∧ 〈F2[A]〉 ∧ 〈F3[A]〉 ) ∨
( 〈F1[A]〉 ∧ 〈T2[¬A]〉 ∧ 〈T3[¬A]〉 ) ∨
( 〈F1[A]〉 ∧ 〈T2[¬A]〉 ∧ 〈F3[A]〉 ) ∨
( 〈F1[A]〉 ∧ 〈F2[A]〉 ∧ 〈T3[¬A]〉 ) ∨
( 〈F1[A]〉 ∧ 〈F2[A]〉 ∧ 〈F3[A]〉 )

)
],

where P, T1, T2, T3, F1, F2, F3 are role names and A is a concept name.
Consider the complement of the NP-complete problem 3CNF-SAT which input is a conjunction Φ of clauses of the form

`1 ∨ `2 ∨ `3, where the `i are literals, that is, propositional variables or their negations, and which output is ‘yes’ if Φ is not
satisfiable and ‘no’ otherwise.

For each variable x in Φ the ABox A uses an individual cx. Also, for each clause γ in Φ it uses an individual cγ . Finally, it
uses an individual c.

For each clause γ in Φ the ABox A contains the assertion P (c, cγ). Also, for each literal `i in each clause γ = `1 ∨ `2 ∨ `3
of Φ the ABox A contains the assertion Ti(cγ , cx) if `i = x or the assertion Fi(cγ , cx) if `i = x̄.

It is a matter of technicality to show that the pair (c, c) is a certain answer to α over the KB (A, ∅) if and only if Φ is not
satisfiable.

Next we carefully analyse the algorithm in the proof of Theorem 8 (which is based on the proof of Theorem 6) to obtain an
CONPdata complexity algorithm which decides the problem.

Looking at the proof of Theorem 6 note that there are two sources of exponentiality in the construction of the Büchi tree
automaton BϕK,α , for ϕK,α as in the proof of Theorem 8. First, the number of Hintikka setsHϕK,α can be exponential, because
it is roughly the number of all subsets of the Fisher-Ladner closure of the formula. Second, each state of the automaton has a
component from 2P�(ϕK,α), where P�(ϕK,α) = {{[α]ψ, [β]η} | [α]ψ, [β]η ∈ cl(ϕK,α)}.

To deal with the first source, we need the following claim. Let ` be the fixed number of role inclusions in the TBox T .
Claim 11.1. If the formula ϕK,α has a Hintikka tree then it has a Hintikka tree satisfying the following conditions:

1. if for an individual ci and node formula ψ there exists a node x such that Ci ∈ T (x)(1) and ψ ∈ T (x)(1) then for any node
y such that Ci ∈ T (y)(1) it holds that ψ ∈ T (y)(1);

2. for any node x such that Ci /∈ T (x)(1) for any individual ci, there exist at most ` roles R such that 〈R〉Ci ∈ T (x)(1).

This claim follows immediately from the construction in the proof of Proposition 11 in (Lutz and Walther 2005). Having this
claim at hand we conclude that when constructing the Büchi tree automaton BϕK,α we may consider not all Hintikka sets, but
only those that satisfy the conditions of the claim. Since the TBox and the query are fixed, we can guess which formulas hold
and construct the automaton based on the polynomial number of Hintikka sets.

To deal with the second source, note that by the construction all the states on a run of the automaton have the same P . Hence,
again, it is enough to guess this P and build only the corresponding part of the automaton. q

Theorem 6 Checking satisfiability of a CPDL(¬) node formula can be done in EXPTIME.

Proof. This prove goes the same lines as the proof of existence of EXPTIME algorithm for checking satisfiability of PDL(¬)

node formula from (Lutz and Walther 2005).
In this proof we will use the shortcut 〈α〉ϕ for 〈α · [ϕ]〉 and dαeϕ for ¬〈α〉¬ϕ.2 In fact, we even replace 〈α〉 with 〈α〉ϕ and

dαeϕ in the syntax of PDL node formulas, which clearly does not change the expressive power and conciseness of formulas.
Hence, we can assume that all our node formulas are in the negation normal form, that is the unary negation appears only in
front of concept names.

Let Π0 = {R,¬R | R is a role name or inverse}. It will be convenient to look at any CPDL(¬) path formula α not as regular
expression over the alphabet Π0 ∪ {[ϕ] | ϕ is a node formula} but as an equivalent nondeterministic finite state automata over
this alphabet with the set of states Qα, initial state qα, transition function δα and set of final states Fα. Given a state q in Qα
denote αq the automata obtained from α by declaring q the initial state.

Fisher-Ladner closure cl(ϕ) of a CPDL(¬) node formula ϕ is the smallest set closed under the following conditions:
2Note that the standard PDL syntax (e.g., in (Harel, Kozen, and Tiuryn 2000)) uses ϕ? instead of [ϕ], and [α]ϕ instead of dαeϕ. Since

this work is influenced by the XPath query language we opted to stay faithful to its syntax and use it throughout the paper.



(C1) ϕ ∈ cl(ϕ),
(C2) if ψ1 ∧ ψ2 ∈ cl(ϕ) or ψ1 ∨ ψ2 ∈ cl(ϕ) then ψ1, ψ2 ∈ cl(ϕ),
(C3) if ψ ∈ cl(ϕ) then ¬ψ ∈ cl(ϕ) (from here onwards we assume that ¬¬ψ denotes ψ, as well as ¬¬S denotes S for S ∈ Π0),
(C4) if 〈α〉ψ ∈ cl(ϕ) then ψ ∈ cl(ϕ), ψ′ ∈ cl(ϕ) for all [ψ′] in the active alphabet of α, and 〈αq〉ψ ∈ cl(ϕ) for all q in Qα,
(C5) if dαeψ ∈ cl(ϕ) then ψ ∈ cl(ϕ), ψ′ ∈ cl(ϕ) for all [ψ′] in the active alphabet of α, and dαqeψ ∈ cl(ϕ) for all q in Qα.

It is straightforward to check that the size of the Fisher-Lander closure of a node formula ϕ is linear in the length of ϕ.
Given a CPDL(¬)node formula ϕ, a subset Ψ of cl(ϕ) is a Hintikka set for ϕ if the following conditions hold:

(H1) if ψ1 ∧ ψ2 ∈ Ψ then ψ1 ∈ Ψ and ψ2 ∈ Ψ,
(H2) if ψ1 ∨ ψ2 ∈ Ψ then ψ1 ∈ Ψ or ψ2 ∈ Ψ,
(H3) ψ ∈ Ψ if and only if ¬ψ /∈ Ψ,
(H4) if dαeψ ∈ Ψ and qα ∈ Fα then ψ ∈ Ψ,
(H5) if dαeψ ∈ Ψ and q ∈ δα(qα, [η]) then ¬η ∈ Ψ or dαqeψ ∈ Ψ.
DenoteHϕ the set of all Hintikka sets for ϕ.

Given a CPDL(¬)node formula ϕ, let ε1, . . . , εk be all the formulas of the form 〈α〉ψ in cl(ϕ), and let Λϕ be the set of triples
Hϕ × (Π0 ∪ {⊥})× {0, . . . , k}. For every triple λ from Λϕ denote λ(i), 1 ≤ i ≤ 3, the i-th component of λ. A (k + 1)-tuple
(λ, λ1, . . . , λk) of triples from Λϕ is a matching if and only if for all 1 ≤ i ≤ k the following holds:

(M1) if εi = 〈α〉ψ ∈ λ(1) then there are ψ1, . . . , ψn ∈ λ(1), n ≥ 0, such that

(a) either δα(qα, [ψ1] · · · [ψn]) ∩ Fα 6= ∅, ψ ∈ λ(1), λ(2)
i = ⊥, and λ(3)

i = 0,

(b) or there exists S ∈ Π0 and q ∈ Qα such that q ∈ δα(qα, [ψ1] · · · [ψn]S), εj = 〈αq〉ψ ∈ λ(2)
i , and λ(3)

i = j;

(M2a) if dαeψ ∈ λ(1), q ∈ Qα and S ∈ Π0 are such that q ∈ δα(qα, S) and S = λ
(2)
i then dαqeψ ∈ λ(1)

i ,

(M2b) if dαeψ ∈ λ(1)
i , q ∈ Qα and S ∈ Π0 are such that q ∈ δα(qα, S) and S = (λ

(2)
i )− then dαqeψ ∈ λ(1).

The condition (M2b) is the one which differs the construction from the construction in (Lutz and Walther 2005).
An infinite k-ary M -tree for a set M and number k is a mapping from {1, . . . , k}∗ to M .
Given a CPDL(¬)node formula ϕ with ε1, . . . , εk set all the formulas of the form 〈α〉ψ in cl(ϕ), a k-ary Λϕ-tree T is a

Hintikka tree for ϕ if and only if the following conditions hold for all nodes x, y ∈ {1, . . . , k}∗:
(T1) ϕ ∈ T (ε),
(T2) the tuple (T (x), T (x1), . . . , T (xk)) is a matching,

(T3) there is no εi ∈ T (x)(1) with γ1γ2 · · · ∈ {1, . . . , k}ω such that γ1 = i and γ`+1 = T (xγ1 . . . γ`)
(3) for all ` ≥ 1,

(T4) if dαeψ, dβeη ∈ T (x)(1), S ∈ Π0, q1 ∈ Qα, and q2 ∈ Qβ are such that q1 ∈ δα(qα, S), q2 ∈ δβ(qβ ,¬S) and
dαq1eψ /∈ T (y)(1) then dβq2eη ∈ T (y)(1).

The PDL(¬) version of the following claim is proved in (Lutz and Walther 2005) (Proposition 11). The proof carries verbatim
to the case of CPDL(¬).
Claim 11.2. A CPDL(¬) node formula is satisfiable if and only if it has a Hintikka tree.

Given a CPDL(¬)node formula ϕ with k formulas of the form 〈α〉ψ in cl(ϕ), denote P�(ϕ) = {{dαeψ, dβeη} |
dαeψ, dβeη ∈ cl(ϕ)}. Then the k-ary Büchi tree automata Bϕ over the alphabet Λϕ is defined as follows:

1. the set Q of states is a subset of Λϕ × 2P�(ϕ) × {�, ↑}, such that for each state ((Ψ, S, j), p, s) the following conditions
hold:
(a) if dαeψ, dβeη ∈ Ψ then {dαeψ, dβeη} ∈ p,
(b) if {dαeψ, dβeη} ∈ p, S ∈ Π0, q1 ∈ δα(qα, S), q2 ∈ δβ(qβ ,¬S), and dαq1eψ /∈ Ψ then dβq2eη ∈ Ψ;

2. the set I of initial states is {((Ψ, S, j), p, s) | ϕ ∈ Ψ and s = �};
3. the transition function δ is defined as follows: ((λ, p, s), (Ψ, S, j), (λ1, p1, s1), . . ., (λk, pk, sk)) ∈ δ if and only if for all

1 ≤ i ≤ k
(a) λ = (Ψ, S, j),
(b) pi = p,
(c) (λ, λ1, . . . , λk) is a matching, and



(d) if either s = �, λ(3)
i 6= 0 and εi ∈ Ψ, or s = ↑, λ(3) = i and λ(3)

i 6= 0, then si = ↑; otherwise, si = �;
4. the set F of accepting states is {(λ, p, s) | s = �}.
It is straightforward to check that the size of the automata Bϕ is exponential in the length of ϕ.

Similarly to Claim , the PDL(¬) version of the following claim is proved in (Lutz and Walther 2005) (Proposition 15). Again,
the proof carries verbatim to the case of CPDL(¬).

Claim 11.3. A tree T is a Hintikka tree for a CPDL(¬) node formula ϕ if and only if T is in the language of Bϕ.
Now the statement of the theorem follows from the fact that emptiness of a tree Büchi automaton can be checked in poly-

nomial (quadratic) time (Vardi and Wolper 1986) and the observation that the automaton obtained by this construction is
exponential in the size of the formula. q

Theorem 8 The problem DLXPathpath-pos
reg CERTAIN ANSWERS OVER DL-LiteR is EXPTIME-complete. It remains

EXPTIME-hard for DLXPathpos
reg queries with DL-Litecore KBs, and for DLXPathpath-pos

core even with empty KBs.
Proof. The EXPTIME-hardness immediately follows from the results of (Harel, Kozen, and Tiuryn 2000) and (Bienvenu et al.
2014). That is why next we concentrate on an algorithm.

The proof is by polynomial reduction to the satisfiability of CPDL(¬) formulas, which is in EXPTIME by Theorem 6. It
adopts the ideas from (De Giacomo and Lenzerini 1994) to our needs. In the proof we use ϕ⇒ ψ as a shortcut for ¬ϕ ∨ ψ, as
well as the shortcuts 〈α〉ϕ and dαeϕ as in the proof of Theorem 6.

Let K = (A, T ) be a knowledge base, α a DLXPathpath-pos
core query and (c′, c′′) a pair of individuals. Next we construct a

CPDL(¬) formula ϕK,α which is satisfiable if and only if (c′, c′′) /∈ Certain(α, (A, T )).
The formula ϕK,α uses concept and role names of K. Besides this, ϕK,α uses a special role name Create and for every

individual ci in A a concept name Ci. We start with the part of ϕK,α which corresponds to the ABox A:

ϕA =

 ∧
i6=j

ci,cj individuals inA

Ci ⇒ ¬Cj

 ∧

 ∧
A(ci)∈A

Ci ⇒ A

 ∧

 ∧
R(ci,cj)∈A

Ci ⇒ 〈R〉Cj

 .

Note, that if we drop UNA, then the first part of ϕA should be dropped as well. We continue with the part of ϕK,α corresponding
to the TBox T :

ϕT =

 ∧
BivBj ∈ T

δ(Bi)⇒ δ(Bj)

 ∧

 ∧
BiuBjv⊥ ∈ T

δ(Bi)⇒ ¬δ(Bj)


∧

 ∧
RivRj ∈ T

dR̄i ∪Rje>

 ∧

 ∧
RiuRjv⊥ ∈ T

dR̄i ∪ R̄je>

 ,

where δ(B) is 〈R〉 if B = ∃R and B otherwise.
Having ϕA and ϕT components at hand, we next define the formula corresponding to the whole KB K with respect to the

query α:

ϕK =

( ∧
ci individual inA

〈Create〉Ci

)
∧ dβe(ϕA ∧ ϕT )

∧

 ∧
ψ∈cl(ϕA∧ϕT ∧〈α〉>)

ci individual inA

〈β〉(Ci ∧ ψ)⇒ dβe(Ci ⇒ ψ)

 ,

where

β =

(
Create ∪ Create− ∪

( ⋃
R role name inK

(R ∪R−)

))∗
.

Finally, to take into account the testing individuals c′ and c′′,
ϕK,α = ϕK ∧ ¬〈Create[C ′]α[C ′′]〉>.

Similarly as in (De Giacomo and Lenzerini 1994) one can check that the formula ϕK,α has the required property. q



Theorem 9 The problem DLXPathpos
core CERTAIN ANSWERS OVER DL-LiteR is NP-complete. It remains NP-hard for DL-

Litecore.

Proof. We start with the upper bound. In what follows we will use the following standard notions.
The (non-oblivious) chase Chase(K) of a (satisfiable) KB K = (T ,A) is a set of assertions which is a result of exhaustive

(possibly infinite) application the following rules, starting with A (by saying that a set of atoms contains P−(c1, c2) we mean
that it contains P (c2, c1), and saying that it contains ∃R(c) we mean that there exists c′ such that R(c, c′) is contained in this
set):

– add Ai(c) if T contains B v Ai and Chase(K) contains B(c);
– add R2(c1, c2) if T contains R1 v R2 and Chase(K) contains R1(c1, c2);
– add R(c, cnew), for a fresh cnew, if T contains B v ∃R and Chase(K) contains B(c) but does not contain ∃R(c).

The canonical model Can(K) of a satisfiable KB K is the model which interprets all individuals in the Chase(K) by them-
selves, c ∈ ACan(K) if and only if A(c) ∈ Chase(K), and (c1, c2) ∈ PCan(K) if and only if P (c1, c2) ∈ Chase(K). It is well
known that for any model I of K there exists a homomorphism from Can(K) to I.

The following claim can be proved by straightforward induction on the structure of the DLXPathpos
core query.

Claim 11.4. A pair of individuals (c1, c2) is a certain answer to a DLXPathpos
core query α over a satisfiable KB K if and only if

(c1, c2) ∈ JαKCan(K).
Essentially, this claim says that we can concentrate only on the canonical model. Since it can be quite big and even infinite,

next we show that for positive query answering it is always enough to guess just a polynomial part of the canonical model. In
what follows we need one more definition.

Given a DLXPathpos
core query which does not use unary ∨ primitive, binary ∪ primitive, concept names, as well as the transitive

closure operator + but may use the reflexive transitive closure operator ∗ over roles, a skeleton Sα of α is a directed unordered
tree represented the structure of α in the sense that besides the root it has a distinguished node called drain, each edge is labelled
by either R or R∗ according to α and branching in this tree represents nesting [ϕ] in α.

Let now α be a DLXPathpos
core query and K = (T ,A) be a DL-LiteR KB. Without loss of generality we may assume that

– the KB K is satisfiable (if not, it can be easily checked in polynomial time),
– the vocabulary does not contain any concept names (they can be simulated by role names in the straightforward manner),
– α does not use ∨ and ∪ primitives (our algorithm can always guess which alternative to use), and
– α does not use the transitive closure operator +, but may use the reflexive transitive closure operator ∗ over roles (these

primitives are interreducible).
For clarity of exposition we also assume that K uses only one individual c, the generalisation to arbitrary case is a matter of
technicality.

It is straightforward to show that (c, c) ∈ JαKCan(K) if and only if there exists an embedding γ of the skeleton Sα to Can(K),
that is a mapping preserving labels in the way that

– if R is a label of (a, a′) in Sα then RCan(K)(γ(a), γ(a′)) holds,
– if R∗ is a label of (a, a′) in Sα then there exist a sequence c1, . . . , cn, n ≥ 1, without repetitions such that c1 = γ(a),
cn = γ(a′) and RCan(K)(γ(ci), γ(ci+1)) holds for all i,

which maps the root and the drain to c. Note that given γ, under our assumptions the sequence c1, . . . , cn (without repetitions)
satisfying the second requirement of embedding is unique for every edge (a, a′) labelled R∗. We denote it Γ(a, a′).

Having this fact at hand, it is enough to show that if such an embedding γ exists then there exists an embedding such that the
maximal distance from c to the image of a node from the skeleton in Can(K) is of polynomial size. Indeed, if it holds than we
can guess all the polynomial number of branches in Can(K) which leads to images of all the nodes from skeleton and check
whether the query holds on this polynomially sized sub-interpretation of the canonical model. That is why the rest of the proof
is devoted to reducing this maximal distance for a given embedding. For this, we reuse the shortcutting technique, developed in
(Benedikt, Fan, and Geerts 2008) for a similar problem in the XML context.

Let c′ be the image γ(a′) of a node in Sα with the maximal distance from c in Can(K). The branch c = c1, . . . , cm = c′ in
the canonical model can be partitioned in the following way: ci and ci+1 are in the same part if and only if
– both of them are not images of any nodes of Sα by γ, and
– {(a, a′) | ci ∈ Γ(a, a′)} = {(a, a′) | ci+1 ∈ Γ(a, a′)}.
That is, every part of this partitioning consists of a continuos sequence of nodes on the branch from c to c′, and every image
of a node of the skeleton (which is on the branch) forms its own part. However, we are interested in those parts which contains
more than |T | elements. If such a part does not exist, we are done, because the length n of the branch is bounded by |T |× |Sα|.
If, contrary, such a part exists, then it contains two elements ci, cj , i > j, with the same type in Can(K) (by type of an element



d in an interpretation I we mean the set {(∃R) | there exists d′ such that RI(d, d′)}). Since the types are the same, we can
simply replace the tree-like section of the canonical model starting in ci with the section starting in cj . After such a replacement
the canonical model stays the same (since it is infinite), but the distance from c to c′ strictly decreases.

Applying such a procedure to the canonical model Can(K) and embedding γ while possible we arrive to an embedding
with desired properties. It means that the pair (c, c) is a certain answer to α over satisfiable K if and only if there exists a
polynomially sized sub-interpretation of the canonical model of K which witness α for (c, c).

To show hardness of DLXPathpos
core evaluation over DL-Litecore we give a reduction from 3CNF-SAT. Suppose we are given

a conjunction Φ of clauses of the form `1 ∨ `2 ∨ `3, where the `k are literals, that is, propositional variables or their negations
(we can assume that all literals in each clause are distinct). Let x1, . . . , xn be the variables in Φ.

Consider the KB K with the ABox A = {A(c)} and the TBox T consisting of the inclusions

A v ∃(Xv
1 )−, for v ∈ {>,⊥},

∃Xv
i−1 v ∃(Xu

i )−, for v, u ∈ {>,⊥} and 1 < i ≤ n. (2)

For every variable xi and truth value v ∈ {>,⊥} let ψvxi be the node formula:

〈(X>n ∪X⊥n ) · · · (X>i+1 ∪X⊥i+1) ·Xv
i · (X>i−1 ∪X⊥i−1) · · · (X>1 ∪X⊥1 )〉.

Let ϕ be a node formula 〈α[ψ]〉, where

α = ((X>1 )− ∪ (X⊥1 )−) · . . . · ((X>n )− ∪ (X⊥n )−),

and ψ is a conjunction of node formulas of the following form, for each clause γ in Φ, using variables x, y, z:∨
(vx, vy, vz) assignment of (x, y, z)

satisfying γ

ψvxx ∧ ψvyy ∧ ψvzz .

We now show that the pair (c, c) is a certain answer to [ϕ] over K if and only if Φ is satisfiable.
Suppose first that Φ is satisfiable and let σ : {x1, . . . , xn} → {>,⊥} be a truth assignment such that σ(Φ) is true. Take any

model I = (∆I , ·I) of K. Then using assertions from (2) we can find elements d0, d1, d2, . . . , dn ∈ ∆I such that:

d0 = cI , and
(X

σ(xi)
i )I(di, di−1), for all 1 ≤ i ≤ n.

(3)

Then by definition (cI , dn) ∈ JαKI . To show that cI ∈ JϕKI it suffices to check that dn ∈ JψKI . To see this take any clause
γ in Φ using variables x, y, z and consider the formula ψσ(x)

x ∧ ψσ(y)
y ∧ ψσ(z)

z . The facts (3) above immediately imply that
dn ∈ Jψσ(x)

x KI . Analogously we get that dn ∈ Jψσ(y)
y KI and dn ∈ Jψσ(z)

z KI . From this it follows that dn ∈ JψKI and therefore
cI ∈ JϕKI . Since I was chosen arbitrary we conclude that (c, c) is a certain answer to [ϕ] over K.

Conversely, assume that (c, c) is a certain answer to [ϕ] over K. Consider the canonical model I0 of K. Therefore we can
view I0 as a complete (inverted) binary tree of height n, as illustrated in the following image.

c

· · ·

· · ·

· · ·

· · ·

X>1

X⊥1

X>2

X⊥2

X⊥2

X>2

X>n

X⊥n

X⊥n

X>n



As before we depict the fact that (Xv
i )I0(d, d′) holds by having an Xv

i labelled arrow between nodes representing d and d′.
Since (c, c) is a certain answer to [ϕ] over K we have that cI0 ∈ JϕKI0 . Therefore there exist elements d0, d1, . . . , dn in I0 and
truth values v1, . . . , vn such that:

d0 = cI0 ,
(Xvi

i )I0(di, di−1), for all 1 ≤ i ≤ n, and
dn ∈ JψKI0 .

Define now σ(xi) := vi. for all i = 1, . . . , n. We claim that σ is a satisfying assignment for Φ. To see this take any clause γ
in Φ and assume that γ uses variables x, y, z. Since dn ∈ JψKI0 this implies that there is an assignment vx, vy, vz of variables
x, y, z satisfying γ and such that the formula ψvxx ∧ψ

vy
y ∧ψvyy is true at dn. In particular ψvxx is true at dn which implies that we

can reach cI0 using an Xvx
i labelled edge, where x = xi. Since every path in I0 has a unique label we conclude that vx = vi

and similarly for y and z. Since γ was arbitrary we conclude that Φ is satisfiable. q

Theorem 10 Answering DLXPathpath-pos
reg queries over ELHI⊥ KBs is EXPTIME-complete in combined complexity, with the

lower bound already holding for EL and DLXPathpos
reg . In data complexity the problem is CONP-complete for DLXPathpath-pos

reg
and drops to PTIME-complete for DLXPathpos

reg , again for both ELHI⊥ and EL.

Proof.
We begin with the EXPTIME bounds. These require a slight modification to the proof of Lemma 7, to make it work

for ELHI⊥ knowledge bases. Indeed, the EXPTIME-hardness remains, as it is shown even for emtpy KB’s. To show the
EXPTIME upper bound, all we need to show is how to modify the CPDL(¬) formula φK,a so that it correctly verifies the
assertions in our TBox T . According to the normal form for ELHI⊥ knowledge bases, we need to include into φK,a conjuncts
for assertions of form

A v ⊥ A v ∃R.B > v A

B1 uB2 v A ∃R.B v A.

We thus redefine the part of φK,a that corresponds to T , as follows:

ϕT =

 ∧
Av⊥ ∈ T

¬A

 ∧

 ∧
>vA ∈ T

A

 ∧

 ∧
BiuBjvA ∈ T

(δ(Bi) ∧ δ(Bj))⇒ A


∧

 ∧
Av∃R.B ∈ T

A⇒ 〈R〉δ(B)

 ∧

 ∧
∃R.BvA ∈ T

〈R〉δ(B)⇒ A

 ,

where δ(B) is 〈R〉 if B = ∃R and B otherwise.
The proof now follows just as in Lemma 7.
Furthermore, CONP-hardness follows from the proof of Theorem 5, as the reduction given there uses an empty TBox.

Membership in CONP follows again by following the proof of Theorem 5, taking, of course, the modification given above into
consideration.

PTIME-completeness follows immediately from PTIME-completeness of nested two way regular path queries given in
(Bienvenu et al. 2014). q

Theorem 11 Answering DLXPathpos
core queries over ELH⊥ KBs is NP-complete in combined complexity. For ELHI⊥ KBs

it becomes EXPTIME-complete. For both DLs the problem is PTIME-complete in data complexity. Apart from combined
complexity for ELHI⊥ KBs the lower bounds already hold for EL.

Proof. We begin by proving the results for ELH⊥. To show that the certain answers problem is NP-hard for DLXPathpos
core even

over EL we use a construction similar to the one in the proof of Theorem 9. We again give a reduction from the 3CNF-SAT
problem, this time using the KB K with the ABox A = {A(c)} and the TBox T consisting of the inclusions

A v ∃Xv
1 .B1, for v ∈ {>,⊥},

Bi−1 v ∃Xv
i .Bi, for v ∈ {>,⊥} and 1 < i ≤ n. (4)

For xi and truth value v ∈ {>,⊥} the formula ψvxi is now defined as:

〈((X>n )− ∪ (X⊥n )−) · · · ((X>i+1)− ∪ (X⊥i+1)−) · (Xv
i )− · ((X>i−1)− ∪ (X⊥i−1)−) · · · ((X>1 )− ∪ (X⊥1 )−)〉.



We define ϕ to be a formula 〈α[ψ]〉, where

α = (X>1 ∪X⊥1 ) · . . . · (X>n ∪X⊥n ),

and ψ is the same as above.
The idea here is that the canonical model is now an ordinary binary tree with the root labelled A and each of the nodes on

level i labelled by Bi. The edges going from level i to the level i + 1 of the tree are labelled Xv
i , and not (Xv

i )− as before.
Checking that the reduction works as intended can be done analogously as in the case of DL-Lite .

For the NP upper bound we show how the algorithm for the case of DL-LiteR can be extended to ELH⊥. We modify the
chase procedure Chase(K) from the proof of Theorem 9 by stating that it starts with assertions inA (and saying that it contains
∃R.B(c) when we have c′ such that R(c, c′) and B(c′) is contained in this set) and uses the following rules:

– add A(c) if T contains ∃R.B v A and Chase(K) contains ∃R.B(c);
– add R(c, cnew) and B(cnew), for a fresh cnew, if T contains A v ∃R.B and Chase(K) contains A(c) but does not contain
∃R.B(c);

– add B(c) if T contains A1 uA2 v B and Chase(K) contains A1(c) and A2(c).

Note that here we use the normal form for ELH⊥ which is the same as the normal form for ELHI⊥, but without allowing
inverses of roles. It is easy to check that the canonical model produced by these rules has the same properties as in the proof of
Theorem 9. Since the remainder of the NP algorithm there only uses the fact that KB satisfiability can be checked in PTIME
which holds for ELH⊥ (Stefanoni, Motik, and Horrocks 2013) we obtain the desired bound.

Next we show that the combined complexity of query answering for DLXPathpos
core becomes EXPTIME-complete if we use

ELHI⊥ knowledge bases by reducing the problem of ELHI⊥ satisfiability to query answering.
Assume we are given a ELHI⊥ knowledge base K = (A, T ). Define a query α as α := [A].
Next, take a knowledge base K′ = (A∪{C(c0), T ∪ {A v ⊥}}), where A and C are fresh concepts not appearing in K and

c0 a fresh individual.
It is straightforward to check that (c0, c0) is not a certain answer to α overK′ if and only ifK is satisfiable. Since the problem

of ELHI⊥ satisfiability is known to be EXPTIME-complete (Baader, Brandt, and Lutz 2008) we have established the lower
bound. The fact that the problem belongs to EXPTIME follows from Theorem 10.

The bound for data complexity follows from (Bienvenu et al. 2014) and the fact that every DLXPathpos
core query can be

simulated by a N2RPQ (Libkin, Martens, and Vrgoč 2013). q


