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ABSTRACT
Despite the fact that JSON is currently one of the most
popular formats for exchanging data on the Web, there are
very few studies on this topic and there is no agreement upon
a theoretical framework for dealing with JSON. Therefore
in this paper we propose a formal data model for JSON
documents and, based on the common features present in
available systems using JSON, we define a lightweight query
language allowing us to navigate through JSON documents.
We also introduce a logic capturing the schema proposal
for JSON and study the complexity of basic computational
tasks associated with these two formalisms.

CCS Concepts
•Information systems Ñ Database design and mod-
els; Query languages; Web data description languages;
•Theory of computation Ñ Data modeling;

Keywords
JSON; Schema languages; Navigation

1. INTRODUCTION
JavaScript Object Notation (JSON) [17, 11] is a

lightweight format based on the data types of the JavaScript
programming language. In their essence, JSON documents
are dictionaries consisting of key-value pairs, where the value
can again be a JSON document, thus allowing an arbitrary
level of nesting. An example of a JSON document is given
in Figure 1. As we can see here, apart from simple dictio-
naries, JSON also supports arrays and atomic types such
as integers and strings. Arrays and dictionaries can again
contain arbitrary JSON documents, thus making the format
fully compositional.
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{
"name": {

"first": "John",
"last": "Doe"
},

"age": 32,
"hobbies": ["fishing","yoga"]

}

Figure 1: A simple JSON document.

Due to its simplicity, and the fact that it is easily readable
both by humans and by machines, JSON is quickly becom-
ing one of the most popular formats for exchanging data
on the Web. This is particularly evident with Web services
communicating with their users through an Application Pro-
gramming Interface (API), as JSON is currently the predom-
inant format for sending API requests and responses over the
HTTP protocol. Additionally, JSON format is much used
in database systems built around the NoSQL paradigm (see
e.g. [22, 2, 26]), or graph databases (see e.g. [32]).

Despite its popularity, the coverage of the specifics of
JSON format in the research literature is very sparse, and
to the best of our knowledge, there is still no agreement
on the correct data model for JSON, no formalisation of the
core query features which JSON systems should support, nor
a logical foundation for JSON Schema specification. And
while some preliminary studies do exist [23, 21, 8, 28], as far
as we are aware, no attempt to describe a theoretical basis
for JSON has been made by the research community. There-
fore, the main objective of this paper is to formally define an
appropriate data model for JSON, identify the key query-
ing features provided by the existing JSON systems, and to
propose a logic allowing us to specify schema constraints for
JSON documents.

In order to define the data model, we examine the key
characteristics of JSON documents and how they are used
in practice. As a result we obtain a tree-shaped structure
very similar to the ordered data-tree model of XML [7], but
with some key differences. The first difference is that JSON
trees are deterministic by design, as each key can appear at
most once inside a dictionary. This has various implications
at the time of querying JSON documents: on one hand we
sometimes deal with languages far simpler than XML, but
on the other hand this key restriction can make static analy-



sis more complicated, even for simpler queries. Next, arrays
are explicitly present in JSON, which is not the case in XML.
Of course, the ordered structure of XML could be used to
simulate arrays, but the defining feature of each JSON dic-
tionary is that it is unordered, thus dictating the nodes of
our tree to be typed accordingly. And finally, JSON values
are again JSON objects, thus making equality comparisons
much more complex than in case of XML, since we are now
comparing subtrees, and not just atomic values. We cover
all of these features of JSON in more detail in the paper,
and we also argue that, while technically possible (albeit,
in a very awkward manner), coding JSON documents using
XML might not be the best solution in practice.

Next, we consider the problem of querying JSON. As there
is currently no agreed upon query language in place, we ex-
amine an array of practical JSON systems, ranging from
programming languages such as Python [13], to fully oper-
ational JSON databases such as MongoDB [22], and isolate
what we consider to be key concepts for accessing JSON
documents. As we will see, the main focus in many sys-
tems is on navigating the structure of a JSON tree, there-
fore we propose a navigational logic for JSON documents
based on similar approaches from the realm of XML [12], or
graph databases [3, 20]. We then show how our logic cap-
tures common use cases for JSON, extend it with additional
features, and demonstrate that it respects the “lightweight
nature” of the JSON format, since it can be evaluated very
efficiently, and it also has reasonable complexity of main
static tasks. Interestingly, sometimes we can reuse results
devised for other similar languages such as XPath or Propo-
sitional Dynamic Logic, but the nature of JSON and the
functionalities present in query languages also demand new
approaches or a refinement of these techniques.

Another important aspect of working with any data for-
mat is being able to specify the structure of documents. A
usual way to do this is through schema specification, and
in the case of JSON, there is indeed a draft proposal for a
schema language [18] (called JSON Schema), which has re-
cently been formalised in [28]. Based on the formalisation of
[28] we define a logic capturing the full formal specification
of JSON Schema, show that it is essentially equivalent to
the navigational language we propose for querying JSON,
and study the complexity of its evaluation and static tasks.
However, once we take into account the recursive functional-
ities of JSON Schema, we arrive at a powerful new formalism
that is much more difficult to encompass inside well known
frameworks.

Finally, since theoretical study of JSON is still in its early
stages, we close with a series of open problems and directions
for future research.

Organisation. We formally define JSON and some of its
features in Section 2. The appropriate data model for JSON
is discussed in Section 3, and its query language in Section
4. In Section 5 we define a logic capturing a schema spec-
ification for JSON. Our conclusions and the directions for
future work are discussed in Section 6. Due to the lack of
space most proofs are placed in the appendix to this paper.

2. PRELIMINARIES
JSON documents. We start by fixing some notation re-
garding JSON documents. The full JSON specification de-
fines seven types of values: objects, arrays, strings, numbers

and the values true, false and null [9]. However, to abstract
from encoding details we assume our JSON documents are
only formed by objects, arrays, strings and natural numbers.

Formally, denote by Σ the set of all unicode characters.
JSON values are defined as follows. First, any natural num-
ber n ě 0 is a JSON value, called a number. Furthermore,
if s is a string in Σ˚, then "s" is a JSON value, called a
string. Next, if v1, . . . , vn are JSON values and s1, . . . , sn
are pairwise distinct string values, then ts1 : v1, . . . , sn : vnu
is a JSON value, called an object. In this case, each si : vi
is called a key-value pair of this object. Finally, if v1, . . . , vn
are JSON values then rv1, . . . , vns is a JSON value called an
array. In this case v1, . . . , vn are called the elements of the
array. Note that in the case of arrays and objects the values
vi can again be objects or arrays, thus allowing the docu-
ments an arbitrary level of nesting. A JSON document (or
just document) is any JSON value. From now on we will use
the term JSON document and JSON value interchangeably.

JSON navigation instructions. Arguably all systems
using JSON base the extraction of information in what we
call JSON navigation instructions. The notation used to
specify JSON navigation instructions varies from system to
system, but it always follows the same two principles:

‚ If J is a JSON object, then one should be able to
access the JSON value in a specific key-value pair of
this object.

‚ If J is a JSON array, then one should be able to access
the i-th element of J .

In this paper we adopt the python notation for navigation
instructions: If J is an object, then Jrkeys is the value of
J whose key is the string value "key". Likewise, if J is an
array, then Jrns, for a natural number n, contains the n-th
element of J1.

As far as we are aware, all JSON systems use JSON nav-
igation instructions as a primitive for querying JSON docu-
ments, and in particular it is so for the systems we have re-
viewed in detail: Python and other programming languages
[13], the mongoDB database [22], the JSON Path query lan-
guage [14] and the SQL++ project that tries to bridge rela-
tional and JSON databases [24].

At this point it is important to note a few important conse-
quences of using JSON navigation instructions, as these have
an important role at the time of formalising this framework.

First, note that we do not have a way of obtaining
the keys of JSON objects. For example, if J is the
object {"first":"John", "last":"Doe"} we could issue
the instructions Jrfirsts to obtain the value of the pair
"first":"John", which is the string value "John". Or use
Jrlasts to obtain the value of the pair "last":"Doe". How-
ever, there is no instruction that can retrieve the keys inside
this document (i.e. "first" and "last" in this case).

Similarly, for the case of the arrays, the access is essen-
tially a random access: we can access the i-th element of an
array, and most of the time there are primitives to access
the first or the last element of arrays. However, we can not
reason about different elements of the array. For example,
for the array K “ [12,5,22] we can not retrieve, say, an
element (or any element) which is greater than the first ele-
ment of K. Some systems do feature FLWR expressions that

1Some JSON systems prefer using a dot notation, where
J.key and J.n are the equivalents of Jrkeys and Jrns.



support iterating over all elements. But this iteration is it-
self treated as a series of random accesses, using commands
such as For i in (0,n) print(J[i]).

3. DATA MODEL FOR JSON
In this section we propose a formal data model for JSON

documents whose goal is to closely reflect the manner in
which JSON is manipulated using JSON navigation instruc-
tions, and that will be used later on as the basis of our for-
malisation of JSON query and schema languages. We begin
by introducing our formal model, called JSON trees. After-
wards we discuss the main differences between JSON trees
and other well-studied tree formalisms such as data trees or
XML.

3.1 JSON trees
JSON objects are by definition compositional: each JSON

object is a set of key-value pairs, in which values can again be
JSON objects. This naturally suggests using a tree-shaped
structure to model JSON documents. However, this struc-
ture must preserve the compositional nature of JSON. That
is, if each node of the tree structure represents a JSON doc-
ument, then the children of each node must represent the
documents nested within it. For instance, consider the fol-
lowing JSON document J .

{
"name": {

"first": "John",
"last": "Doe"
},

"age": 32
}

as explained before, this document is a JSON object which
contains two keys: "name" and "age". Furthermore, the
value of the key "name" is another JSON document and the
value of the key "age" is the integer 32. There are in total
5 JSON values inside this object: the complete document
itself, plus the literals 32, "John" and "Doe", and the ob-
ject "name": {"first":"John", "last":"Doe"}. So how
should a tree representation of the document J look like?
If we are to preserve the compositional structure of JSON,
then the most natural representation is by using the follow-
ing edge-labelled tree:

"name" "age"

"first" "last"

"John" "Doe"

32

The root of tree represents the entire document. The two
edges labelled "name" and "age" represent two keys inside
this JSON object, and they lead to nodes representing their
respective values. In the case of the key "age" this is just
an integer, while in the case of "name" we obtain another
JSON object that is represented as a subtree of the entire
tree.

Finally, we need to enforce the property of JSON that no
object can have two keys with the same name, thus making

the model deterministic in some sense, since each node will
have only one child reachable by an edge with a specific
label. Let us briefly summarise the properties of our model
so far.

Labelled edges. Edges in our model are labelled by the keys
forming the key-value pairs of objects. This means that we
can directly follow the label of edges when issuing JSON
navigation instructions, and also means that information of
keys is represented in a different medium than JSON values
(labels for the former, nodes for the latter). This is inline
with the way JSON navigation instructions work, as one
can only retrieve values of key-value pairs, but not the keys
themselves. To comply with the JSON standard, we disallow
trees where a same edge label is repeated in two different
edges leaving a node.

Compositional structure. One of the advantages of our tree
representation is that any of its subtrees represent a JSON
document themselves. In fact, the five possible subtrees of
the tree above correspond to the five JSON values present
in the JSON J .

Atomic values. Finally, some elements of a JSON document
are actual values, such as integers or strings. For this reason
leaf nodes corresponding to integers and strings will also be
assigned a value they carry. Leaf nodes without a value
represent empty objects: that is, documents of the form {}.

Although this model is simple and conceptually clear, we
are missing a way of representing arrays. Indeed, consider
again the document from Figure 1 (call this document J2).
In J2 the value of the key "hobbies" is an array: another
feature explicitly present in JSON that thus needs to be
reflected in our model.

As arrays are ordered, this might suggest that we can have
some nodes whose children form an ordered list of siblings,
much like in the case of XML. But this would not be con-
ceptually correct, for the following two reasons. First, as
we have explained, JSON navigation instructions use ran-
dom access to access elements in arrays. For example, the
navigation instruction used to retrieve an element of an ar-
ray is of the form J2rhobbiessris, aimed at obtaining the i-th
element of the array under the key "hobbies". But more im-
portantly, we do not want to treat arrays as a list because
lists naturally suggest navigating through different elements
of the list. On the contrary, none of the systems we reviewed
feature a way of navigating from one element of the array to
another element. That is, once we retrieve the first element
of the array under the key "hobbies", we have no way of
linking it to its siblings.

We choose to model JSON arrays as nodes whose children
are accessed by axes labelled with natural numbers reflecting
their position in the array. Namely, in the case of JSON
document J2 above we obtain the following representation:

"name"
"age"

"first" "last"

"hobbies"

1 2

"John" "Doe"

32

"fishing" "yoga"



Having arrays defined in this way allows us still to treat
the child edges of our tree as navigational axes: before we
used a key such as "age" to traverse an edge, and now we
use the number labelling the edge to traverse it and arrive
at the child.

Formal definition. As our model is a tree, we will use tree
domains as its base. A tree domain is a prefix-closed subset
of N˚. Without loss of generality we assume that for all tree
domains D, if D contains a node n ¨ i, for n P N˚ then D
contains all n ¨ j with 0 ď j ă i.

Let Σ be an alphabet. A JSON tree over Σ is a struc-
ture J “ pD,Obj,Arr,Str, Int,A,O, valq, where D is a tree
domain that is partitioned by Obj, Arr, Str and Int, O Ď

ObjˆΣ˚ ˆD is the object-child relation, A Ď ArrˆNˆD
is the array-child relation, val : Str Y Int Ñ Σ˚ Y N is the
string and number value function, and where the following
holds:

1 For each node n P Obj and child n ¨ i of n, O contains
one triple pn,w, n ¨ iq, for a word w P Σ˚.

2 The first two components ofO form a key : if pn,w, n¨iq
and pn,w, n ¨ jq are in O, then i “ j.

3 For each node n P Arr and child n ¨ i of n, A contains
the triple pn, i, n ¨ iq.

4 If n is in Str or Int then D cannot contain nodes of
form n ¨ u.

5 The value function assigns to each string node in Str a
value in Σ˚ and to each number node in Int a natural
number,

The usage of a tree domain is standard, and we have
elected to explicitly partition the domain into four types
of nodes: Obj for objects, Arr for arrays, Str for strings and
Int for integers. The first and second conditions specify that
edges between objects and their children are labelled with
words, but we can only use each label one time per each
node. The third condition specifies that the edges between
arrays and their children are labelled with the number rep-
resenting the order of children. The fourth condition simply
states that strings and numbers must be leaves in our trees,
and the fifth condition describes the value function val. Note
that we have explicitly distinguished the four type of JSON
documents (objects, arrays, strings and integers). This is
important when modelling schema definitions for JSON, as
we shall show later.

Throughout this paper we will use the term JSON tree
and JSON interchangeably; that is, when we are given a
JSON document we will assume that it is represented as
a JSON tree. As already mentioned above, one important
feature of our model is that when looking at any node of the
tree, a subtree rooted at this node is again a valid JSON.
We can therefore define, for a JSON tree J and a node n in
J , a function jsonpnq which returns the subtree of J rooted
at n. Since this subtree is again a JSON tree, the value of
jsonpnq is always a valid JSON.

3.2 JSON and XML
Before continuing we give a few remarks about differences

and similarities between JSON and XML, and how are these
reflected in their underlying data models. We start by sum-
marising the differences between the two formats.

1. JSON mixes ordered and unordered data. JSON ob-
jects are completely without order, but for arrays we
can do random access depending on their position.
On the other hand, XML enforces a strict order be-
tween the children of each node. Coding JSON as
XML would imply permitting sibling traversal for some
nodes, but disallowing it for others. We can do that
with XML with some ad-hoc rules, but this is precisely
what we do in our model in a much cleaner way.

2. JSON Arrays are neither lists nor sets. As we have
explained, we have random access, but we do not have
the possibility of sibling traversal. Enforcing this in
languages such as XPath is a very cumbersome task.

3. JSON trees are deterministic. The property of JSON
tree which imposes that all keys of each object have
to be distinct makes JSON trees deterministic in the
sense that if we have the key name, there can be at
most one node reachable through an edge labelled with
this key. On the other hand, XML trees are nondeter-
ministic since there are no labels on the edges, and a
node can have multiple children. As we will see, the
deterministic nature of JSON can make some problems
more difficult than in the XML setting.

4. Value is not just in the node, but is the entire subtree
rooted at that node. Another fundamental difference is
that in XML when we talk about values we normally
refer to the value of an attribute in a node. On the
contrary, it is common for systems using JSON to al-
low comparisons of the full subtree of a node with a
nested JSON document, or even comparing two nodes
themselves in terms of their subtrees. To be fair, in
XML one could also argue this to be true, but unlike
in the case of XML, these “structural” comparisons are
intrinsic in most JSON languages, as we discuss in the
following sections.

On the other hand, it is certainly possible to code JSON
documents using the XML data format. In fact, the model
of ordered unranked trees with labels and attributes, which
serves as the base of XML, was shown to be powerful enough
to code some very expressive database formats, such as re-
lational and even graph data. However, both models have
enough differences to justify a study of JSON on its own.
This is particularly evident when considering navigation
through JSON documents, where keys in each object have to
be unique, thus allowing us to obtain values very efficiently.
On the other hand, coding JSON as XML would require us
to have keys as node labels, thus forcing a scan of all of the
node’s children in order to retrieve the value.

4. NAVIGATIONAL QUERIES OVER JSON
As JSON navigation instructions are too basic to serve

as a complete query language, most systems have developed
different ways of querying JSON documents. Unfortunately,
there is no standard, nor general guidelines, about how doc-
uments are accessed. As a result the syntax and operations
between systems vary so much that it would be almost im-
possible to compare them. Hence, it would be desirable
to identify a common core of functionalities shared between
these systems, or at least a general picture of how such query
languages look like. Therefore we begin this section by re-
viewing the most common operations available in current
JSON systems.



Here we mainly focus on the subdocument selecting func-
tionalities of JSON query languages. By subdocument se-
lecting we mean functionalities that are capable of finding
or highlighting specific parts within JSON documents, ei-
ther to be returned immediately or to be combined as new
JSON documents. As our work is not intended to be a sur-
vey, we have not reviewed all possible systems available to
date. However, we take inspiration from MongoDB’s query
language (which arguably has served as a basis for many
other systems as well, see e.g. [2, 26, 31]), and JSONPath
[14]and SQL++ [24], two other query languages that have
been proposed by the community.

Based on this, we propose a navigational logic that can
serve as a common core to define a standard way of query-
ing JSON. We then define several extensions of this logic,
such as allowing nondeterminism or recursion, and study
how these affect basic reasoning task such as evaluation and
satisfiability.

4.1 Accessing documents in JSON databases
Here we briefly describe how JSON systems query docu-

ments.

Query languages inspired by FLWR or relational ex-
pressions. There are several proposals to construct query
languages that can merge, join and even produce new JSON
documents. Most of them are inspired either by XQuery
(such as JSONiq [29]) or SQL (such as SQL++ [24]). These
languages have of course a lot of intricate features, and to the
best of our knowledge have not been formally studied. How-
ever, in terms of JSON navigation they all seem to support
basic JSON navigation instructions and not much more.

MongoDB’s find function. The basic querying mecha-
nism of MongoDB is given by the find function [22], therefore
we focus on this aspect of the system2. The find function
receives two parameters, which are both JSON documents.
Given a collection of JSON documents and these param-
eters, the find function then produces an array of JSON
documents.

The first parameter of the find function serves as a filter,
and its goal is to select some of the JSON documents from
the input. The second parameter is the projection, and as its
name suggests, is used to specify which parts of the filtered
documents are to be returned. Since our goal is specifying a
navigational logic, we will only focus on the filter parameter,
and on queries that only specify the filter. We return to the
projection in Section 6. For more details we refer the reader
to the current version of the documentation [22].

The basic building block of filters are what we call navi-
gation condition, which can be visualised as expressions of
the form P „ J , where P is a JSON navigation instruction,
„ is a comparison operator (MongoDB allows all the usual
ă, ď, “ , ě, ą, and several others operators) and J is a
JSON document.

Example 1. Assume that we are dealing with a collection
of JSON files containing information about people and that
we want to obtain the one describing a person named Sue.
In MongoDB this can be achieved using the following query
db.collection.find({name: {$eq: "Sue"}},{}). The

2For a detailed study of other functionalities MongoDB of-
fers see e.g. [8]. Note that this work does not consider the
find function though.

initial part db.collection is a system path to find the col-
lection of JSON documents we want to query. Next, "name"
is a simple navigation instruction used to retrieve the value
under the key "name". Last, the expression {$eq: "Sue"} is
used to state that the JSON document retrieved by the navi-
gation instruction is equal to the JSON "Sue". Since we are
not dealing with projection, the second parameter is simply
the empty document {}. Using the notation above we could
also write this navigation condition as Jrnames “"Sue".

Finally, navigation conditions can be combined using
boolean operations with the standard meaning. Also note
that filters always return entire documents. If we want a
part of a JSON file we need to use projection.

Query languages inspired by XPath or relational ex-
pressions. The languages we analysed thus far offer very
simple navigational features. However, people also recog-
nized the need to allow more complex properties such as
nondetermnistic navigation, expression filters and allowing
arbitrary depth nesting through recursion. As a result, an
adaptation of the XML query language XPath to the context
of JSON, called JSONPath [14] was introduced and imple-
mented (see e.g. https://github.com/jayway/JsonPath).

Based on these features, we first introduce a logic cap-
turing basic queries provided by navigation instructions and
conditions, and then extend it with non-determinism and
recursion resulting in a logic resembling similar approaches
over XML.

4.2 Deterministic JSON logic
The first logic we introduce is meant to capture JSON nav-

igation instructions and other deterministic forms of query-
ing such as MongoDB’s find function. We call this logic
JSON navigation logic, or JNL for short. We believe that
this logic, although not very powerful, is interesting in its
own right, as it leads to very lightweight algorithms and im-
plementations, which is one of the aims of the JSON data
format.

As often done in XML [12] and graph data [20], we define
ours in terms of unary and binary formulas.

Definition 1 (JSON navigational logic). Unary
formulas ϕ,ψ and binary formulas α, β of the JSON
navigational logic are expressions satisfying the grammar

α, β :“ xϕy | Xw | Xi | α ˝ β | ε

ϕ, ψ :“ J |  ϕ | ϕ^ ψ | ϕ_ ψ | rαs |

EQpα,Aq | EQpα, βq

where w is a word in Σ˚, i is a natural number and A is an
arbitrary JSON document.

Intuitively, binary operators allow us to move through the
document (they connect two nodes of a JSON tree), and
unary formulas check whether a property is true at some
point of our tree. For instance, Xw and Xi allow basic navi-
gation by accessing the value of the key named w, or the ith
element of an array respectively. They can subsequently be
combined using composition or boolean operations to form
more complex navigation expressions. Unary formulas serve
as tests if some property holds at the part of the document
we are currently reading. These also include the operator
rαs allowing us to test if some binary condition is true start-
ing at a current node (similarly, xϕy allows us to combine



node tests with navigation). Finally, the comparison op-
erators EQpα,Aq and EQpα, βq simulate XPath style tests
which check whether a current node can reach a node whose
value is A, or if two paths can reach nodes with the same
value. The difference with XML though, is that this value is
again a JSON document and thus a subtree of the original
tree.

The semantics of binary formulas is given by the relation
JαKJ , for a binary formula α and a JSON J , and it selects
pairs of nodes of J :

‚ JxϕyKJ “ tpn, nq | n P JϕKJu.

‚ JXwKJ “ tpn, n1q | pn,w, n1q P Ou.

‚ JXiKJ “ tpn, n1q | pn, i, n1q P Au, for i P N.

‚ Jα ˝ βKJ “ JαKJ ˝ JβKJ .

‚ JεKJ “ tpn, nq | n is a node in Ju.

For the semantic of the unary operators, let us assume that
D is the domain of J .

‚ JJKJ “ D.

‚ J ϕKJ “ D ´ JϕKJ .

‚ Jϕ^ ψKJ “ JϕKJ X JψKJ .

‚ Jϕ_ ψKJ “ JϕKJ Y JψKJ .

‚ JrαsKJ “ tn | n P D and there is a node n1 in D such
that pn, n1q P JαKJu

‚ JEQpα,AqKJ “ tn | n P D and there is a node n1 in D
such that pn, n1q P JαKJ and jsonpn1q “ Au

‚ JEQpα, βqKJ “ tn | n P D and there are nodes n1, n2

in D such that pn, n1q P JαKJ , pn, n2q P JβKJ , and
jsonpn1q “ jsonpn2qu.

Typically, most systems allow jumping to the last element
of an array, or the j-th element counting from the last to
the first. To simulate this we can allow binary expressions
of the form Xi, for an integer i ă 0, where ´1 states the
last position of the array, and ´j states the j-th position
starting from the last to the first. Having this dual operator
would not change any of our results, but we prefer to leave
it out for the sake of readability.

Algorithmic properties of JNL. As promised, here we
show that JNL is a logic particularly well behaved for
database applications. For this we study the evaluation
problem and satisfiability problem associated with JNL. The
Evaluation problem asks, on input a JSON J , a JNL unary
expression ϕ and a node n of J , whether n is in JϕKJ . The
Satisfiability problem asks, on input a JNL expression ϕ ,
whether there exists a JSON J such that JϕKJ is nonempty.
We start with evaluation, showing that JNL indeed matches
the “lightweight” spirit of the JSON format and can be eval-
uated very efficiently:

Proposition 1. The Evaluation problem for JNL can
be solved in time Op|J | ¨ |ϕ|q.

For this result, we can reuse techniques for XPath eval-
uation (see e.g. [27, 15]). However, the presence of the
EQpα, βq operator forces us to refine these techniques in a
non-trivial way. A straightforward way of incorporating this
predicate into XPath algorithms is to pre-process all pairs of
nodes to see which pairs have equal subtrees, but this only
gives us a quadratic algorithm. Instead, we transform our
JNL formula into an equivalent non recursive monadic dat-
alog program with stratified negation [16], and show how to
evaluate the latter by doing equality comparisons “online”
as they appear.

Next, we move to satisfiability, showing that the com-
plexity of the problem is optimal, considering that JNL can
emulate propositional formulas.

Proposition 2. The Satisfiability problem for JNL is
NP-complete. It is NP-hard even for formulas neither using
negation nor the equality operator.

It might be somewhat surprising that the positive frag-
ment without data comparisons is not trivially satisfiable.
This holds due to the fact that each key in an object is
unique, so a formula of the form rXa˝xrX1sys^rXa˝xrXbsys

is unsatisfiable because it forces the value of the key a to be
both an array and a string at the same time.

4.3 Extensions
Although the base proposal for JNL captures the deter-

ministic spirit of JSON, it is somewhat limited in expressive
power. Here we propose two natural extensions: the ability
to non-deterministically select which child of a node is se-
lected, and the ability to traverse paths of arbitrary length.
Non-determinism. The path operators Xw and Xi can
be easily extended such that they return more than a single
child; namely, we can permit matching of regular expressions
and intervals, instead of simple words and array positions.

Formally, non-deterministic JSON logic extends binary
formulas of JNL by the following grammar:

α, β :“ xϕy | Xe | Xi:j | α ˝ β | ε

where e is a subset of Σ˚ (given as a regular expression), and
i ď j are natural numbers, or j “ `8 (signifying that we
want any element of the array following i). The semantics
of the new path operators is as follows:

‚ JXeKJ “ tpn, n1q | there is w P Lpeq such that
pn,w, n1q P Ou.

‚ JXi:jKJ “ tpn, n1q | there is i ď p ď j such that the
triple pn, p, n1q is in Au.

Recursion. In order to allow exploring paths of arbitrary
length we add the Kleene star to our logic. That is, recursive
JNL allows pαq˚ as a binary formula (as usual we normally
omit the brackets when the precedence of operators is clear).
The semantics of pαq˚ is given by

Jpαq˚K “ JεKJ Y JαKJ Y Jα ˝ αKY Jα ˝ α ˝ αKJ Y . . . .

So what happens to the evaluation and satisfiability when
we extend this logic? For the case of evaluation, we can eas-
ily show that the linear algorithm is retained as long as we
do not have the binary equality operator EQpα, βq. Indeed,
in this case, the evaluation can be done using the classical
PDL model checking algorithm [1, 10] with small extensions



which account for the specifics of the JSON format. How-
ever, we are not able to extend the linear algorithm for the
full case, because an expression of the form EQpα, βq might
require checking all pairs of nodes in our tree for equality,
resulting in a jump in complexity.

Proposition 3. The evaluation problem for JNL with
non-determinism and recursion can be solved in time Op|J |3 ¨
|ϕ|q, and in time Op|J | ¨ |ϕ|q if the formula does not use the
predicate EQpα, βq.

For satisfiability the situation is radically different, as the
combination of recursion, non-determinism and the binary
equalities ends up being too difficult to handle.

Proposition 4. The Satisfiability problem is unde-
cidable for non-deterministic recursive JNL formulas, even
if they do not use negation.

However, if we rule out the equality operator we can show
much better bounds. For the full non-deterministic, recur-
sive JNL (without equalities) the satisfiability problem is
the same as other similar fragments such as PDL. For (non-
recursive) non-deterministic JNL the problem is slightly eas-
ier.

Proposition 5. The Satisfiability problem is:

‚ Pspace-complete for non-deterministic, non-recursive
JNL without the EQpα, βq operator.

‚ Exptime-complete for non-deterministic, recursive
JNL without the EQpα, βq operator.

Note that Pspace-hardness for satisfiability follows easily
from the fact that we now allow regular expressions in our
edges: Given a regular expression e, we have that the e
is universal if and only if the query rXΣ˚ s ^  rXes is not
satisfiable. However, in the proof of this proposition we in
fact show that the problem remains Pspace-hard even when
the only regular expression which is not a word in a Xe axis
is Σ˚. One can also show that Pspace-hardness remains
when one only considers JSON documents without object
values.

5. SCHEMA DEFINITIONS FOR JSON
Having dealt with navigational primitives for querying

JSON, our next task is to analyse JSON Schema defini-
tions. We focus solely on the JSON Schema specification
[17], which is, up to our best knowledge, the only attempt
to define a general schema language for JSON documents.
The JSON Schema specification is currently in its fourth
draft, and on its way of becoming an IETF standard.

5.1 JSON Schema
As before, we first briefly present how JSON Schema

works. We remark again that our intention is not to provide
a full analysis for the specification, but rather show how the
navigation works, with the aim of obtaining a logic that can
capture JSON Schema. We thus concentrate on a core frag-
ment that is equivalent to the full specification; we refer to
[28] for more details and a full formalisation of this core.

Every JSON schema is JSON document itself. JSON
Schema can specify that a document must be any of the
different types of values (objects, arrays, strings or num-
bers); and for each of these types there are several key-
words that help shaping and restricting the set of docu-
ments that a schema specifies. The most important key-
word is the ”type” keyword, as it determines the type
of a value that has to be validated against the schema:
a document of the form t"type":"string", . . . u speci-
fies string values, t"type":"number", . . . u specifies num-
ber values, t"type":"object", . . . u specifies objects and
t"type":"array", . . . u specifies arrays. In addition to the
type keyword, each schema includes a number of other pairs
that shape the documents they describe.

We now describe each of the four types of basic schemas.
Table 1 contains a list of all keywords available for each of
these schemas.

String schemas. String schemas are those featur-
ing the "type":"string" pair. Additionally, they
may include the pair "pattern":"regexp", for regexp
a regular expression over Σ, which validates only
against those strings that belong to the language of
this expression. For example, t"type":"string"u and
t"type":"string", "pattern":"p01q`"u are string schemas.
The first schema validates against any string, and the second
only against strings built from 0 or 1.

Number schemas. For numbers, we can use the
pair "minimum":i to specify that the number is at
least i, "maximum":i to specify that the number is at
most i, and "multipleOf":i to specify that a num-
ber must be a multiple of i. Thus for exam-
ple t"type":"number", "maximum":12, "multipleOf":4u de-
scribes numbers 0, 4, 8 and 12.

Object schemas. Besides the "type":"object" pair, ob-
ject schemas may additionally have the following:

- Pairs "minProperties":i and "maxProperties":j, to
specify that an object has to have at least i and/or at most
j key-value pairs.

- a pair "required":rk1, . . . , kns, where each ki is a string
value. This keyword mandates that the specified object val-
ues must contain pairs with keys k1, . . . , kn.

- a pair "properties":tk1 : J1, . . . , km : Jmu, where each ki
is a string value and each Ji is itself a JSON Schema. This
keyword states that the value of each pair with key ki must
validate against schema Ji.
- A pair "patternProperties":t"e1":J1, . . . , "e`":J`u,
where each ei is a regular expression over Σ and each Ji is
a JSON schema. This keyword works just like properties,
but now any value under any key that conforms to the ex-
pression expi must satisfy Ji.

- finally, the pair "additionalProperties":J , where J is a
JSON schema. This keyword presents a schema that must
be satisfied by all values whose keys do not appear neither in
properties nor conform to the language of an expression in
patternProperties. For example, the schema in the Figure
2 below specifies objects where the value under ”name” must
be a string, the value under any key of the form a(b|c)a

must be an even number, and the value under any key which
is neither ”name” nor conforms to the expression above must
always be the number 1.



Keywords for string schemas:

- "type":"string" - "pattern": exp

Keywords for number schemas:

- "type":"number" -"multipleOf": i
- "minimum": i - "maximum": i

Keywords for object schemas:

- "type":"object" - "required": r k1, . . . , kns
- "minProperties": i - "maxProperties": i

- "properties":tk1 : J1, . . . , km : Jmu
- "patternProperties":t"e1":J1, . . . , "e`":J`u
- "additionalProperties": J

Keywords for array schemas:

- "items":rJ1, . . . , Jns
- "uniqueItems":true
- "additionalItems":J

Boolean combination and comparisons:

- "anyOf": r J1, . . . , Jns - "allOf": r J1, . . . , Jms
- "not": J - "enum": r A1, . . . , Ans

Table 1: The form for all keyords in JSON schema. Here i is always a natural number, J and each Ji are JSON schemas,
A1, . . . , An are JSON documents, each ki is a string value (k stand for key); and exp and each expi are regular expressions
over the alphabet Σ of strings.

{
"type": "object",
"properties": {

"name": {"type":"string"},
},

"patternProperties: {
"a(b|c)a": {"type":"number", "multipleOf": 2}
},

"additionalProperties: {
"type": "number",
"minimum": 1
"maximum": 1

}
}

Figure 2: Example of an object schema.

Array schemas. Array schemas are specified with the
"type": "array" keyword. For arrays there are two ways
of specifying what kind of documents we find in arrays. We
can use a pair "items":rJ1, . . . , Jns to specify a document
with an array of n elements, where each i-th element must
satisfy schema Ji. We can also use "additionalItems":J to
specify that all elements in the array must satisfy schema J .
If both keywords are used together, then we allow the array
to have more values than those specified with items, as long
as they agree with the schema specified in additionalItems.
Finally, one can include the pair "uniqueItems":true to
force arrays whose elements are all distinct from each other.
For example, the following schema validates against arrays
of at least 2 elements, where the first two are strings and
the remaining ones, if they exists, are numbers.

{
"type": "array",
"items": [{"type":"string"}, {"type":"string"}],
"additionalItems": {"type":"number"},
"uniqueItems":true

}

Boolean combinations. The last feature in JSON
Schema are boolean combinations. These allow us
to specify that a document must validate against two
schemas, against at least one schema, or that it must
not validate against a schema. For example, the
schema "not":{"type":"number","multipleOf":2} vali-
dates against any odd number, or any document which is
not a number.

5.2 JSON Schema Logic
In order to capture the JSON Schema specification with

a logical formalism, we isolate navigation and atomic tests
into two different sets of operators. Let us start with atomic
operations, which are basically a rewriting of most JSON
Schema keywords into our framework. We allocate them in
the set NodeTests.

Formally, NodeTests contains the predicates Arr, Obj, Str,
Int and Unique, plus a predicate Patternpeq for each regu-
lar expression e built from Σ, predicates Minpiq and Maxpiq
for each integer i, a predicate MultOfpiq for each i ě 0,
predicates MinChpkq and MaxChpkq for each k ě 0 and a
predicate „pAq for each JSON document A. The semantics
of these predicates is given by the relation |ù, that states
whether an atomic predicate holds for a given node n of a
JSON J .

- pJ, nq |ù Arr iff. n P Arr. - pJ, nq |ù Obj iff. n P Obj.

- pJ, nq |ù Str iff. n P Str. - pJ, nq |ù Int iff. n P Int.

- pJ, nq |ù Patternpeq iff. valpnq is a string in Lpeq.

- pJ, nq |ù Minpiq iff. valpnq is a number greater than i.

- pJ, nq |ù Maxpiq iff. valpnq is a number smaller than i.

- pJ, nq |ù MultOfpiq iff. valpnq is a multiple of i.

- pJ, nq |ù MinChpiq iff. n has at least i children.

- pJ, nq |ù MaxChpiq iff. n has at most i children.

- pJ, nq |ù Unique iff. n P Arr and all of its children are
different JSON values: for each n1 ‰ n2 such that pn, p, n1q
and pn, q, n2q belong to A we have that jsonpn1q ‰ jsonpn2q.

- pJ, nq |ù „pAq iff. jsonpnq “ A.

With NodeTests we cover all atomic features of JSON
Schema. All that remains is the navigation, which in
JSON Schema is given by the keywords properties,
patternProperties, additionalProperties and required,
for objects, and items and additionalItems for ar-
rays. These forms of navigation suggest using existen-
tial and universal modalities. For instance, the keyword
patternProperties specifies a schema that must be vali-
dated by all values whose keys satisfy a regular expression,
and "required": rws demands that there must exist a chil-
dren with key w. Thus, to fully define our logic, we augment
our node tests with universal and existential modalities, as
well as boolean combinations.



Definition 2. Formulas in the JSON schema logic
(JSL) are expressions satisfying the grammar

ϕ,ψ :“ J |  ϕ | ϕ^ ψ | ϕ_ ψ | ψ P NodeTests |
leϕ | li:jϕ | 3eϕ | 3i:jϕ

where e is a subset of Σ˚ (given as a regular expression),
i ď j are natural numbers, or j “ `8 (signifying that we
want any element of the array following i).

As with JSON navigational logic, we can also obtain a
deterministic version of JSL by restricting the syntax to use
only modal operators lw and li, and 3w and 3i; for a
word w P Σ˚ and a natural number i.

The semantics is given by extending the relation |ù.

- pJ, nq |ù J for every node n in J .

- pJ, nq |ù  ϕ iff. pJ, nq * ϕ.

- pJ, nq |ù ϕ^ ψ iff. pJ, nq |ù ϕ and pJ, nq |ù ψ.

- pJ, nq |ù ϕ_ ψ iff. either pJ, nq |ù ϕ or pJ, nq |ù ψ.

- pJ, nq |ù3e ϕ iff. there is a word w P Lpeq and a node n1

in J such that pn,w, n1q P O and pJ, n1q |ù ϕ

- pJ, nq |ù 3i:j ϕ iff. there is i ď p ď j and a node n1 in J

such that pn, p, n1q P A and pJ, n1q |ù ϕ

- pJ, nq |ù le ϕ iff. pJ, n1q |ù ϕ for all nodes n1 such that
pn,w, n1q P O for some w P Lpeq.

- pJ, nq |ù li:j ϕ iff. pJ, n1q |ù ϕ for all nodes n1 such that
pn, p, n1q P A for some i ď p ď j.

In order to present our results regarding JSL and JSON
Schema, we abuse notation and write J |ù ψ whenever
pJ, rq |ù ψ, where r is the root of J .

Expressive power. As promised we show that JSL can
capture JSON schema. In order to present this result we
informally speak of the validation relation of JSON Schema,
and say that a JSON S validates against J whenever J is
in accordance to all keywords present in S. We refer to [28]
for more details on the semantics. As usual, we say that
JSON Schema and JSL are equivalent in expressive power if
for any JSON Schema S there exists a JSL formula ψS such
that for every JSON document J we have that J validates
against S if and only if J |ù ψS ; and conversely, for any
JSL formula ϕ there exists a JSON Schema Sϕ such that for
every JSON document J we have that J |ù ϕ if and only if
J validates against Sϕ.

Theorem 1. JSL and JSON Schema are equivalent in
expressive power.

Comparing JSL and JNL. Next, we consider how the
navigation logic of Section 4 compares to the schema logic
JSL. Even though the starting point of the two logics is
different, we next show that the two logics are essentially
the same, their expressivity differing simply because of the
different atomic predicates. More precisely, we have:

Theorem 2. Non-deterministic JNL not using the equal-
ity EQpα, βq and non-deterministic JSL using only the node
test „ pAq are equivalent in terms of expressive power. More
precisely:

‚ For every formula ϕS in JSL there exists a unary for-
mula ϕN in JNL such that for every JSON J :

JϕN KJ “ tn P J | pJ, nq |ù ϕS
u.

‚ For every unary formula ϕN in JNL there exists a ϕS

in JSL such that for every JSON J :

JϕN KJ “ tn P J | pJ, nq |ù ϕS
u.

In the proof above, we also show that going from JSL to
JNL takes only polynomial time, while the transition in the
other direction can be exponential. This implies that the
upper bounds for JNL are valid for JSL, while the lower
bounds transfer in the opposite direction (without taking
into account node tests).

Algorithmic Properties. Since JSL is designed to be a
schema logic to validate trees, we specify a boolean Evalu-
ation problem: the input is a JSON J and a JSL expression
ϕ, and we decide whether J |ù ϕ.

Proposition 6. The Evaluation problem for JSL can
be solved in time Op|J |2 ¨ |ϕ|q, and in Op|J | ¨ |ϕ|q when ϕ does
not use the Unique predicate.

From Theorem 1 we obtain as a corollary that the valida-
tion problem for JSON Schema has the same bounds. This
was already shown in [28]. Next, we study the Satisfia-
bility problem, which receives a formula ϕ as input and
consists of deciding whether there is any JSON tree J such
that J |ù ϕ. Here we need to be careful with the encoding
we choose, as the interplay between Unique and 3iJ imme-
diately forces a node with exponentially many different chil-
dren when i is given in binary. In terms of results, this means
that our algorithms raise by one exponential, although we
do not know if this increase is actually unavoidable.

Proposition 7. The Satisfiability problem for JSL is
in Expspace, and Pspace-complete for expressions without
Unique.

We remark that the Satisfiability problem is important
in the context of JSON Schema. For example, the commu-
nity has repeatedly stated the need for algorithms that can
learn JSON Schemas from examples. We believe that under-
standing basic tasks such as satisfiability are the first steps
to proceed in this direction.

5.3 Adding recursion
The JSON Schema specification also allows defining state-

ments that will be reused later on. We have so far ignored
this functionality, and to capture it we will need to define
the same operator in our logic. As we will see, this lifts the
expressive power of JSL away from even the recursive ver-
sion of our navigational logic; and is very similar to certain
forms of tree automata.

Let us explain first how recursion is added into JSON
Schema. The idea is to allow to an additional keyword,
of the form {$ref: <path>}, where <path> is a navigation
instruction. This instruction is used within the same docu-
ment to fetch other schemas that have been predefined in a
reserved definitions section3. For example, the following
schema validates against any JSON which is not a string
following the specified pattern.

3Definitions and references can also be used to fetch schemas
in different documents or even domains; here we just focus
on the recursive functionality.



{
"definitions": {

"email": {
"type": "string",
"pattern": "[A-z]*@ciws.cl"

}
},
"not": {"$ref": "#/definitions/email"}

}

As we have mentioned, different schemas are de-
fined under the definitions section of the JSON
document, and these definitions can be reused using
the $ref keyword. In the example above, we use
{"$ref": "#/definitions/email"} to retrieve the schema
{"type": "string", "pattern": "[A-z]*@ciws.cl"}.
These definitions can be nested within each other, but
semantics is currently defined only for a fragment with
limited recursion. We come back to this issue after we
define a logic capturing these schemas.

Recursive JSL. The idea of this logic is to capture the
recursive functionalities present in JSON Schema: there is
a special section where one can define new formulas, which
can be then re-used in other formulas.

Fix an infinite set Γ “ tγ1, γ2, γ3, . . . u of symbols. A
recursive JSL formula is an expression of the form

γ1 “ ϕ1

γ2 “ ϕ2

...

γm “ ϕm

ψ (1)

where each γi is a symbol in Γ and ϕi, ψ are JSL formulas
over the extended syntax that allows γ1, . . . , γm as atomic
predicates. Here each equality γi “ ϕi is called a definition,
and ψ is called the base expression.

The intuition is that each γi is one of the references of
JSON Schema. Before moving to the semantics, let us show
the way recursive JSL formulas work.

Example 2. Consider the expression ∆ given by

γ1 “ lΣ˚γ2

γ2 “ p3Σ˚Jq ^ plΣ˚γ1q

γ1

Intuitively, γ1 holds in a node n if n either has no children,
or if γ2 holds all of its children. On the other hand, γ2 holds
in a node n if this node has at least one child, and γ1 holds in
all children of n. Finally, the base expression simply states
that γ1 has to hold in the root of the document (recall that
a schema statement is evaluated at the root). The intuition
for ∆ is, then, that it should hold on every tree such that
each path from the root to the leaves is of even length.

Well-formed recursive JSL. As usual in formalisms that
mix recursion and negation, giving a formal semantics for
JSON Schema is not a straightforward task. As an example
of the problems we face, consider the following JSL expres-
sion.

γ1 “  γ1

γ1

Of course, we can always give a logical interpretation to
this formula, but we argue that this expression does not

specify any real restriction on JSON documents, and thus
any semantics we establish will not be intuitive from the
point of view of defining schemas for JSON.

The most straightforward way to avoid these issues is by
imposing a strict acyclicity condition on definitions. How-
ever, we can in fact work with a much milder restriction that
we call well-formedness. This restriction was introduced in
[28] for the case of JSON Schema, but we can seemingly de-
fine well-formed recursive JSL expressions, which can then
be shown to capture well-formed recursive JSON Schemas.

For a recursive JSL expression ∆ of the form (1) defined
above, we define the precedence graph of ∆ as a graph whose
nodes are γ1, . . . , γm and where there is an edge from γi to
γj if γj appears in the expression ϕi of the definition γi “ ϕi,
but only if this appearance is not under the scope of a modal
operator. We then say that ∆ is well-formed if its precedence
graph is acyclic.

Example 3. The definition γ1 “  γ1 clearly creates a
cyclic precedence graph, as the construction mandates a self-
loop in the node corresponding to γ1. On the other hand, the
recursive JSL expression in Example 2 is indeed well-formed.
It does introduce cycles in the definitions, but no edges are
added into the precedence graph of such expression because
formula symbols are always under the scope of a modal op-
erator.

Semantics. How do we then define the semantics of well-
formed expressions? If ∆ is a recursive JSL expression that
is completely acyclic, then we can simply replace the symbols
in Γ by their respective definitions. But we cannot do this
with every well-formed expression, because some of them
can have cycles in the definitions (under a scope of a modal
operator), and thus we would never stop replacing symbols.
This is the case, for instance, in Example 2.

However, the key thing to notice is that we only need to
do this as many times as the height of the JSON tree we
are trying to validate. More precisely, let J be a JSON tree
of height h and ∆ a well-formed recursive JSL expression
of the form (1). Construct a (non-recursive) JSL expression
unfoldJpψq by replacing each symbol γi in ψ by the corre-
sponding definition ϕi, but stop once every symbol from Γ
is under the scope of at least h` 1 modal operators. After-
wards, replace all the remaining symbols γi for the symbol
K (shorthand for  J). If ∆ is well-formed, then this pro-
cedure is guaranteed to stop, because every time we come
back to the same symbol γ when replacing, we know that
this symbol has to be under the scope of at least one more
modal operator. Then, we define the satisfaction relation
based on the satisfaction of the constructed formula ψ, so
that J |ù ∆ if and only if J |ù unfoldJpψq.

Example 4. Suppose that we need to evaluate the expres-
sion in Example 2 over the tree J of height 4. Then we would
only need to keep rewriting ψ until all of γ1 and γ2 are under
at least 5 modal operators. The query obtained corresponds
to

lΣ˚p3Σ˚J^lΣ˚ lΣ˚p3Σ˚J^lΣ˚ lΣ˚γ2qq

To finalise we create the formula unfoldJpγ1q by replacing
the symbol γ2 in the expression above for K. Now the eval-
uation of the original expression over J corresponds to the
evaluation of unfoldJpγ1q over J .



Expressive Power. As promised, one can show that recur-
sive JSL captures the recursive definition of JSON Schema.
We use the same notation as for Theorem 1.

Theorem 3. Well-formed recursive JSL and well-formed
recursive JSON Schema are equivalent in expressive power.

Comparing JSL to navigational logic JNL, we can again
show that different atomic predicates force them to have dif-
ferent expressive power: for instance JSL can not express the
EQpα, βq operator, while JNL can not cover unique items.
On the other hand, if EQpα, βq is not allowed, then we con-
jecture recursive non-deterministic JNL to be strictly less
expressive than recursive JSL without unique items, due to
the more powerful form of recursion available in the lan-
guage.

We finish with a few remarks on the expressive power of
recursive JSL expressions. First, let us note that, even if
one would like to compare recursive JSL or JSON Schema
against XML Schema definitions such as DTDs or XML
Schema, or even to Monadic Second Order (MSO), we can-
not do it in a direct way since the models of XML and JSON
have several important differences, and it is not immediate
to express JSON as a relational structure. However, just for
the sake of establishing a comparison we can assume that
the set Σ˚ of possible keys is fixed and finite, and that we
do not consider arrays. We can then just focus on a rela-
tional representation of JSON that has one binary relation
Ow for each word w in our set of keys, plus all predicates
specified in NodeTests. We can then show the following (as
usual MSO is said be equivalent to JSL if for every JSL ex-
pression we can create a boolean MSO formula accepting
the same trees, and vice-versa):

Proposition 8. Well-formed recursive JSL is equivalent
to MSO, if the set Σ˚ of possible keys is fixed and finite, and
if we do not consider arrays.

What about arrays? The first observation is that the pres-
ence of arrays introduces the atomic test Unique, which can
express properties not definable in MSO:

Example 5. The following recursive JSL expression ac-
cepts only JSON documents representing complete binary
trees:

γ “  p31Jq _ pMinChp2q ^MaxChp2q^
 Unique^l1:2γq

γ

Every node is an array with either no child or with two chil-
dren both satisfying γ, and the  Unique restriction forces
the two children of each node to be equal.

Even if we rule out Unique, it is still not easy to exactly
pinpoint what JSL can do. On one hand, JSON arrays are
ordered, in the sense that the first item can be distinguished
from the second. But on the other hand the reasoning be-
tween elements in arrays in JSON is very limited. For ex-
ample, we cannot use JSL to specify that after an element
satisfying a formula ϕ we must have an element satisfying
another formula ψ.

Evaluation. The first thing to note is that the seman-
tics for recursive JSL, as defined previously, leads to very
inefficient evaluation algorithms: the rewriting unfoldJpψq
may well be of exponential size with respect to the original

query, even if J contains a single node. However, we can
show that evaluating recursive JSL expressions remains in
Ptime in combined complexity, although the succinctness
introduced by the possibility of reusing definitions makes
the problem Ptime-hard. Our algorithm consists on evalu-
ating all subtrees of J in a bottom-up fashion, proceeding
to higher height levels of J only when all the previous levels
have already been computed. The algorithm resembles the
evaluation of Datalog programs with stratified negation.

Proposition 9. The Evaluation problem for recursive
JSL expressions over JSON trees is Ptime-complete in com-
bined complexity.

Satisfiability. The most common way of building a satis-
fiability algorithm in schema formalisms for trees is to show
that they are equivalent to some class of tree automata
whose non-emptiness problem can be shown to be decid-
able. We use the same ideas, albeit we need to introduce a
specific model of automata that can capture our formalism.
Interestingly, we show that the Unique predicate can also be
handled in this case, albeit with an exponential blowup. To
show this we encode Unique as a special local constraint, as
done in e.g. [4, 19]. Again, we do not know if this blowup
is unavoidable.

Proposition 10. The Satisfiability problem for re-
cursive JSL expressions is in 2Exptime, and Exptime-
complete for expressions without the Unique predicate.

6. FUTURE PERSPECTIVES
In this work we present a first attempt to formally study

the JSON data format. To this end, we describe the under-
lying data model for JSON, and introduce logical formalisms
which capture the way JSON data is accessed and controlled
in practice. Through our results we emphasise how the new
features present in JSON, affect classical results known from
the XML context, and highlight that there is a need for
developing new techniques to tackle main static tasks for
JSON languages. And while some of these features have
been consider in the past (e.g. comparing subtrees [5, 33],
or an infinite number of keys [6]), it is still not entirely clear
how these properties mix with the deterministic structure of
JSON trees, thus providing an interesting ground for future
work.

Apart from these fundamental problems that need to be
tackled, there is also a series of practical aspects of JSON
that we did not consider. In particular, we identify three
areas that we believe warrant further study, and where the
formal framework we propose could be of use in understand-
ing the underlying problems.

MongoDB’s projection. While we have presented a nav-
igational logic that can capture the way MongoDB filters
JSON documents within its find function, we have left out
the second argument of the find function, known as projec-
tion. In its essence, the idea of the projection argument is
to select only those subtrees of input documents that can be
reached by certain navigation instructions, thus defining a
JSON to JSON transformation. Although well-defined, the
projection in MongoDB is quite limited in expressive power,
and does not allow a lot of interaction between filtering and
projecting. We believe that this is an interesting ground for



future work, as there are many fundamental questions re-
garding the expressive power of these transformations, and
their possible interactions with schema definitions.

Streaming. Another important line of future work is
streaming. Indeed, the widespread use of JSON as a means
of communicating information through the Web demands
the usage of streaming techniques to query JSON documents
or validate document against schemas. Streaming applica-
tions most surely will be related to APIs, either to be able to
query data fetched from an API without resorting to store
the data (for example if we are in a mobile environment)
or to validate JSONs on-the-fly before they are received by
APIs. In contrast with XML (see, e.g., [30], we suspect
that our deterministic versions of both JNL and JSL might
actually be shown to be evaluated in a streaming context
with constant memory requirements when tree equality is
excluded from the language.

Documenting APIs. One of the main uses of JSON
Schema is the Open API initiative [25], an endeavour
founded in early 2016 that intends to build an open doc-
umentation of RESTful APIs available worldwide. This ini-
tiative uses JSON Schema to specify the inputs and the
outputs of a large number of APIs, and is trying to describe
which parts of the API output actually come from the input.
A formal perspective in these tasks will certainly be well ap-
preciated by the community. Furthermore, there is also the
problem of documenting how JSON APIs interact with real
databases. For example, when large organisations expose
data they sometimes use APIs instead of proper database
views, even if it is for internal uses. This immediately raises
the problem of exchanging data that may now not reside on
real databases, but is exposed only by means of JSON. We
believe these problems raise interesting questions for future
work.
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