
Regular Path Queries on Graphs with Data∗

Leonid Libkin Domagoj Vrgoč

ABSTRACT

Graph data models received much attention lately due to
applications in social networks, semantic web, biological
databases and other areas. Typical query languages for graph
databases retrieve their topology, while actual data stored
in them is usually queried using standard relational mech-
anisms.

Our goal is to develop techniques that combine these two
modes of querying, and give us query languages that can ask
questions about both data and topology. As the basic query-
ing mechanism we consider regular path queries, with the
key difference that conditions on paths between nodes now
talk not only about labels but also specify how data changes
along the path. Paths that combine edge labels with data
values are closely related to data words, so for stating condi-
tions in queries, we look at several data-word formalisms de-
veloped recently. We show that many of them immediately
lead to intractable data complexity for graph queries, with
the notable exception of register automata, which can spec-
ify many properties of interest, and have NLOGSPACEdata
and PSPACE combined complexity. As register automata
themselves are not easy to use in querying, we define two
types of extensions of regular expressions that are more user-
friendly, and develop query evaluation techniques for them.
For one class, regular expressions with memory, we achieve
the same bounds as for automata, and for the other class,
regular expressions with equality, we also obtain tractable
combined complexity of query evaluation. In addition, we
show that results extends to analogs of conjunctive regular
path queries.

∗Authors’ address: School of Informatics, University of Edin-
burgh, email:{libkin,domagoj.vrgoc}@inf.ed.ac.uk.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

1. Introduction

Querying graph-structured data has been actively studied
in recent years, due to numerous applications in areas in-
cluding biological networks [31, 32, 36], social networks
[38, 39], and the semantic Web [27, 37]. Such databases are
represented as graphs in which nodes are objects, and edge
labels specify relationships between them [1, 3]. Typical
queries over such databases look for reachability patterns.
A very common and well studied class of queries is that of
regular path queries, or RPQs. An RPQ selects nodes con-
nected by a path that belongs to a regular language over the
labeling alphabet [13, 14, 15]. Their extensions have been
studied extensively too; for example, conjunctive RPQs state
the existence of several paths [12, 18, 22], and extended con-
junctive RPQs add comparisons of paths [4].

These standard queries over graph databases talk about
their topology, and do not mention data values. But graph
databases do contain data. For example, in a social network,
one would expect each node to correspond to a person, with
his/her attributes such as name, age, city, email, etc.; la-
bels can specify types of connections between people, e.g.,
like/dislike, professional, etc. The querying mechanismsone
deals with are generally of one of these categories:

• queries about topology such as finding nodes con-
nected by a path with a certain label (e.g., people who
are connected via professional links), or

• queries about data, i.e., essentially relational queries
(e.g., finding pairs of people of the same age).

What these languages are incapable of doing iscombining
data and topology. As an example of a query that involves
such a combination, consider a query looking for people who
are connected via professional links and are of the same age.
This query states the existence of a path with a certain prop-
erty and then relates data values at the end of the path. An-
other example is a query that finds people who are connected
via professional links restricted to people of the same age.In
this case, comparison of data values (having the same age)
is done for every node along the path.

Extending languages that handle structure to languages
that handle both structure and data is not new in database
theory. For very simple types of paths it was considered in

1



graph object-oriented models [42], but most notably it hap-
pened in the study of XML [8, 40, 41]. For example, lan-
guages such as XPath exist in their structural variants as well
as extensions that handle data comparisons [6, 9, 20, 34]. A
standard abstraction one uses for extending from structure
to data in the case of XML isdata trees, in which data val-
ues are attached to tree nodes [9, 29, 40]. The focus of the
study of such extensions has been both on querying, where
one is concerned with efficient evaluation [7, 24], and on
reasoning, where one is concerned with the decidability of
the satisfiability problem [9, 10].

So likewise, we consider graph databases where nodes can
carry data values. An example of such a graph database is
shown in Fig. 1. It has five nodes,v1, . . . , v5; data values are
shown inside the nodes, and edge labels next to the edges. As
an initial assumption, we assume that each node carries just
one data value. This is not a real restriction for two reasons.
First, if a node has a tuple of data values (e.g., person’s name,
age, email, etc., in a social network) this could be modeled
by extra edges to nodes with those data values. And second,
the way we design languages for querying graph databases
with data values will make it very easy to extend them to
such a setting.

An RPQ may ask for pairs of nodes connected by a path
from the regular language(ab)∗. In the graph in Fig. 1, one
possible answer is(v1, v3), another –(v1, v5). To combine
this with data values, we may ask queries of the following
kind:

• Find nodes connected by a path from(ab)∗ such that
the data values at the beginning and at the end of the
path are the same. In this case,(v1, v3) is still in the
answer but(v1, v5) is not.

• We may extend comparisons to other nodes on the
path, not only to the first and last nodes. For example,
we may ask for nodes connected by paths along which
the data value remains the same, or on which all data
values are different from the first one. The pair(v1, v3)
is in the answer to the first query (the pathv1v4v3 wit-
nesses it), while the pair(v1, v5) is in the answer to the
second, as witnessed by the pathv1v2v5.

What kind of languages can we use in place of regular lan-
guages to specify paths with data? To answer this, consider,
for example, a pathv1v2v5v3 in the graph. If we traverse it
by starting inv1, reading its data value, then reading the label
of (v1, v2), then the data value inv2, etc., we end up with the
following sequence:1a2b3a1. We shall refer to them asdata
paths. They are extremely close to an object that has been
actively studied in the XML context – namely,data words
[8, 10, 40, 41]. A data word is a word in which every posi-
tion is labeled by both a letter from a finite alphabet (e.g.,a
or b) and a data value (e.g., a number). Data paths are essen-
tially data words with an extra data value. We can represent
the data path1a2b3a1 as a data word

(

#
1

)(

a
2

)(

b
3

)(

a
1

)

, where
# is a special symbol reserved for the extra data value.

We can thus use multiple formalisms developed for data
words (with a minor adjustment for the extra value) to spec-

1

2

1

1

3

a

a

b

b b

b

a
v1

v2

v4

v3 v5

Figure 1: A graph database with data values

ify data paths. Such formalisms abound in the literature, and
include first-order and monadic second-order logic with data
comparisons [9, 10], LTL with freeze quantifiers [16], XPath
fragments [8, 20], and various automata models such as peb-
ble and register automata [11, 28, 29, 30, 33].

The question is then, which one to choose? To answer
this, we look at data complexity of query answering for each
of these formalisms. We show that as long as the formalism
is capable of expressing what is perhaps the most primitive
language with data value comparisons (two data values are
equal) and is closed under complementation, thendatacom-
plexity is NP-hard. Clearly one cannot tolerate such high
data complexity, and this rules out most of the formalisms
exceptregister automata.

We then study query answering with register automata
(adjusted for data paths from data words). We present an
algorithm that is based, as expected, on computing prod-
ucts of automata; with nonemptiness performed on-the-fly,
this gives us an NLOGSPACEdata complexity bound, and
PSPACE-completeness for combined complexity. The bound
for data complexity is good (it matches the usual RPQs) and
the bound for combined complexity is tolerable (equivalent
to that of FO, but higher than the NP bound for conjunctive
RPQs or the PTIME bound for RPQs).

However, automata are not an ideal way of specifying con-
ditions in queries. In RPQs, we use regular expressions
rather than NFAs. While some regular expressions have
been considered for register automata [30], they are very far
from intuitive. So we propose two types of regular expres-
sions that can be used in queries.

The first, close in spirit to automata themselves, lets one
bind a data value and use it later. For example, to express the
query “connected by a path along which the data value re-
mains the same”, we would use the expression↓x.(Σ[x=])∗.
This expression says: bindx in the beginning of the path
(i.e., to the first data value), and then go along, if labels are
arbitrary (Σ) and the conditionx=, meaning that the value
is equal tox, holds. These expressions are much easier to
write than the automata, and at the same time they can be
translated into register automata; thus data complexity of
queries remains in NLOGSPACE. We show that the com-

2



bined complexity remains the same as for automata, i.e.,
PSPACE-complete (except in a rather limited case when the
Kleene star is not used: then it drops to NP-complete).

This motivates a second class of expressions that restrict
the ability to compare data values along the path; instead,
one can only do comparisons for chosen subexpressions. A
simple example of such an expression isΣ+

=, which denotes
nonempty data paths that have same data value at the be-
ginning and at the end of the path:Σ+ indicates the label
of the path, and the subscript= states the condition for the
first and the last data values. A slightly more elaborate ex-
ample isΣ∗ · Σ+

= · Σ∗. It says that a subpath conforms to
Σ+

=, i.e., it denotes data paths on which two data values are
equal. For expressions of this kind, we give a polynomial-
time algorithm for combined complexity. The key idea is to
translate expressions into push-down automata and then take
the product with an automaton obtained efficiently from the
graph database.

Finally, we show that our results extend to analogs of
conjunctive regular path queries that use data comparisons.
There is no penalty to pay in terms of complexity except one
case, where we have to deal with the same increase of com-
plexity as in going from the usual RPQs to their conjunctive
analogs [12, 14].

Organization In Section 2 we define data graphs and
generic queries over them. In Section 3 we rule out sev-
eral formalisms for specifying data paths due to prohibitively
high data complexity for them. In Section 4 we define reg-
ister automata and study complexity of query evaluation for
them. We do the same in Section 5 for regular expressions
with memory and in Section 6 for regular expressions with
equality. Finally in Section 7 we look at conjunctive queries
based on the formalisms proposed in the previous sections.
Due to space limitations, most proofs are only sketched, and
complete proofs are given in the appendix.

2. Preliminaries

LetΣ be a finite alphabet, andD a countably infinite set of
data values. Data graphs will have edges labeled by letters
from Σ and nodes that store data values fromD.

Definition 2.1 (Data graphs). A data graph(overΣ andD)
is a tripleG = 〈V, E, ρ〉, where:

• V is a finite set of nodes;

• E ⊆ V × Σ × V is a set of labeled edges; and

• ρ : V → D is a function that assigns a data value to
each node inV .

A path between nodesv1 andvn in a graph is a sequence

π = v1a1v2a2v3 . . . vn−1an−1vn (1)

such that each(vi, ai, vi+1), for i < n, is an edge inE.
Corresponding to the pathπ (1) we have adata path

wπ = ρ(v1)a1ρ(v2)a2ρ(v3) . . . ρ(vn−1)an−1ρ(vn) (2)

which is a sequence of alternating data values and labels,
starting and ending with data values. The set of alldata
paths, i.e., such alternating sequences overΣ andD, will be
denoted byΣ[D]∗. For both paths and data paths, we use the
notationλ(π) or λ(wπ) to denote their label, i.e. the word
a1 . . . an−1 ∈ Σ∗.

Returning to Figure 1 from the Introduction, one exam-
ple that we used was the pathπ = v1av2bv5av3. The cor-
responding data pathwπ is 1a2b3a1 since data values of
v1, v2, v5, andv3 are1, 2, 3, and1, respectively. Its label
is aba.

Recall thatregular path queries, or RPQs, over usual la-

beled graphs are queries of the formQ = x
L

−→ y, where
L ⊆ Σ∗ is a regular language. Given a graphG (the data
part is irrelevant for RPQs),Q(G) is the set of pairs of nodes
(v, v′) such that there is a pathπ from v to v′ whose label
λ(π) is in L.

By analogy, we definedata path queries. Syntactically

they are expressionsQ = x
L

−→ y, as before, but nowL ⊆
Σ[D]∗ is a set of data paths. IfG is a data graph, thenQ(G)
is the set of pairs of nodes(v, v′) such that there is a pathπ
from v to v′ whose associated data pathwπ is in L.

As with relational queries and RPQs, we will be interested
in data and combined complexityof query evaluation prob-
lem, i.e. checking, for a data path queryQ, a data graphG
and a pair of nodes(v, v′), whether(v, v′) ∈ Q(G) (for data
complexity, of course, the queryQ will be fixed).

3. Language for paths: ruling out bad alter-
natives

To talk about data path queries, as just defined, we need to
express properties of paths with data. As we already men-
tioned, these are essentially data words, with an extra data
value attached. Quite a few languages and automata mod-
els have been developed for data words over the past few
years, mainly in connection with the study of XML, espe-
cially XPath. We now give a quick overview of them. A
more extensive survey can be found in [40].

FO(∼) and MSO(∼) These are first-order logic and
monadic second-order logic extended with the binary
predicate∼ saying that data values in two positions
are the same. For example,∃x∃y a(x) ∧ a(y) ∧ x ∼ y
says that there are twoa-labeled positions with the
same data value. Two-variable fragments ofFO(∼)
and existential MSO with the∼ predicate have been
shown to have decidable satisfiability problem [9, 10].

Pebble automataThese are basically finite state automata
equipped with a finite set of pebbles. To ensure regular
behavior pebbles are required to adhere to a stack dis-
cipline. The automata are modeled in such a way that
the last placed pebble acts as the automaton head and
we are allowed to drop and lift pebbles over the current
position. In addition to this we can also compare the

3



current data value to the one that already has a pebble
placed over it. Algorithmic properties and connections
with logics have been extensively studied in [33].

LTL ↓ This the is standard LTL expanded with a freeze op-
erator that allows us to store the current data value into
a memory location and use it for future comparisons.
The full logic has undecidable satisfiability problem,
but various decidable restrictions are known [16, 17].

Register automata These are in essence finite state au-
tomata extended with a finite set of registers allowing
us to store data values. Although first studied only on
words over infinite alphabet [28, 33, 35] they are eas-
ily extended to handle data words, as illustrated in [16,
40]. They act as usual finite state automata in the sense
that they move from one position to another by read-
ing the appropriate letter from the finite alphabet, but
are also allowed to compare the current data value with
ones already stored in the registers.

XPath fragments XPath is the standard language for navi-
gating in XML documents, i.e., for describing paths in
a way that may also include conditions on data values
that occur in documents. Fragments of XPath (with
and without data values) have been extensively stud-
ied, see, e.g., [6, 9]. While in general the satisfiability
problem is undecidable, several decidable restrictions
are known, e.g., [20, 21].

In deciding which formalism to choose, we look at the
data complexityof evaluating data path queries, and try to
rule out those for which data complexity is intractable. Tech-
nically, a formalism just defines a set of allowed languages
L ⊆ Σ[D]∗. It turns out that most of the formalisms for
data words/paths are actually not suitable for graph query-
ing. This is implied by the following result. LetLeq be the
language of data paths that contain two equal data values.

Theorem 3.1. Assume that we have a formalism for data
paths that can defineLeq. Then data complexity of evaluat-
ing data path queries isNP-hard.

The proof is by showing that withLeq, one can encode the
2-disjoint-paths problem which is NP-complete [23].

Note thatLeq is about the simplest property one can ex-
press about data paths/words; it would be hard to imagine a
formalism that cannot check for the equality of data values.
The corollary below effectively rules out closure under com-
plement for such formalisms if they are to be used in graph
querying.

Corollary 3.2. Assume that we have a formalism for data
paths that can defineLeq and that is closed under comple-
ment. Then data complexity of evaluating data path queries
is NP-hard.

This immediately rules outFO(∼) and its two-variable
fragment, LTL with the freeze quantifier, XPath fragments
closed under complement, and pebble automata.

The only hope we have among standard formalisms isreg-
ister automata, since they are not closed under complemen-
tation [28]. In the next sections we show that we can achieve
good query answering complexity with them, as well as suf-
ficient expressivity.

4. Data path queries with register automata

As stated in the previous section, register automata are the
only standard formalism for defining classes of data words
that does not immediately lead to NP-hard data complex-
ity of queries on graphs with data. In this section we de-
fine them and study query evaluation for data path queries
based on these automata. We will slightly alter the defini-
tion of register automata used in e.g. [16, 40] to work on
data paths rather than data words, without affecting their de-
sirable properties.

As mentioned earlier register automata move from one
state to another by reading the appropriate letter from the
finite alphabet and comparing the data value to one previ-
ously stored into the registers. Our version of register au-
tomata will use slightly more involved comparisons which
will be boolean combinations of atomic=, 6= comparisons
of data values.

To define such conditions formally, assume that, for each
k > 0, we have variablesx1, . . . , xk. Then conditions inCk

are given by the grammar:

c := x=
i | x6=

i | c ∧ c | c ∨ c | ¬c, 1 ≤ i ≤ k.

The satisfaction is defined with respect to a data valued ∈ D
and a tupleτ = (d1, . . . , dk) ∈ Dk as follows:

• d, τ |= x=
i iff d = di;

• d, τ |= x6=
i iff d 6= di;

• d, τ |= c1∧c2 iff d, τ |= c1 andd, τ |= c2 (and likewise
for c1 ∨ c2);

• d, τ |= ¬c iff d, τ 2 c.

In what follows,[k] is a shorthand for{1, . . . , k}.

Definition 4.1 (Register data path automata).LetΣ be a
finite alphabet, andk a natural number. Ak-register data
path automatonis a tupleA = (Q, q0, F, τ0, δ), where:

• Q = Qw∪Qd, whereQw andQd are two finite disjoint
sets of word states and data states;

• q0 ∈ Qd is the initial state;

• F ⊆ Qw is the set of final states;

• τ0 ∈ Dk is the initial configuration of the registers;

• δ = (δw, δd) is a pair of transition relations:

– δw ⊆ Qw×Σ×Qd is the word transition relation;
– δd ⊆ Qd × Ck × 2[k] × Qw is the data transition

relation.

4



The intuition behind this definition is that since we alter-
nate between data values and word symbols in data paths, we
also alternate between data states (which expect data value
as the next symbol) and word states (which expect alphabet
letters as the next symbol). We start with a data value, so
q0 is a data state, end with a data value, so final states, seen
after reading that value, are word states.

In a word state the automaton behaves like the usual NFA
(but moves to a data state). In a data state, the automaton
checks if the current data value and the configuration of the
registers satisfy a condition, and if they do, moves to a word
state and updates some of the registers with the read data
value.

Given a data pathw = d0a0d1a1 . . . an−1dn, where each
di is a data value and eachal is a letter, a configuration ofA
onw is a tuple(j, q, τ), wherej is the current position of the
symbol inw thatA reads,q is the current state andτ ∈ Dk

is the current state of the registers. The initial configuration
is (0, q0, τ0) and any configuration(j, q, τ) with q ∈ F is a
final configuration.

From a configurationC = (j, q, τ) we can move to a con-
figurationC′ = (j + 1, q′, τ ′) if one of the following holds:

• the jth symbol is a lettera, there is a transition
(q, a, q′) ∈ δw, andτ ′ = τ ; or

• the current symbol is a data valued, and there is a tran-
sition (q, c, I, q′) ∈ δd such thatd, τ |= c andτ ′ coin-
cides withτ except that theith component ofτ ′ is set
to d wheneveri ∈ I.

A data pathw is accepted byA if A can move from the
initial configuration to a final configuration after readingw.
The language of data paths accepted byA is denoted by
L(A).

Data paths vs data words

Register automata have been previously studied for data
words [16, 40] and we now briefly explain the connection.
A data word is a word in(Σ×D)∗, i.e., each position carries
a label fromΣ and a data value fromD. A k-register data
word automatonA is a tuple(Q, q0, F, τ0, T ) whereQ is a
finite set of states (no longer split into two),q0 ∈ Q is the
initial state,F ⊆ Q is the set of final states,τ0 ∈ Dk is the
initial register assignment, andT is a finite set of transitions
of the form(q, a, c) → (I, q′), whereq, q′ are states,a is a
label,I ⊆ [k], andc is a condition inCk.

The automaton traverses a data word from left to right,
starting inq0 with τ0 as the register configuration. If it reads
(

a
d

)

in stateq with register configurationτ , it may apply a
transition(q, a, c) → (I, q′) if d, τ |= c; it then enters state
q′ and changes contents of registersi, with i ∈ I, to d.

The relationship between automata models, as needed for
our purposes, is described by the lemma below. With each
data pathw = d1a1 . . . an−1dn ∈ Σ[D]∗ we associate a data
wordsw =

(

#
d1

)(

a1

d2

)

. . .
(

an−1

dn

)

over(Σ ∪ {#})×D, where

# 6∈ Σ is a new alphabet symbol.

Lemma 4.2. Given ak-register data path automatonA,
one can construct, inDLOGSPACE, a k-register data word
automatonA′ such that a data pathw is in L(A) iff the data
wordsw is in L(A′).

It is known [16] that nonemptiness problem for data word
register automata is PSPACE-complete. The above lemma
shows that the PSPACEupper bound applies to data path au-
tomata. Moreover, one can verify that the PSPACE-hardness
reduction applies to such automata as well. Hence, we have

Corollary 4.3. The nonemptiness problem for register data
path automata isPSPACE-complete.

4.1 Regular data path queries

Our basic class of regular path queries on graphs with data
is based on register data path automata.

Definition 4.4. A regular data path query (RDPQ)is an ex-

pressionQ = x
A
−→ y whereA is a register data path

automaton.
Given a data graphG, the result of the queryQ(G) con-

sists of pairs of nodes(v, v′) such that there is a data path
w fromv to v′ that belongs toL(A).

To evaluate RDPQs, we transform both a data graphG
and ak-register data path automatonA into NFAs over
an extended alphabet and reduce query evaluation to NFA
nonemptiness. More precisely, to evaluateQ(G), we do the
following:

1. LetD be the set of all data values inG.

2. TransformG = 〈V, E, ρ〉 into a graphG′ = 〈V ′, E′〉
over the alphabetΣ ∪ D as follows:

• V ′ = {vs, vt | v ∈ V }
• E′ = {(vt, a, v′s) | (v, a, v′) ∈ E}

⋃

{(vs, ρ(v), vt) | v ∈ V }

Basically, we split each nodev with a data valued into
a source nodevs and a target nodevt and add ad-
labeled edge between them; after that we restore the
edges fromE so that they go from target to source
nodes. This is illustrated below.

v′t

d d′
a

⇓v v′

d a d′
vs vt v′s

3. Transform the automatonA = (Q, q0, F, τ0, (δw, δd))
into an NFAAD = (Q′, q′0, F

′, δ′) as follows:

• Q′ = Q × Dk;
• q′0 = (q0, τ0);
• F ′ = F × Dk;

5



• δ′ includes two types of transitions.

(a) Whenever we have a transition(q, a, q′) in
δw, we add transitions((q, τ), a, (q′, τ)) to δ′

for all τ ∈ Dk.
(b) Whenever we have a transition(q, c, I, q′) in

δd, we add transitions((q, τ), d, (q′, τ ′)) if
d, τ |= c andτ ′ is obtained fromτ by putting
d in positions from the setI.

For two nodesv, v′ of G, we turnG′ into an NFAAG′,v,v′

by lettingvs be its initial state andv′t be its final state. Then
we have the following.

Proposition 4.5. Let Q = x
A
−→ y be an RDPQ, andG a

data graph whose data values form a setD ⊆ D. Then

(v, v′) ∈ Q(G) ⇔ L(AG′,v,v′ ×AD) 6= ∅.

Thus, query evaluation, like in the case of the usual RPQs,
is reduced to automata nonemptiness, although this time the
automata are over larger alphabets. Since the construction
is polynomial in the size ofG and exponential in the size
of A (ask gets into the exponent), we immediately get a
PTIME upper bound for data complexity and an EXPTIME
upper bound for combined complexity. By performing on-
the-fly nonemptiness checking for the product, we can lower
these bounds.

Theorem 4.6. Data complexity of RDPQs over data graphs
is in NLOGSPACE, and the combined complexity of RDPQs
over data graphs isPSPACE-complete.

The bound for data complexity cannot be lowered as
there exist simple RPQs for which data complexity is
NLOGSPACE-complete.

5. Queries based on regular expressions with
memory

Regular data path queries based on register automata have
acceptable complexity bounds: data complexity is the same
as for RPQs, and combined complexity, although exceeding
the bounds on conjunctive queries and RPQs, is the same
as for relational calculus or for RPQs extended with regu-
lar relations. Despite this, RDPQs as we defined them have
no chance to lead to a practical language as it is inconceiv-
able that the user will specify a register automaton over data
words. Even for queries such as RPQs and their extensions,
conditions are normally specified via regular expressions.

Our goal now is to introduce regular expressions that can
be used in place of register automata in data path queries.
Note that as long as they express languages accepted by reg-
ister automata, we shall achieve an NLOGSPACEbound on
data complexity by Theorem 4.6.

The first class of queries, studied in this section, is based
on an extension of regular expressions withmemorythat lets
us specify when data values are remembered and when they
are used. The basic idea is this: we can write expressions

like ↓x.a+[x=] saying: store the current data value inx and
check that after reading a word froma+ we see the same data
value (conditionx= is true). This will define data words of
the formda . . . ad. Such expressions are relatively easy to
write and understand (much easier than automata), and the
complexity of their query evaluation will not exceed that of
register automata.

Definition 5.1 (Expressions with memory).Let Σ be a fi-
nite alphabet andx1, . . . , xk a set of variables. Thenregular
expressions with memoryare defined by the grammar:

e := ε | a | e + e | e · e | e+ | e[c] | ↓ x̄.e (3)

wherea ranges over alphabet letters,c over conditions in
Ck, andx̄ over tuples of variables fromx1, . . . , xk.

A regular expression with memorye is well-formed if it
satisfies two conditions:

• Subexpressionse+, e[c], and↓ x̄.e are not allowed ife
reduces toε. Formally,e reduces toε if it is ε, or it is
e1 +e2 or e1 ·e2 or e+

1 or e1[c] or ↓ x̄.e1 wheree1 (and
e2) reduce toε.

• No variable appears in a condition before it appears
in ↓ x̄.

The class of well-formed regular expressions with memory
is denoted byREG(Σ[x1, . . . , xk]).

The extra condition of being well-formed is to rule out
pathological cases likeε[c] for checking conditions over
empty subexpressions, ora[x=] for checking equality with
a variable that has not been defined. In what follows we al-
ways assume that regular expressions with memory are well-
formed.

The intuition behind the expressions is that they process a
data path in the same way that the register automaton would,
by storing data values in variables, using these variables for
comparisons and moving through the word by reading a let-
ter from the finite alphabet.

Example 5.2. We now give four examples of such expres-
sions and languages they recognize, before formally defining
their semantics.

1. The expression↓x.(a[x6=])+ defines the language of
data paths where all edges are labeleda and the first
data value is different from all other data values. It
starts by bindingx to the first data value; then it pro-
ceeds checking that the letter isa and conditionx6= is
satisfied, which is expressed bya[x6=]; the expression
is then put in the scope of+ to indicate that the number
of such values is arbitrary.

2. The expression↓x.(ab)+[x6=] denotes the language of
data paths whose label is of the formab . . . ab and for
which the first data value is different from the last.
Note that the order of+ and condition is now differ-
ent: the condition is checked after verifying that the
label is in(ab)+, i.e., at the end of the word.

3. The expression↓x.a+[x=] + ε denotes the language
of data paths where all labels area and the first data
value is equal to the last. Note that one such data path
is simply of the formd, for d ∈ D, with labelε.

6



4. The languageLeq of data paths in which two data val-
ues are the same (see Section 3) is given by the expres-
sionΣ∗ · ↓x.Σ+[x=] ·Σ∗, whereΣ is the shorthand for
a1+. . .+al, wheneverΣ = {a1, . . . , al} andΣ∗ is the
shorthand forΣ+ + ε. It says: at some point, bindx,
and then check that after one or more edges, we have
the same data value.

SemanticsFirst, we define theconcatenationof two data
pathsw = d1a1 . . . an−1dn andw′ = dnan . . . am−1dm as
w·w′ = d1a1 . . . an−1dnan . . . am−1dm. Note that it is only
defined if the last data value ofw equals the first data value
of w′. The definition naturally extends to concatenation of
several data paths. Ifw = w1 · · ·wl, we shall refer to it as a
splittingof a data path (intow1, . . . , wl).

The semantics is defined by means of a relation(e, w, σ) ⊢
σ′, wheree ∈ REG(Σ[x1, . . . , xk]) is a regular expression
with memory,w is a data path, and bothσ andσ′ arek-tuples
overD ∪ {⊥} (the symbol⊥ means that a register has not
been assigned yet). The intuition is as follows: one can start
with a memory configurationσ (i.e., values ofx1, . . . , xk)
and parsew according toe in such a way that at the end
the memory configuration isσ′. The language ofe is then
defined as

L(e) = {w | (e, w, ⊥̄) |= σ for someσ},

where⊥̄ is the tuple ofk values⊥.

The relation⊢ is defined inductively on the structure of
expressions. Recall that the empty word corresponds to a
data path with a single data valued (i.e., a single node in
a data graph). We use the notationσx̄=d for the valuation
obtained fromσ by setting all the variables in̄x to d.

• (ε, w, σ) ⊢ σ′ iff w = d for somed ∈ D andσ′ = σ.

• (a, w, σ) ⊢ σ′ iff w = d1ad2 andσ′ = σ.

• (e1 · e2, w, σ) ⊢ σ′ iff there is a splittingw = w1 · w2

of w and a valuationσ′′ such that(e1, w1, σ) ⊢ σ′′ and
(e2, w2, σ

′′) ⊢ σ′.

• (e1 + e2, w, σ) ⊢ σ′ iff (e1, w, σ) ⊢ σ′ or (e2, w, σ) ⊢
σ′.

• (e+, w, σ) ⊢ σ′ iff there are a splittingw = w1 · · ·wm

of w and valuationsσ = σ0, σ1, . . . , σm = σ′ such
that(w, wi, σi−1) ⊢ σi for all i ∈ [m].

• (↓ x̄.e, w, σ) ⊢ σ′ iff (e, w, σx̄=d) ⊢ σ′, whered is the
first data value ofw.

• (e[c], w, σ) ⊢ σ′ iff (e, w, σ) ⊢ σ′ and σ′, d |= c,
whered is the last data value ofw.

Take note that in the last item we require thatσ′, and notσ,
satisfiesc. The reason for this is that our initial assignment
might change before reaching the end of the expression and
we want this change to be reflected when we check that con-
dition c holds.

Translation into automata We now show that regular ex-
pressions with memory can be efficiently translated into reg-
ister automata.

Proposition 5.3. For each regular expression with mem-
ory e ∈ REG(Σ[x1, . . . , xk]) one can construct, in
DLOGSPACE, ak-register data path automatonAe such that
L(e) = L(Ae).

More precisely, the automatonAe = (Q, q0, F, ⊥̄, δ)
(over data domainD ∪ {⊥}) has the property that for any
two valuationsσ, σ′ and a data pathw, we have(e, w, σ) ⊢
σ′ iff the automaton(Q, q0, F, σ, δ) has an accepting run on
w that ends with the register configurationσ′.

5.1 Query evaluation

We now deal with the following queries.

Definition 5.4. A regular data path query with memoryis
an expressionQ = x

e
−→ y, where e is regular expression

with memory.
Given a data graphG, the result of the queryQ(G) con-

sists of pairs of nodes(v, v′) such that there is a data path
w fromv to v′ that belongs toL(e).

The class of these queries is denoted byRDPQmem.

Using Proposition 5.3 combined with Theorem 4.6 we im-
mediately obtain:

Corollary 5.5. Data complexity ofRDPQmem queries is in
NLOGSPACE.

From the same connection we also get the upper bound
(PSPACE) for combined complexity. It turns out that we
can achieve PSPACE-hardness with expressions with mem-
ory (see the appendix for the proof). Thus, we have

Theorem 5.6. Combined complexity of evaluating
RDPQmem queries isPSPACE-complete.

The question is whether we can reduce this complexity –
ideally to PTIME, but at least to NP, to match the combined
complexity of conjunctive queries. The following corollary
(to the proof of Theorem 5.6) shows that many restrictions
will not work.

Corollary 5.7. Combined complexity of evaluating
RDPQmem queries remainsPSPACE-hard for expressions
that use at most one+ and 6= symbol, are specified over a
singleton alphabetΣ = {a}, and are evaluated over a fixed
graph.

In one case, we can lower the complexity.

Proposition 5.8. Combined complexity ofRDPQmem
queries whose regular expressions do not have subexpres-
sions of the forme+ is NP-complete.

The restriction, while achieving better combined complex-
ity, is too strong, as it effectively restricts one to languages of
data paths whose projections onΣ∗ are finite. All the exam-
ples we saw earlier use subexpressionse+. So if we want to
achieve tractability, we need to look at a very different way
of restricting expressions. This is what we do in the next
section.

7



6. Queries based on regular expressions with
equality

The class of regular expressions for data paths that lets us
lower the combined complexity of queries to PTIME permits
testing for equality or inequality of data values at the begin-
ning or the end of a data (sub)path. For example,(Σ+)6=
denotes the set of all data paths having different first and last
data values. The languageLeq of data paths on which two
data values are the same is given byΣ∗ · (Σ+)= · Σ∗: it
checks for the existence of a nonempty subpath (with label
in Σ+) such that the nodes at the beginning and at the end of
this subpath have the same data value, indicated by subscript
=.

Definition 6.1 (Expressions with equality).Let Σ be a fi-
nite alphabet. Thenregular expressions with equalityare
defined by the grammar:

e := ε | a | e + e | e · e | e+ | e= | e 6= (4)

wherea ranges over alphabet letters.

The languageL(e) of data paths denoted by a regular ex-
pression with equalitye is defined as follows.

• L(ε) = {d | d ∈ D}.

• L(a) = {dad′ | d, d′ ∈ D}.

• L(e · e′) = L(e) · L(e′).

• L(e + e′) = L(e) ∪ L(e′).

• L(e+) = {w1 · · ·wk | k ≥ 1 and eachwi ∈ L(e)}.

• L(e=) = {d1a1 . . . an−1dn ∈ L(e) | d1 = dn}.

• L(e 6=) = {d1a1 . . . an−1dn ∈ L(e) | d1 6= dn}.

These expressions sacrifice the ability to check condi-
tions as one goes along the path, making it only possible to
check conditions at the start and the end of chosen subex-
pressions. Looking at Example 5.2, all languages except
the first can be defined by regular expressions with mem-
ory. We already saw how to do the languageLeq; the ex-
pression↓x.(ab)+[x6=] is equivalent to(ab)+6=. The expres-
sion ↓x.(a[x6=])+ describing the language of data paths in
which all data values are different from the first one, requires
checking a condition multiple times. We now show that this
goes beyond the power of expressions with equality, which
are strictly weaker than expressions with memory.

Proposition 6.2. 1. For each regular expression with
equality, there is an equivalent regular expression with
memory.

2. For the regular expression with memory↓x.(a[x6=])+

there is no equivalent regular expression with equality.

6.1 Query evaluation

We now deal with the following queries.

Definition 6.3. A regular data path query with equalityis
an expressionQ = x

e
−→ y, where e is regular expression

with equality.
Given a data graphG, the result of the queryQ(G) con-

sists of pairs of nodes(v, v′) such that there is a data path
w fromv to v′ that belongs toL(e).

The class of these queries is denoted byRDPQ=.

Combining Propositions 5.3 and 6.2 we see that the power
of regular expressions with equality is subsumed by register
automata; hence combined with Theorem 4.6 we immedi-
ately obtain:

Corollary 6.4. Data complexity ofRDPQ= queries is in
NLOGSPACE.

We now show that combined complexity forRDPQ=
queries is tractable, i.e., is even better than the combined
complexity of conjunctive queries. Our outline of the
polynomial-time algorithm is as follows. We start with a
data graphG = 〈V, E, ρ〉 whose data values form a (finite)
setD ⊂ D and a regular expression with equalitye.

1. We first show that we can efficiently generate a
context-free grammarGe,D whose language corre-
sponds to the set of all data paths fromL(e)
whose data values are inD. More precisely,
every word in L(Ge,D) will be of the form
d1a1d2d2a2d3d3 . . . dn−1dn−1an−1dn, wheredi ∈ D
and ai ∈ Σ. We say that this word, in which each
data value, except the first and the last, appears twice,
corresponds to the data pathd1a1d2a2d3 . . . an−1dn.

2. We then convertGe,D, in polynomial time, into an
equivalent PDAA(Ge,D).

3. Given two nodesv, v′ in G, we construct an NFA
AG,v,v′ . To do so we first define a graphG′ = 〈V ′, E′〉
that will reflect the fact that all data values fromG have
to be doubled if they appear on a path as intermediate
nodes. We defineG′ = 〈V ′, E′〉 as follows:

• V ′ = V ∪ {ũ, û | u ∈ V } ∪ {s, t}
• E′ = {(v1, a, ṽ2) | (v1, a, v2) ∈ E}

⋃

{(ũ, ρ(u), û), (û, ρ(u), u) | u ∈ V }

Similarly as when dealing with register automata we
triple each node and add an edge between new nodes
that will reflect the fact that every intermediate data
value will have to be doubled. This is illustrated below.

d1 d1 a d2 d2

a

ṽ1 v̂1 v1 ṽ2 v̂2 v2

v1 v2

d2d1

⇓

In addition, we also add edges(s, ρ(v), v) and
(ṽ′, ρ(v′), t) to E′. We now get the automatonAG,v,v′

as the automaton obtained fromG′ by settings as the
initial andt as the final state. Note that the construction
of the automatonAG,v,v′ is polynomial.

8



4. Finally, forQ = x
e

−→ y we have(v, v′) ∈ Q(G) iff
the languageAG,v,v′ has nonempty intersection with
the language generated by the grammarGe,D. This fol-
lows by an argument similar to the proof of Proposition
4.5.

Since the intersection of a context-free language and
a regular language is context-free and can be obtained
by the product construction of a PDA and an NFA, this
means that(v, v′) ∈ Q(G) iff the productA(Ge,D) ×
AG,v,v′ defines a nonempty language. This product is
a PDA, so we can check its nonemptiness in polyno-
mial time, giving us a polynomial algorithm for query
evaluation.

Steps 2, 3, and 4 above use the standard constructions of
converting CFGs into PDAs, taking products, and checking
PDAs for nonemptiness. So what is missing is the construc-
tion of the CFGGe,D, which we show next.

Regular expressions with equality into CFGsAssume that
we have a finite setD of data values. We now inductively
construct CFGsGe,D for all regular expressions with equal-
ity. The terminal symbols of these CFGs will beΣ plus
all elements ofD. All nonterminals inGe,D will be of the
form Ae′ andAdd′

e′ , wheree′ ranges over subexpressions of
e andd, d′ ∈ D. Intuitively, words derived fromAdd′

e′ will
correspond to (in a way previously described) data paths in
L(e′) with data values fromD that start withd and end with
d′; words derived fromAe′ will correspond to data paths in
L(e′) with data values fromD. The start symbol for the
grammar corresponding to the expressione will be Ae.

The productions of the grammarsGe,D are now defined
inductively as follows.

• If e = ε, we have productionsAε →
∨

d∈D Add
ε and

Add
ε → d for eachd ∈ D.

• If e = a, for a ∈ Σ, we have productionsAe →
∨

d,d′∈D Add′

e andAdd′

e → dad′ for all d, d′ ∈ D.

• If e = e1 · e2, we have productionsAe →
∨

d,d′∈D Add′

e andAdd′

e →
∨

d′′∈D Add′′

e1
Ad′′d′

e2
for all

d, d′ ∈ D together with all the productions of the
grammarsGe1,D andGe2,D.

• If e = e1 + e2, we have productionsAe →
∨

d,d′∈D Add′

e andAdd′

e → Add′

e1
|Add′

e2
for all d, d′ ∈

D together with all the productions of the grammars
Ge1,D andGe2,D.

• If e = (e1)
+, we have productionsAe →

∨

d,d′∈D Add′

e and Add′

e → Add′

e1
|
∨

d′′∈D Add′′

e1
Ad′′d′

e

for all d, d′ ∈ D together with all the productions of
the grammarGe1,D.

• If e = (e1)=, we have productionsAe →
∨

d∈D Add
e

andAdd
e → Add

e1
for all d ∈ D together with all the

productions of the grammarGe1,D.

• If e = (e1)6=, we have productionsAe →
∨

d,d′∈D, d 6=d′ Add′

e andAdd′

e → Add′

e1
for all d, d′ ∈ D

with d 6= d′, together with all the productions of the
grammarGe1,D.

It is clear from the construction that all words generated
by this grammar(with the sole exception of the empty word)
have all of their intermediate data values (i.e. letters corre-
sponding to values inD) doubled, except the first and the
last one.

Note that with these expressions we assume thatε can
appear only when denoting the empty word and will be re-
moved otherwise. We require this, so that we would not get
productions that produce objects that are not data paths, such
as e.g.ddd for the expressionε · ε · ε. Note that this is not a
problem, since all expressions can be rewritten to be of this
form in DLOGSPACE.

The main result connecting these CFGs with languages of
regular expressions with equality is this. Recall that when
we say that a word overΣ andD corresponds to a data path
with values inD, we mean that it equals the data path with
all the data values, except the first and the last, doubled.

Proposition 6.5. The language of words derived by each
CFGGe,D corresponds to the set of data paths inL(e) whose
data values come fromD. Furthermore, the set of words de-
rived from each nonterminalAdd′

e corresponds to the set of
data paths inL(e) which start withd, end withd′, and whose
data values come fromD.

Moreover, the CFGGe,D can be constructed in polynomial
time frome andD.

This, together with the algorithm shown above, finally
gives us tractability of combined complexity.

Theorem 6.6. Combined complexity ofRDPQ= queries is
in PTIME.

The correctness of the procedure shown in this section is
proved in the appendix.

7. Conjunctive regular path queries with data

A standard extension of RPQs is that toconjunctive RPQs,
or CRPQs [12, 18, 22]. These add conjunctions of RPQs
and existential quantification over variables, in the same way
as conjunctive queries extend atomic formulae of relational
calculus. We now look at similar extensions of RPQs with
data.

Formally, aconjunctive regular data path query (CRDPQ)
is an expression of the form

Ans(z̄) :=
∧

1≤i≤m

xi
Li−→ yi, (5)

wherem > 0, eachxi
Li−→ yi is a regular data path query (in

one of the formalisms studied here), andz̄ is a tuple of vari-
ables amonḡx andȳ. A query with the headAns() (i.e., no

9



Query answering RDPQ RDPQmem

RDPQmem
over finite words RDPQ=

data complexity NLOGSPACE-complete NLOGSPACE-complete NLOGSPACE-complete NLOGSPACE-complete
combined complexity PSPACE-complete PSPACE-complete NP-complete PTIME

(a) for single data path query

Query answering CRDPQ CRDPQmem CRDPQ=

data complexity NLOGSPACE-complete NLOGSPACE-complete NLOGSPACE-complete
combined complexity PSPACE-complete PSPACE-complete NP-complete

(b) for conjunctive queries

Figure 2: Summary of complexity results for classes of queries

variables in the output) is called aBooleanquery. Depend-
ing on which RDPQs are used in (5) we shall be referring
to CRDPQs, or CRDPQs with memory, or CRDPQs with
equality.

These queries extend RDPQs with conjunction, as well as
existential quantification: variables that appear in the body
but not in the head (i.e., variables in̄x andȳ but notz̄) are
assumed to be existentially quantified.

The semantics of a CRDPQQ of the form (5) over a data
graphG = 〈V, E, ρ〉 is defined as follows. Given a valu-
ation ν :

⋃

1≤i≤m{xi, yi} → V , we write (G, ν) |= Q if

(ν(xi), ν(yi)) is in the answer ofxi
Li−→ yi on G, for each

i = 1, . . . , m. ThenQ(G) is defined as the set of all tuples
ν(z̄) such that(G, ν) |= Q. If Q is Boolean, we letQ(G) be
true if (G, ν) |= Q for someν (that is, as usual, the empty
tuple models the Boolean constant true, and the empty set
models the Boolean constant false).

As with RDPQs, we study data and combined complexity
of the query evaluation problem, i.e. checking, for a CRDPQ
Q, a data graphG and a tuple of nodes̄v, whether̄v ∈ Q(G)
(for data complexity the queryQ is fixed).

First, we show that for all the three formalisms based on
register automata and regular expressions for them, no cost
is incurred by going from RDPQs to CRDPQs as far as data
complexity is concerned.

Theorem 7.1. Data complexity of conjunctive regular data
path queries remainsNLOGSPACE-complete if they are
specified using register automata, regular expressions with
memory, or regular expressions with equality.

PROOF. Consider a query of the form (5) and letz̄′ be the
tuple of variables from̄x and ȳ that is not present in̄z. To
check whether̄v ∈ Q(G), we need to check whether there
exists a valuation̄v′ for z̄′ so that under that valuation each
of the RDPQs in the conjunction in (5) is true.

We know from the previous sections that checking

whetherv
L

−→ v′ evaluates to true for some nodesv, v′

can be done with NLOGSPACEdata complexity for all the
formalisms mentioned in the theorem. Thus, given a data
graphG = 〈V, E, ρ〉, we can enumerate all the tuples from
V |z̄′|, and for each of them check the truth of all the RD-
PQs in conjunction (5). Since we deal with data complexity,

|z̄′| is fixed, and thus such an enumeration can be done in
logarithmic space, showing that query evaluation remains in
NLOGSPACE.

For combined complexity, we have the same bounds for
CRDPQs given by register automata and expressions with
memory as in the case of a single RDPQ. For regular expres-
sions with equality we get NP-completeness, which matches
the combined complexity of conjunctive queries and CR-
PQs.

Theorem 7.2. Combined complexity of conjunctive regu-
lar data path queries remainsPSPACE-complete if they are
specified using register automata or regular expressions with
memory. It isNP-complete if they are specified using regular
expressions with equality.

PROOF. PSPACE-hardness follows from the correspond-
ing results for RDPQs and RDPQs with memory, and NP-
hardness follows from NP-hardness of relational conjunc-
tive queries. Thus we show upper bounds. The algorithm
(using notations from the proof of Theorem 7.1) is the same
in all three cases: guess a tuplev̄′ of nodes for̄z′, and check
whether all the RDPQs in conjunction (5) are true. We know
that for register automata and regular expressions with mem-
ory the latter can be done in PSPACE; since PSPACEis closed
under nondeterministic guesses we have the PSPACE upper
bound for combined complexity. For regular expressions
with equality, an NP upper bound for the algorithm follows
from the PTIME bound for combined complexity for RDPQs
with equality.

8. Summary and future work

The tables in Figure 2 give the summary of data and com-
bined complexity for various query languages studied in this
paper. As we introduced models that expand the usual RPQs
and CRPQs that handle only edge labels and can now ma-
nipulate data in the nodes, we get, as expected, a slightly
higher complexity bounds for combined complexity. How-
ever, using a large class of regular expressions that can ex-
press many properties of interest, we can match the usual
bound of RPQs. For CRPQs with data, the bounds are only
slightly higher than those for data-free CRPQs; in some
cases they coincide with bounds for CRPQs extended with

10



comparisons of paths, and for some, there is no price to pay
for incorporating data comparisons into queries.

This is an initial investigation on combining data and
topology in graph query languages, and we plan to extend
this work in several directions. One of them has to do with
optimizing queries, in particular, with studying containment
and equivalence as in [18, 25]. We are also interested in han-
dling constraints in graph query languages [2, 26]. Another
direction is to study extensions with path comparisons as in
[4], combined with querying data. We also plan to study
incomplete data, by extending patterns in [5] with data, po-
tentially incomplete.

Yet another direction we intend to pursue is to define our
expressions over data words, a setting usually treated in the
literature, and try to study their classical language theoretic
properties, such as membership testing, nonemptiness, con-
tainment, etc. To lower complexity we might even consider
restricting regular expressions with memory in such a way
that equality tests are more explicit, while still allowingthem
to be far more expressive than expressions with equality. We
would also like to specify a class of expressions that pre-
cisely capture register automata in the same manner that
regular expressions capture finite state automata. We have
strong indications that we will be able to do so with regular
expressions with memory.

Acknowledgment Work partially supported by EPSRC
grant G049165 and FET-Open Project FoX, grant agreement
233599.

9. References

[1] S. Abiteboul, P. Buneman, D. Suciu.Data on the Web: From
Relations to Semistructured Data and XML. Morgan Kauffman,
1999.

[2] S. Abiteboul, V. Vianu. Regular path queries with constraints.J.
Comput. Syst. Sci.58(3):428-452 (1999).

[3] R. Angles, C. Gutiérrez. Survey of graph database models.ACM
Comput. Surv.40(1): (2008).

[4] P. Barceló, C. Hurtado, L. Libkin, P. Wood. Expressive languages for
path queries over graph-structured data. InPODS’10, pages 3–14.

[5] P. Barceló, L. Libkin, J. Reutter. Querying graph patterns. In
PODS’11, pages 199–210.

[6] M. Benedikt, W. Fan, F. Geerts. XPath satisfiability in the presence of
DTDs.J. ACM55(2): (2008).

[7] M. Bojanczyk, P. Parys. XPath evaluation in linear time.In
PODS’08, pages 241-250.

[8] M. Bojanczyk. Automata for data words and data trees. InRTA 2010.

[9] M. Bojanczyk, A. Muscholl, T. Schwentick, L. Segoufin.
Two-variable logic on data trees and XML reasoning.J. ACM56(3):
(2009).

[10] M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, L. Segoufin.
Two-variable logic on words with data.ACM TOCL12(4): (2011).

[11] P. Bouyer, A. Petit, D. Thérien. An algebraic characterization of data
and timed languages.CONCUR’01, pages 248–261.

[12] D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi.
Containment of conjunctive regular path queries with inverse. In
KR’00, pages 176–185.

[13] D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi. Rewriting
of regular expressions and regular path queries.JCSS,
64(3):443–465, 2002.

[14] M. P. Consens, A. O. Mendelzon. GraphLog: a visual formalism for
real life recursion. InPODS’90, pages 404–416.

[15] I. Cruz, A. Mendelzon, P. Wood. A graphical query language
supporting recursion. InSIGMOD’87, pages 323-330.

[16] S. Demri, R. Lazic. LTL with the freeze quantifier and register
automata.ACM TOCL10(3): (2009).

[17] S. Demri, R. Lazić, D. Nowak. On the freeze quantifier inconstraint
LTL: Decidability and complexity.Inf. Comput.205(1): 2–24 (2007).

[18] A. Deutsch, V. Tannen. Optimization properties for classes of
conjunctive regular path queries.DBPL’01, pages 21–39.

[19] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu. Graph pattern matching: from
intractable to polynomial time.PVLDB3(1): 264-275 (2010).

[20] D. Figueira. Satisfiability of downward XPath with dataequality
tests.PODS’09, 197-206.

[21] D. Figueira and L. Segoufin. Bottom-up automata on data trees and
vertical XPath.STACS’11, pages 93–104.

[22] D. Florescu, A. Levy, D. Suciu. Query containment for conjunctive
queries with regular expressions. InPODS’98, pages 139–148.

[23] S. Fortune, J. Hopcroft, and J. Wyllie. The directed homeomorphism
problem.Theoretical Computer Science, 10:111-121, 1980.

[24] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for
processing XPath queries.ACM Trans. Database Syst,
30(2):444-491, 2005.

[25] G. Grahne, A. Thomo. Algebraic rewritings for optimizing regular
path queries. InICDT’01, pages 301–315.

[26] G. Grahne, A. Thomo. Query containment and rewriting using views
for regular path queries under constraints. InPODS’03, pages
111–122.

[27] C. Gutierrez, C. Hurtado, A. Mendelzon. Foundations ofsemantic
Web databases.J. Comput. Syst. Sci.77(3): 520-541 (2011).

[28] M. Kaminski and N. Francez. Finite memory automata.Theoretical
Computer Science, 134(2):329-363, 1994.

[29] M. Kaminski, T. Tan. Tree automata over infinite alphabets. In
Pillars of Computer Science, 2008, pages 386–423.

[30] M. Kaminski and T. Tan. Regular expressions for languages over
infinite alphabets.Fundam. Inform., 69(3):301-318, 2006.

[31] U. Leser. A query language for biological networks.Bioinformatics
21 (suppl 2) (2005), ii33–ii39.

[32] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii,
U. Alon. Network motifs: simple building blocks of complex
networks.Science298(5594) (2002), 824–827.

[33] F. Neven, Th. Schwentick, V. Vianu. Finite state machines for strings
over infinite alphabets.ACM TOCL5(3):403-435 (2004).

[34] F. Neven, Th. Schwentick. XPath containment in the presence of
disjunction, DTDs, and variables.Logical Methods in Computer
Science2(3) (2006).

[35] H. Sakamoto and D. Ikeda., Intractability of decision problems for
finite-memory automata.Theor. Comput. Sci.231, 2, 297-308, 2000.

[36] F. Olken. Graph data management for molecular biology.OMICS
7(1): 75-78 (2003).

[37] J. Pérez, M. Arenas, C. Gutierrez. Semantics and complexity of
SPARQL.ACM TODS34(3): 2009.

[38] R. Ronen and O. Shmueli. SoQL: a language for querying and
creating data in social networks. InICDE 2009.

[39] M. San Martı́n, C. Gutierrez. Representing, querying and
transforming social networks with RDF/SPARQL. InESWC 2009,
pages 293–307.

[40] L. Segoufin. Automata and logics for words and trees overan infinite
alphabet. InCSL’06, pages 41-57.

[41] L. Segoufin. Static analysis of XML processing with datavalues.
SIGMOD Record36(1): 31-38 (2007).

[42] J. Van den Bussche, G. Vossen. An extension of path expressions to
simplify navigation in object-oriented queries. InDOOD’93, pages
267–282.

11



APPENDIX

Proofs

10. Proof of Theorem 3.1

We do a reduction from 2-DISJOINT PATHS QUERY problem provento be NP-complete in [23]. This problem is to check,
for a graphG and four nodess1, t1, s2, t2 in G, whether there exist two paths inG, one froms1 to t1 and the other froms2 to
t2 that have no nodes in common.

Assume thatG = 〈V, E〉 is a graph ands1, t1, s2, t2 are four nodes inG. Here we assume that all four nodes are distinct.
It is easy to see that with this assumption the problem remains NP-complete, because we can always add two new nodes for
each repeated node and connect them with all the nodes the repeated node was connected to, thus modifying our problem to

have all source and target nodes different. We let our query be Q = x
Leq

−→ y. Since our query will disregard edge labels we
can takeΣ = {a}. We will construct a data graphG′ and two nodess, t ∈ G′ such that(s, t) ∈ Q(G′) if and only if there are
two disjoint paths inG from s1 to t1 and froms2 to t2.

Let V = {v1, . . . , vn}. The graphG′ will contain two disjoint isomorphic copies ofG (with data values and labels attached)
connected by a single edge. We define the two isomorphic copiesG1 andG2 by:

• Gk = 〈Vk, Ek, ρk〉, where

• Vk = {v′1, . . . , v
′
n},

• Ek = {(v′i, a, v′j) : (vi, vj) ∈ E} and

• ρk(v′i) = i, for i = 1 . . . n

for k = 1, 2, and then letG′ = 〈V ′, E′, ρ′〉, where

• V ′ = V1 ∪ V2,

• E′ = E1 ∪ E2 ∪ {(t′1, a, s′′2)} and

• ρ′ = ρ1 ∪ ρ2.

Note thatρ′ is well defined sinceV1 andV2 are disjoint.

Finally we defines = s′1 andt = t′′2 .

We claim that(s, t) ∈ Q(G′) if and only if there are two disjoint paths inG from s1 to t1 and froms2 to t2 in G. To see this
assume first that(s, t) ∈ Q(G′). This means that we have a path inG′ which starts ins′1 and ends int′′2 . In particular, it must
pass the edge betweent′1 ands′′2 , since this is the only edge connecting the two graphs. Also,since all data values on this path
are different we know that no node can repeat. But then we simply split this path into two disjoint paths inG since the structure
of edges inG′ is the same as the one inG with the exception of edge betweent′1 ands′′2 . Also, no node can be repeated, since
the corresponding nodes inG1 andG2 have the same data values.

Conversely, if we have two disjoint paths froms1 to t1 and froms2 to t2 in G, we simply follow the corresponding path
from s′1 to t′1 in G1 (and thus inG′), traverse the edge betweent′1 ands′′2 and then follow the path inG2 (and thus inG′) from
s′′2 to t′′2 corresponding to the path froms2 to t2 in G.

This completes the proof of the theorem.

11. Proof of Lemma 4.2

First we fix some notation. An accepting run of a register datapath automatonA on w = d1a1d2 . . . an−1dn is a sequence
of configurationsC0, C1, . . . , C2n−1 starting with the initial configuration, ending in some finalconfiguration and such that
for everyi < 2n − 1, the automaton can move fromCi to Ci+1 by reading the appropriate symbol ofw. For each accepting
run there is also a sequence of transitions fromδd andδw witnessing this run. This sequence always starts and ends with a

12



transition fromδd and the consecutive transitions are alternating betweenδd andδw. We will often identify accepting run ofA
onw with its witnessing sequence. An example of such an accepting sequence forA onw = d1a1d2 . . . an−1dn is a sequence

(q0, c1, I1, q1) → (q1, a1, q2) → (q2, c2, I2, q3) → (q3, a2, q4) → . . . → (q2n−2, cn, In, q2n−1),

with q2n−1 ∈ F .

A run of a data word automaton is defined analogously.

We are now ready to prove Lemma 4.2.

Let A = (Q, q0, F, τ0, δ = (δw, δd)) be our automaton over data paths. We know thatQ = Qw ∪ Qd. We defineA′ =
(Q′, q−1, F

′, τ ′
0, T ), an automaton over data words, as follows:

• Q′ = {q−1} ∪ Qw, whereq−1 is the new initial state;

• F ′ = F ;

• τ ′
0 = τ0;

• For every transition(q0, c, I, q) ∈ δd we add (q−1, #, c, I, q) to T . Also, for every pair of transitions
(q1, a, q2), (q2, c, I, q3), with q1, q3 ∈ Qw andq2 ∈ Qd we add the transition(q1, a, c, I, q3) to T .

To see the equivalence, assume thatw = d1a1d2 . . . an−1dn is in L(A). Then there exists an accepting run

(q0, c1, I1, q1) → (q1, a1, q2) → (q2, c2, I2, q3) → (q3, a2, q4) → . . . → (q2n−2, cn, In, q2n−1),

with q2n−1 ∈ F . But then

(q−1, #, c1, I1, q1) → (q1, a1, c2, I2, q3) → . . . → (q2n−3, an, cn, In, q2n−1)

is an accepting run ofA′ on
(

#
d1

)(

a1

d2

)

. . .
(

an−1

dn

)

.

Conversely, assume that

(q−1, #, c1, I1, q1) → (q1, a1, c2, I2, q3) → . . . → (q2n−3, an, cn, In, q2n−1)

is an accepting run ofA′ on
(

#
d1

)(

a1

d2

)

. . .
(

an−1

dn

)

. Since every transition ofA′, except for the first one is made up from two
transitions ofA, we know that for each(q, a, c, I, q′) in this accepting run there existsq′′ ∈ Qd such that(q, a, q′′) ∈ δw and
(q′′, c, I, q′) ∈ δd.This pair of transitions will process some pair

(

a
d

)

. From this we get an accepting run ofA on d1a1 . . . dn

starting with(q0, c1, I1, q1) (processingd1, since the condition here is forA′ to accept
(

#
d1

)

) and continuing through following
transitions as described above.

The DLOGSPACEbound is also immediate.

12. Proof of Corollary 4.3

We prove PSPACE-hardness by doing a reduction from regular automata nonuniversality. This problem requires us to deter-
mine, given a finite state automatonA, whetherL(A) 6= Σ∗.

The proof we give here is similar to the proof for data words given in [16]. It is easy, though quite tedious, to check that the
described algorithm can indeed be implemented on a registerautomaton. Here we give a high level description of how to do
so.

Assume we are given a regular automatonA = (Q, Σ, δ, q1, F ), whereQ = {q1, . . . , qn} andF = {qi1 , . . . , qik
}. Using an

automaton with2n + 2 registers we will emulate the following algorithm which solves reachability in the powerset automaton
for the complementA.

We initialize our automaton by storing two different data values, which we denote byt andf , in the first two registers.

Our algorithm stores two states ofA, both of which are encoded as ann-bit sequence oft/f . If the ith bit of the sequence is
set tot, it means thatqi is included in our state ofA. The state we start in istf . . . f , wheret corresponds to stateq1, the initial
state. It is easy to code this into our automaton.

In what follows we will refer to the twon-bit sequences coding the two states ofA as the current state tape and the next
state tape. These will be used to test reachability in the powerset automaton forA and will work in the usual manner. This
means that we are trying to guess a word in the complement automaton by guessing a letter from the alphabet at each step and

13



updating the next state tape (which will code the next state)with respect to the current state tape (holding the description of
the current state). At the end of each step we simply copy the next state tape to the current state tape and start from there in the
next step.

To simulate this in every step we reset the next state tape to contain all false and we nondeterministically pick out a letter of
the accepting word forA and apply all possible transitions from the current state (i.e. from the states where we havet on our
tape). We remember the result on the new tape and at the end copy it to the current state tape. That is, our register automaton
loops over the following set of instructions: it first sets its next state tape (stored in registersn + 3 . . . 2n + 2) to contain allf
values, then nondeterministically picks a letter of the alphabet and updates the next state tape according to the valuesit reads
on the current state tape (i.e. it only updates if the value istrue). After going through the entire current state tape andupdating
according toδ it copies the next state tape to the current state tape.

The algorithm stops if it reaches a state where all states inF are tagged withf , or it has exhausted all2n states. Since we
use only two tapes and polynomially many operations in each step our algorithm is in PSPACE. That is, our automaton can
chose to nondeterministically enter a block of states specifying that all states inF are coded byf on the current state tape.

We now claim that there is a word in the language of the constructed register automaton if and only if language ofA is not
universal.

It is clear from the description that the language of our given automaton is not universal if and only if there is a sequence
of tape descriptions starting from the initial state description and moving according to the previous algorithm such that the
last state description hasf in all positions corresponding to the states inF . But this simply means that the language of the
constructed automaton is nonempty. Conversely, if the language of the constructed automaton is nonempty it clearly describes
such a set of transitions that leads to a word not in the language of originalA.

13. Proof of Proposition 4.5

It follows immediately from the construction that the automatonAD accepts precisely those data paths formL(A) that have
data values fromD. To see this it suffices to show that every accepting run ofAD corresponds to an accepting run ofA and vice
versa, in the case of paths whose data values come formD. But this follows easily sinceAD has all possible configurations of
registers at it’s disposal.

To see that the statement of Proposition holds assume first that (v, v′) ∈ Q(G). Then there is a data pathwπ =
d0a0d1a1 . . . an−1dn from v to v′ such thatwπ ∈ L(A). Since this is a data path inG starting withv and ending withv′

it must also be a word in the language ofAG′,v,v′ . On the other hand, since it is inL(A), it must also be inL(AD), sinceAD

is simply restriction ofA to alphabet in which data values come only from the setD. ThusL(AG′,v,v′ ×AD) 6= ∅.

Conversely, assume thatL(AG′,v,v′ × AD) 6= ∅. Then there is a data pathwπ = d0a0d1a1 . . . an−1dn such thatwπ ∈
L(AG′,v,v′) andwπ ∈ L(AD). But then by constructionwπ must be a data path inG from v to v′. Also wπ ∈ L(A),
sinceL(AD) is simply a restriction of language ofA to data paths whose data values come fromD. But this implies that
(v, v′) ∈ Q(G).

14. Proof of Theorem 4.6

We only need to prove PSPACE-hardness, since upper PSPACEbound follows from on-the-fly method for checking nonempti-
ness of exponential size automata. But this is an immediate consequence of Proposition 5.3 and Theorem 5.6, which are proved
for a more restricted language.

15. Proof of Proposition 5.3

We prove this by induction on the structure ofe. Note that the initial assignment ofAe is not specified in advance. We will
simply put the assignment in as needed, since it does not change the structure of the underlying automaton. In what follows we
will identify the vectorx of variables with the set of registers (i.e. positions) it corresponds to. For example the vector(x3, x5)
will correspond to the setI = {3, 5} of registers.

If (e, w, σ) ⊢ σ′, we will write w ∈ L(e, σ, σ′) and similarly ifAe = (Q, q0, F, ⊥̄, δ) started withσ acceptsw with σ′ in the
registers, we writew ∈ L(Ae, σ, σ′).

• If e = ε, thenAe = (Q, q0, F, ⊥̄, δ), whereQ = {d} ∪ {w} is the set of states,q0 = d is the initial state,F = {w} the
set of final states and the only transition is(d, ε, ∅, w).

14



• If e = a, for somea ∈ Σ thenAe = (Q, q0, F, ⊥̄, δ), whereQ = {d1, d2} ∪ {w1, w2} is the set of states,q0 = d1 the
initial state,F = {w2} the final state and the transition functions are as follows:δw = {(w1, a, d2)} is the word transition
relation, andδd = {(d1, ε, ∅, w1), (d2, ε, ∅, w2)} is the data transition relation.

• If e = e1 + e2 then by the inductive hypothesis we already have automataAe1
= (Q1, d1, F1, ⊥̄, δ1) andAe2

=
(Q2, d2, F2, ⊥̄, δ2) with the desired property. The registers ofAe will be the union of registers ofAe1

andAe2
. To obtain

the desired automaton we setAe = (Q, d0, F, ⊥̄, δ), where
– Q = Q1 ∪ Q2 ∪ {d0}, whered0 is a new data state,
– F = F1 ∪ F2,
– To δ we add all transitions fromAe1

andAe2
and in addition, for every transition(d, c, I, w) ∈ δ1∪δ2, whered = d1,

or d = d2, we add a transition(d0, c, I, w).
To see that this automaton has the desired property assume thatw ∈ L(e1 + e2, σ, σ′). This means(e1 + e2, w, σ) ⊢ σ′.
By definition,(e1, w, σ) ⊢ σ′ or (e2, w, σ) ⊢ σ′. By the induction hypothesis it follows that eitherAe1

, orAe2
acceptsw

and halts withσ′ in the registers (when started withσ). From this it is clear thatAe can simulate the same accepting run
when started withσ in the registers(by using the transition fromd0 to the appropriate automaton and continuing on the
same run there). (Note that all conclusions here are equivalences.)

• If e = ↓x.e1 then again by the induction hypothesis we haveAe1
= (Q1, d1, F1, ⊥̄, δ1) with the desired property. The

automaton forAe is defined asAe = (Q1 ∪ {d0}, d0, F1, ⊥̄, δ), whered0 is a new data state andδ contains all the
transitions ofAe1

and in addition, for every transition(d1, c, I, w), going from the initial state ofAe1
, we add a transition

(d0, c, I ∪ x, w) to δ. The registers ofAe are the union of registers ofAe1
and|x| new registers.

To see the equivalence, assume thatw ∈ L(e, σ, σ′). By definition(e, w, σ) ⊢ σ′. It follows that(e1, w, σx=v1
) ⊢ σ′,

wherev1 is the first data value inw andσx=v1
is the same asσ except that every register inx containsv1. By the induction

hypothesis we know thatAe1
with σx=v1

as initial assignment has an accepting run onw ending withσ′ in the registers.
But thenAe starting withσ in the registers can go through the same run with the exception that the first transition will
changeσ to σx=v1

and since all other transitions are the same we have the desired result. (Note that all conclusions here
are equivalences.) It is important to note that potential confusion of the variables will cause no conflicts. To see this
assume we have a transition(d1, c, I, w) in Ae1

and we start withσ as initial assignment. IfI andx have variables in
common it will not matter, since all of them will get replacedby the same value, namely the first data value ofw. This
means that the first step of the run will end up with the same result. Also note that no transition inδd with d1 as the first
component will havec 6= ε, since this would amount to an expression starting with a condition, something disallowed by
our syntax.

• If e = e1[c] then letAe1
= (Q1, d1, F1, ⊥̄, δ1) be an automaton fore1 as before. We defineAe = (Q, d1, F, ⊥̄, δ) where

Q = Q1 ∪ {wf}, with wf a new state,F = {wf} and for every transition(d, c′, I, w) wherew ∈ F1 we add a transition
(d, c′ ∧ c, I, wf ) to Ae. We have to add a new state simply because our original automaton could have looped back from
some final state.
To get the equivalence assume again thatw ∈ L(e, σ, σ′). By definition(e1, w, σ) ⊢ σ′ andσ′, v |= c, wherev is the last
data value inw. From the induction hypothesis we get an accepting run ofAe1

with σ as initial configuration andσ′ as
final one. But sinceσ′, v |= c instead of the last transition we can simply make a transition to wf in Ae (since all other
transitions are the same). We again notice that all the implications can be reversed, i.e. we can prove the equivalence.

• If e = e1 · e2, take againAe1
andAe2

as above. The automaton fore is simply the union of the previous two automata,
but in addition to the already existing transitions we add the following: for every(d, c, I, w) in Ae1

, wherew ∈ F1 and
for every(d2, c

′, I ′, w′) in Ae2
, whered2 is the initial state ofAe2

, we add(d, c∧ c′, I ∪ I ′, w′) to δ. Note thatI is going
to be an empty set, since we work with well formed expressions. We also maked1 the initial state andF2 the set of final
states. The registers ofAe are again the union of registers ofAe1

andAe2
.

To get the desired result once again assume thatw ∈ L(e, σ, σ′). This means(e, w, σ) ⊢ σ′, which implies that there
exists someσ′′ and a splittingw = w1 · w2 of w such that(e1, w1, σ) ⊢ σ′′ and(e2, w2, σ

′′) ⊢ σ′. By the induction
hypothesis we know that there is an accepting run ofAe1

on w1 starting withσ and ending withσ′′ in the registers and
also an accepting run ofAe2

onw2 starting withσ′′ and ending withσ′ in the registers. But we can simply combine these
two runs into an accepting run ofAe onw. We do so by settingσ as initial assignment and tracing the run ofAe1

till the
final state. Now instead of taking the last transition we willtake one of the newly added transitions from the next to final
state inAe1

to the next to first state inAe2
. Note that we can do this since we know there is an accepting run of Ae2

on
w2 and sincew = w1 · w2, so their last and first data value, respectively, coincide.Note that at this point we end up with
σ′′ in the registers and can continue the accepting run ofAe2

and thusAe.
Conversely, if we have an accepting run ofAe on w, we split the run, and thus the path, into the part before and after
taking the new transition added while constructing the automaton. Note that we have to take this transition in order to
pass from the initial state, which is inAe1

part ofAe, to a final state, which is in aAe2
part ofAe. From this it follows

thatw ∈ L(e).

• If e = e+
1 , then let againAe1

be the automaton from the induction hypothesis. Note first that this automaton has at least
four states, since Proj(e1) 6= ε, where Proj(e) denotes the projection to the finite alphabetΣ, and transitions going directly

15



from initial to final state can only accept the empty word, so they will not alter computations or acceptance. We let the
automaton fore be the same as the one fore1, but we add the following transitions: for every(d, c, I, w) with w ∈ F1 and
for every(d1, c

′, I ′, w′), whered1 is the initial state ofAe1
, we add(d, c ∧ c′, I ∪ I ′, w′) to our transition function, thus

bypassing the last and the first state.
Assume now that(e, w, σ) ⊢ σ′. Then either(e1, w, σ) ⊢ σ′, so we are done by the induction hypothesis, orw =
w1 · · ·wk with k ≥ 2 and valuationsσ1, . . . , σk+1 exist such that(e1, wi, σi) ⊢ σi+1 for i = 1, . . . , k. But then by the
induction hypothesis we have computations ofAe1

with σi as the initial assignment andσi+1 as final assignment that
acceptwi, for i = 1, . . . , k. Note that this actually means that we start withσ, do a computation forw1, end withσ2 in
the registers, then take the new transition bypassing the end state for this computation and thus starting the computation
with σ2 in the registers(and updating the registers as dictated by the first transition in the new cycle), etc., until we reach
σ′ after readingwk, thus acceptingw.
For the converse, ifAe acceptsw when started withσ and ended withσ′ then we simply split the data path for every time
we take the additional transitions added in the construction of Ae. From this we get computations ofAe1

on sub-paths
with intermediate valuations. By the induction hypothesiswe have acceptance of these subpaths bye1 with appropriate
valuations and thus the membership of the entire pathw in L(e, σ, σ′) .

This concludes the proof. It is straightforward to check that all the constructions can be carried in DLOGSPACE.

16. Proof of Theorem 5.6

The PSPACEupper bound follows from Theorem 4.6 and Proposition 5.3. Thus we only have to prove PSPACE-hardness.
For this we do a reduction from regular automata nonuniversality problem. The idea is, similarly to proof of Corollary 4.3,
to simulate on the fly reachability testing in the powerset automaton by using two sets of variables, each of the size of the
automaton, for coding the current and next state.

Let A = (Q, Σ, δ, q1, F ) be a finite state automaton, whereQ = {q1, . . . , qn} andF = {qi1 , . . . , qik
}. We will construct

a fixed graphG with 5 nodes, containing two distinguished nodess andt in G and construct, in polynomial time, a regular
expression with memorye,of lengthO(n × |Σ|), such that(s, t) ∈ Q(G) if and only if L(A) 6= Σ∗, whereQ = x

e
−→ y.

The graphG is shown below:

1 0 1 0 0

a

a a

a

a

a

a a

v1 v2 v3 v4 v5

We now sets = v1 andt = v5.

Since we are trying to demonstrate nonuniversality of the automatonA we simulate reachability checking in the powerset
automaton forA. To do so we designate two distinct data values,t andf , and code each state of the powerset automaton as
ann-bit sequence oft/f values, where theith bit of the sequence is set tot if the stateqi is included in our state ofA. Since
we are checking reachability we will need only to remember the current and the next state ofA. In what follows we will code
those two states using variabless1, . . . , sn andw1, . . . , wn and refer to them as stable tape and work tape. Our expressione
will code data paths that describe successful runs ofA by demonstrating how one can move from one state of this automaton
to another (as witnessed by their codes in stable and work tapes), starting with the initial and ending in a final state.

We will define several expressions and explain their role. Wewill use two sets of variables,s1 throughsn andw1, . . . , wn

to denote stable and work tape (i.e. current and next state inthe powerset automaton). All of these variables will only contain
two values,t andf , which are bound in the beginning and that will correspond to0 and 1 in the graphG.

The first expression we need is:

init := ↓ t.a[t 6=]↓f.a[t=]↓s1.a[f=]↓s2. . . .a[f=]↓sn.a.

This expression codes two different values ast andf and initializes stable tape to contain encoding of initial state (the one
where only initial state fromA can be reached). That is, a data path is in the language of thisexpression if and only if it starts
with two different data values and continues withn data values that form a sequence in10∗.

end := a[f= ∧ s=
i1

] · a[f= ∧ s=
i2

] · · · a[f= ∧ s=
ik

], whereF = {qi1 , . . . , qik
}.

16



This expression is used to check that we have reached a state not containing any final state from the original automaton. That
is, a data path is inL(end) if and only if it consists ofk data values, all equal tof and where value stored insij

also equalsf ,
for j = 1 . . . k.

Next we define expressions that will reflect updating of the work tape according to the transition function ofA. Assume that
δ(qi, b) = {qj1 , . . . , qjl

}. We define

uδ(qi,b) :=
(

a[t= ∧ s=
i ] · a[t=]↓wj1 . . . .a[t=]↓wjl

.a
)

+ a[f= ∧ s=
i ].

Also, if δ(qi, b) = ∅ we simply putuδ(qi,b) := ε.

This expression will be used to update the work tape by writing true to corresponding variables if the stateqi is tagged with
t on the work tape (and thus contained in the current state ofA). If it is false we skip the update.

Since we have to define update according to all transitions from all the states corresponding to chosen letter we get:

update :=
∨

b∈Σ

∧

qi∈Q

uδ(qi,b).

This simply states that we non deterministically pick the next symbol of the word we are guessing and move to the next state
accordingly.

We still have to ensure that the tapes are copied at the beginning and end of each step, so we define:

step := (a[f=]↓w1. . . .a[f=]↓wn.a) · update · (a[w=
1 ]↓s1. . . .a[w=

n ]↓sn.a).

This simply initializes the work tape at the beginning of each step, proceeds with the update and copies the new state to
stable tape. Note the few odd a’s at the end of the expressions. These will not affect what we what to achieve and are here for
syntactical reasons(to get a proper expression).

Finally we have

e := init · (step)∗ · end.

Here we usestep∗ as abbreviation forstep+ + ε.

We claim that forQ = x
e

−→ y, we have(s, t) ∈ Q(G) if and only if L(A) 6= Σ∗.

Assume first thatL(A) 6= Σ∗. This means that there is a path from the initial to the final state in the powerset automaton for
A. That is, there is a wordw from Σ∗ not in the language ofA. This path can in turn be described by pairs of assignment of
valuest/f to stable and work tape, where each transition is witnessed by the corresponding letter of the alphabet. But then the
path froms to t in G that belongs toL(e) is the one that first initializes the stable tape (i.e. the variabless1, . . . , sn) to initial
state of the powerset automaton, then runs the updates of thetape according tow and finally ends in a state where all variable
corresponding to end states ofA are taggedf . Note that we can describe this path inG, since we start ins and put 1 intot
in nodev1, 0 intof in nodev2. After that 1 is assigned tos1 in v3 and 0 tos2, . . . , sn by looping throughv4. After that each
transition is reflected by going throughv3 andv4 as necessary, to update tapes witht/f and finally going tov5 and looping
there to check that allsi’s corresponding to end states are taggedf .

Conversely, each path froms to t in L(e) corresponds to a run of the powerset automaton forA. That is, the part of path
corresponding toinit sets the initial state. Then the part of this path that corresponds tostep∗ corresponds to updating our
tapes in a way that properly codes one step of powerset automaton. Finally,end denotes that we have reached a state where
all end states ofA have been tagged byf , thus, an accepting state forA.

17. Proof of Proposition 5.8

Recall that fore ∈ REG(Σ[x1, . . . , xk]), by Proj(e) we denote the projection ofe to the finite alphabetΣ.

First we show NP-membership. Since we do not use+ we know that every data path in the language of expressione uses
at most|Proj(e)| letters and one more data value. Assume now that we are given adata graphG, two nodess, t ∈ G and an
expression with memorye. To see if(s, t) ∈ Q(G), for Q = x

e
−→ y, we use the following algorithm. First compute the

register automatonAe for e. Note that this can be done in DLOGSPACE. Then nondeterministically guess a data pathwπ in
G from s to t that is of length at most|Proj(e)|. Now also guess2|λ(wπ)| + 1 states ofAe and check that the pathwπ is

17



accepted byAe, as witnessed by this sequence of states, and thus is inL(e). It is straightforward to see that this can be done in
polynomial time and since our guesses are of polynomial (in fact linear) size we get the desired result.

For hardness we do a reduction fromk-CLIQUE. This problem asks for a given graphG and a numberk, to determine ifG
has a clique of size at leastk.

Suppose we are given an undirected graphG and a numberk. We will construct a data graphG′ with |G| + 2 nodes, select
two nodess, t ∈ G′ and construct a regular expression with memoryek of sizeO(k2) such thatG contains ak-clique if and
only if there is a data path froms to t in G′ that satisfiesek.

TakeΣ = {a, b} and makeG directed by adding edges in both directions for every edge inG. Label all the edges bya and
add two more nodess andt. Add an edge froms to every other node excepts, t and label them withb. Also add an edge from
every node inG to t and label them byb. To finish the construction just add a different data value toevery node. We call the
resulting graphG′.

To defineek we use an auxiliary expressionδi defined as:

δi := a[x=
1 ] · a[x=

i ] · a[x=
2 ] · a[x=

i ] . . . a[x=
i−1] · a[x=

i ].

This expression will simply allow us to test that the currentnode is connected to all nodes previously selected in our potential
clique.

Now we can defineek inductively as follows:

• e1 := b · ↓x1.a[x6=
1 ],

• e2 := e1 · ↓x2.a[x6=
1 ∧ x6=

2 ],

• ei := ei−1 · ↓xi.δi · a[x6=
1 ∧ . . . ∧ x6=

i ], for i = 3, . . . , k − 1 and
• ek := ek−1 · ↓xk.δk · b.

Next we show that there is ak-clique inG iff there is a data path forms to t in G′ that satisfiesek.

Suppose first that there is ak-clique inG. Then we simply move froms to arbitrary point in that clique using theb labeled
edge and traverse the clique back and forth until we reach thek-th element of the clique. Note that starting from the third
element, whenever we select a different node in the clique wehave to move back and forth between this node and all previously
selected ones to satisfyδi, but since we have a clique this is possible. Finally, after selecting the last node and verifying that it
is connected to all the others we move tot using ab labeled edge.

Now suppose that there is a data path froms to t in G′ that satisfiesek. This means that we will be able to selectk different
nodesn1, . . . , nk in G with data values stored inx1, . . . , xk. Since all data values in the graph are different they also act as
ids. Now take any twoni, nj with i < j ≤ k. Then we know thatni andnj are connected inG because after selectingnj we
have to go throughδj which containsa[x=

i ] · a[x=
j ] and since no two data values inG are the same this means that we have an

edge betweenni andnj . This completes the proof.

18. Proof of Proposition 6.2

For first item it is enough to observe that for expressions of the kinde= ande 6=, wheree is an ordinary regular expression,
the expressions with memory↓ x.e[x=] and↓ x.e[x6=] denote the same language of data paths. From this it is straightforward
to construct a translation of arbitrary regular expressionwith equalitye to regular expression with memory by doing the above
mentioned construction bottom-up, starting from subexpressions ofe and using a new variable for each subexpression of the
form e′= or e′6=.

To prove the second claim we introduce a new kind of automata,called weak register automata, show that they capture
regular expressions with equality and that they can not express the language↓ x.(a[x6=])+ of a-labeled data paths on which all
data values are different from the first one.

The main idea behind weak register automata is that they erase the data value that was stored in the register once they make
a comparison, thus rendering the register empty. We denote this by putting a special symbol⊥ from D in the register. Since
they have a finite number of registers, they can keep track of only finitely many positions in the future, so in the case of our
language, they can only check that a fixed finite number of datavalues is different from the first one. We proceed with formal
definitions.

The definition of weakk-register data path automaton is the same as in the Definition4.1. The only explicit change we make

18



is that we now assume thatCk contains a special symbolε, that will allow us to simply skip the data value, without doing any
comparisons (previously we have been using a simple tautology such asx=

1 ∨ x6=
1 , or an additional register to emulate this).

Thus we simply addτ, d |= ε, for every valuationτ and data valued, to semantics ofCk. We will also assume that the initial
configuration is always empty.

Definition of configuration remains the same as before, but the way we move from one configuration to another changes.

From a configurationc = (j, q, τ) we can move to a configurationc′ = (j + 1, q′, τ ′) if one of the following holds:

• thejth symbol is a lettera, and there is a transition(q, a, q′) ∈ δw; or
• the current symbol is a data valued, and there is a transition(q, c, I, q′) ∈ δd such thatd, τ |= c andτ ′ coincides with

τ except that every register mentioned inc is set to be empty (i.e. to contain⊥) and theith component ofτ ′ is set tod
wheneveri ∈ I.

The second item simply tells us that if we used a condition like c = x=
3 ∧ x6=

7 in our transition, we would afterwards erase
data values that were stored in registers 3 and 7. Note that wecan immediately rewrite these registers with the current data
value.

The notion of acceptance and an accepting run is the same as before.

We now show that weak register automata can not recognize thelanguageL of all data paths where first data value is different
from all other data values, i.e. the language denoted by the expression↓ x.(a[x6=])+.

Assume to the contrary, that there is some weakk−register data path automatonA recognizingL. Since data pathwπ =
1a2a . . . ka(k + 1)a(k + 2) is in L, there is an accepting run ofA onwπ . The idea behind the proof is thatA can check that
only the firstk + 1 positions have different data value from the first.

First we note a few things. Since every data value in the pathwπ is different, no= comparisons can be used in conditions
appearing in this run (otherwise the condition test would fail and the automaton would not accept).

Now note that since we have onlyk registers, and with every comparison we empty the corresponding register one of the
following must occur:

• There is a data value1 < i < k + 2 such that the condition used when processing this data valueis ε. In this case we
simply replacei by 1 and get an accepting run on a word that has the first data value repeated – a contradiction. Note
that we could storei in that transition, but since afterwards we only test for inequality this will not alter the rest of the
computation.

• There is a data value such that when the automaton reads it it does not use any register with the first data value, i.e. 1,
stored. Note that this must happen, because at best we can store the first data value in all the registers at the beginning of
our run, but after that each time we read a data value and compare it to the first we lose the first data value in this register.
But then again we can simply replace this data value with 1 andget an accepting run (just as before, if this data value
gets stored in this transition and then used later it can onlybe used in6= comparison, which is also true for 1, so the run
remains accepting). Again we arrive at a contradiction.

This shows that no weak register automaton can recognize thelanguageL.

To complete the proof of Proposition 6.2 we still have to showthe following:

Lemma 18.1. For every regular expression with equalitye there exists a weakk-register automatonAe, recognizing the same
language of data paths, wherek is the number of times=, 6= symbols appear ine.

PROOF. The proof is almost identical to the proof of Proposition 5.3. We can view this as introducing a new variable for
every=, 6= comparison ine and act as the subexpressione′= reads↓ x.e′[x=] and analogously for6=. Note that in this case
all variables come with their scope, so we do not have to worryabout transferring register configurations from one side ofthe
construction to another (for example when we do concatenation). The underlying automata remain the same.

19. Proof of Proposition 6.5

We prove the proposition by induction on the structure ofe. Note that it is enough to show the second claim, i.e. we will
show that the set of words derived from each nonterminalAdd′

e corresponds to the set of data paths inL(e) which start withd,
end withd′, and whose data values come fromD. This means that a wordd1a1d2d2a2d3d3 . . . an−1dn in which all values but
first and last are doubled is derived fromAdd′

e if and only if data pathd1a1d2a2d3 . . . an−1dn is in L(e) and uses data values
from D. We prove this by induction on the structure of the expression.

19



• If e = ε, or e = a, with a ∈ Σ, the claim is immediate.
• If e = e1 + e2 thenAdd′

e → Add′

e1
|Add′

e2
. But then each word inAdd′

e is either inAdd′

e1
or in Add′

e2
, so the claim follows from

the induction hypothesis.

• If e = e1 · e2, we have a productionAdd′

e →
∨

d′′∈D Add′′

e1
Ad′′d′

e2
. To see the equivalence assume first thatw is generated

by Add′

e . This means that there existsd′′ ∈ D such thatw is generated byAdd′′

e1
Ad′′d′

e2
. By definition this means that

w = w1 · w2 such thatw1 is generated byAdd′′

e1
andw2 is generated byAd′′d′

e1
. By the induction hypothesis this implies

that data pathw′
1 corresponding tow1, is in the language ofe1, starts withd and ends withd′′. Likewisew′

2, a data path
corresponding tow2 starts withd′′, ends withd′ and is in the language ofe2. Note that the induction hypothesis also
implies that the splitting of the word is correct. Sincew′

1 ends withd′′ andw′
2 begins with it we can concatenate these

two data paths to getw′, a data path corresponding tow, that is in the language ofe, begins withd and ends withd′ as
required.
Conversely, suppose thatw′ ∈ L(e) is a data path that begins withd, ends withd′ and takes only data values from the set
D. By definition of concatenation there exists a splittingw′ = w′

1 · w
′
2 such thatw′

1 ∈ L(e1) andw′
2 ∈ L(e2). Sincew′

takes data values fromD there is somed′′ such thatw′
1 ends withd′′ andw′

2 begins withd′′. But then by the induction
hypothesisw1, word obtained fromw′

1 by doubling all intermediate data values, will be generatedby Add′′

e1
, while w2, a

word obtained fromw′
2 by doubling all intermediate data values, will be generatedby Ad′′d′

e2
. But then their concatenation

w = w1 · w2 is precisely the word corresponding to data pathw′ and is generated byAdd′′

e1
Ad′′d′

e2
and thusAdd′

e .

• If e = (e1)
+, we have a productionAdd′

e → Add′

e1
|
∨

d′′∈D Add′′

e1
Ad′′d′

e . This implies that every word is generated either by

Add′

e1
, in which case the claim follows immediately from the induction hypothesis, or is generated by

∨

d′′∈D Add′′

e1
Ad′′d′

e ,
in which case the proof mimics the proof for the concatenation case, taking into account that recursion will terminate
after finitely many steps and thus the final expression will bea multiple concatenation of terms for which the induction
hypothesis holds.

• If e = (e1)=, we haveAdd
e → Add

e1
, which by the induction hypothesis corresponds to all wordsin L(e) with data values

from D.
• If e = (e1)6=, we haveAdd′

e → Add′

e1
, whered 6= d′, which by the induction hypothesis corresponds to all wordsin L(e)

with data values fromD.

To see that the grammar for an expressione can be constructed in polynomial time observe that there areat mostO(n2)
subexpressions ofe, where the length ofe is n. Since the grammar fore is constructed by starting from subexpressions and
taking unions of already constructed subgrammars and everynew rule adds at mostO(|D|3) productions to our grammar we
get a grammar of the size at mostO(n2 · |D|3). Note that we reuse old subgrammars so we do not get exponential blow-up.

20. Proof of Proposition 6.6

It is clear from the description that algorithm runs in polynomial time. It remains to prove that it is correct, i.e. that for
Q = x

e
−→ y we have(v, v′) ∈ Q(G) iff the language ofAG,v,v′ has nonempty intersection with the language generated by

A(Ge,D).

To see this assume first that(v, v′) ∈ Q(G). This means that there is a data pathwπ form v to v′ in G such thatwπ ∈ L(e).
By Proposition 6.5 this implies that the corresponding wordwith all intermediate data values doubled is in the languageof
Ge,D and thusA(Ge,D). Also, sincewπ is a path inG it is of the formd1a1 . . . an−1dn, wheredi = ρ(vi), for i = 1, . . . , n, for
some nodesv1, . . . , vn in G such thatv1 = v andvn = v′. This implies that(vi, ai, vi+1) is an edge inE, for i = 1, . . . , n−1.
This again implies thataidi+1di+1 enables us to change the state ofAG,v,v′ from vi to vi+1 (by going through̃vi+1 andv̂i+1),
for i = 2, . . . , n− 1. Since(s, d1, v1) and(ṽn, dn, vn) are also transitions inAG,v,v′ (as well as(vn−1, an−1, ṽn)) we see that
AG,v,v′ accepts the wordd1a1d2d2a2d3d3 . . . an−1dn, i.e. the word corresponding towπ . It follows that the intersection of
A(Ge,D) andAG,v,v′ is nonempty.

Conversely, assume that the productAG,v,v′ × A(Ge,D) defines a nonempty language and thatw′ =
d1a1d2d2a2d3d3 . . . an−1dn is some word in that language. If we delete doubled data values from w′ (remember the dis-
cussion before the statement of Proposition 6.5 where we show that all words inL(Ge,D) are of this form) we get a wordw.
By Proposition 6.5,w will be in the language ofe. On the other hand, sincew′ ∈ L(AG,v,v′) we know that there is a run from
s to t in AG,v,v′ that accepts this word. Then by the construction of this automaton there exists a sequencev1, . . . , vn of nodes
from G such thatdi = ρ(vi) are the appropriate data values,(vi, ai, vi+1) ∈ E the corresponding edges andv = v1, while
v′ = vn. It is clear thatw coincides with data path defined by this path and is thus a datapath inG starting inv and ending in
v′. We conclude that(v, v′) ∈ Q(G).

20


