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ABSTRACT 1. Introduction

Graph data models received much attention lately due to
applications in social networks, semantic web, biological

databases and other areas. Typical query languages fdr grap
databases retrieve their topology, while actual data dtore

in them is usually queried using standard relational mech-
anisms.

Querying graph-structured data has been actively studied
in recent years, due to numerous applications in areas in-
cluding biological networks [31, 32, 36], social networks
[38, 39], and the semantic Web [27, 37]. Such databases are
represented as graphs in which nodes are objects, and edge
labels specify relationships between them [1, 3]. Typical

Our goal is to develop techniques that combine these two queries over such databases look for reachability patterns
modes of querying, and give us query languages that can askA very common and well studied class of queries is that of
questions about both data and topology. As the basic query-regular path queriesor RPQs. An RPQ selects nodes con-
ing mechanism we consider regular path queries, with the nected by a path that belongs to a regular language over the
key difference that conditions on paths between nodes nowlabeling alphabet [13, 14, 15]. Their extensions have been
talk not only about labels but also specify how data changesstudied extensively too; for example, conjunctive RPQsta
along the path. Paths that combine edge labels with datathe existence of several paths [12, 18, 22], and extended con
values are closely related to data words, so for statingicond junctive RPQs add comparisons of paths [4].
tions in queries, we look at several data-word formalisms de
veloped recently. We show that many of them immediately
lead to intractable data complexity for graph queries, with
the notable exception of register automata, which can spec-
ify many properties of interest, and have N&sPACEdata
and PspACE combined complexity. As register automata
themselves are not easy to use in querying, we define two
types of extensions of regular expressions that are more use
friendly, and develop query evaluation techniques for them
For one class, regular expressions with memory, we achieve i o
the same bounds as for automata, and for the other class, ® dueries about topology such as finding nodes con-
regular expressions with equality, we also obtain traetabl nected by a path with a certain label (e.g., people who
combined complexity of query evaluation. In addition, we are connected via professional links), or
show that results extends to analogs of conjunctive regular
path queries.

These standard queries over graph databases talk about
their topology, and do not mention data values. But graph
databases do contain data. For example, in a social network,
one would expect each node to correspond to a person, with
his/her attributes such as name, age, city, emalil, etc.; la-
bels can specify types of connections between people, e.g.,
like/dislike, professional, etc. The querying mechanismes
deals with are generally of one of these categories:

e queries about data, i.e., essentially relational queries
(e.g., finding pairs of people of the same age).

What these languages are incapable of doingpimbining

data and topology. As an example of a query that involves
*Authors’ address: School of Informatics, University of &di suchacomblnat_lon,COhSIfjeraqueryIOOklng for people who
burgh, email:{libkin,domagoj.vrgo¢@inf.ed.ac.uk. are connected via professional links and are of the same age.

This query states the existence of a path with a certain prop-

erty and then relates data values at the end of the path. An-

other example is a query that finds people who are connected

via professional links restricted to people of the same hge.
Permission to make digital or hard copies of all or part of twork for this case, comparison of data values (having the same age)

personal or classroom use is granted without fee providatidbpies are is done for every node along the path.
not made or distributed for profit or commercial advantage that copies

bear this notice and the full citation on the first page. Toyooiherwise, to Extending languages that handle structure to languages
republish, to post on servers or to redistribute to listguies prior specific that handle both structure and data is not new in database
permission and/or a fee. h = . le t f paths it id di
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00. theory. For very simple types of paths it was considered in



graph object-oriented models [42], but most notably it hap-
pened in the study of XML [8, 40, 41]. For example, lan-
guages such as XPath exist in their structural variants s we
as extensions that handle data comparisons [6, 9, 20, 34]. A
standard abstraction one uses for extending from structure
to data in the case of XML idata treesin which data val-

ues are attached to tree nodes [9, 29, 40]. The focus of the
study of such extensions has been both on querying, where
one is concerned with efficient evaluation [7, 24], and on
reasoning, where one is concerned with the decidability of
the satisfiability problem [9, 10].

V4

So likewise, we consider graph databases where nodes can
carry data values. An example of such a graph database is
shown in Fig. 1. It has five nodes,, . . . , v5; data values are
shown inside the nodes, and edge labels next to the edges. As
an initial assumption, we assume that each node carries just
one data value. This is not a real restriction for two reasons
First, if a node has a tuple of data values (e.g., person’®nam

age, email, etc., in a social network) this could be modeled ..., - isons 9, 10], LTL with freeze quantifiers [16], XPath
by extra edges to nodes with those data values. And Secondfragments [8, 20], and various automata models such as peb-

th.e way we design.languag_es for querying graph database%le and register automata [11, 28, 29, 30, 33]
with data values will make it very easy to extend them to e ET

such a setting. The question is then, which one to choose? To answer
this, we look at data complexity of query answering for each
of these formalisms. We show that as long as the formalism
is capable of expressing what is perhaps the most primitive
language with data value comparisons (two data values are
equal) and is closed under complementation, tteslacom-
plexity is NP-hard. Clearly one cannot tolerate such high

_ data complexity, and this rules out most of the formalisms
e Find nodes connected by a path frgnd)* such that exceptegister automata

the data values at the beginning and at the end of the
path are the same. In this case,,vs) is still in the We then study query answering with register automata
answer bufvy, vs) is not. (adjusted for data paths from data words). We present an
e We may extend comparisons to other nodes on the &l90rithm that is based, as expected, on computing prod-
path, not only to the first and last nodes. For example, UCts of automata; with nonemptiness performed on-the-fly,
we may ask for nodes connected by paths along which this gives us an NbcspacEdata complexity bound, and
the data value remains the same, or on which all data PSPAcecompIete_nejss for co.mbmed complexity. The bound
values are different from the first one. The pair, vs) for data complexity is good (it matches the usual RPQs) and
is in the answer to the first query (the paifvivs wit- the bound for coml_alned complexity is tolerable (equal_ent
nesses it), while the pafp;, v5) is in the answer to the to that of FO, but higher than the NP bound for conjunctive

second, as witnessed by the path,vs. RPQs or the PIME bound for RPQs).

Figure 1: A graph database with data values

ify data paths. Such formalisms abound in the literaturd, an
include first-order and monadic second-order logic wittadat

An RPQ may ask for pairs of nodes connected by a path
from the regular languageb)*. In the graph in Fig. 1, one
possible answer isv, v3), another «{vy,v5). To combine
this with data values, we may ask queries of the following
kind:

However, automata are not an ideal way of specifying con-

What kind of languages can we use in place of regular lan- ditions in queries. In RPQs, we use regular expressions
guages to specify paths with data? To answer this, consideryather than NFAs. While some regular expressions have
for example, a path, v,vsvs3 in the graph. If we traverse it been considered for register automata [30], they are very fa
by starting inv;, reading its data value, then reading the label from intuitive. So we propose two types of regular expres-
of (v1, v2), then the data value im, etc., we end up withthe  sjons that can be used in gueries.
following sequencela2b3al. We shall refer to them atata ] ) .
paths They are extremely close to an object that has been _The first, close in spirit to automata themselves, lets one
actively studied in the XML context — namelgtata words bind a data value and use it later. For example, to express the
[8, 10, 40, 41]. A data word is a word in which every posi- duery “connected by a path along which the data value re-
tion is labeled by both a letter from a finite alphabet (exg., Mains the same”, we would use the expressior{>[z~])".
orb) and a data value (e.g., a number). Data paths are essenl his expression says: bindin the beginning of the path
tially data words with an extra data value. We can represent(i-€., to the first data value), and then go along, if labets ar

the data patha2b3al as a data word#) (%) (*) (%), where _arbitrary ¢2) and the condition:=, m_eaning that the valge
patiassoq 47)(3) () ) is equal toz, holds. These expressions are much easier to

# is a special symbol reserved for the extra data value. . .
write than the automata, and at the same time they can be
We can thus use multiple formalisms developed for data translated into register automata; thus data complexity of
words (with a minor adjustment for the extra value) to spec- queries remains in N@GspACE We show that the com-



bined complexity remains the same as for automata, i.e.,which is a sequence of alternating data values and labels,
PspPAcEcomplete (except in a rather limited case when the starting and ending with data values. The set ofdalta
Kleene star is not used: then it drops to NP-complete). paths i.e., such alternating sequences aXeandD, will be

hi . del ¢ . h ._denoted by [D]*. For both paths and data paths, we use the
This motivates a second class of expressions that reSt”Ctnotation)\(w) or A(w,) to denote their label, i.e. the word

the ability to compare data values along the path; instead,a1 G, €

one can only do comparisons for chosen subexpressions. A " '

simple example of such an expressioXis, which denotes Returning to Figure 1 from the Introduction, one exam-
nonempty data paths that have same data value at the beple that we used was the path= v;avsbvsavs. The cor-
ginning and at the end of the patl™ indicates the label  responding data patty, is 1a2b3al since data values of
of the path, and the subscript states the condition for the vy, v, v5, andvs are1,2,3, and1, respectively. Its label
first and the last data values. A slightly more elaborate ex- is aba.

ample is¥* - T - ¥*. It says that a subpath conforms to
¥t i.e., it denotes data paths on which two data values are .
equal. For expressions of this kind, we give a polynomial- beled graphs are queries of the foéin= = — y, where
time algorithm for combined complexity. The key ideaisto L C X* is a regular language. Given a gra@h(the data
translate expressions into push-down automata and then tak part is irrelevant for RPQs}Q(G) is the set of pairs of nodes
the product with an automaton obtained efficiently from the (v,v") such that there is a pathfrom v to v" whose label
graph database. A(m) isin L.

Recall thatregular path queriesor RPQs over usual la-

Finally, we show that our results extend to analogs of By analogy, we definelata path queries Syntactically

conjun_ctive regular path q_ueries that use datq comparisonsthey are expressiorg = L. y, as before, but noil, C
There is no penalty to pay in terms of complexity except one $[D]* is a set of data paths. @ is a data graph, the@(G)
case, where we have to deal with the same increase of comis the set of pairs of nodes, v') such that there is a path
plexity as in going from the usual RPQs to their conjunctive fom + to +' whose associafed data path is in L.
analogs [12, 14].

o ) ] As with relational queries and RPQs, we will be interested
Orgamzauon_ In Section 2 we deﬁlne data graphs and 4 data and combined complexitf query evaluation prob-
generic queries over them. In Section 3 we rule out sev- |om je. checking, for a data path quepy a data grapl@
eral formalisms for specifying data paths due to prohibliiv. -~ 5043 pair of node@, v'), whether(v, ') € Q(G) (for data

high data complexity for them. In Section 4 we define reg- complexity, of course, the quety will be fixed).
ister automata and study complexity of query evaluation for

them. We do the same in Section 5 for regular expressions

with memory and in Section 6 for regular expressions with 3. Language for paths: ruling out bad alter-
equality. Finally in Section 7 we look at conjunctive qusrie natives

based on the formalisms proposed in the previous sections.

Due to space limitations, most proofs are only sketched, and ) ) )
complete proofs are given in the appendix. To talk about data path queries, as just defined, we need to

express properties of paths with data. As we already men-
tioned, these are essentially data words, with an extra data
2. Preliminaries value attached. Quite a few languages and automata mod-
els have been developed for data words over the past few

LetX be afinite alphabet, arfd a countably infinite set of zga”;s,xrggltﬂly wec?]r(;\r:ve;:/c;n (,;N ('qt B i gleoiteur(\j/%/e\?vf (ﬁl\ﬂl{ e’rﬁsp,i_
data values. Data graphs will have edges labeled by letters y '

from X and nodes that store data values from more extensive survey can be found in [40].

Definition 2.1 (Data graphs). A data graplfoverX andD) FO(~) and MSO(~) These are first-order logic and

isatripleG = (V, E, p), where: monadic second-order logic extended with the binary
) . predicate~ saying that data values in two positions
* Vs afinite set of nodes; are the same. For example;3y a(z) Aa(y) Az ~y
e £ CV x ¥ xVisasetoflabeled edges; and says that there are twe-labeled positions with the

same data value. Two-variable fragmentsFoi(~)
and existential MSO with the- predicate have been
shown to have decidable satisfiability problem [9, 10].

e p: V — Dis a function that assigns a data value to
each node irl/.

A path between nodes andv, in a graph is a sequence  Pebble automataThese are basically finite state automata
equipped with a finite set of pebbles. To ensure regular
T = V141V202V3 . . . Un—1an—1Un 1) behavior pebbles are required to adhere to a stack dis-
cipline. The automata are modeled in such a way that
the last placed pebble acts as the automaton head and
we are allowed to drop and lift pebbles over the current
wr = p(v1)a1p(va)azp(vs) ... p(vn—1)an—1p(vy) (2) position. In addition to this we can also compare the

such that eacljv;, a;, v;+1), for i < n, is an edge inE.
Corresponding to the path(1) we have alata path



current data value to the one that already has a pebble The only hope we have among standard formalismegys
placed over it. Algorithmic properties and connections ister automatasince they are not closed under complemen-
with logics have been extensively studied in [33]. tation [28]. In the next sections we show that we can achieve

. ) ) good query answering complexity with them, as well as suf-
LTL | This the is standard LTL expanded with a freeze op- ficient expressivity.

erator that allows us to store the current data value into
a memory location and use it for future comparisons.

The full logic has undecidable satisfiability problem, 4, Data path queries with register automata
but various decidable restrictions are known [16, 17].

Register automata These are in essence finite state au- As stated in the previous section, register automata are the
tomata extended with a finite set of registers allowing only standard formalism for defining classes of data words
us to store data values. Although first studied only on that does not immediately lead to NP-hard data complex-
words over infinite alphabet [28, 33, 35] they are eas- ity of queries on graphs with data. In this section we de-
ily extended to handle data words, as illustrated in [16, fine them and study query evaluation for data path queries
40]. They act as usual finite state automata in the sensebased on these automata. We will slightly alter the defini-
that they move from one position to another by read- tion of register automata used in e.g. [16, 40] to work on
ing the appropriate letter from the finite alphabet, but data paths rather than data words, without affecting theeir d
are also allowed to compare the current data value with sirable properties.

ones already stored in the registers. As mentioned earlier register automata move from one

XPath fragments XPath is the standard language for navi- State to another by reading the appropriate letter from the
gating in XML documents, i.e., for describing paths in finite alphabet and comparing the data value to one previ-

a way that may also include conditions on data values OUSly stored into the registers. Our version of register au-
that occur in documents. Fragments of XPath (with tomata will use slightly more involved comparisons which
and without data values) have been extensively stud- will be boolean combinations of atomie, # comparisons
ied, see, e.g., [6, 9]. While in general the satisfiability ©f data values.

problem is undecidable, several decidable restrictions 1¢ define such conditions formally, assume that, for each
are known, e.g., [20, 21]. k > 0, we have variables,, ..., zj,. Then conditions irC},
are given by the grammar:
In deciding which formalism to choose, we look at the N ,
data complexityof evaluating data path queries, and try to c == a; |z [chc|leve|ne, 1<i<k.
“4'6 lcl)utthfose fol_rwhi_chtdgt? complexity j{s i|r|1trac(tja|ble. frec The satisfaction is defined with respect to a data vdlaeD
nically, a formalism just defines a set of allowed languages _ k .
L C yZ[D]*. It turné out that most of the formalisn?s f(?r and a tupler = (ds, ..., dy) € D" as follows:
data words/paths are actually not suitable for graph query-

ing. This is implied by the following result. Let., be the o d,7 = ay iff d=d;;

language of data paths that contain two equal data values. o drE o7 iff d £ di;

Theorem 3.1 Assume that we have a formalism for data o d,7 E ciheaiff d,7 = ¢p andd, 7 = ¢o (and likewise
paths that can definé.,. Then data complexity of evaluat- forcy V ¢2);

ing data path queries iblP-hard. o drl—ciffdr¥ec

The proof is by showing that witli.,, one can encode the .
2-disjoint-paths problem which is NP-complete [23]. In what follows, ] is a shorthand fof1, ... ., k}.
Definition 4.1 (Register data path automata).LetX: be a
finite alphabet, and: a natural number. Ac-register data

path automators a tupleA = (Q, qo, F, 10, ), where:

Note thatL., is about the simplest property one can ex-
press about data paths/words; it would be hard to imagine a
formalism that cannot check for the equality of data values.

The corollary below effectively rules out closure under eom e O —=0.U0., wher andO. are two finite disioint
plement for such formalisms if they are to be used in graph ?ets (ggl‘lslvo%dgtateseg\% datantateS' J
querying. '

qo € Qq is the initial state;
Corollary 3.2. Assume that we have a formalism for data
paths that can definé., and that is closed under comple-
ment. Then data complexity of evaluating data path queries e 7 € D" is the initial configuration of the registers;

e F' C (@, isthe set of final states;

is NP-hard. e § = (6,,04) is a pair of transition relations:

This immediately rules ouFO(~) and its two-variable — 0w © Qux X xQqis the word transition relation;
fragment, LTL with the freeze quantifier, XPath fragments — 04 C Qg x Ci, x 2" x Q,, is the data transition
closed under complement, and pebble automata. relation.



The intuition behind this definition is that since we alter-
nate between data values and word symbols in data paths, w
also alternate between data states (which expect data valu
as the next symbol) and word states (which expect alphabe
letters as the next symbol). We start with a data value, so
qo is a data state, end with a data value, so final states, see
after reading that value, are word states.

In a word state the automaton behaves like the usual NFA

# & ¥ is a new alphabet symbol.

(i,emma 4.2 Given ak-register data path automatoul,
{one can construct, iDL OGSPACE a k-register data word

automatonA’ such that a data path is in L(.A) iff the data

r\{vord Sy isin L(A).

It is known [16] that nonemptiness problem for data word
register automata isdPACEcomplete. The above lemma

(but moves to a data state). In a data state, the automatorshows that the ®aceupper bound applies to data path au-

checks if the current data value and the configuration of the
registers satisfy a condition, and if they do, moves to a word

tomata. Moreover, one can verify that theFACEhardness
reduction applies to such automata as well. Hence, we have

state and updates some of the registers with the read data

value.

Given a data pathy = dgpagdia; .. .a,—1d,, Where each
d; is a data value and eaahis a letter, a configuration od
onw is atuple(j, ¢, 7), wherej is the current position of the
symbol inw that A readsg is the current state ande DF
is the current state of the registers. The initial configarat
is (0, g0, 70) @and any configuratiofy, ¢, ) with ¢ € F is a
final configuration.

From a configuratiod' = (4, ¢, 7) we can move to a con-
figurationC’ = (j + 1, ¢, 7’) if one of the following holds:

e the jth symbol is a lettera, there is a transition
(¢,a,q") € 6, andr’ = 7; or

e the current symbol is a data valdgand there is a tran-
sition (¢, ¢, I,q') € 64 such thatl, 7 = ¢ andr’ coin-
cides withT except that théth component of’ is set
to d whenever € I.

A data pathw is accepted by if A can move from the
initial configuration to a final configuration after reading
The language of data paths accepted.Adys denoted by
L(A).

Data paths vs data words

Register automata have been previously studied for data

words [16, 40] and we now briefly explain the connection.
A dataword is a word it x D)*, i.e., each position carries
a label from¥ and a data value fro®®. A k-register data
word automatond is a tuple(Q, qo, F, 70, T") whereQ is a
finite set of states (no longer split into twa), € @ is the
initial state,F’ C Q is the set of final states, € D* is the
initial register assignment, aridis a finite set of transitions
of the form(q, a,¢) — (I,q’), wheregq, ¢’ are statesg is a
label,I C [k], andc is a condition irC.

The automaton traverses a data word from left to right,
starting ingo with 7y as the register configuration. If it reads
(g) in stateq with register configuration, it may apply a
transition(q, a,c) — (I,q’) if d, 7 = ¢; it then enters state

¢’ and changes contents of registergith i € I, to d.

The relationship between automata models, as needed fo
our purposes, is described by the lemma below. With each
data pathv = dya; .. .a,—1d, € X[D]* we associate a data

words, = () (%) ... (") over(SU{#}) x D, where

ai
d2

Corollary 4.3. The nonemptiness problem for register data
path automata i°’sPACEcomplete.

4.1 Regular data path queries

Our basic class of regular path queries on graphs with data
is based on register data path automata.

Definition 4.4. Aregular data path query (RDP@)an ex-

pression) = x A, y where A is a register data path
automaton.

Given a data graphtz, the result of the querg)(G) con-
sists of pairs of node&, v") such that there is a data path
w fromwv to v’ that belongs td.(A).

To evaluate RDPQs, we transform both a data gré@ph
and ak-register data path automato# into NFAs over
an extended alphabet and reduce query evaluation to NFA
nonemptiness. More precisely, to evalug@tg~), we do the
following:

1. Let D be the set of all data valuesn
2. TransformG = (V. E, p) into a graphG’ = (V', E’)
over the alphabet U D as follows:

v’ {vs,v0 |v €V}
E’ {(v,a,0)) | (v,a,0") € E}

U{(vs, p(v), 1) [v € V}
Basically, we split each nodewith a data valué into
a source node and a target node; and add ad-
labeled edge between them; after that we restore the
edges fromE so that they go from target to source
nodes. This is illustrated below.

v v

d d’
(oo~

. Transform the automatad = (Q, qo, F, 70, (0w, 04))

into an NFAAp = (Q’, (., F’,¢’) as follows:
r

e Q' =Q x D¥;
* ¢, = (40, 70);
o I/ = F x D¥:



e 4’ includes two types of transitions.

(a) Whenever we have a transitidn, a,¢’) in
0w, We add transition§(q, 7), a, (¢’, 7)) to ¢’
forall r € D*.

(b) Whenever we have a transiti¢q, ¢, I, ¢’) in
04, We add transitiong(q, 7),d, (¢’, 7)) if
d, T |= cand7’ is obtained fromr by putting
d in positions from the set.

For two node®, v’ of G, we turnG’ into an NFAAg: 4 o
by lettingv, be its initial state and,; be its final state. Then
we have the following.

Proposition 4.5 Let@ = = A, y be an RDPQ, and~ a
data graph whose data values form a $&tC D. Then

(v,0") € Q(G) & L(Ag/ v x Ap) # 0.

Thus, query evaluation, like in the case of the usual RPQs,

is reduced to automata nonemptiness, although this time the
automata are over larger alphabets. Since the construction

is polynomial in the size o7 and exponential in the size
of A (ask gets into the exponent), we immediately get a
PTIME upper bound for data complexity and axAIME
upper bound for combined complexity. By performing on-
the-fly nonemptiness checking for the product, we can lower
these bounds.

Theorem 4.6 Data complexity of RDPQs over data graphs
is in NLoGsPACE and the combined complexity of RDPQs
over data graphs i®sPACEcomplete.

The bound for data complexity cannot be lowered as
there exist simple RPQs for which data complexity is
NLoGSsPACEcomplete.

5. Queries based on regular expressions with
memory

Regular data path queries based on register automata havi
acceptable complexity bounds: data complexity is the same
as for RPQs, and combined complexity, although exceeding

the bounds on conjunctive queries and RPQs, is the same

as for relational calculus or for RPQs extended with regu-
lar relations. Despite this, RDPQs as we defined them have
no chance to lead to a practical language as it is inconceiv-
able that the user will specify a register automaton ovea dat
words. Even for queries such as RPQs and their extensions
conditions are normally specified via regular expressions.

Our goal now is to introduce regular expressions that can
be used in place of register automata in data path queries

Note that as long as they express languages accepted by reg-

ister automata, we shall achieve an dihsPACEbound on
data complexity by Theorem 4.6.

The first class of queries, studied in this section, is based
on an extension of regular expressions witamorythat lets

us specify when data values are remembered and when they
are used. The basic idea is this: we can write expressions

like | z.a™[z=] saying: store the current data valueriand
check that after reading a word fraim we see the same data
value (conditionz= is true). This will define data words of
the formda . ..ad. Such expressions are relatively easy to
write and understand (much easier than automata), and the
complexity of their query evaluation will not exceed that of
register automata.

Definition 5.1 (Expressions with memory).Let Y be a fi-
nite alphabetand:, . .., x; a set of variables. Thergular
expressions with memoire defined by the grammar:

3)

wherea ranges over alphabet letters, over conditions in
Ck, andz over tuples of variables fromy, . . ., x.

e elalete|e-e|et |eld] |ze

A regular expression with memoeyis well-formed if it
satisfies two conditions:

e Subexpressions', e[c], and | z.e are not allowed ife
reduces te. Formally, e reduces txe if itis ¢, oritis
e1+es0re;-ep 0O ef or ep[c] or | z.e; wheree; (and
eo) reduce toe.

e No variable appears in a condition before it appears
in|z.
The class of well-formed regular expressions with memory
is denoted bREG (X[z1, . . ., k]).

The extra condition of being well-formed is to rule out
pathological cases like[c] for checking conditions over
empty subexpressions, afx=] for checking equality with
a variable that has not been defined. In what follows we al-
ways assume that regular expressions with memory are well-
formed.

The intuition behind the expressions is that they process a
data path in the same way that the register automaton would,
by storing data values in variables, using these varialboles f
comparisons and moving through the word by reading a let-
ter from the finite alphabet.

Example 5.2 We now give four examples of such expres-
sions and languages they recognize, before formally definin
their semantics.

1. The expressionz.(a[z7])T defines the language of
data paths where all edges are labeleahd the first
data value is different from all other data values.
starts by bindinge to the first data value; then it pro-
ceeds checking that the letterdsand condition:# is
satisfied, which is expressed hj:7]; the expression
is then putin the scope &f to indicate that the number
of such values is arbitrary.

2. The expressiofz.(ab)*[27] denotes the language of
data paths whose label is of the fort. . . ab and for
which the first data value is different from the last.
Note that the order of- and condition is now differ-
ent: the condition is checked after verifying that the
labelis in(ab)™, i.e., at the end of the word.

The expressionz.at[z=] + ¢ denotes the language
of data paths where all labels ateand the first data
value is equal to the last. Note that one such data path
is simply of the formd, for d € D, with labele.

It

3.



4. The languagé., of data paths in which two data val-  Proposition 5.3 For each regular expression with mem-
ues are the same (see Section 3) is given by the expresory e € REG(X[zy,...,z,]) one can construct, in
sion¥*- | 2. 3% [27]- ¥*, whereX is the shorthand for ~ DLOGSPACE ak-register data path automatod, such that
a+...+a;, whenevel = {ay,...,a;} andX* isthe L(e) = L(A.).

shorthand fo™ + <. It says: at some point, bind, More precisely, the automatod. = (Q,qo, F, L,d)
and then check that after one or more edges, we have(over data domairD U { L }) has the property that for any
the same data value. two valuationsr, ¢’ and a data pathu, we havele, w, o) -

o' iff the automator{@, qo, F, o, §) has an accepting run on

SemanticsFirst, we define theoncatenatiorof two data  w that ends with the register configuratiot.
pathsw = dia; ...a,_1d, andw’ = d,a,, ...a,,_1d,, as

ww' =dyay...an_1dyay ... an_1d,,. Note thatitis only 5.1 Query evaluation

defined if the last data value of equals the first data value
of w’. The definition naturally extends to concatenation of
several data paths. 46 = w; - - - w;, we shall referto it as a
splitting of a data path (intav, . .., w;). Definition 5.4. A regular data path query with memoisy

an expressior) = x —— y, where e is regular expression
with memory.

Given a data grapl@, the result of the querg)(G) con-
sists of pairs of node&, v") such that there is a data path
w fromv to v’ that belongs td.(e).

The class of these queries is denoted®PQ,,.,,,-

We now deal with the following queries.

The semantics is defined by means of a relatiomw, o) -
o', wheree € REG(X[x1,...,xx]) is a regular expression
with memoryuw is a data path, and bothando”’ arek-tuples
overD U {1} (the symboll means that a register has not
been assigned yet). The intuition is as follows: one can star

with a memory configuration (i.e., values ofry, ..., xx)
and parsev according toe in such a way that at the end ) N . _ _
the memory configuration is’. The language of is then Using Proposition 5.3 combined with Theorem 4.6 we im-
defined as mediately obtain:

L(e) = {w | (e,w, L) = o for somes}, Corollary 5.5. Data complexity oRDPQ,,,..,, queriesisin

. NLOGSPACE
where L is the tuple oft values.L.

The relationt is defined inductively on the structure of From the same connection we also get the upper bound
expressions. Recall that the empty word corresponds to a(PSPACE for combined complexity. It turns out that we
data path with a single data valde(i.e., a single node in  can achieve BPACEhardness with expressions with mem-
a data graph). We use the notatiep_, for the valuation ory (see the appendix for the proof). Thus, we have

obtained fromv by setting all the variables in to d. Theorem 5.6 Combined complexity of evaluating

RDPQ,,.., queries isPsPACEcomplete.

e (c,w,0) F o iff w=dforsomed € Dando’ =o.

* (a,w,0) o iff w=diad; ando’ =o. The question is whether we can reduce this complexity —
e (e1-e2,w,0) F o iff there is a splittingw = w; - wo ideally to PriME, but at least to NP, to match the combined
of w and a valuatiom” such tha{e;, wy,0) - ¢” and complexity of conjunctive queries. The following coroljar

(e2,wa,0”) ko’ (to the proof of Theorem 5.6) shows that many restrictions
o (e1+ex,w,0) b o iff (e1,w,0) F o’ or(ez,w,o) F will not work.

a'. Corollary 5.7. Combined complexity of evaluating
o (e, w,o) k- o iff there are a splittingy = wy - - - wy, RDPQ,,.;, queries remainPspACEhard for expressions

of w and valuationsr = og,01,...,0m = o’ such that use at most oné and # symbol, are specified over a

that(w, w;,0;—1) F o; foralli € [m)]. singleton alphabet = {a}, and are evaluated over a fixed

o (lZ.e,w,0) F o iff (e,w,00-4) F o, whered is the ~ 9raph.

first data value ofv.

o (eld,w,0) F o iff (e,w,0) F o ando’,d = ¢, In one case, we can lower the complexity.

whered is the last data value af. Proposition 5.8 Combined complexity ofRDPQ,,..,
gueries whose regular expressions do not have subexpres-
Take note that in the last item we require thgtand notr, sions of the forne™ is NP-complete.

satisfiesc. The reason for this is that our initial assignment
might change before reaching the end of the expression and The restriction, while achieving better combined complex-
we want this change to be reflected when we check that con-ity, is too strong, as it effectively restricts one to langesof
dition c holds. data paths whose projections B are finite. All the exam-
ples we saw earlier use subexpressiohsSo if we want to
Translation into automata We now show that regular ex-  achieve tractability, we need to look at a very different way
pressions with memory can be efficiently translated inte reg of restricting expressions. This is what we do in the next
ister automata. section.



6. Queries based on regular expressions with
equality

The class of regular expressions for data paths that lets usg

lower the combined complexity of queries toIRE permits
testing for equality or inequality of data values at the begi
ning or the end of a data (sub)path. For exampl&!)._.
denotes the set of all data paths having different first astd la
data values. The languade, of data paths on which two
data values are the same is given®y - (X1)_ - X*: it
checks for the existence of a nonempty subpath (with label
in ¥T) such that the nodes at the beginning and at the end of
this subpath have the same data value, indicated by subscrip

Definition 6.1 (Expressions with equality).Let 3> be a fi-
nite alphabet. Themegular expressions with equaligre
defined by the grammar:

e elalete|eel|le [ex|exr (4)

wherea ranges over alphabet letters.

The languagéd.(e) of data paths denoted by a regular ex-
pression with equality is defined as follows.

e L(c)={d|de D}.

e L(a)={dad | d,d € D}.

o L(e-e')=L(e)- L(e).

e L(e+e')=L(e)UL(e).

o L(et)={wy- -wy | k>1andeachy; € L(e)}.
o Lie~)={diay...an_1d, € L(e) | dy = d,}.

o L(ex)={dia1...an—1d, € L(e) | d1 # dn}.

These expressions sacrifice the ability to check condi-
tions as one goes along the path, making it only possible to

check conditions at the start and the end of chosen subex-

pressions. Looking at Example 5.2, all languages except
the first can be defined by regular expressions with mem-
ory. We already saw how to do the languag; the ex-
pression| z.(ab) " [+7] is equivalent to(ab)’. The expres-
sion | z.(a[z7])* describing the language of data paths in
which all data values are different from the first one, regglir
checking a condition multiple times. We now show that this
goes beyond the power of expressions with equality, which
are strictly weaker than expressions with memory.

Proposition 6.2 1. For each regular expression with
equality, there is an equivalent regular expression with
memory.

2. For the regular expression with memajy:.(a[z7])*
there is no equivalent regular expression with equality.

6.1 Query evaluation

We now deal with the following queries.

Definition 6.3. A regular data path query with equalily

an expressior) = x —— y, where e is regular expression
with equality.
Given a data graplt, the result of the querg)(G) con-
sts of pairs of nodeg, v') such that there is a data path
w fromwv to v’ that belongs td.(e).

The class of these queries is denotediyPQ_.

Combining Propositions 5.3 and 6.2 we see that the power
of regular expressions with equality is subsumed by registe
automata; hence combined with Theorem 4.6 we immedi-
ately obtain:

Corollary 6.4. Data complexity oRDPQ_ queries is in
NLOGSPACE

We now show that combined complexity f®*xDPQ_
queries is tractable, i.e., is even better than the combined
complexity of conjunctive queries. Our outline of the
polynomial-time algorithm is as follows. We start with a
data graptG = (V, E, p) whose data values form a (finite)
setD C D and a regular expression with equality

1. We first show that we can efficiently generate a
context-free grammag. p whose language corre-
sponds to the set of all data paths frof(e)
whose data values are im. More precisely,
every word in L(G.p) will be of the form
drardadoasdsds ... dp_1d,_1ay_1dy, whered; € D
anda; € Y. We say that this word, in which each
data value, except the first and the last, appears twice,
corresponds to the data pathu; dsasds . . . an—1d,.

2. We then convert. p, in polynomial time, into an
equivalent PDAA(G..p).
3. Given two nodes, v’ in G, we construct an NFA

A v Todo so we firstdefineagragh = (V', E')

that will reflect the fact that all data values fr@rhave

to be doubled if they appear on a path as intermediate
nodes. We defin&’ = (V' E’) as follows:

Vv’ Vul{a,a|lueV}iu{s,t}

E {(v1,a,02) | (v1,a,v2) € E}

UL(@, p(u), @), (@, p(u),u) | uw € V}
Similarly as when dealing with register automata we
triple each node and add an edge between new nodes
that will reflect the fact that every intermediate data
value will have to be doubled. This is illustrated below.

a
U1 ‘U (%)

(0 ) ) () 2 )

In addition, we also add edge§s, p(v),v) and
(¥, p(v"),t) to E’. We now get the automatof ..
as the automaton obtained fraf by settings as the

initial andt as the final state. Note that the construction
of the automatotis, .../ is polynomial.



4. Finally, forQ = = -5 y we have(v,v') € Q(G) iff
the languaged¢ , v has nonempty intersection with
the language generated by the gramgap. This fol-
lows by an argument similar to the proof of Proposition
4.5.

Since the intersection of a context-free language and

with d # d’, together with all the productions of the
grammage, p.

It is clear from the construction that all words generated
by this grammar(with the sole exception of the empty word)
have all of their intermediate data values (i.e. lettersesor

a regular language is context-free and can be obtainedsponding to values i) doubled, except the first and the

by the product construction of a PDA and an NFA, this
means thatv, v’) € Q(G) iff the productA(G. p) x
Ag v defines a nonempty language. This product is
a PDA, so we can check its nonemptiness in polyno-
mial time, giving us a polynomial algorithm for query
evaluation.

Steps 2, 3, and 4 above use the standard constructions OF

converting CFGs into PDAs, taking products, and checking
PDAs for nonemptiness. So what is missing is the construc-
tion of the CFGG,, p, which we show next.

Regular expressions with equality into CFGsAssume that
we have a finite seD of data values. We now inductively
construct CFGgj. p for all regular expressions with equal-
ity. The terminal symbols of these CFGs will be plus

all elements ofD. All nonterminals inG. p will be of the
form A, andAg/”", wheree’ ranges over subexpressions of
e andd,d’ € D. Intuitively, words derived fromA%?" will
correspond to (in a way previously described) data paths in
L(e") with data values fronD that start withd and end with
d'; words derived fromA.. will correspond to data paths in
L(¢’) with data values fromD. The start symbol for the
grammar corresponding to the expressiamill be A..

The productions of the grammags p are now defined
inductively as follows.

If e = ¢, we have productiond. — \/,., A%* and
Add —, dforeachd € D.

If e = a, fora € 3, we have productionsgl, —
Vawep Al andA2 — dad' forall d,d’ € D.

If e e1 - e, we have productionsd,
Vaaep AL and A2 — \/,,p, A2 A2 for all
d,d" € D together with all the productions of the
grammargJ., p andG., p.

If e e1 + ez, we have productionsd.
Vawep Al and A% — A2 A for all d,d’ €

D together with all the productions of the grammars
Ge, p andG,, p.

If e (e1)™, we have productionsA,
Vaaep A and A4 — AL\, A2 AT
foralld,d € D together with all the productions of
the grammag,, p.

—

—

—

If e = (e1)=, we have productiond, — \/ ., A%
and A% — A% for all d € D together with all the
productions of the grammaf., p.

If e (e1)#, we have productionsA.
Vawep, aza AL andAl? — A foralld,d' € D

—

last one.

Note that with these expressions we assume d¢hedn
appear only when denoting the empty word and will be re-
moved otherwise. We require this, so that we would not get
productions that produce objects that are not data pattis, su
as e.gddd for the expression - € - . Note that this is not a
roblem, since all expressions can be rewritten to be of this
orm in DLOGSPACE

The main result connecting these CFGs with languages of
regular expressions with equality is this. Recall that when
we say that a word ovet and D corresponds to a data path
with values inD, we mean that it equals the data path with
all the data values, except the first and the last, doubled.

Proposition 6.5 The language of words derived by each
CFGG. p corresponds to the set of data pathdite) whose
data values come fro». Furthermore, the set of words de-
rived from each nonterminadd?’ corresponds to the set of
data paths inZ(e) which start withd, end withd’, and whose
data values come from.

Moreover, the CFG,. p can be constructed in polynomial
time frome and D.

This, together with the algorithm shown above, finally
gives us tractability of combined complexity.

Theorem 6.6 Combined complexity &8DPQ_ queries is
in PTIME.

The correctness of the procedure shown in this section is
proved in the appendix.

7. Conjunctive regular path queries with data

A standard extension of RPQs is thattmjunctive RPQs
or CRPQs [12, 18, 22]. These add conjunctions of RPQs
and existential quantification over variables, in the sarag w
as conjunctive queries extend atomic formulae of relationa
calculus. We now look at similar extensions of RPQs with
data.

Formally, aconjunctive regular data path query (CRDPQ)
is an expression of the form

(5)

wherem > 0, eachz; L, y; is aregular data path query (in
one of the formalisms studied here), ani$ a tuple of vari-
ables among@ andy. A query with the headlns() (i.e., no



1 RDPQH]CIH
Query answering RDPQ RDPQ,,,om over finite words RDPQ_

data complexity NLoGspacecomplete| NLoGsPACEcomplete| NLoGSPACEcomplete| NLOGSPACEcomplete
combined complexity ~ PsPACEcomplete PspAacEcomplete NP-complete PTIME
(a) for single data path query

Query answering CRDPQ CRDPQ,,0m CRDPQ_
data complexity NLoGspacecomplete| NLoGsPACEcomplete| NLOGSPACEcomplete
combined complexity =~ PsSPACEcomplete PsPACEcomplete NP-complete

(b) for conjunctive queries

Figure 2: Summary of complexity results for classes of queds

variables in the output) is calledBooleanquery. Depend- |z| is fixed, and thus such an enumeration can be done in
ing on which RDPQs are used in (5) we shall be referring logarithmic space, showing that query evaluation remains i
to CRDPQs, or CRDPQs with memory, or CRDPQs with  NLOGSPACE O

equality.

These queries extend RDPQs with conjunction, as well as _For combined complexity, we have the same bounds for
existential quantification: variables that appear in thaypo ~CRDPQs given by register automata and expressions with

but not in the head (i.e., variablesinandy but notz) are ~ Memory as in the case of a single RDPQ. For regular expres-
assumed to be existentially quantified. sions with equality we get NP-completeness, which matches

the combined complexity of conjunctive queries and CR-
The semantics of a CRDPQ of the form (5) over adata  PQs.
graphG = (V, E, p) is defined as follows. Given a valu- . _ . .
ationv : J, ;o {zi,vi} — V, we write (G,v) = Q if Theorem 7.2 Combined complexity of conjunctive regu-
. L; lar data path queries remainBspACEcomplete if they are

(v(z:), v(y:)) is in the answer of; — y; onG, for each  gpecified using register automata or regular expressiotts wi
i =1,...,m. ThenQ(G) is defined as the set of all tuples  emory, ItisNP-complete if they are specified using regular
v(z) such tha{G,v) = Q. If Q is Boolean, we lef)(G) be expressions with equality.
true if (G,v) | Q for somev (that is, as usual, the empty
tuple models the Boolean constant true, and the empty set proor Pspacehardness follows from the correspond-

models the Boolean constant false). ing results for RDPQs and RDPQs with memory, and NP-

As with RDPQs, we study data and combined complexity hardness follows from NP-hardness of relational conjunc-

of the query evaluation problem, i.e. checking, fora CRDPQ five queries. Thus we show upper bounds. The algorithm
Q, a data grapl and a tuple of nodes, whether € Q(G) (using notations from the proof of Theorem 7.1) is the same
(for data complexity the querg is fixed). in all three cases: guess a tupleof nodes forz’, and check

whether all the RDPQs in conjunction (5) are true. We know

First, we show that for all the three formalisms based on that for register automata and regular expressions with-mem
register automata and regular expressions for them, no cosbry the latter can be done irsPACE since BSPACEis closed
is incurred by going from RDPQs to CRDPQs as far as data under nondeterministic guesses we have theAeE upper
complexity is concerned. bound for combined complexity. For regular expressions
with equality, an NP upper bound for the algorithm follows
from the Prime bound for combined complexity for RDPQs
with equality. O

Theorem 7.1 Data complexity of conjunctive regular data
path queries remaindNLoGsPAcCEcomplete if they are
specified using register automata, regular expressionk wit
memory, or regular expressions with equality.

PROOF Consider a query of the form (5) and kétbe the 8- Summary and future work
tuple of variables fronz andy that is not present ia. To
check whethet € Q(G), we need to check whether there  The tables in Figure 2 give the summary of data and com-
exists a valuatiom’ for z’ so that under that valuation each pined complexity for various query languages studied ia thi
of the RDPQs in the conjunction in (5) is true. paper. As we introduced models that expand the usual RPQs
and CRPQs that handle only edge labels and can now ma-
L nipulate data in the nodes, we get, as expected, a slightly
whetherv — o' evaluates to true for some nodesv’ higher complexity bounds for combined complexity. How-
can be done with NbGspAcEdata complexity for all the  ever, using a large class of regular expressions that can ex-
formalisms mentioned in the theorem. ThUS, given a data press many properties of interest' we can match the usual
graphG = (V, E, p), we can enumerate all the tuples from  hound of RPQs. For CRPQs with data, the bounds are only
VI, and for each of them check the truth of all the RD- slightly higher than those for data-free CRPQs; in some
PQs in conjunction (5). Since we deal with data complexity, cases they coincide with bounds for CRPQs extended with

We know from the previous sections that checking
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comparisons of paths, and for some, there is no price to pay[13] D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. VardavRiting

for incorporating data comparisons into queries. of regular expressions and regular path qued@SS$
64(3):443-465, 2002.

This is an initial investigation on combining data and [14] M. P. Consens, A. O. Mendelzon. GraphLog: a visual fdisnafor
topology in graph query languages, and we plan to extend real life recursion. IPODS’9Q pages 404-416.
this work in several directions. One of them has to do with [15] I. Cruz, A. Mendelzon, P. Wood. A graphical query langeia
optimizing queries, in particular, with studying contaiemt supporting recursion. IIGMOD'87, pages 323-330.
and equivalence as in [18, 25]. We are also interested in han-16] S- Demri, R. Lazic. LTL with the freeze quantifier and istgr
dling constraints in graph query languages [2, 26]. Another automataACM TOCL10(3): (2009).

. . . . . : . [17] S. Demri, R. Lazi¢, D. Nowak. On the freeze quantifiecamstraint
direction is to study extensions with path comparisons as in LTL: Decidability and complexitylnf. Comput205(1): 2—24 (2007).

[4]1 combined with query'“g data. We .also pl,an to StUdy [18] A. Deutsch, V. Tannen. Optimization properties forsslas of
incomplete data, by extending patterns in [5] with data, po- conjunctive regular path querig8BPL'01, pages 21-39.

tentially incomplete. [19] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu. Graph pattern matghifiom

her di . . d . defi intractable to polynomial time?VLDB3(1): 264-275 (2010).
Yet another direction we intend to pursue is to define our [20] D. Figueira. Satisfiability of downward XPath with daquality

expressions over data words, a setting usually treateckin th tests PODS'09 197-206.

literature, and try to study their classical language tagor [21] D. Figueira and L. Segoufin. Bottom-up automata on da@stand
properties, such as membership testing, nonemptiness, con  vertical XPathSTACS'11pages 93-104.

tainment, etc. To lower complexity we might even consider [22] D. Florescu, A. Levy, D. Suciu. Query containment fontmctive
restricting regular expressions with memory in such a way queries with regular expressions.RODS’98 pages 139-148.
that equality tests are more explicit, while still allowitihgem [23] S. Fortune, J. Hopcroft, and J. Wyllie. The directed lkomorphism
to be far more expressive than expressions with equality. We  Problem.Theoretical Computer Scienck0:111-121, 1980.
would also like to specify a class of expressions that pre- [24] G- Goitlob, g'PKOhCh' a“.ge%hiﬁh'e“ Eg'c'et?t a'gso”tbm)r

cisely capture register automata in the same manner that gg?giﬁg_g‘lgl,a;ogé‘_e” rans. Database Syst

regular expressions capture finite state automata. We havq25]

[l

G. Grahne, A. Thomo. Algebraic rewritings for optinmigi regular

strong indications that we will be able to do so with regular path queries. IHCDT'01, pages 301-315.

expressions with memory. [26] G. Grahne, A. Thomo. Query containment and rewritinipgisiews
. for regular path queries under constraintsP@DS’'03 pages
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APPENDIX

Proofs

10. Proof of Theorem 3.1

We do a reduction from 2-DISJOINT PATHS QUERY problem prot@be NP-complete in [23]. This problemis to check,
for a graphG and four nodesy, t1, s2, t2 in G, whether there exist two pathsd, one froms; to ¢; and the other froms, to
t, that have no nodes in common.

Assume thatz = (V, E) is a graph and, ¢1, so, to are four nodes 7. Here we assume that all four nodes are distinct.
It is easy to see that with this assumption the problem resnidin-complete, because we can always add two new nodes for
each repeated node and connect them with all the nodes thategpbnode was connected to, thus modifying our problem to

have all source and target nodes different. We let our query b= « Leg, y. Since our query will disregard edge labels we
can takeX = {a}. We will construct a data grapfi’ and two nodes, ¢ € G’ such thai(s,¢) € Q(G’) if and only if there are
two disjoint paths irGG from s; to t; and fromss to ¢,.

LetV = {v1,...,v,}. The graphG’ will contain two disjoint isomorphic copies @f (with data values and labels attached)
connected by a single edge. We define the two isomorphic s6hi@ndG, by:

Gk = <Vk7Ek,pk>,where

o Vi, ={vy,...,v.},

By, = {(v},a,}) : (v;,vj) € E} and
o pi(vl)=d,fori=1...n

for k = 1,2, and then let;’ = (V' E’, o), where

o Vi=V1Uls,
o F'=F;UE,U{(t),a,sy)}and
o o/ = p1Ups.

Note thaty’ is well defined sincé’; andV; are disjoint.
Finally we defines = s} andt = t7.

We claim that(s, t) € Q(G") if and only if there are two disjoint paths @& from s; to ¢; and froms; to ¢5 in G. To see this
assume first thats, t) € Q(G’). This means that we have a pathGfiwhich starts ins} and ends irt). In particular, it must
pass the edge betweénands}, since this is the only edge connecting the two graphs. Alsee all data values on this path
are different we know that no node can repeat. But then welgigpfit this path into two disjoint paths ¥ since the structure
of edges inG’ is the same as the one@with the exception of edge betweénands). Also, no node can be repeated, since
the corresponding nodes d®, andGs, have the same data values.

Conversely, if we have two disjoint paths frosn to ¢; and fromss to to in G, we simply follow the corresponding path
from s} to ¢} in G; (and thus inG’), traverse the edge betweg&nands/ and then follow the path it¥s (and thus inG’) from
s to ¢ corresponding to the path from to ¢ in G.

This completes the proof of the theorem.

11. Proof of Lemma 4.2

First we fix some notation. An accepting run of a register gath automatod onw = dyaids .. .a,_1d, IS @ sequence
of configurationCy, C4, ..., Cs,_1 starting with the initial configuration, ending in some fikainfiguration and such that
for everyi < 2n — 1, the automaton can move frofi} to C,,1 by reading the appropriate symbol®of For each accepting
run there is also a sequence of transitions finandd,, witnessing this run. This sequence always starts and erttisawi
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transition fromé, and the consecutive transitions are alternating betwgando.,,. We will often identify accepting run afl
onw with its witnessing sequence. An example of such an acagpéguence fad onw = dyaids . .. a,_1d, iS a sequence

(qo,c1, 11, q1) — (q1,a1,92) — (q2,¢2, 12, q3) — (g3,02,q94) — ... = (@2n—2, Cn, In, G2n—1),

with Gon—1 € F.

A run of a data word automaton is defined analogously.

We are now ready to prove Lemma 4.2.

Let A = (Q,qo, F, 70,0 = (0w, 0q)) be our automaton over data paths. We know that Q., U Q.. We defined’ =
(Q',q-1, F', 7, T), an automaton over data words, as follows:

e Q' ={q-1}UQ, whereg_; is the new initial state;

o [ =T,

o 7\ = T0;

e For every transition(qo,c,I,q) € 64 we add (¢-1,#,¢,1,q) to T. Also, for every pair of transitions

(q1,0a,q2), (g2, ¢,1,q3), with q1, g3 € Q,, andgs € Q4 we add the transitiofy,, a, ¢, I, g3) to T

To see the equivalence, assume that diaids . . . a,—1d, isin L(A). Then there exists an accepting run

(qo.c1, 11, q1) = (q1,a1,92) — (q2,¢2,12,q3) — (q3,02,q4) — ... = (G2n—2,Cny In, Q2n—1),

with ¢g2,,_1 € F. Butthen
(q—la#aclallaql) - (QIaalaCQaIQaqi’)) — ... (q2n—3aanacnalnaq2n—l)

is an accepting run ofl’ on (ji) (G) - ().

Conversely, assume that
(q—la #a C1, Ila Q1) - (QIa ai, Ca, 121 q3) — ... (q2n—31 Ap,y Cp,y Ina q2n—1)

is an accepting run oft’ on (jﬁ) (G2) - (“3-*). Since every transition ofl’, except for the first one is made up from two
transitions of4, we know that for eacl, a, ¢, I, ¢') in this accepting run there exist$ € Q such thatq, a,¢”) € é,, and
(¢",c,1,q") € 64.This pair of transitions will process some pé@ From this we get an accepting rundfond,a ...d,
starting with(qo, c1, I1, ¢1) (processingly, since the condition here is fot’ to accept(ji)) and continuing through following

transitions as described above.

The DLoGSsPACEbound is also immediate.

12. Proof of Corollary 4.3

We prove BPACEhardness by doing a reduction from regular automata neatsality. This problem requires us to deter-
mine, given a finite state automatgh whetherL(.A) # ¥*.

The proof we give here is similar to the proof for data wordegiin [16]. It is easy, though quite tedious, to check that th
described algorithm can indeed be implemented on a registematon. Here we give a high level description of how to do
Sso.

Assume we are given a regular automatbe- (Q, X, 6, ¢1, F'), whereQ = {q1,...,¢,} andF = {q¢;,, ..., q, }. Using an
automaton witl2n + 2 registers we will emulate the following algorithm which se$ reachability in the powerset automaton
for the complement.

We initialize our automaton by storing two different datdues, which we denote hyand f, in the first two registers.

Our algorithm stores two states 4f both of which are encoded as arbit sequence of/ f. If the ith bit of the sequence is
set tot, it means thay; is included in our state ofl. The state we startinisf ... f, wheret corresponds to statg, the initial
state. Itis easy to code this into our automaton.

In what follows we will refer to the twar-bit sequences coding the two states/bfs the current state tape and the next
state tape. These will be used to test reachability in theepsst automaton fad and will work in the usual manner. This
means that we are trying to guess a word in the complementatidm by guessing a letter from the alphabet at each step and
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updating the next state tape (which will code the next statt) respect to the current state tape (holding the desonjutf
the current state). At the end of each step we simply copyéRestate tape to the current state tape and start from théhne i
next step.

To simulate this in every step we reset the next state tapertain all false and we nondeterministically pick out adetif
the accepting word farl and apply all possible transitions from the current state rom the states where we haven our
tape). We remember the result on the new tape and at the egdtdoghe current state tape. That is, our register automato
loops over the following set of instructions: it first setsriext state tape (stored in registers 3. ..2n + 2) to contain allf
values, then nondeterministically picks a letter of thehalpet and updates the next state tape according to the vateads
on the current state tape (i.e. it only updates if the valieiis). After going through the entire current state tapeghting
according ta) it copies the next state tape to the current state tape.

The algorithm stops if it reaches a state where all statds ame tagged witty, or it has exhausted &al* states. Since we
use only two tapes and polynomially many operations in esgh gur algorithm is in BPACE That is, our automaton can
chose to nondeterministically enter a block of states §piagithat all states irf” are coded by on the current state tape.

We now claim that there is a word in the language of the conotduregister automaton if and only if languagefs not
universal.

Itis clear from the description that the language of our gigatomaton is not universal if and only if there is a sequence
of tape descriptions starting from the initial state dgstsn and moving according to the previous algorithm sudctt the
last state description hgsin all positions corresponding to the statesFin But this simply means that the language of the
constructed automaton is nonempty. Conversely, if thedagg of the constructed automaton is nonempty it clearlgriees
such a set of transitions that leads to a word not in the laggoéoriginal A.

13. Proof of Proposition 4.5

It follows immediately from the construction that the autiton. A, accepts precisely those data paths fdrfil) that have
data values frond. To see this it suffices to show that every accepting rud gfcorresponds to an accepting rundand vice
versa, in the case of paths whose data values comeforBut this follows easily sincelp has all possible configurations of
registers at it's disposal.

To see that the statement of Proposition holds assume fast(the’) € Q(G). Then there is a data path, =
doaodiay . ..a,_1d, fromwv to v’ such thatw, € L(A). Since this is a data path i@ starting withv and ending with’
it must also be a word in the language¢- ,, .-. On the other hand, since it is (.A4), it must also be ir.(Ap), sinceAp
is simply restriction of4 to alphabet in which data values come only from thel3eThusL(Ag: . X Ap) # 0.

Conversely, assume that{ Aq ,.» X Ap) # (. Then there is a data path, = dpagdia; ...a,—1d, such thatw, €
L(Ag v) andw, € L(Ap). But then by constructiom, must be a data path i& from v to v'. Also w, € L(A),
since L(Ap) is simply a restriction of language of to data paths whose data values come fiomBut this implies that

(v,0") € Q(G).
14. Proof of Theorem 4.6

We only need to prove$PACEhardness, since uppesPaceEbound follows from on-the-fly method for checking nonempti-
ness of exponential size automata. But this is an immedéatsarjuence of Proposition 5.3 and Theorem 5.6, which avegro
for a more restricted language.

15. Proof of Proposition 5.3

We prove this by induction on the structurecofNote that the initial assignment gf, is not specified in advance. We will
simply put the assignment in as needed, since it does nogelthe structure of the underlying automaton. In what folove
will identify the vectorz of variables with the set of registers (i.e. positions) itresponds to. For example the vectos, =5)
will correspond to the seft = {3, 5} of registers.

If (e,w,0) I~ o', we will write w € L(e, o, 0’) and similarly if A. = (Q, qo, F, L, §) started witho acceptav with ¢’ in the
registers, we writev € L(A.,o,0").

o If e = ¢, thenA. = (Q,q, F, L,9), whereQ = {d} U {w} is the set of stateg, = d is the initial state}' = {w} the
set of final states and the only transitior{ds e, (), w).
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o If e = a, for somea € X then A, = (Q,qo, F, L,0), whereQ = {d;,d>} U {w;,w,} is the set of stategy, = d; the
initial state,F = {w-} the final state and the transition functions are as follays= { (w1, a, d2)} is the word transition
relation, andi; = {(d1,¢,0,w1), (d2, &, 0, w2)} is the data transition relation.

If e = e1 + ez then by the inductive hypothesis we already have automdata = (Q1,dy, Fr, 1,61) and A, =
(Q2,da, Fa, 1, 62) with the desired property. The registers4f will be the union of registers ofl., and.A.,. To obtain
the desired automaton we sét = (Q, do, F, L, §), where

- Q =Q1UQ2U{dy}, whered, is a new data state,

— F=FUFy,

— To ¢ we add all transitions fromil., and.A., and in addition, for every transitiai, ¢, I, w) € d; Uda, whered = dj,

ord = dy, we add a transitio(dy, ¢, I, w).

To see that this automaton has the desired property assane th L(e; + ez, 0,0”). This meange; + e2, w,0) - o’.
By definition, (e1, w, o) F ¢’ or (e2, w, o) F o’. By the induction hypothesis it follows that eithdg, , or A., acceptsu
and halts witho’ in the registers (when started witf). From this it is clear tha#l. can simulate the same accepting run
when started withr in the registers(by using the transition fraiy to the appropriate automaton and continuing on the
same run there). (Note that all conclusions here are ecurcak.)

If e = |Z.e; then again by the induction hypothesis we halie = (Q1,d1, F1, L, 61) with the desired property. The
automaton forA, is defined asd. = (Q1 U {do}, do, F1, L, ), whered, is a new data state andcontains all the
transitions ofA., and in addition, for every transitiofa,, ¢, I, w), going from the initial state ofl., , we add a transition
(do,c, I UZ,w) to 4. The registers ofd. are the union of registers of., and|Z| new registers.

To see the equivalence, assume that L(e, o,0’). By definition(e,w, o) F o¢’. It follows that(eq, w, oz—., ) F o,
wherev, is the first data value i andoz—,,, is the same as except that every registerincontainsy; . By the induction
hypothesis we know that., with oz—,, as initial assignment has an accepting runioending witho’ in the registers.
But then. A, starting witho in the registers can go through the same run with the exaefiat the first transition will
changer to 07—, and since all other transitions are the same we have theedesisult. (Note that all conclusions here
are equivalences.) It is important to note that potentialfesion of the variables will cause no conflicts. To see this
assume we have a transitiéd , c, I, w) in A., and we start withy as initial assignment. If andZ have variables in
common it will not matter, since all of them will get replacley the same value, namely the first data valuevofThis
means that the first step of the run will end up with the sameltre&lso note that no transition iy, with d; as the first
component will have # ¢, since this would amount to an expression starting with aitimm, something disallowed by
our syntax.

If e = e1[c] then letA., = (Q1,d:, F1, L, 6,) be an automaton far; as before. We defind. = (Q, d,, F, 1, ) where
Q = Q1 U{ws}, with w; a new stateF' = {wy} and for every transitioiid, ¢’, I, w) wherew € F; we add a transition
(d,d Ne, I, wy)to A.. We have to add a new state simply because our original atbonsauld have looped back from
some final state.

To get the equivalence assume again that L(e, o, ¢’). By definition(e;, w, o) I ¢’ ando’, v |= ¢, wherew is the last
data value inv. From the induction hypothesis we get an accepting rud Qfwith ¢ as initial configuration and’ as
final one. But since’, v |= c instead of the last transition we can simply make a tramstiiaw, in A, (since all other
transitions are the same). We again notice that all the @afitins can be reversed, i.e. we can prove the equivalence.

If e = e - €9, take againd., and.A., as above. The automaton feis simply the union of the previous two automata,
but in addition to the already existing transitions we adslftillowing: for every(d, ¢, I, w) in A.,, wherew € F; and

for every(ds, ¢/, I’ w') in A.,, whereds is the initial state of4.,, we add(d,c A ¢/, I U I’ ,w’) to §. Note that! is going

to be an empty set, since we work with well formed expressivesalso makel; the initial state and+;, the set of final
states. The registers gf. are again the union of registers.df, and.A., .

To get the desired result once again assumetthat L(e, o, 0’). This meange, w,o) t o', which implies that there
exists somer” and a splittingw = w, - we Of w such thatle;, w1,0) F ¢ and(e2, ws,0”) F ¢’. By the induction
hypothesis we know that there is an accepting ruplgf onw, starting witho and ending withy” in the registers and
also an accepting run of., onws, starting witho” and ending withs’ in the registers. But we can simply combine these
two runs into an accepting run of. onw. We do so by setting as initial assignment and tracing the run4f, till the
final state. Now instead of taking the last transition we teike one of the newly added transitions from the next to final
state inA., to the next to first state inl.,. Note that we can do this since we know there is an acceptim@frid., on

we and sincaw = w; - we, SO their last and first data value, respectively, coindidigte that at this point we end up with
o” in the registers and can continue the accepting ruAgfand thusA..

Conversely, if we have an accepting run.f on w, we split the run, and thus the path, into the part before died a
taking the new transition added while constructing the mation. Note that we have to take this transition in order to
pass from the initial state, which is iA., part of A., to a final state, which is in al., part of A.. From this it follows
thatw € L(e).

o If e = e, then let againd., be the automaton from the induction hypothesis. Note fiet this automaton has at least
four states, since Pr@j;) # ¢, where Proje) denotes the projection to the finite alphaBeand transitions going directly
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from initial to final state can only accept the empty word, lseytwill not alter computations or acceptance. We let the
automaton foe be the same as the one fqr, but we add the following transitions: for evef@, ¢, I, w) with w € F; and

for every(dy,c’, I',w'), whered; is the initial state of4.,, we add(d, ¢ A ¢/, I U I’ ,w’) to our transition function, thus
bypassing the last and the first state.

Assume now thate, w, o) = ¢’. Then either(e;,w,0) F ¢, so we are done by the induction hypothesisuor=

wy - - - wy With & > 2 and valuations, . . ., 0,41 exist such thatey, w;, 0;) F 0,41 fori = 1,..., k. But then by the
induction hypothesis we have computations/f with o; as the initial assignment and,, as final assignment that
acceptw;, fori = 1,..., k. Note that this actually means that we start withdo a computation fow;, end witho in
the registers, then take the new transition bypassing tbestte for this computation and thus starting the comprtati
with o5 in the registers(and updating the registers as dictatetefirst transition in the new cycle), etc., until we reach
o' after readinguy, thus accepting.

For the converse, ifl. acceptav when started witlr and ended witle’ then we simply split the data path for every time
we take the additional transitions added in the constroatfod.. From this we get computations gf., on sub-paths
with intermediate valuations. By the induction hypothegéshave acceptance of these subpaths;byith appropriate
valuations and thus the membership of the entire paith (e, 0, 0”) .

This concludes the proof. It is straightforward to check #ibthe constructions can be carried in D&SPACE

16. Proof of Theorem 5.6

The PspAcEupper bound follows from Theorem 4.6 and Proposition 5.3usTwe only have to provedPAcEhardness.
For this we do a reduction from regular automata nonuniigygaroblem. The idea is, similarly to proof of Corollary3i.
to simulate on the fly reachability testing in the powersabaaton by using two sets of variables, each of the size of the
automaton, for coding the current and next state.

Let A = (Q,%,6,q1, F) be afinite state automaton, whepe= {q1,...,¢,} andF = {qi,,...,q, }. We will construct
a fixed graph? with 5 nodes, containing two distinguished nodesndt in G and construct, in polynomial time, a regular

expression with memony,of lengthO(n x |X|), such thais, t) € Q(G) if and only if L(A) # £*, whereQ = z —= y.

The graphG is shown below:

We now sets = v; andt = vs.

Since we are trying to demonstrate nonuniversality of theraaton.A we simulate reachability checking in the powerset
automaton fotd. To do so we designate two distinct data valuesnd f, and code each state of the powerset automaton as
ann-bit sequence of/ f values, where théh bit of the sequence is set tdf the stateg; is included in our state ofl. Since
we are checking reachability we will need only to rememberdirrent and the next state df In what follows we will code
those two states using variables . . ., s,, andwy, . .., w, and refer to them as stable tape and work tape. Our expression
will code data paths that describe successful rund bl demonstrating how one can move from one state of this aattmm
to another (as witnessed by their codes in stable and wods}agtarting with the initial and ending in a final state.

We will define several expressions and explain their role.villeuse two sets of variables; throughs,, andwy, ..., w,
to denote stable and work tape (i.e. current and next stateipowerset automaton). All of these variables will onlptzin
two values¢ and f, which are bound in the beginning and that will correspon@d émd 1 in the grapty.

The first expression we need is:

init = |tat”]] faft]]si.alf7]]se....alf7]lsn.a.

This expression codes two different values asd f and initializes stable tape to contain encoding of inittate (the one
where only initial state frorod can be reached). That is, a data path is in the language ahbthigssion if and only if it starts
with two different data values and continues witllata values that form a sequenca @i.

end :=a[f~ Asi]-alf~ Asi,]--alf” Asg ], whereF = {q;,,...,q,}
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This expression is used to check that we have reached a statentaining any final state from the original automatorafTh
is, a data path is i, (end) if and only if it consists of data values, all equal thand where value stored in, also equaly,
forj=1...k.

Next we define expressions that will reflect updating of thekwape according to the transition function.df Assume that
5(qi,b) ={qj,,---.q; }- We define

Us(g;,b) *= (a[t: Asi]altT]lwg,. .. .a[t:]lel.a) +alfT As7].

Also, if §(gi, b) = () we simply putusg, p) = €.

This expression will be used to update the work tape by vgritine to corresponding variables if the statés tagged with
t on the work tape (and thus contained in the current stai) off it is false we skip the update.

Since we have to define update according to all transiticrs fill the states corresponding to chosen letter we get:

updat e := \/ A\ usq,p)-

beY ¢, €Q

This simply states that we non deterministically pick thetrsymbol of the word we are guessing and move to the next state
accordingly.

We still have to ensure that the tapes are copied at the biagiand end of each step, so we define:

step:= (a[f~]lwi....a[fT]]wy.a) -updat e - (a[wT ]| s1....alw, ]| sy.a).

This simply initializes the work tape at the beginning of leatep, proceeds with the update and copies the new state to
stable tape. Note the few odd a’s at the end of the expressitrese will not affect what we what to achieve and are here for
syntactical reasons(to get a proper expression).

Finally we have

e:=init-(step)*-end.

Here we uset ep* as abbreviation fost ep™ + ¢.
We claim that forQ = 2 —= y, we have(s, t) € Q(G) if and only if L(A) # ¥*.

Assume first thal (A) # ¥*. This means that there is a path from the initial to the firetiesin the powerset automaton for
A. Thatis, there is a word) from ©* not in the language ofi. This path can in turn be described by pairs of assignment of
valuest/ f to stable and work tape, where each transition is witnesggldebcorresponding letter of the alphabet. But then the
path froms to ¢ in G that belongs td.(e) is the one that first initializes the stable tape (i.e. théaldess, . . ., s,,) to initial
state of the powerset automaton, then runs the updates t#fpgheccording ta and finally ends in a state where all variable
corresponding to end states.dfare tagged’. Note that we can describe this pathGh since we start iy and put 1 intot
in nodewy, 0 into f in nodew,. After that 1 is assigned te in v and 0 toss, . . ., s, by looping throughy,. After that each
transition is reflected by going through andv, as necessary, to update tapes witli and finally going tovs and looping
there to check that all;’s corresponding to end states are taggied

Conversely, each path fromto ¢ in L(e) corresponds to a run of the powerset automaton4oiThat is, the part of path
corresponding td ni t sets the initial state. Then the part of this path that cpords tast ep* corresponds to updating our
tapes in a way that properly codes one step of powerset atdomiinally,end denotes that we have reached a state where
all end states afl have been tagged by, thus, an accepting state fd.

17. Proof of Proposition 5.8

Recall that fore € REG(X[z1,. .., xk]), by Proje) we denote the projection efto the finite alphabet.

First we show NP-membership. Since we do not isge know that every data path in the language of expressitmses
at most|Proj(e)| letters and one more data value. Assume now that we are gidlataggraphG, two nodess, ¢t € G and an
expression with memory. To see if(s,t) € Q(G), for @ = = - y, we use the following algorithm. First compute the
register automaton. for e. Note that this can be done in @IGSPACE Then nondeterministically guess a data pathin
G from s to ¢ that is of length at mosProj(e)|. Now also guesg|A(w,)| + 1 states ofd. and check that the path, is
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accepted by, as witnessed by this sequence of states, and thud.igin It is straightforward to see that this can be done in
polynomial time and since our guesses are of polynomial@n lfnear) size we get the desired result.

For hardness we do a reduction franCLIQUE. This problem asks for a given graphand a numbet, to determine iiG
has a clique of size at leakt

Suppose we are given an undirected gr&phnd a numbek. We will construct a data grapf’ with |G| + 2 nodes, select
two nodess, ¢ € G’ and construct a regular expression with memaryf size O(k?) such that contains a-clique if and
only if there is a data path fromto ¢ in G’ that satisfiesy.

TakeX = {a, b} and make> directed by adding edges in both directions for every eddge.ihabel all the edges by and
add two more nodesandt. Add an edge from to every other node exceptt and label them witlh. Also add an edge from
every node i to t and label them by. To finish the construction just add a different data valueviery node. We call the
resulting grapht:’.

To definee;,, we use an auxiliary expressiondefined as:

0i == alzy] - alei] - alzy] - alay] . alzi ] - alzy].
This expression will simply allow us to test that the curmnendle is connected to all nodes previously selected in oenpied
clique.

Now we can define, inductively as follows:

° ¢ ::b~lx1.a[arf],

® ey i=c¢] - larg.a[xf /\xf],

° ¢ ::ei,l~lxi.éi-a[xf/\.../\a:f],fori:3,...,k—1and
® ey =ep_1-|T0p b,

Next we show that there is/aclique inG iff there is a data path formto ¢ in G’ that satisfiegy,.

Suppose first that there iskaclique in G. Then we simply move froma to arbitrary point in that clique using tlitdabeled
edge and traverse the clique back and forth until we reaclt-tiieelement of the clique. Note that starting from the third
element, whenever we select a different node in the cliqueave to move back and forth between this node and all prelyious
selected ones to satisfy, but since we have a clique this is possible. Finally, aftdeing the last node and verifying that it
is connected to all the others we move tasing ab labeled edge.

Now suppose that there is a data path frota ¢ in G’ that satisfieg,. This means that we will be able to seléatlifferent
nodesny,...,n; in G with data values stored iny, . .., z;. Since all data values in the graph are different they als@sc
ids. Now take any twa;, n; with ¢ < j < k. Then we know that,; andn; are connected ir because after selecting we
have to go through; which contains:[z;| - a[z}"] and since no two data values@hare the same this means that we have an
edge between; andn;. This completes the proof.

18. Proof of Proposition 6.2

For first item it is enough to observe that for expressionfiefkdinde— ande., wheree is an ordinary regular expression,
the expressions with memotyz.e[z=] and| z.e[x”] denote the same language of data paths. From this it is Istfaig/ard
to construct a translation of arbitrary regular expressith equalitye to regular expression with memory by doing the above
mentioned construction bottom-up, starting from subesgicas ofe and using a new variable for each subexpression of the
forme’ or e;é.

To prove the second claim we introduce a new kind of autontatbed weak register automata, show that they capture
regular expressions with equality and that they can notesguihe languagez.(a[z7])* of a-labeled data paths on which all
data values are different from the first one.

The main idea behind weak register automata is that theg ¢éhasdata value that was stored in the register once they make
a comparison, thus rendering the register empty. We dehtdy putting a special symbdl from D in the register. Since
they have a finite number of registers, they can keep tracklyffmitely many positions in the future, so in the case of our
language, they can only check that a fixed finite number of ¢altees is different from the first one. We proceed with formal
definitions.

The definition of wealk-register data path automaton is the same as in the DefiditlorThe only explicit change we make
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is that we now assume th@t contains a special symbe] that will allow us to simply skip the data value, without dgiany
comparisons (previously we have been using a simple tagyadach asey Vv a:f or an additional register to emulate this).
Thus we simply add, d |= ¢, for every valuation- and data valué, to semantics of;. We will also assume that the initial
configuration is always empty.

Definition of configuration remains the same as before, itnmtely we move from one configuration to another changes.

From a configuratior = (j, ¢, 7) we can move to a configuratieh= (j + 1, ¢’, 7’) if one of the following holds:

o thejth symbolis a letter, and there is a transitiofg, a, ¢') € d,,; or

e the current symbol is a data valdeand there is a transitiofy, ¢, I, ¢') € §4 such thatd, 7 = ¢ andr’ coincides with
T except that every register mentioned:iis set to be empty (i.e. to contain) and theith component of’ is set tod
whenever € 1.

The second item simply tells us that if we used a conditioadik= 25 A 27 in our transition, we would afterwards erase
data values that were stored in registers 3 and 7. Note thaaweémmediately rewrite these registers with the curretda da
value.

The notion of acceptance and an accepting run is the samédas be

We now show that weak register automata can not recognizernjeaged. of all data paths where first data value is different
from all other data values, i.e. the language denoted byxpeession| z.(a[z7]).

Assume to the contrary, that there is some wkakegister data path automatehrecognizingl. Since data path,, =
la2a...ka(k + 1)a(k + 2) isin L, there is an accepting run gf onw,. The idea behind the proof is that can check that
only the firstk + 1 positions have different data value from the first.

First we note a few things. Since every data value in the patls different, no= comparisons can be used in conditions
appearing in this run (otherwise the condition test wouildefiad the automaton would not accept).

Now note that since we have ontyregisters, and with every comparison we empty the corretipgmregister one of the
following must occur:

e There is a data value < i < k + 2 such that the condition used when processing this data i@buieln this case we
simply replace by 1 and get an accepting run on a word that has the first dat@ vapeated — a contradiction. Note
that we could storé in that transition, but since afterwards we only test foguality this will not alter the rest of the
computation.

e There is a data value such that when the automaton readsoi¢dt mot use any register with the first data value, i.e. 1,
stored. Note that this must happen, because at best we carttstdirst data value in all the registers at the beginning of
our run, but after that each time we read a data value and aerntga the first we lose the first data value in this register.
But then again we can simply replace this data value with 1g@idan accepting run (just as before, if this data value
gets stored in this transition and then used later it can balysed inZ comparison, which is also true for 1, so the run
remains accepting). Again we arrive at a contradiction.

This shows that no weak register automaton can recognidanigeagel..

To complete the proof of Proposition 6.2 we still have to slilog/following:

Lemma 18.1 For every regular expression with equalitghere exists a weak-register automatond.., recognizing the same
language of data paths, whekeis the number of times, # symbols appear ia.

PROOF The proof is almost identical to the proof of PropositioB.5We can view this as introducing a new variable for
every=, # comparison ire and act as the subexpressidnreads| x.e’[z~] and analogously fog. Note that in this case
all variables come with their scope, so we do not have to walpgut transferring register configurations from one sidinef
construction to another (for example when we do concatemgtihe underlying automata remain the samig.

19. Proof of Proposition 6.5

We prove the proposition by induction on the structure.oNote that it is enough to show the second claim, i.e. we will

show that the set of words derived from each nontermitfdi corresponds to the set of data path.i) which start withd,
end withd’, and whose data values come frd@m This means that a word a1 dadoasdsds . . . a,,—1d,, in which all values but

first and last are doubled is derived froﬁljd' if and only if data pathl; a1 dsasds . . . a,—1d,, is in L(e) and uses data values
from D. We prove this by induction on the structure of the expressio
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o If e =¢, 0re = a, witha € ¥, the claim is immediate.
o If e = ey +epthenAd? — A% A" Butthen each word idl?® is either inA%% orin A%, so the claim follows from
the induction hypothesis.

o If e = ¢1 - e, we have a productiod?? — \/,,,,, A% AZ'?" To see the equivalence assume first this generated
by A2 This means that there existé € D such thatw is generated byld?” A¢'¢". By definition this means that

w = wy - wy such thatw; is generated byt??” andw, is generated byl? @', By the induction hypothesis this implies
that data pathw| corresponding taw, is in the language of;, starts withd and ends withi”. Likewisew?, a data path
corresponding tavs starts withd”, ends withd’ and is in the language @f,. Note that the induction hypothesis also
implies that the splitting of the word is correct. Sineg ends withd” andw}, begins with it we can concatenate these
two data paths to get’, a data path corresponding#q that is in the language ef begins withd and ends withi’ as
required.
Conversely, suppose that € L(e) is a data path that begins with ends withd’ and takes only data values from the set
D. By definition of concatenation there exists a splitting= w} - w) such thatw] € L(e;) andw) € L(es). Sincew’
takes data values fro there is some” such thatv} ends withd” andw’, begins withd”. But then by the induction
hypothesisu;, word obtained fromv} by doubling all intermediate data values, will be generduxedlgf”, while wo, a
word obtained fromw), by doubling all intermediate data values, will be generdm;eﬁlg;d'. But then their concatenation
w = wi - ws is precisely the word corresponding to data pattand is generated hyd?” A’ ¢ and thus4?".

o If e = (e1)*, we have a productioA?? — A |\/ ., A% AZ"? This implies that every word is generated either by

Ad?" 'in which case the claim follows immediately from the indanthypothesis, or is generated k., , A% AZ"¢,
in which case the proof mimics the proof for the concatematiase, taking into account that recursion will terminate
after finitely many steps and thus the final expression wilabeultiple concatenation of terms for which the induction
hypothesis holds.

e If e = (e1)—, we haved?? — A% which by the induction hypothesis corresponds to all wamds(e) with data values
from D.

o If e = (e1)x, we haveAd? — A2 whered # d’, which by the induction hypothesis corresponds to all wamds(e)
with data values fronD.

To see that the grammar for an expressiazan be constructed in polynomial time observe that ther@aneostO(n?)
subexpressions ef, where the length of is n. Since the grammar far is constructed by starting from subexpressions and
taking unions of already constructed subgrammars and exawyrule adds at mos?(|D|*) productions to our grammar we
get a grammar of the size at mastn? - | D|?). Note that we reuse old subgrammars so we do not get expahleliativ-up.

20. Proof of Proposition 6.6

It is clear from the description that algorithm runs in padymal time. It remains to prove that it is correct, i.e. that f
Q = r - y we have(v,v') € Q(G) iff the language ofds ,, .~ has nonempty intersection with the language generated by
A(ge,D)-

To see this assume first that v’) € Q(G). This means that there is a data pathform v to v’ in G such thatv, € L(e).
By Proposition 6.5 this implies that the corresponding wwith all intermediate data values doubled is in the languzfge
Ge,p and thusA(G. p). Also, sincew, is a path inG it is of the formd, a; . .. a,—1d,,, whered; = p(v;),fori =1,...,n, for
some nodesy, ..., v, in G such thaty, = v andv,, = v’. Thisimplies thatv;, a;,v;11) isan edgeirF, fori =1,...,n—1.
This again implies thai;d;1d;11 enables us to change the state4ef ,, ,» from v; to v;;1 (by going throughv;; andd; 1),
fori=2,...,n—1. Since(s, dy,v1) and(d,, d,, v,) are also transitions idl¢ , .- (as well agv,,_1, a,—1,0y)) we see that
A v accepts the word; a1 dadaasdsds . . . an—1dy, i.€. the word corresponding to,.. It follows that the intersection of
A(G..p) andAg . iS nOonempty.

Conversely, assume that the produgts,.. x A(G.p) defines a nonempty language and that =
diaidedsasdsds . . . a,_1d, is some word in that language. If we delete doubled data sdiwen w’ (remember the dis-
cussion before the statement of Proposition 6.5 where we it all words inL(G. p) are of this form) we get a word.
By Proposition 6.5w will be in the language of. On the other hand, sinee’ € L(Ag.,.») we know that there is a run from
stotin Aq, . that accepts this word. Then by the construction of thisraaton there exists a sequenge. . ., v,, of nodes
from G such thatl; = p(v;) are the appropriate data valués;, a;,v;,11) € E the corresponding edges and= vy, while
v’ = wv,. Itis clear thatw coincides with data path defined by this path and is thus aghainG starting inv and ending in
v’. We conclude thatv, v’) € Q(G).
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