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ABSTRACT
In this paper, we propose a simple and expressive framework for
adding metadata to CSV documents and their noisy variants. The
framework is based on annotating parts of the document that can
be later used to read, query, or exchange the data. The core of our
framework is a language based on extended regular expressions that
are used for selecting data. These expressions are then combined
using a set of rules in order to annotate the data. We study the com-
putational complexity of implementing our framework and present
an efficient evaluation algorithm that runs in time proportional to
its output and linear in its input. As a proof of concept, we test
an implementation of our framework against a large number of real
world datasets and show that it can be efficiently used in practice.

1. INTRODUCTION
Comma-separated values (CSV) are a simple format used to

store and exchange data. In their essence, CSV documents are noth-
ing more than data divided by separators that naturally structure the
file content into cells, columns, lines, etc. An example of one such
document is given in Figure 1. Although traditionally used to send
data between organizations, these days CSV files also form a large
percentage of data published on the Web under the “open data" ini-
tiative whose aim is to make the government data widely available.
For example, the Office for National Statistics UK (ONS), makes
its data available in CSV format [16], as do the Land Registry UK
[12] and World Bank [29].

John , 47 , 15/05/1968 , 3700
Arthur , 31 , 31/07/1983 , 3005
Eliot , 30 , 21/08/1985 , 3600

Figure 1: An example of a CSV file.

CSV files are very intuitive and thus easily understood when pre-
sented to a human user. However, because of this simplicity CSV
data lacks expressive power and at this point there is no standard-
ised way for describing the content of a CSV file, like specifying
the structure of the data, the data types used in different columns,
or the way it should be displayed. In order to address this issue,
the World Wide Web Consortium (W3C), has formed a CSV on the
Web working group [27], whose main goal is to develop sound in-
frastructure for CSV data on the Web. Building this infrastructure
is based on allowing CSV data to be enriched by versatile and eas-
ily usable metadata. The basic idea of metadata is to allow users to
annotate their data with comments, additional meanings, or expla-
nations that can be managed by users or programs processing the
data. For example, specifying the meaning of some code that is of-
ten repeated in a file is an instance of metadata, as is providing the
default value for an error code or a missing piece of information.

When trying to develop a metadata language for CSV one op-
tion is to concentrate on well-structured documents that have the
same number of columns in each row, no unexpected line breaks,
and always use the same delimiter (comma in most cases). In fact,
the current recommendation by the W3C [26] treats CSV files as
tables, thus allowing for a concise metadata syntax. However, CSV
data can often be noisy, for instance when it is generated as a result
of publishing a legacy database in CSV format, which can result
in a skewed table with missing values, rows of different length,
or non-standard data types. Similar issues occur when using CSV
to store data coming from different sources, or when merging two
CSV tables. In this case, what is the essence kept in every CSV
file? Notice that the main feature of CSV data, which is preserved
even in noisy files, is the fact that they use predefined landmarks
to separate different data entries: rows are separated using the new
line symbol, cells within each row are separated by commas, etc.
Moreover, this idea is not exploited only by CSV files but by any
sort of format that has predefined landmarks separating the stored
data. This includes system and query logs [24], citation data [19],
geometric vector files [17], chess game data [9] and many other
formats. The main objective of this paper is to develop a metadata
language for annotating this more general sort of CSV documents,
that we call CSV-like documents, which do not necessarily conform
to the tabular format prescribed by the W3C [26], but use the mech-
anism of landmarks to lazily structure the data.

In order to design such a language we must overcome several is-
sues. First, we want the language to be applicable in practical use
case scenarios, such as the ones proposed in [28]. Second, notice
that our language is meant to provide metadata by annotating differ-
ent elements of CSV-like files such as cells, rows, columns, or even
entire documents. The question is then how can this be done in a
uniform way? And lastly, we also need to make our language effi-
ciently implementable in order for it to be applicable in practice. To
overcome these issues we deploy several ideas from text process-
ing [3] and information extraction [10, 18] that allow us to handle
different elements of potentially noisy CSV files in a uniform and
efficient way. Our proposal is centred around the notion of a span,
first introduced in [18]. Similarly to IBM’s SystemT [18], we view
documents as strings. A span is then simply an interval inside this
string (i.e. it is defined by the starting point and the ending point
of some substring). It is now easy to see that different elements of
a CSV-like document, such as cells, rows, or columns, are nothing
more than a collection of spans. In order to extract spans from a
file we extend the work of [3, 10] to define a class of regular ex-
pressions enriched with variables called span regular expressions.
The idea is to use regular expressions to position ourselves inside
a document and then store spans into variables. To attach meta-
data to documents we allow combining such expressions using a
datalog-like rule language into annotation programs that define the



annotation attached to spans selected by the program. As we show,
this results in an expressive language that can cover all the require-
ments put forward by the CSV on the Web working group [28] that
specify meta data for the file, plus all their validation requirements.
Since our language was designed for adding meta data, note that
we cannot cover the transformation requirements from [28].

Although the base language we propose serves as a nice theoreti-
cal umbrella for the problem of extracting and annotating data, this
framework does not internalize the landmark structure of CSV-like
documents. This implies that annotation programs are too compli-
cated for working with CSV-like documents, and their high expres-
sive power also implies hard evaluation algorithms, thus hampering
the language’s usefulness in practice. To overcome these limita-
tions, we further simplify the data extraction process by proposing
the so called navigation expressions which allow simple naviga-
tion through documents by using item separators (e.g. commas,
new line symbols) as landmarks. For instance, with the expression
next(,) we specify that we want to move from the current posi-
tion to the next comma in the file. Similarly, if we want to capture
this part of the document into a variable we say x:next(,), thus
storing the resulting span into the variable x. The main contribution
of this paper is then the language of navigation programs which is
suitably designed to simplify the extraction process of annotation
programs by using navigation expressions instead of span regular
expressions. Navigation programs offer an intuitive syntax that is
easy to use over CSV-like documents and, at the same time, still al-
lows us to model all use cases put forward by the CSV on the Web
working group [28].

To determine if our proposal has the potential to be used in prac-
tice we study the computational complexity of evaluating expres-
sions and programs over documents. In general, all of these prob-
lems are NP-complete. However, if we restrict the structure of nav-
igation expressions and require our programs to be tree-shaped, we
end up with an expressive subfragment that can be evaluated in
polynomial time. The main technical contribution of this paper is
an efficient algorithm for evaluating navigation expressions, thus
allowing them to extract spans from CSV-like documents. The al-
gorithm is based on an indexing technique that allows us to use
string matching algorithms [3] in order to process our expressions
in time that is both linear in the size of the input document and
the size of its output (the number of captured spans). This algo-
rithm is also a constant-delay algorithm [20], which means it takes
polynomial time to preprocess the input and constant time between
producing consecutive outputs.

Finally, as a proof of concept, we also show how an implementa-
tion of our framework works in practice by designing a set of exper-
iments that is based on the requirements from the W3C CSV on the
Web working group [28] and running it against a wide range of real
world CSV datasets. We also test the implementation in the context
of annotating query logs and for this we use the data from public
query endpoints of the British Museum [22] and DBpedia [8], two
large providers of Semantic Web data. Based on this evaluation we
conclude that our proposal results in a lightweight framework for
annotating CSV-like data that can be efficiently implemented to run
on an average laptop or a desktop machine, but is powerful enough
to handle files one is likely to encounter in practice.

Related work. We categorise related work as follows.
CSV metadata languages: First, we clarify the connection of our
approach with the proposal by the W3C’s CSV on the Web work-
ing group for annotating CSV files [27]. The main difference is
that the working group’s proposal assumes the data to conform to a
strict format where all rows have the same number of columns, the
user comments appear only in the first row, etc. One of the main

objectives of the language we propose is the ability to handle noisy
data that does not necessarily conform to such strict specifications.
Furthermore, the metadata proposed by the working group comes
from a fixed vocabulary and does not allow arbitrary user defined
annotations, as our approach does. Overall, our objective was to
design a language that has a high level view of adding the metadata
and can also be used to annotate files more general than CSV, such
as e.g. query logs, scientific data, etc.

As far as we are aware, the only other body of work dealing with
metadata in CSV files is Martens et. al [14]. However, note that
their proposal addresses only the problem of specifying schemas
for CSV data and does not deal with general metadata concepts
that our approach covers, such as specifying arbitrary annotations.
Furthermore, the approach of [14] assumes that the data is always
tabular and is not designed to deal with noisy CSV files. Lastly, the
biggest difference between the two approaches is the fact that [14]
focuses on providing a good conceptual framework for specifying
CSV schemas, but does not deal with implementation issues. On
the other hand, the main contribution of our work is a linear time
algorithm for extracting data and annotating documents.

Spanners, AQL and SystemT: Annotation query language (AQL),
which forms the basis for IBM’s SystemT [18], together with its
theoretical counterpart named spanners [10], had the biggest influ-
ence of the work we present here. In particular, we adopt their
idea of viewing a document as a single string, and of using regu-
lar expressions with variables to extract data. The main difference
between the two approaches is in the intended application domain
and in the expressive power. Regarding the application domain,
while SystemT is designed to deal with arbitrary text documents,
the languages developed in this paper are optimized to work on
files that have natural landmarks separating the data. This is also
seen in the way that regular expressions are used. More precisely,
while SystemT and AQL use regular expressions for extraction, we
view them as a way of navigating between landmarks separating
the data, and then extracting the portion of the file between two
landmarks. In terms of expressive power, it is straightforward to
see that the presented languages are incomparable (for instance,
we allow full recursive rules which are not available in AQL, while
overlap consolidation operators of SystemT are not expressible in
our framework). However, since there are enough fragments con-
sidered both in [10] and our work to warrant a paper on its own, we
leave such comparisons for future work.

Other information extraction tools: Here we compare our approach
to standard stream editing tools such as AWK [5] and grep [25],
which are used for matching regular expressions, or their exten-
sions with variables [3], to a given string. The whole framework
we propose properly subsumes all of these tools (as it allows the
use of datalog-like rules), however, the classes of extraction expres-
sions we use when defining our programs can be seen as variants
of regular expressions with back referencing [3]. Having seman-
tics based on the notion of a span makes our expressions slightly
weaker than regular expressions with back referencing (e.g. we can
not express the language of all words of the form w1w1 � � �wkwk,
for some k, which is definable using backreferences by the expres-
sion px&xq�). On the other hand, sacrificing the expressive power
allows us to define the semantics of our expressions in a much sim-
pler way than it is done for regular expressions with back refer-
encing [3]. We also do experimental evaluation of our framework
against AWK in Section 7.

Relational tools: Since one of the most natural use cases for our
framework is adding metadata to CSV files, we would like to dis-
cuss the connection of our work with annotation systems for rela-
tional databases. After all, CSV tables can be viewed as relational



data, so why not use the existing tools? One reason is that anno-
tation systems for relational data are often row-based [11, 6], and
thus do not support all the functionalities required from CSV meta-
data [28]. Another, perhaps more important reason, is that CSV
was designed as a lightweight format that is widely available and
independent of internal data storage mechanisms, while annotation
tools for relational data [15, 6] rely heavily on the relational model
and its indexing capabilities. Lastly, the approach we propose can
naturally handle data that is not necessarily tabular (such as CSV
files where rows have a different number of columns), which can
cause problems for relational systems as table based representation
of such data is not straightforward.

Organisation. Section 2 gives a high level overview of our frame-
work, and Section 3 formalizes the notions used throughout the
paper. In Section 4 we analyse the complexity of evaluating pro-
grams. Section 5 discusses how the framework can be tuned to
cover CSV use cases from [28]. A practical algorithm for naviga-
tion expressions is presented in Section 6, and experimental eval-
uation in Section 7. We conclude in Section 8. Missing proofs,
programs used in experiments, and the source code of our imple-
mentation are available online at [1].

2. ANNOTATIONS IN ACTION
To develop an annotation language for CSV-like documents, we

propose a framework where documents in general are modelled as
strings. In this way, the process of extracting and annotating el-
ements from a document can be simply viewed as a sequence of
string operations. In what follows, we introduce the main notions
used in our framework, which are then formalised in Section 3.

As a running example, assume that we are given the following
document d0 in the RIS format [19]:

TY - JOUR
AU - Simon
AU - Apt

This document stores information about a publication, indicating
that the type (TY) of this publication is journal (JOUR), and that the
authors (AU) of this publication are Simon and Apt. It is important
to notice that every row in the RIS format starts with two letters
followed by two spaces, a dash and a space. As mentioned before,
document d0 is viewed as a string in our framework:

d0 � $TY - JOUR éAU - Simon éAU - Apt%

In this case, the string d0 is defined over an alphabet consisting of
the letters a, . . ., z, A, . . ., Z, the symbol dash (-), and the special
symbols , é, $ and%, which are used to indicate a space, the end
of a line, the start of a document and the end of a document.

In our framework, the process of annotating some elements of a
document d is reduced to the process of annotating some continuos
regions of the string representation of d, which are called spans [10]
in our setting. More precisely, a span p of d is a pair of the form
pi, jq such that 1 ¤ i ¤ j ¤ |d| � 1, where |d| is the length of
the string d. Thus, p represents a continuos region of the document
d, whose content is the infix of d between positions i and j � 1.
For instance, the following figure includes d0 and the index of each
position in this string:

$ T Y - J O U R éA U - S i m o n éA U - A p t %
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

In this case, we have that the span p2, 7q has as content the infix
of d0 between positions 2 and 6, that is, the string “TY -”, while

p4, 4q is assumed to have as content the empty string ε (in general,
the content of a span pi, iq is assumed to be ε). Moreover, we have
that the span p1, 35q corresponds to the entire document, as the
infix of d0 between positions 1 and 34 is d0 itself.

The first key ingredient of our framework is the definition of ex-
pressions for extracting spans from a document. More precisely,
we introduce in this paper the notion of a span regular expression
(SRE), an extension of classical regular expressions that are de-
signed for defining and extracting spans rather than strings. In a
nutshell, SREs use the union (i.e. �), the concatenation (i.e. {)
and the Kleene star of regular expressions to check patterns inside
a document. For extracting spans, SREs are enhanced with vari-
ables (e.g. x, y, z) which store spans. For instance, suppose that in
our running example we want to extract and annotate “all spans in
the first column of a RIS document d”, which have the information
about the tags for the publications stored in d. This means that we
want all spans that: (i) start after a symbol éor$, and end before a
symbol ; and (ii) do not contain a symbol inside. We can define
all spans that satisfy condition (i) with the SRE:

R0 � p é� $q {Σ� {

where Σ is the set of all symbols in the document d0. Intuitively,
R0 is defining all spans of the form “ éw ” or “$w ”, where w is
a substring of zero or more symbols in Σ. Since we are interested
in capturing spans between two separators, we can refine R0 and
replace Σ� with a variable x as follows:

R1 � p é� $q {x {

Thus, R1 defines all spans that satisfy condition (i), and it stores in
x the span between the symbols éor $ and the symbol .

To define condition (ii) in the previous example, we need to in-
troduce another ingredient to our framework. More precisely, to
evaluate a SRE over a specific span (which can be an entire docu-
ment or just a fragment of it), we use the so-called extraction ex-
pressions. For example, define SRE R2 as follows:

R2 � ∆�{R1{∆
�

where ∆ � Σ Y t$,%u. Then doc.R2, where doc is a reserved
word, is an extraction expression that indicates that R2 has to be
evaluated over the span corresponding to an entire document. For
instance, if doc.R2 is evaluated over d0, then we are indicating
that R2 has to be evaluated over the span p1, 35q whose content is
d0. In particular, this expression indicates that d0 has to match R2,
that is, d0 should be of the form “u éw v” or “u$w v” where
u and v are substrings of zero or more symbols in ∆, and it also
indicates that the span whose content is w should be stored in the
variable x (recall that the variable x occurs in R1).

To indicate that a SRE R has to be evaluated over a span corre-
sponding to a fragment of a document, we use an extraction expres-
sion of the form z.R where z is a variable, which specifies that R
has to be evaluated over the span stored in z. For example, assume
that the extraction expression doc.R2 has been evaluated over a
RIS document d. Then to check that the span stored in the variable
x satisfies some condition, we can use an extraction expression of
the form x.R. More specifically, given that each span stored in x
satisfies condition (i) in our running example, we can use another
extraction expression to filter x with the condition (ii). In particu-
lar, we use the extraction expression x.F , with F � pΣ � t uq�,
to say that x contains zero or more symbols excluding .

The second key ingredient of our framework is a language for an-
notating spans, which uses rules to combine the results of several
extraction expressions and annotations. For instance, in our run-
ning example we can use the following rule to extract from a RIS



document d every span that corresponds to a row in this document:

doc.∆�{p é� $q {x { p é� %q{∆� ^ x.G Ñ Rowpxq, (*)

where G � pΣ � t éuq�. That is, a row in d is a string w that
appears right after a symbol éor $, does not mention any symbol

éand appears right before a symbol éor %. Besides, we can
reuse Row in other rules to define more specific annotations. For
example, we know that if a row starts with the keyword AU, then it
contains the name of an author of a publication. Thus, the following
rule is used to extract the names of the authors in a RIS document:

Rowpxq ^ x.AU - {y Ñ Authorpyq.

The last key ingredient of our framework is a “landmark-oriented”
language for extracting spans, called the navigation language. Al-
though SREs are a nice theoretical umbrella for extracting spans,
they are designed for general span extraction over any kind of doc-
ument, thus not exploiting the natural structure of CSV-like docu-
ments. Namely, as CSV-like documents use separators to organize
the data into fragments and subfragments, one would naturally use
these separators as anchors to navigate the document and extract the
desired data. To this purpose, we base the navigation language on
two axis anypSq and nextpSq, which naturally suggest to nav-
igate the document until any separator or to the next separator in
the set S, respectively. For instance, in order to extract every span
that corresponds to a row in a document, we can use the following
navigation rule:

doc.anyp é� $q{x : nextp é� %q Ñ Rowpxq (**)

When this rule is evaluated over a RIS document d, it says that
one has to move until “any” place in d that has a symbol éor $,
and then move to the “next” symbol éor %, while capturing the
span into the variable x. Notice that this rule extracts and annotates
the same spans as the rule (*), but it is much easier to define and
understand.

As a final example, we consider again the task of extracting the
names of the authors in a RIS document, which was carried out be-
fore by combining two rules. In what follows we provide a simple
navigation rule that takes advantage of the separators used in RIS
documents to carry out this task:

doc.anypAU - q{x : nextp é� %q Ñ Authorpxq.

In this case, the rule indicates that we have to move until “any”
place in a RIS document that has the separator AU - , and then
move to the “next” symbol éor %, while capturing the span into
the variable x.

3. ANNOTATING CSV-LIKE DATA
In this section, we formalise the different notions of extraction

expressions and annotation programs that were discussed in the
previous section, and which are studied in this paper.

From now on, assume that Σ is a finite alphabet that is used in
documents and does not contain the reserved symbols $ and %.
Then a document d is just a string in the language $Σ�%, that is,
d is a string of the form $w% with w P Σ�. Notice that we can
treat a document just as a string, so, for example, we define |d| as
the length of the string d. However, we will continue using the term
document to emphasize the fact it is a string with starting symbol
$ and ending symbol %.

As discussed in the previous section, a fundamental notion asso-
ciated to a document d is the concept of a span, which corresponds
to a continuos region in d. Formally, we define spanpdq as the set
tpi, jq | i, j P t1, . . . , |d| � 1u and i ¤ ju, where each element
pi, jq P spanpdq is called a span of d. Every span p � pi, jq of d

has an associated content, which is denoted by dppq or dpi, jq, and
it is defined as the infix of d from position i to position j�1 (notice
that if i � j, then dppq � dpi, jq � ε).

3.1 Extraction expressions
As pointed out in Section 2, an extraction expression defines a

way to retrieve spans from a document. The most general form
of such statements considered in this article will be defined by us-
ing the notion of span regular expression. To define such notion,
we first need to assume that V is a set of variables that is disjoint
with Σ. Then a span regular expression (SRE) is defined by the
following grammar:

R ::� w, w P pΣY t$,%uq� | x, x P V |

pR{Rq | pR�Rq | pRq� | xRy

We have already shown in Section 2 some examples of SREs, and
how they are used to define a set of spans from a document. Be-
sides, we have also briefly described in Section 2 how variables
are used in SREs to store spans. To define the semantics of SREs,
we consider variables in SREs as free variables and, thus, we need
to consider a variable assignment when evaluating a SRE over a
document d. More precisely, a variable assignment σ over d is a
function from V to spanpdq, that is, a function that assigns a span
to every variable in V . Then the semantics of SRE R, with respect
to a document d and a variable assignment σ over d, denoted by
JRKd,σ , is defined recursively as follows:

JwKd,σ � tp | p P spanpdq and dppq � wu

JxKd,σ � tσpxqu

JR1{R2Kd,σ � tpi, jq | pi, jq P spanpdq and Dk :

pi, kq P JR1Kd,σ and pk, jq P JR2Kd,σu
JR1 �R2Kd,σ � JR1Kd,σ Y JR2Kd,σ

JR�Kd,σ � JεKd,σ Y JRKd,σ Y JR2Kd,σ Y JR3Kd,σ Y � � �

JxRyKd,σ � tp P spanpdq | Dp1 P JRKd,σ : dppq � dpp1qu,

where R2 is a shorthand for R{R, similarly R3 for R{R{R, etc.

EXAMPLE 3.1. Consider the following document d storing in-
formation about temperatures:

$ 1 5 . 2 , 2 0 . 3 é1 4 . 3 , 1 4 . 3 é1 4 . 2 , 1 8 . 9 %
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Notice that below the string d we have included the index of each
position in it. Now consider R3 � p15.2 � 14.3q that uses the
union operator � to define the set of spans whose content is either
15.2 or 14.3. Then given an arbitrary variable assignment σ, we
have that JR3Kd,σ � tp2, 6q, p13, 17q, p19, 23qu since dp2, 6q �
15.2, dp13, 17q � 14.3, dp19, 23q � 14.3, and for every other
p P spanpdq, it holds that dppq � 15.2 and dppq � 14.3. Notice
that R3 does not include any variable, so σ does not play any role
when evaluating R3 over d.

Several variables can be included in a SRE, such as in the case of
R4 �

é{x{, { {y{ é. To evaluate R4 over d, we need to consider
the values assigned to both x and y. For instance, assume that σ2

is a variable assignment such that σ2pxq � p13, 17q and σ2pyq �
p19, 23q. It is then easy to check that p12, 24q P JR4Kd,σ2 .

If we replace R4 by a SRE R5 � é{x{, { {x{ é, then it may
look like we are defining the set of spans p P spanpdq such that
the content associated to p corresponds to a row having the same
temperature value in both columns. But in this case we have that
JR5Kd,σ is empty for every variable assignment σ. The reason for
this is that two spans pi, jq and pk, `q are considered to be equal if



and only if i � k and j � `. To overcome this limitation, span
regular expressions contain the operator x�y, which allows to com-
pare the contents associated to two spans. Thus, if we consider the
SRE R6 �

é{x{, { {xxy{ éinstead of R5, then we will be effec-
tively defining the set of spans corresponding to rows with the same
temperature value in both columns. In fact, if σ3 is a variable as-
signment such that σ3pxq � p13, 17q, then we have that p12, 24q P
JR6Kd,σ3 as p13, 17q P JxKd,σ3 , and p19, 23q P JxxyKd,σ3 (given
that dp19, 23q � dpσ3pxqq � dp13, 17q � 14.3).

Notice that the semantics of SREs is defined with respect to a val-
uation σ. However, we want to use SREs in order to extract spans
from a document and store them into some variables, thus defin-
ing valuations. This is achieved by using the notion of extraction
expressions. More precisely, an extraction expression is an expres-
sion of the form either doc.R or x.R, where R is a SRE, doc is
a reserved word and x is a variable. Moreover, the evaluation of
these expressions over a document d is defined as follows:

Jdoc.RKd � tσ | σ is a variable assignment over d
such that p1, |d| � 1q P JRKd,σu

Jx.RKd � tσ | σ is a variable assignment over d
such that σpxq P JRKd,σu

Intuitively, an expression of the form doc.R is used to extract valu-
ations from a span p1, |d|�1q corresponding to an entire document
d, therefore the use of the keyword doc, while an expression of the
form x.R is used to extract valuations from the spans assigned to
the variable x. Note that an expression of the form x. $ R % is
equivalent to doc.R, however, as the latter is used more often we
keep it in the language.

EXAMPLE 3.2. Let d be the document in Example 3.1, and R
be SRE ∆�{ é{x{, { {xxy{ é{∆�, where ∆ � Σ Y t$,%u. This
SRE can be used to extract spans from dwhose content is a temper-
ature that is repeated in a row. In fact, we have that Jdoc.RKd is the
set of all variable assignments σ such that σpxq � p13, 17q.

3.2 General annotation programs
The goal of this section is to introduce a general form of pro-

grams for annotating documents, which are based on the classic
idea of combining extraction expressions using a rule-based lan-
guage [21]. To this end, assume from now on that Γ is a finite
alphabet of annotations that is disjoint with Σ and V . Then an
annotation program consists of a set of rules that indicate how to
assign annotations from Γ to the spans in a document. These rules
are constructed by combining extraction expressions with formulas
of the form Apxq, where A P Γ and x P V . More precisely, a rule
is an expression of the form:

ϕ1 ^ � � � ^ ϕm ^A1px1q ^ � � � ^Anpxnq Ñ Apxq, (†)

where (a) m ¥ 0 and n ¥ 0; (b) ϕi is an extraction expression;
(c) Aj P Γ and xj P V where xj is not necessarily mentioned in
ϕ1, . . . , ϕm; and (d) A P Γ, x P V and x occurs in the body of the
rule. Moreover, an annotation program Π is a finite set of rules.

A ground annotation over a document d is an expression of the
form Appq, where A P Γ and p P spanpdq. Assume that Λ is a set
of ground annotations over d. Then Λ is said to satisfy the rule (†)
if for every variable assignment σ over d such that σ P JϕiKd for
every i P t1, . . . ,mu, it holds that:

if Aipσpxiqq P Λ for all i P t1, . . . , nu, then also Apσpxqq P Λ.

Moreover, Λ is said to satisfy an annotation program Π if Λ satisfies
each rule in Π.

To define the evaluation of an annotation program over a docu-
ment, we need to consider all sets of ground annotations over the
document that satisfy the program. More specifically, given a doc-
ument d, an annotation program Π over d and a ground annotation
Appq over d, we will consider Appq as a result of evaluating Π
over d if we are certain about this annotation in the sense that Appq
occurs in every set of ground annotations over d that satisfies Π.
Formally, the evaluation of Π over d, denoted by ANNpΠ, dq, is
defined as follows:

tAppq | for every set Λ of ground annotations over d
such that Λ satisfies Π, it holds that Appq P Λu

It is important to notice that this semantics is based on the
usual semantics for (recursive) Datalog programs [2, 7]. In fact,
ANNpΠ, dq is the result of taking the intersection of all possible
sets Λ of ground annotations over d satisfying Π, which, given that
the rules in Π do not include any negative atoms, is equivalent to
computing the minimum such set Λ under set inclusion. This cor-
responds to the usual least fixed point semantics for Datalog pro-
grams without negation.

EXAMPLE 3.3. Assume that we want to indicate that if a docu-
ment d starts with the string temp, then d stores information about
temperatures. To do this, we use the following program to annotate
d with the tag TempDoc if it satisfies the previous condition:

x. ${temp{Σ�{% Ñ TempDocpxq.

Notice that σ P Jx.$ {temp{Σ�{%Kd if, and only if, the content
associated to the span σpxq is a string of the form $ tempw% with
w P Σ�, that is, if and only if σpxq corresponds to the document
d, which starts with the string temp. Second, assume that in every
document storing information about temperatures, we need to an-
notate every value with the tag TempVal. If D � t0, 1, . . ., 9u and
N � pΣ r Dq, then this is done by using an annotation program
that combines the rule defining TempDoc with the following rule:

TempDocpxq ^ x. ${Σ�{N{y{N{Σ�{% ^

y.R Ñ TempValpyq,

In the body of the rule, the annotation TempDocpxq indicates that
x stores a span whose content is a document storing information
about temperatures, while the expression x.${Σ�{N{y{N{Σ�{%
is used to retrieve from x and store in y a span that could represent
a temperature value. Notice that we do not want to extract a part
of a temperature value, for example we do not want to extract 12
if the stored temperature is 12.3; thus, we check that the symbols
right before and after y are not digits (they belong to N ). Finally,
assuming that P � t1, . . . , 9u, we have that R is the SRE p0 �
PD�q.D�. Hence, the expression y.R is used to check that the
content of y is a decimal number.

3.3 Annotation programs for CSV-like data
Annotation programs are designed to deal with general docu-

ments, relying on span regular expressions to extract spans from
them. In this sense, annotation programs do not take advantage of
the structure of CSV-like documents where separators play a key
role. In fact, in many practical scenarios users only need a simple
language that is oriented towards navigating CSV-like documents
using these separators as landmarks. In these scenarios span regu-
lar expressions are, in general, too expressive, so we propose in this
section a simple language that separates the navigational features
needed in CSV-like documents from the use of regular expressions.

We start by defining a navigation language, which uses span reg-
ular expressions in a very restricted form but can express most of



the span-directed extraction used in practice. A navigation expres-
sion (NE) ψ is defined by the following grammar:

ψ ::� ψ{ψ | anypSq | nextpSq |

x : nextpSq, x P V | xxy : nextpSq, x P V
S ::� w, w P ∆� | S � S

where S is assumed to be prefix free, that is, every expression S
is of the form w1 � � � � � wn, where (a) ∆ � Σ Y t$,%u, (b)
every wi P ∆� (1 ¤ i ¤ n), and (c) wi is not a prefix of wj
(1 ¤ i, j ¤ n and i � j).

An NE is constructed as a sequence of expressions using either
any or next. The axis anypSq is used to move forward in a doc-
ument reading any sequence of symbols ending with a word in S,
while the axis nextpSq is used to move forward to the next occur-
rence of a word in S. Moreover, x : nextpSq and xxy : nextpSq
perform the same form of navigation as nextpSq, but in the former
case the traversed span is stored in the variable x, while in the latter
case it is checked whether the content of the traversed span coin-
cides with the content of the span stored in x. Thus, the expressions
anypSq, nextpSq, x : nextpSq and xxy : nextpSq are useful
to restrict the navigation between two or more separators, which is
a very common operation on CSV-like documents. Notice that we
assume that S is prefix free, as the set of separators used in practice
usually satisfies this restriction (e.g comma and semicolon).

We define the semantics of NEs in the same way as for span
regular expressions. More precisely, given a document d and a
variable assignment σ over d, the base case JSKd,σ and the recur-
sive case Jψ1{ψ2Kd,σ are defined as for the case of span regular
expressions. Moreover, JanypSqKd,σ is defined as JpΣ Y t$,%
uq�{SKd,σ . Finally, the evaluation of nextpSq, x : nextpSq
and xxy : nextpSq are defined as follows assuming that S �
w1 � � � � � wn and rS is the SRE ∆�w1∆� � � � � � ∆�wn∆�

with ∆ � ΣY t$,%u:

JnextpSqKd,σ � tpi, jq P spanpdq |
Dk ¥ i : pk, jq P JSKd,σ and pi, j � 1q R JrSKd,σu

Jx : nextpSqKd,σ � tpi, jq P spanpdq | Dk ¥ i : σpxq � pi, kq,

pk, jq P JSKd,σ and pi, j � 1q R JrSKd,σu
Jxxy : nextpSqKd,σ � tpi, jq P spanpdq | Dk ¥ i : pi, kq P

JxxyKd,σ, pk, jq P JSKd,σ and pi, j � 1q R JrSKd,σu

Notice that a span p belongs to JrSKd,σ if the content associated to
p is a string of the form uwiv with u, v P ∆� and 1 ¤ i ¤ n, that
is, if one of the separators in S occurs in the content associated to
p. Thus, if pi, jq P JnextpSqKd,σ , then we know that there exists
a position k such that i ¤ k   j, the content of pk, jq is a word
in S and no separator in S occurs between positions i and j � 1.
Hence, in this case we know that k is the next position from iwhere
a separator from S occurs.

Extraction expressions based on NEs are defined exactly as in
Section 3.1, that is, if ψ is an NE, then doc.ψ and x.ψ are consid-
ered to be extraction expressions if x P V . However, the semantics
of these formulae are defined in a slightly different way:

Jdoc.ψKd � tσ | σ is a variable assignment over d such that
p1, kq P JψKd,σ for some k, 1 ¤ k ¤ |d| � 1u

Jx.ψKd � tσ | σ is a variable assignment over d such that
σpxq � pi, jq and pi, kq P JψKd,σ for some k, i ¤ k ¤ ju

This definition formalises the fact that NEs are intended to be used
to navigate forward in a document until we find a separator, and
without taking into consideration the symbols after this separator.
Thus, σ P JψKd if there exists a prefix p1, kq of the span p1, |d|�1q

representing the entire document d such that p1, kq conforms to
the conditions encoded in ψ, thus without taking into account the
symbols in the positions k � 1, . . ., |d|.

We are ready to define our simplified notion of annotation pro-
gram. A navigation program Ω is a finite set of rules of the form
(†) where (a) m ¥ 0 and n ¥ 0; (b) ϕi (1 ¤ i ¤ m) is an expres-
sion of the form either doc.ψ or x.ψ or x.R, where x P V , ψ is
an NE and R is a SRE without variables; (c) Aj P Γ and xj P V
(1 ¤ j ¤ n); and (d) A P Γ, x P V and x occurs in the body
of the rule. The evaluation of Ω over a document d, denoted by
ANNpΩ, dq, is defined as for the case of annotation programs.

EXAMPLE 3.4. Assume that d is a document where values are
separated by commas. Moreover, suppose that the elements of the
first column of d should form a primary key, so that two different
rows of d should have distinct values in the their first columns. We
can annotate with the tag Error any violation to this constraint:

doc.anyp$ � éq{x : nextp, q{anyp éq{xxy : nextp, q

Ñ Errorpxq

Thus, we can check if the first column of d is a primary key by ver-
ifying whether any span has been annotated with the tag Error.

Recall that the navigation program (**) defined in Section 2 is
equivalent to annotation program (*) from the same section. In
fact, it can be proved that each navigation program can be trans-
formed into an equivalent annotation program, thus showing that
navigation programs are a simplification of annotation programs.

4. COMPLEXITY OF ANNOTATING CSV
The goal of this section is to study the complexity of evaluat-

ing an annotation program over a CSV-like document, for which
we also have to study the evaluation problem for extraction expres-
sions. This study allows us to identify the features of our frame-
work that need more resources, and the fragments that can be eval-
uated efficiently.

We start by analysing the computational complexity of evaluat-
ing an extraction expression defined by either a span regular ex-
pression or a navigation expression. Given a document d and an
extraction expression of the form doc.ψ, where tx1, . . . , xku is
the set of variables occurring in ψ, we are interested in computing
the set tpσpx1q, . . . , σpxkqq | σ P Jdoc.ψKdu, that is, we are in-
terested in enumerating all the variable assignments in Jdoc.ψKd.
To provide a lower bound for the complexity of this problem, and
also to simplify the analysis, we consider the decision problem of
verifying whether Jdoc.ψKd is not empty. Formally, if L is either
the class SRE of span regular expressions or the class NE of nav-
igation expressions, then we consider the following problem:

Problem: NONEMPpLq
Input: A document d and an expression ψ P L.

Question: Is Jdoc.ψKd not empty?

Unfortunately, we can show that the problem is intractable.

THEOREM 4.1. NONEMPpSREq and NONEMPpNEq are both
NP-complete.

The proof of Theorem 4.1 gives a PTIME bound in the case of
data complexity, where the expression ψ P L is considered to be
fixed. Unfortunately, the algorithm would require to check tuples
of spans (of fixed arity) one by one, which depends exponentially
in the number of (fixed) variables: a bound often not feasible in
practice. The proof also reveals the real source of intractability in



NONEMPpLq: the overuse of variables and the content operator x�y
in extraction expressions. In practice, a restriction on the use of
the content operator is reasonable, as checking whether two spans
have the same content is not used very often (see [28]). The fol-
lowing theorem shows that under this assumption, the complexity
decreases for the case of navigation expressions.

THEOREM 4.2. If the content operator is not allowed,
then NONEMPpSREq is NP-complete and NONEMPpNEq is
in PTIME.

The membership of NONEMPpNEq in PTIME opens a window to
find an efficient algorithm for our initial enumeration problem for
navigation expressions without the content operator. In fact, we
provide such an algorithm in Section 6.

Now we move our attention to the evaluation of annotation pro-
grams. Similarly to the case of extraction expressions, we are in-
terested in enumerating all the A-annotations in ANNpΠ, dq for
an annotation program Π, a document d, and an annotation label
A P Γ. In terms of complexity analysis, we define the natural de-
cision problem associated to this computation problem, assuming
that P is either the class AP of annotation programs or the class
NVP of navigation programs:

Problem: MEMBpPq
Input: A document d, a program Π P P ,

and a ground annotation Appq.
Question: Is Appq P ANNpΠ, dq?

We know from Theorem 4.1 that MEMBpAPq and MEMBpNVPq
are both intractable problems (i.e. NP-hard). The following result
shows that these problems are indeed NP-complete.

THEOREM 4.3. MEMBpAPq and MEMBpNVPq are both NP-
complete.

A consequence of Theorems 4.2 and 4.3 is that evaluating anno-
tation programs without the content operator is still NP-complete.
We do not know if the same happens for navigation programs with-
out the content operator. Data complexity is again PTIME, but just
as when checking non-emptiness, the algorithm is not usable over
real world datasets.

On the other hand, evaluating navigation programs without the
content operator and with a tree-like structure of each rule can be
done efficiently. Formally, let θ � `1.ψ1 ^ � � � ^ `m.ψm be a
conjunction of extraction expressions, where each ψi is a naviga-
tion expression and `i P V Y tdocu (1 ¤ i ¤ m), and assume
that Gθ is a graph obtained from θ as follows. The set of nodes of
Gθ is the set of variables occurring in θ, and there exists an edge
px, yq in Gϕ if and only if x � `i and y occurs in ψi, for some
i P t1, . . . ,mu. Then we say that θ is tree-like if (1) `i � `j for ev-
ery i, j P t1, . . . ,mu such that i � j; and (2) Gθ is a rooted-forest
(i.e. a set of rooted-trees). For example, the following conjunction
of extraction expressions is tree-like:

doc.anyp éq{x :nextp éq ^ x.y :nextp, q{z :nextp, q ^ z.0�

We say that a navigation program Ω is tree-like if for every rule in
Ω of the form (†) (see Section 3.2), it holds that ϕ1^� � �^ϕm is
tree-like.

THEOREM 4.4. If we restrict to tree-like navigation programs
not using the content operator, then MEMBpNVPq is in PTIME.

The tree-like restriction just defined is a reasonable assumption
over navigation programs. In fact, all the navigation programs in
this paper are tree-like, and all the use cases in [28] that can be an-
notated by annotation programs can also be annotated by tree-like
navigation programs.

5. USABILITY OF THE FRAMEWORK
Next, we analyse the usability of our framework for specifying

the meta data of CSV files occurring in practice. For this, we con-
sider the use cases put forward by the CSV on the Web working
group [28] as a yardstick in terms of expressivity. Note that the
requirements in [28] also include other use cases that go beyond
metadata specification (e.g. transforming CSV data into another
format). Since our language was designed for adding metadata, we
do not consider these uses cases in our analysis and we just con-
centrate in the ones related to metadata over CSV.

The use cases presented in [28] are very diverse and are mostly
designed for tabular CSV data like the file from Figure 1. By sim-
ple inspection, one can easily check that navigation programs can
fulfill most of the requirements in [28], but not all of them. In par-
ticular, navigation programs cannot define Foreign Key References
and Association of Code Values With External Definitions (see [28]
for the full definition). To satisfy the missing requirements, one
can extend our framework with two simple features: (1) managing
multiple documents and (2) allowing binary relations in the con-
sequents (heads) of rules, which are used to store associations be-
tween spans. For the former extension, one can easily add the use
of multiple documents to our framework by allowing extraction ex-
pressions of the form d.ψ, where d is the name of a document. For
the latter, we can enrich our Datalog-like rules with binary pred-
icates in their consequents, and then define their semantics in the
same ways as in Section 3. Instead of giving the formal definitions,
we illustrate these extensions with an example.

EXAMPLE 5.1. The requirement Foreign Key References asks
to cross-reference data between different CSV files [28]. For exam-
ple, suppose that we have two CSV documents, called d1 and d2,
and we want to say that a row in d2 is related with a row in d1 if
they have the same value in the first cell. The following rule in the
extended framework allows to define this requirement:

d1.anyp
éq{x : nextp éq ^ d2.anyp

éq{y : nextp éq ^

x.z : nextp, q ^ y.xzy : nextp, q Ñ FKeypx, yq

Notice that the consequent (head) of this rule is FKeypx, yq, which
uses binary relation FKey to establish an association between the
spans stored in variables x and y.

Navigation programs for annotating CSV-like data satisfy all the
use cases in [28] if extended with features (1) and (2). Besides, the
inclusion of these features does not change the complexity analysis
in Section 4; in particular, all the positive and negative results still
hold for expressions and programs with multiple documents and bi-
nary predicates in the consequents of rules. Thus, we are convinced
that navigation programs are a natural “sweet spot” between the ex-
pressiveness needed to deal with metadata over CSV-like files and
the efficiency needed to deal with such files in practice.

At this point it is natural to ask whether one could allow the use
of binary predicates anywhere in annotation programs, and whether
one could go further and use n-ary predicates. To answer such
questions, first one has to consider that our approach is lightweight
allowing an efficient implementation (see Section 6), while an im-
plementation of Datalog with n-ary predicates requires of an ex-
tensive use of indexes and optimization techniques, which are not
guaranteed to work efficiently in all cases. Second, one has to
consider that evaluating Datalog programs with n-ary (intentional)
predicates is EXPTIME-complete [2, 7] and, thus, all results in
Section 4 will not hold in this extended framework. Thus, the in-
clusion of n-ary predicates is a very interesting but delicate issue
that we have left for future work, where we plan to consider inte-
gration within a system like DLV [13].



6. EFFICIENT EVALUATION OF
NAVIGATION EXPRESSIONS

The use of our framework requires an efficient algorithm for
enumerating all the variable assignments satisfying a navigation
expression. The complexity results provided in Section 4 show
that such a procedure does not exist if the content operator is
allowed (unless PTIME � NP). On the other hand, we pro-
vide in this section such a procedure for navigation expressions
without the content operator. This algorithm has running time
Op|ψ| � |d| � |Output|q, where ψ is a navigation expression, d is a
document and |Output| is the size of the output. Furthermore, this
algorithm belongs to the class of constant-delay algorithms [20],
namely, enumeration algorithms that take polynomial time in pre-
processing the input (i.e. ψ and d), and constant time between two
consecutive outputs (i.e. variable assignments).

6.1 A normal form for navigation expressions
The initial step for evaluating a navigation expression is to re-

move unnecessary any-operators from the input navigation ex-
pression. For this purpose, we introduce a normal form for nav-
igation expressions and show that every formula can be trans-
formed into this normal form. Specifically, we say that an
NE ϕ is a next-formula if it is the concatenation of next-
operators and at least one variable occurs in ϕ. Then a navi-
gation expression is in next normal form (NNF) if it is of the
form ϕ0{anypS1q{ϕ1{ . . . {anypSkq{ϕk, where k ¥ 0, ϕ0 is a
sequence of next-operators and ϕ1, . . . , ϕk are next-formulas.
Thus, between any pair of contiguous any-operators there must
exist at least one variable that captures a span.

The next step is to show that every NE ϕ can be efficiently con-
verted into an equivalent NE ψ in NNF. Here we say that ϕ and ψ
are equivalent if for every document d and every variable assign-
ment σ over d, it holds that JϕKd,σ � JψKd,σ . Then we consider
the following rewriting rules to meet our goal:

ψ1{anypSq{ϕ{anypS
1q{ψ2 Ñ ψ1{nextpSq{ϕ{anypS

1q{ψ2

ψ1{anypSq{ϕ Ñ ψ1{nextpSq{ϕ

where ϕ is a sequence of zero or more next-operators without
variables, and ψ1, ψ2 are arbitrary NEs. The following example
illustrates how these two rules can be used to convert a navigation
expression into an equivalent one in NNF.

EXAMPLE 6.1. Consider the following navigation expression:

ϕ � anyp;q{nextp;q{anypêq{x :nextpêq{anyp; q

This NE is not in NNF as it starts with two any-operations with-
out variables in between. This can be solved by applying the first
rewriting rule, giving us:

ϕ1 � nextp;q{nextp;q{anypêq{x :nextpêq{anyp;q

Notice that ϕ and ϕ1 are equivalent NEs. Now ϕ1 is not in NNF
as it ends with an any-expression. This can be solved by applying
the second rewriting rule, resulting in:

ϕ2 � nextp;q{nextp;q{anypêq{x :nextpêq{nextp;q

Finally, we have that ϕ2 is in NNF and ϕ2 is equivalent to ϕ.

It can be proved that every NE ϕ can be transformed into an equiva-
lent NE ψ in NNF by using the previous rewriting rules. Moreover,
this transformation can be performed in time Op|ϕ|q.

6.2 An efficient algorithm for evaluating NEs
We divide the evaluation of an NE into four steps. The input

of this process is an NE ψ in NNF and a document d, and then the

Data: A document d and a prefix-free set of words S
Result: An array Ar1..|d| � 1s of spanpdq
Function separators_matchpd, Sq

aho_corasick. initpd, Sq
m :� 1
while ps1, s2q :� aho_corasick.nextpq do

for i � m to s1 do
Aris :� ps1, s2q

m :� s1 � 1

return A

Figure 2: Finding all matches for a set of separators.

output is the set of variable assignments σ such that σ P Jdoc.ψKd.
We assume that ψ has no repeated variables, as if it had then the
evaluation of ψ would be empty (recall that the content operator is
not used, and two spans pi, jq and pk, `q are assumed to be equal if
i � k and j � `). Besides, it can be easily checked whether ψ has
repeated variables.

The first procedure takes as input a document d and a prefix-
free set of words S (recall that in an NE of the form anypSq or
nextpSq, the set S is assumed to be prefix-free). The procedure
then runs the Aho-Corasick algorithm [4] to produce an array A
that is of the length of the input document, and such that Aris
stores the next span in d that matches a word from S for every
i P t1, . . . |d|u. This idea is illustrated in the following figure.

d
i s1 s2

w P S
Aris � ps1, s2q

In this figure, and others illustrating how the evaluation works, the
straight line represents the input document d, while the markings
i, s1, s2 denote positions inside the document. Recall that the con-
tent of a span pi, jq is the infix of d between position i and j � 1.

The algorithm itself (called separators_match) is given in Fig-
ure 2. To analyse the algorithm, observe that we repeatedly run the
Aho-Corasick string matching procedure. The iterator m starts at
the begining of the document and after we find a match ps1, s2q for
some string in S we store this span intoArms throughArs1s. After
this the iterator m is set to s1 � 1, as this is the position of the next
possible match. It is important to stress that there are no matches
for strings in S beginning between positions m and s1, therefore
ps1, s2q is the first possible match. Besides, due to the fact that S is
prefix-free, this is also the only possible match starting at s1. As the
running time of the Aho-Corasick algorithm is Op|S| � |d|q (since
S is prefix-free), and the only overhead we have is assigning spans
to the array A, the total time of the algorithm separators_match is
still Op|S| � |d|q.

The next part of the algorithm, presented in Figure 3, deals with
computing the possible valuations for a context, that is, a subfor-
mula of the expression that is of the form anypSq{v1 :nextpS1q{
. . . {vn :nextpSnq, where vi is either a variable, or a placeholder
K, specifying that next is used without a variable. Note that con-
texts are the building blocks of any expression in NNF since any
NNF-expression is of the form ϕ0{E1{ . . . {En where ϕ0 is a se-
quence of next-operators and each subformula Ei is a context.
Similarly to the previous algorithm, here we will again return an
array whose i-th position will contain the information about the
next possible match that occurs after the position i.

To start the computation, the algorithm context_match in Fig-
ure 3 calls the function separators_match from Figure 2 for each of
the input sets of words S, S1, . . ., Sn. The information for the set



Data: A document d, a prefix-free set of words S, and a
sequence pv1, S1q, . . . pvn, Snq where each Si is a
prefix-free set of words and vi P V YK.

Result: An array Cr1..|d| � 1s of triples pr1, r2, σq, where
pr1, r2q P spanpdq and σ : V Ñ spanpdq is a partial
function.

Function context_matchpd, S, pv1, S1q, . . . pvn, Snqq
A :� separators_matchpd, Sq
for i � 1 to n do

Bris :� separators_matchpd, Siq

m :� 1
while Arms � null do

ps1, s2q :� Arms
r1 :� s1
σ :� H
for i � 1 to n do

if Brisrs2s � null then break
pt1, t2q :� Brisrs2s
if vi � K then σpviq :� ps2, t1q
ps1, s2q :� pt1, t2q

if i � n� 1 then
r2 :� s2
for i � m to r1 do

Cris :� pr1, r2, σq

m :� r1 � 1

else if Arr1 � 1s � Arr1s then
Arms :� Arr1 � 1s

else break
return C

Figure 3: Finding all matches for a context.

S is stored in an array A, while the information about each Si is
stored in an array Bris. Therefore, A and Bris, for i � 1 . . . n,
are all arrays of size |d|. This means that we can also refer to B
as a matrix whose entry Brisrjs contains the information about the
next span matching a word from the set Si after the position j of
the input document d.

The main loop of the algorithm now proceeds to try and
match the context expression anypSq{v1 : nextpS1q{ . . . {vn :
nextpSnq to the input document d to the right of the position m
(beginning with m � 1). As long as the algorithm can keep on
matching S (the condition Arms � null), it stores the informa-
tion about the next possible match and tries to match S1 through
Sn (now using the matrix B in the for loop). If the matching was
successful we store the information about the used-up portion of
the document d into the (context) array C (note that this means that
all positions from m to the start of the match for S, namely r1,
will have this information), and then we start matching again from
the position r1 � 1. In the case we did not manage to match all
of the context expression, the only other possibility of a success-
ful match is when we have that Arr1 � 1s is contained in Arr1s,
where a span pk1, k2q is contained in an span p`1, `2q, denoted by
pk1, k2q � p`1, `2q, if `1 ¤ k1 and k2 ¤ `2. To clarify why this is
so consider the following illustration of what the algorithm does.

d
ii r1 r2

S S1 Sn
. . . . . .

Cris � pr1, r2, σq

If there is a match for S that starts after the position r1, ends after
the ending position of the current match for S, and allows to suc-
cessfully match all the sets S1 through Sn, then so does the current

Data: A document d and a sequence C1, . . . , Cn such that
each Ci is an array Cir1..|d| � 1s of triples pr1, r2, σq,
where pr1, r2q P spanpdq and σ : V Ñ spanpdq is a
partial function.

Result: An array Rr1..|d| � 1s over t1, . . . , n� 1u.
Function forward_indexpd,C1, . . . , Cnq

k :� n
for i � |d| � 1 to 1 do

if k � 0 then
Rris :� 1

else if Ckris � null then
Rris :� k � 1

else
pr1, r2, σq :� Ckris
if Rrr2s � k � 1 then k :� k � 1
Rris :� k � 1

return R

Figure 4: Computing the forward index.

match of S (after all our expression only asks for the next position
that matches each Si and nothing more). Therefore, if the match
starting at r1 fails, so does one starting after r1 that is longer than it.
On the other hand, if the match at r1 fails, but there is one starting
at or after r1�1 that is contained in it, there is a possibility for this
match to be extended to cover all the sets S1 to Sn. This possibility
is illustrated in the figure below.

d
ii r1 r2

Aris

S1Arr1 � 1s Sn
. . .

Cris � pr1 � 1, r2, σq

Notice that if all of the possibilities fail, we have exhausted our
options and the algorithm finishes. To analyse the running time of
the algorithm context_match, we first notice that running separately
the function separators_match for the sets S, S1, . . . , Sn takes total
time Op|S| �

°n
i�1 |Si| � pn� 1q � |d|q. Moreover, the while loop

of the algorithm takes time Opn � |d|q, as we have to loop over
every set Si, for i � 1 . . . n. We can thus conclude that running
the procedure context_match from Figure 3 takes time Op|S| �°n
i�1 |Si| � n � |d|q, which is indeed Op|ψ| � |d|q where |ψ| is the

size of the input navigation expression.
With the two procedures presented before, we are able to find

all matchings for a context of the form anypSq{v1 : nextpS1q{
. . . {vn : nextpSnq. Recall that every expression in NNF is sim-
ply a concatenation of such contexts, plus an easily evaluable ini-
tial segment. In fact, the last two steps of the algorithm assume
that we have partitioned our input navigation expression ψ into
contexts E1, . . . , En of such subexpressions, and we have com-
puted the corresponding arrays C1, . . . , Cn using the algorithm
context_match from Figure 3.

The next step of our procedure is a quick index building algo-
rithm (called forward_index) that will allow us to discard positions
not leading to a match in an efficient manner. This step, presented
in Figure 4, computes an arrayR such that for each position i in the
input file (e.g. CSV-like document),Rris contains the least number
k such that, starting from position i, it is possible to find a match
for the subexpression Ek{Ek�1{ � � � {En of the input expression.
This idea can be depicted as follows:

d
ii r1 r2

Ek Ek�1 En
. . . . . .

Rris � k



As expected, the algorithm forward_index traverses the input doc-
ument d backwards and at each position tries to match the context
Ek, starting with k � n. If a match is possible (the second else
clause in Figure 4), we take note of that and reduce the index k by
one in order to move to the previous subexpression Ek�1. Since
all of the information is already stored in arrays C1, . . . , Cn, the
cost of this part of the algorithm is simply the cost of traversing the
input document d once, or in other words Op|d|q.

The final part of the algorithm, presented in Figure 5, computes
all the possible valuations that make an expression ψ � E1{E2{
. . . {En true, where each Ei is a context of the form anypSq{v1 :
nextpS1q{ . . . {vn :nextpSnq. As input, all_matches takes all of
the information computed by the previous algorithms. In particular
it has at its disposal the arrays Ci corresponding to the context Ei
(computed by the function context_match), as well as the array R
from forward_index. With this information the algorithm proceeds
to compute the output in time that is proportional to the number of
valuations that allow for a successful match of ψ.

The idea of the evaluation is to simulate the typical recursive
approach that tries all possible combinations of matchings for E1

through En and backtracks as necessary. To do this, we use the
array T whose i-th position stores the next possible starting point
for a match of the context Ei. Intuitively, T acts as a stack where
we store the current position of a match for the context Ei in T ris.
Whenever T r1s to T ris contains a match of E1 to Ei, respectively,
we try to match the contexts Ei�1 to En (and compute all the suc-
cessful matches for them) before we move the starting point of the
next match for Ei one position to the right. The procedure is then
repeated until we have exhausted the search space. What makes our
approach efficient is the fact that we only explore a branch of the
search tree that is guaranteed to lead to a match. Specifically, we
reduce the search space by using the index R from forward_index,
which tell us if a match from the current position is possible. Next
we describe this process in more detail.

The algorithm all_matches uses the iterator m to denote which
context Em is currently processing. It starts with m � 1 and with
T r1s � 1, thus assuming that it will be possible to match the entire
expression ψ to the input document d. In each step the algorithm
then checks if it can match the part of the expression starting from
Em, namely, the subexpressionEm{ . . . {En. If this is not possible
(the condition RrT rmss ¡ m is true), then we simply move to the
previous subexpression and try to match it from the next position
to the right. Note that the use of array R allows us to terminate
the evaluation of a branch that will not lead to a successful match
at the first possible occasion. If a match is possible, we take note
of that (σm stores the valuation for Em using the information pre-
computed in array Cm) and move to the next context. This step is
executed in the else clause of the algorithm all_matches. Finally, if
m reaches n � 1, then we manage to match the entire expression
(the final if clause), so we take the union of σ1, . . ., σn to produce
a variable assignment that makes ψ true (this union is well defined
as ψ does not have repeated variables). Then we try to match En
again, but this time starting one position to the right of the previ-
ous match. The algorithm then moves downwards to find the next
match for En�1 and so on until it found all the matches for ψ.

To analyse the running time of the algorithm, first notice that
the total running time needed to precompute arrays Ci and R is
bounded by Op|ψ| � |d|q. As discussed above, the final part of the
algorithm simply outputs all valid matchings, and does so know-
ing in advance if a branch in the tree of all possible matches will
result in a valid match. Therefore the running time of that part of
the algorithm is equal to the number of valid matchings for the ex-
pression, or size of the output. Summing up, the total running time
of the algorithm is Op|ψ| � |d| � |Output|q. The algorithm is also

Data: A document d, an array Rr1..|d| � 1s over
t1, . . . , n� 1u, and a sequence C1, . . . , Cn such that
each Ci is an array Cir1..|d| � 1s of triples pr1, r2, σq,
where pr1, r2q P spanpdq and σ : V Ñ spanpdq is a
partial function.

Result: A set O of partial functions σ : V Ñ spanpdq.
Function all_matchespd,R,C1, . . . , Cnq

Let T r0..n� 1s be an array of integers
Let σ1, . . . , σn be partial functions from V to spanpdq
T r1s :� 1
m :� 1
while m ¥ 1 do

if RrT rmss ¡ m then
m :� m� 1
T rms :� T rms � 1

else
pr1, r2, σq :� CmrT rmss
T rms :� r1
σm :� σ
m :� m� 1
T rms :� r2

if m ¡ n then
O :� O Y tσ1 Z � � � Z σnu
m :� m� 1
T rms :� T rms � 1

return O

Figure 5: Computing all possible matches.

constant-delay [20], as it takes Op|ψ| � |d|q time to preprocess the
input, and constant time between two consecutive outputs.

7. EXPERIMENTAL EVALUATION
To illustrate that the algorithm from Section 6 does not only have

good theoretical complexity, in this section we describe how a sys-
tem based on its implementation performs over real world datasets.
Here we describe the datasets and the experiments used to test the
efficiency of this algorithm, and compare it with the stream editing
tool AWK. Due to the lack of space programs used in the experi-
ments have been omitted, but are made available at [1], where we
also provide the complete source code and documentation of our
implementation and more detailed results of the experiments.
Implementation details. Our prototype implements a restricted
but functional version of navigation programs that covers all use
cases in [28]. To simplify the implementation, we restrict naviga-
tional expressions to use at most one content operator, rules to be
tree-like (see Theorem 4.4), and navigational programs to be non-
recursive. It is important to add that to cope with the requirement
ForeignKeyReferences we allow binary relations in the head of rules
for storing results. For the evaluation of these programs, we use the
algorithm discussed in Section 6 to evaluate navigational expres-
sions. Furthermore, to efficiently evaluate the content operator we
use an extension of the algorithm where matches under the content
operator are sent to a Hash table in order to easily check content
equivalence. Finally, for the evaluation of non-recursive programs
we compute each rule in order, evaluating its navigational expres-
sions separately, and intersecting their results with the precomputed
annotations mentioned in the rule.
Datasets. We test our implementation on a number of CSV datasets
and query logs. CSV files come from the use cases considered by
W3C’s CSV on the Web working group [28] and use data from: The
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Figure 6: Running time on medium sized CSV files.

World Bank (WB) [29], Office for National Statistics UK (ONS)
[16] and the City of Palo Alto tree data (PA) [23]. While the Palo
Alto tree data provides us with only one CSV file, for other two
datasets we used many files of different sizes. In the end we tested
our implementation on a total of thirteen different CSV files with
sizes ranging from 6 to 183 MB. Note that most of the files pub-
lished by these organisations are of much smaller size, however,
we decided to use larger files in order to show how the implemen-
tation works in extreme circumstances. As all of the CSV files
we obtained were well structured, we also tested how our imple-
mentation behaves on noisy data by modifying the existing files by
including additional empty rows, changing the expected values in
one column in 5% of the rows, and adding an extra column to 5%
of the rows. For each CSV document we created its noisy variant
and used it for testing. The query log files we use were collected
by the Linked SPARQL Queries Dataset team [24] and come from
public SPARQL endpoints of the British Museum [22] and DBPe-
dia [8]. For the experiments we used the raw log files provided by
[24] and tested our implementation on a total of 19 files, their sizes
ranging between 2 and 190 MB. Due to a large number of files,and
since files of similar size show same trends in evaluation times, we
will present the evaluation result for only a handful of them. We
provide the complete results for all the files in [1].
Experiments for CSV files. These experiments were motivated by
the requirements for CSV metadata proposed by the W3C CSV on
the Web working group [28]. To test our implementation we will
use five different experiments that run navigation programs which
annotate CSV files, or check if some constraint is violated. Our first
experiment (exp1) annotates the entire file. This type of annota-
tion is used when we want to specify that the file is in particular
language, or that it is to be displayed in a particular way. Next,
in exp2 we annotate a single column within a file, which is used
when one wants to specify that this column contains values that are
of a certain type, or that it forms a primary key. In exp3 we check
if a primary key constraint is violated in our file. We continue with
exp4 where conformance of a column to a datatype specification
is tested. Finally, in exp5 we use a more complex navigation pro-
gram consisting of three rules, each of which annotates a different
column and checks that its values are of a certain datatype.
Experiments for query logs. Here we were annotating the data
one might naturally want to obtain when managing log files, such
as the actual text of the query, the time it was executed, the endpoint
used, etc. Over these datasets we also use five experiments. The
first experiment exp1 annotates all the queries which use the OP-
TIONAL operator of the SPARQL query language. Similarly, in
exp2 we find all the queries which have more than one occurrence
of this operator. In exp3we annotate all the queries using the FIL-
TER operator that were executed between noon and one o’clock.
Next, in exp4 we find the queries with double OPTIONAL and
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Figure 7: Scaling based on file size.

exp1 exp2 exp3 exp4 exp5
WB (160 MB) 4 13 12 13 39
ONS (175 MB) 5 16 17 16 47
ONS (183 MB) 5 17 18 17 50

Table 1: Running times (in seconds) on large files.

using a binary output relation store such queries together with the
time when they were executed. The final experiment, exp5, works
similarly, but stores queries with two occurrences of FILTER, to-
gether with the details about the endpoint used to execute them.
Results. The testing was done using a Laptop with an Intel Core i7-
4510u processor and 8 GB of main memory, running Arch Linux
x86_64, kernel 4.2.2. Each experiment was ran three times and
the average score was reported (we also note that there were no
significant deviations from the average).

The first set of results, presented in Figure 6, shows the running
times when CSV files of reasonable size are used. Here we test on
three files: the Palo Alto trees file is 18 MB in size, while the World
Bank file weights 35 MB and the ONS one 55 MB. As expected,
the running times scale according to the size of the file, but as all
of the times were really fast (less than sixteen seconds), we can
conclude that on average sized files our implementation runs well
considering that we use raw data with no precomputed indices. One
can notice that times are much longer for experiment 5, however,
this is to be expected, as the program exp5 does about three times
more work than any of the other programs, as discussed above.

Next we wanted to see how the results scale when similar files
of increasing sizes are used. To test this we selected one large CSV
file from the World Bank dataset of size 130 MB and containing
around 600,000 lines. From this we generated ten different files,
each containing first k � 60,000 lines of the original file, with k
between one and ten. The experiments were then ran against each
of these files. As we can see from Figure 7, the results do scale as
expected from the formal analysis in Section 6. Here we selected
experiments 1, 3 and 4 as they are the most representative. The
other two experiments behave similarly (see [1] and Table 1).

We also considered three large files (one obtained from the World
Bank and two from the ONS). Although these files are in no way
representative of the average size appearing in practice, we wanted
to see if our implementation could still be used in these cases. The
file from the World Bank dataset was 160 MB in size, while the
two from the ONS weighed 175 MB and 183 MB. The test results
are show in Table 1. As we can see, for files less than 200 MB in
size there are no significant problems in terms of the evaluation.
Since in practice one is likely to work with files that fall on the
smaller end of the spectrum, we believe that our experiments serve
to illustrate that navigation programs can be used efficiently.

Our final round of experiments for CSV files was conducted us-



ing noisy documents which do not conform to the tabular format as
described in [26]. The theoretical analysis of our programs in Sec-
tion 6 showed that, whether a file is noisy or not, this should not
have much impact on the performance of the evaluation and our
experiments on CSV files with synthetically created noise show
this. In particular, since the amount of noise we added did not
significantly change the size of the files, the performance for each
experiment was essentially the same as on original data (in fact the
results on noisy files are generally slightly faster as less data passes
the filters and gets stored). The details on noisy files and the precise
performance of the experiments over them can be found at [1].

As far as the experimental results on query logs are concerned
they show similar performance as the ones on CSV files. In Fig-
ure 8 we present evaluation times of our five programs for four
different query log files. From the logs of the British Museum we
selected the smallest and the largest file available, and from DB-
Pedia we selected two files on the larger end of the spectrum. The
sizes were selected so that they further illustrate the fact that the
performance scales as the size of the document increases.
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Figure 8: Running times on query logs.

Comparison with stream editing tools. We also compare our im-
plementation with the standard stream editing tool AWK [5]. Al-
though AWK is less expressive than the framework we propose,
in some cases AWK programs which simulate navigation expres-
sions can be constructed. To carry out the comparison we created
AWK programs equivalent to navigation expressions used in exp1
through exp4 over query logs. Of course, when allowed to match
just a single pattern line by line, AWK performs better than our im-
plementation; however, when asked to produce the same set of an-
notations as our experiments over the files being treated as a single
line, the majority of AWK programs took more than a minute, or
ran out of memory, while processing the DBPedia and British Mu-
seum query logs. In comparison, our implementation computed the
answers in less than 14 seconds (Figure 8). Complete programs and
running times can be found at [1]. We can conclude that when an-
notations spanning multiple lines, or with noisy files missing many
new line symbols, AWK techniques might not be the best choice
for producing annotations.

8. DISCUSSION AND FUTURE WORK
Navigational programs were designed in order to satisfy the use

cases put forward by the W3C and, at the same time, having effi-
cient algorithms to evaluate them in practice. A major future task
is to analyse the expressive power of navigational expressions with
respect to span regular expressions or other extraction languages
(e.g. [10]). From this analysis, it would be interesting to find new
extensions for navigational expressions that can still be efficiently
evaluated in practice. We also plan to extend our framework to al-
low transforming CSV and CSV-like data to other formats, as this
requirement often arises in practical scenarios [28]. Furthermore,

as our implementation was meant to serve only as a proof of con-
cept, we would also like to develop a full fledged system based on
our framework that would be capable of handling vast amounts of
data one is likely to encounter when dealing with corporate records.
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