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ABSTRACT

Linear algebra algorithms often require some sort of iteration or

recursion as is illustrated by standard algorithms for Gaussian elimi-

nation, matrix inversion, and transitive closure. A key characteristic

shared by these algorithms is that they allow looping for a number

of steps that is bounded by the matrix dimension. In this paper we

extend the matrix query language MATLANG with this type of recur-

sion, and show that this suffices to express classical linear algebra

algorithms. We study the expressive power of this language and

show that it naturally corresponds to arithmetic circuit families,

which are often said to capture linear algebra. Furthermore, we

analyze several sub-fragments of our language, and show that their

expressive power is closely tied to logical formalisms on semiring-

annotated relations.

1 INTRODUCTION

Linear algebra-based algorithms have become a key component

in data analytic workflows. As such, there is a growing interest in

the database community to integrate linear algebra functionalities

into relational database management systems [5, 23, 25–27]. In

particular, from a query language perspective, several proposals

have recently been put forward to unify relational algebra and linear

algebra. Two notable examples of this are: LARA [22], a minimalistic

language in which a number of atomic operations on associative

tables are proposed, and MATLANG, a query language for matrices [7].

Both LARA and MATLANG have been studied by the database theory
community, showing interesting connections to relational algebra

and logic. For example, fragments of LARA are known to capture

first-order logic with aggregation [4], and MATLANG has been re-

cently shown to be equivalent to a restricted version of the (posi-

tive) relational algebra on K-relations, RA+K [8], where K denotes a

semiring. On the other hand, some standard constructions in linear

algebra are out of reach for these languages. For instance, it was

shown that under standard complexity-theoretic assumptions, LARA
can not compute the inverse of a matrix or its determinant [4], and

operations such as the transitive closure of a matrix are known to

be inexpressible in MATLANG [7]. Given that these are fundamental

constructs in linear algebra, one might wonder how to extend LARA
or MATLANG in order to allow expressing such properties.

One approach would be to add these constructions explicitly to

the language. Indeed, this was done for MATLANG in [7], and LARA
in [4]. In these works, the authors have extended the core language

with the trace, the inverse, the determinant, or the eigenvectors

operators and study the expressive power of the result. However,

one can argue that there is nothing special in these operators, apart

they have been used historically in linear algebra textbooks and

they extend the expressibility of the core language. The question

here is whether these new operators form a sound and natural

choice to extend the core language, or are they just some particular

queries that we would like to support.

In this paper we take a more principled approach by studying

what are the atomic operations needed to define standard linear

algebra algorithms. Inspecting any linear algebra textbook, one

sees that most linear algebra procedures heavily rely on the use of

for-loops in which iterations happen over the dimensions of the

matrices involved. To illustrate this, let us consider the example of

computing the transitive closure of a graph. This can be done using

a modification of the Floyd-Warshall algorithm [10], which takes

as its input an n × n adjacency matrix A representing our graph,

and operates according to the following pseudo-code:

for k = 1..n do
for i = 1..n do

for j = 1..n do
A[i, j] := A[i, j] +A[i,k] · A[k, j]

After executing the algorithm, all of the non zero entries signify an

edge in the (irreflexive) transitive closure graph.

By examining standard linear algebra algorithms such as Gauss-

ian elimination, LU -decomposition, computing the inverse of a

matrix, or its determinant, we can readily see that this pattern con-

tinues. Namely, we observe that there are two main components to

such algorithms: (i) the ability to iterate up to the matrix dimension;

and (ii) the ability to access a particular position in our matrix. In

order to allow this behavior in a query language, we propose to

extend MATLANG with limited recursion in the form of for-loops,

resulting in the language for-MATLANG. To simulate the two com-

ponents of standard linear algebra algorithms in a natural way, we

simulate a loop of the form for i = 1..n do by leveraging canonical
vectors. In other words, we use the canonical vectors b1 = (1, 0, . . .),

b2 = (0, 1, . . .), . . . , to access specific rows and columns, and iterate

over these vectors. In this way, we obtain a language able to com-

pute important linear algebra operators such as LU -decomposition,

determinant, matrix inverse, among other things.

Of course, a natural question to ask now is whether this really

results in a language suitable for linear algebra? We argue that the

correct way to approach this question is to compare our language

to arithmetic circuits, which have been shown to capture the vast

majority of existing matrix algorithms, from basic ones such as

computing the determinant and the inverse, to complex procedures

such as discrete Fourier transformation, and Strassen’s algorithm



(see [1, 30] for an overview of the area), and can therefore be con-

sidered to effectively capture linear algebra. In the main technical

result of this paper, we show that for-MATLANG indeed computes

the same class of functions over matrices as the ones computed by

arithmetic circuit families of bounded degree. As a consequence,

for-MATLANG inherits all expressiveness properties of circuits, and

thus can simulate any linear algebra algorithm definable by circuits.

Having established that for-MATLANG indeed provides a good

basis for a linear algebra language, we move to a more fine-grained

analysis of the expressiveness of its different fragments. For this,

we aim to provide a connection with logical formalisms, similarly

as was done by linking LARA and MATLANG to first-order logic with

aggregates [4, 7]. As we show, capturing different logics correspond

to restricting how matrix variables are updated in each iteration of

the for-loops allowed in for-MATLANG. For instance, if we only allow
to add some temporary result to a variable in each iteration (in-

stead of rewriting it completely like in any programming language),

we obtain a language, called sum-MATLANG, which is equivalent to

RA+K , directly extending an analogous result shown for MATLANG,
mentioned earlier [8]. We then study updating matrix variables

based on another standard linear algebra operator, the Hadamard

product, resulting in a fragment called FO-MATLANG, which we show

to be equivalent to weighted logics [13]. Finally, in prod-MATLANG
we update the variables based on the standard matrix product, and

link this fragment to the ones discussed previously.

Contribution and outline.

• After we recall MATLANG in Section 2, we show in Section 3 how

for-loops can be added to MATLANG in a natural way. We also

observe that for-MATLANG strictly extends MATLANG. In addi-

tion, we discuss some design decisions behind the definition of

for-MATLANG, noting that our use of canonical vectors results
in the availability of an order relation.

• In Section 4 we show that for-MATLANG can compute important

linear algebra algorithms in a natural way. We provide expres-

sions in for-MATLANG for LU decomposition (used to solve linear

systems of equations), the determinant and matrix inversion.

• More generally, in Section 5 we report our main technical con-

tribution. We show that every uniform arithmetic circuits of

polynomial degree correspond to a for-MATLANG expression,

and vice versa, when a for-MATLANG expression has polynomial

degree, then there is an equivalent uniform family of arithmetic

circuits. As a consequence, for-MATLANG inherits all expressive-
ness properties of such circuits.

• Finally, in Section 6we generalize the semantics of for-MATLANG
to matrices with values in a semiring K , and show that two nat-

ural fragment of for-MATLANG, sum-MATLANG, and FO-MATLANG,
are equivalent to the (positive) relational algebra and weighted

logics on binary K-relations, respectively. We also briefly com-

ment on a minimal fragment of for-MATLANG, based on prod-
MATLANG, that is able to compute matrix inversion.

Due to space limitations, most proofs are referred to the appendix.

Related work. We already mentioned LARA [22] and MATLANG [7]

whose expressive power was further analyzed in [4, 8, 15, 16]. Ex-

tensions of SQL for matrix manipulations are reported in [27]. Most

relevant is [23] in which a recursion mechanism is added to SQL
which resembles for-loops. The expressive power of this extension

is unknown, however. Classical logics with aggregation [20] and

fixed-point logics with counting [19] can also be used for linear

algebra. More generally, for the descriptive complexity of linear

algebra we refer to [12, 21]. Most of these works require to encode

real numbers inside relations, whereas we treat real numbers as

atomic values. We refer to relevant papers related to arithmetic

circuits and logical formalisms on semiring-annotated relations in

the corresponding sections later in the paper.

2 MATLANG

We start by recalling the matrix query language MATLANG, intro-
duced in [7], which serves as our starting point.

Syntax. LetV = {V1,V2, . . .} be a countably infinite set of matrix
variables and F =

⋃
k>1
Fk with Fk a set of functions of the form

f : Rk → R, where R denotes the set of real numbers. The syntax

of MATLANG expressions is defined by the following grammar
1
:

e ::= V ∈ V (matrix variable)

| eT (transpose)

| 1(e) (one-vector)

| diag(e) (diagonalization of a vector)

| e1 · e2 (matrix multiplication)

| e1 + e2 (matrix addition)

| e1 × e2 (scalar multiplication)

| f (e1, . . . , ek ) (pointwise application of f ∈ Fk ).

MATLANG is parametrized by a collection of functions F but in

the remainder of the paper we only make this dependence explicit,

and write MATLANG[F ], for some set F of functions, when these

functions are crucial for some results to hold. When we simply

write MATLANG, we mean that any function can be used (including

not using any function at all).

Schemas and typing. To define the semantics of MATLANG expres-
sions we need a notion of schema andwell-typedness of expressions.

A MATLANG schema S is a pair S = (M, size), whereM ⊂ V is

a finite set of matrix variables, and size : M 7→ Symb × Symb is

a function that maps each matrix variable inM to a pair of size
symbols. The size function helps us determine whether certain ma-

trix operations, such as matrix multiplication, can be performed for

matrices adhering to a schema. We denote size symbols by Greek

letters α , β ,γ . We also assume that 1 ∈ Symb. To help us determine

whether a MATLANG expression can always be evaluated, we define

the type of an expression e , with respect to a schema S, denoted by

typeS(e), inductively as follows:

• typeS(V ) := size(V ), for a matrix variable V ∈ M;

• typeS(e
T ) := (β,α) if typeS(e) = (α , β);

• typeS(1(e)) := (α , 1) if typeS(e) = (α , β);
• typeS(diag(e)) := (α ,α), if typeS(e) = (α , 1);
• typeS(e1·e2) := (α ,γ ) if typeS(e1) = (α , β), and typeS(e2) =

(β ,γ );
• typeS(e1 + e2) := (α , β) if typeS(e1) = typeS(e2) = (α , β);
• typeS(e1×e2) := (α , β) if typeS(e1) = (1, 1) and typeS(e2) =

(α , β); and

1
The original syntax also permits the operator let V = e1 in e2 , which replaces

every occurrence of V in e2 with the value of e1 . Since this is just syntactic sugar, we

omit this operator. We also explicitly include matrix addition and scalar multiplication,

although these can be simulated by pointwise function applications. Finally, we use

transposition instead of conjugate transposition since we work with matrices over R.
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• typeS(f (e1, . . . , ek )) := (α , β), whenever typeS(e1) = · · · =

typeS(ek ) := (α , β) and f ∈ Fk .

We call an expressionwell-typed according to the schemaS, if it has

a defined type. A well-typed expression can be evaluated regardless

of the actual sizes of the matrices assigned to matrix variables, as

we describe next.

Semantics. WeuseMat[R] to denote the set of all real matrices and

for A ∈ Mat[R], dim(A) ∈ N2
denotes its dimensions. A (MATLANG)

instance I over a schema S is a pair I = (D, mat), where D :

Symb 7→ N assigns a value to each size symbol (and thus in turn

dimensions to each matrix variable), and mat : M 7→ Mat[R]
assigns a concrete matrix to each matrix variable V ∈ M, such

that dim(mat(V )) = D(α) × D(β) if size(V ) = (α , β). That is, an
instance tells us the dimensions of each matrix variable, and also

the concrete matrices assigned to the variable names inM. We

assume that D(1) = 1, for every instance I. If e is a well-typed

expression according to S, then we denote by ⟦e⟧(I) the matrix

obtained by evaluating e over I, and define it as follows:

• ⟦V ⟧(I) := mat(V ), for V ∈ M;

• ⟦eT ⟧(I) := ⟦e⟧(I)T , where AT is the transpose of matrix A;
• ⟦1(e)⟧(I) is a n × 1 vector with 1 as all of its entries, where

dim(⟦e⟧(I)) = (n,m);
• ⟦diag(e)⟧(I) is a diagonal matrix with the vector ⟦e⟧(I) on
its main diagonal, and zero in every other position;

• ⟦e1 · e2⟧(I) := ⟦e1⟧(I) · ⟦e2⟧(I);
• ⟦e1 + e2⟧(I) := ⟦e1⟧(I) + ⟦e2⟧(I);
• ⟦e1 × e2⟧(I) := a × ⟦e2⟧(I) with ⟦e1⟧(I) = [a]; and
• ⟦f (e1, . . . , ek )⟧(I) is a matrix A of the same size as ⟦e1⟧(I),
and where Ai j has the value f (⟦e1⟧(I)i j , . . . , ⟦ek⟧(I)i j ).

Although MATLANG forms a solid basis for a matrix query language,

it is limited in expressive power. Indeed, MATLANG is subsumed by

first order logic with aggregates that uses only three variables [7].

Hence, no MATLANG expression exists that can compute the transi-

tive closure of a graph (represented by its adjacency matrix) or can

compute the inverse of a matrix. Rather than extending MATLANG
with specific linear algebra operators, such as matrix inversion, we

next introduce a limited form of recursion in MATLANG.

3 EXTENDING MATLANGWITH FOR LOOPS

To extend MATLANG with recursion, we take inspiration from clas-

sical linear algebra algorithms, such as those described in [28].

Many of these algorithms are based on for-loops in which the ter-

mination condition for each loop is determined by the matrix di-

mensions. We have seen how the transitive closure of a matrix

can be computed using for-loops in the Introduction. Here we

add this ability to MATLANG, and show that the resulting language,

called for-MATLANG, can compute properties outside of the scope

of MATLANG. We see more advanced examples, such as Gaussian

elimination and matrix inversion, later in the paper.

3.1 Syntax and semantics of for-MATLANG
The syntax of for-MATLANG is defined just as for MATLANG but with

an extra rule in the grammar:

forv,X. e (canonical for loop, with v,X ∈ V).

Intuitively, X is a matrix variable which is iteratively updated ac-

cording to the expression e . We simulate iterations of the form “for
i ∈ [1..n]” by letting v loop over the canonical vectors bn

1
, . . . ,bnn of

dimension n. Here, bn
1
= [1 0 · · · 0]T , bn

2
= [0 1 0 · · · 0]T , etc. When

n is clear from the context we simply write b1,b2, . . .. In addition,

the expression e in the rule above may depend on v .
We next make the semantics precise and start by declaring

the type of loop expressions. Given a schema S, the type of a

for-MATLANG expression e , denoted typeS(e), is defined inductively
as in MATLANG but with following extra rule:

• typeS(forv,X. e) := (α , β), if
typeS(e) = typeS(X ) = (α , β) and typeS(v) = (γ , 1).

We note that S now necessarily includes v and X as variables and

assigns size symbols to them. We also remark that in the definition

of the type of forv,X. e , we require that typeS(X ) = typeS(e)
as this expression updates the content of the variable X in each

iteration using the result of e . We further restrict the type of v to

be a vector, i.e., typeS(v) = (γ , 1), since v will be instantiated with

canonical vectors. A for-MATLANG expression e is well-typed over

a schema S if its type is defined.

For well-typed expressions we next define their semantics. This

is done in an inductive way, just as for MATLANG. To define the

semantics of forv,X. e over an instance I, we need the following

notation. Let I be an instance andV ∈ M. Then I[V := A] denotes
an instance that coincides withI, except that the value of thematrix

variableV is given by the matrix A. Assume that typeS(v) = (γ , 1),
and typeS(e) = (α , β) and n := D(γ ). Then, ⟦forv,X. e⟧(I) is
defined iteratively, as follows:

• Let A0 := 0 be the zero matrix of size D(α) × D(β).
• For i = 1, . . .n, compute Ai := ⟦e⟧(I[v := bni ,X := Ai−1]).

• Finally, set ⟦forv,X. e⟧(I) := An .

For better understanding how for-MATLANG works, we next pro-

vide some examples. We start by showing that the one-vector and

diag operators are redundant in for-MATLANG.

Example 3.1. We first show how the one-vector operator 1(e) can
be expressed using for loops. It suffices to consider the expression

e1 := forv,X.X +v,

with typeS(v) = (α , 1) = typeS(X ) if typeS(e) = (α , β). This
expression is well-typed and is of type (α , 1). When evaluated over

some instance I with n = D(α), ⟦e1⟧(I) is defined as follows.

Initially, A0 := 0. Then Ai := Ai−1 + bni , i.e., the ith canonical

vector is added toAi−1. Finally, ⟦e1⟧(I) := An and this now clearly

coincides with ⟦1(e)⟧(I). □

Example 3.2. We next show that the diag operator is redundant

in for-MATLANG. Indeed, it suffices to consider the expression

ediag := forv,X.X + (vT · e) ×v · vT ,

where e is a for-MATLANG expression of type (α , 1). For this ex-
pression to be well-typed, v has to be a vector variable of type

α × 1 and X a matrix variable of type (α ,α). Then, ⟦ediag⟧(I)
is defined as follows. Initially, A0 is the zero matrix of dimen-

sion n × n, where n = D(α). Then, in each iteration i ∈ [1..n],
Ai := Ai−1 + ((b

n
i )

T · ⟦e⟧(I)) × (bni · (bni )T ). In other words, Ai
is obtained by adding the matrix with value (⟦e⟧(I))i on position

(i, i) to Ai−1. Hence, ⟦ediag⟧(I) := An = ⟦diag(e)⟧(I). □

3



These examples illustrate that we can limit for-MATLANG to con-

sist of the following “core” operators: transposition, matrix mul-

tiplication and addition, scalar multiplication, pointwise function

application, and for-loops. More specific, for-MATLANG is defined
by the following simplified syntax:

e ::= V | eT | e1·e2 | e1+e2 | e1×e2 | f (e1, . . . , ek ) | forv,X. e

Similarly as for MATLANG, we write for-MATLANG[F ] for some set

F of functions when these are required for the task at hand.

As a final example, we show that we can compute whether a

graph contains a 4-clique using for-MATLANG.

Example 3.3. To test for 4-cliques it suffices to consider the fol-

lowing expression with for-loops nested four times:

foru, X1. X1 +

forv, X2. X2 +

forw, X3. X3 +

forx , X4. X4 +

uT ·V · v · uT ·V ·w · uT ·V · x ·

vT ·V ·w · vT ·V · x ·wT ·V · x · д(u,v,w,x)

withд(u,v,w,x) = f (u,v)· f (u,w)· f (u,x)· f (v,w)· f (v,x)· f (w,x)
and f (u,v) = 1 − uT · v . Note that f (bni ,b

n
j ) = 1 if i , j and

f (bni ,b
n
j ) = 0 otherwise. Hence, д(bni ,b

n
j ,b

n
k ,b

n
ℓ
) = 1 if and only if

all i, j,k, l are pairwise different. When evaluating the expression

on an instance I such that V is assigned to the adjacency matrix

of a graph, the expression above evaluates to a non-zero value if

and only if the graph contains a four-clique. □

Given that MATLANG can not check for 4-cliques [7], we easily

obtain the following.

Proposition 3.4. For any collection of functions F , MATLANG[F ]
is properly subsumed by for-MATLANG[F ].

3.2 Design decisions behind for-MATLANG
Loop Initialization. As the reader may have observed, in the se-

mantics of for-loops we always initialize A0 to the zero matrix 0
(of appropriate dimensions). It is often convenient to start the it-

eration given some concrete matrix originating from the result

of evaluation a for-MATLANG expression e0. To make this explicit,

we write forv,X = e0. e and its semantics is defined as above

with the difference that A0 := ⟦e0⟧(I). We observe, however, that

forv,X =e0. e can already be expressed in for-MATLANG. In other

words, we do not loose generality by assuming an initialization

of A0 by 0. The key insight is that in for-MATLANG we can check

during evaluation whether or not the current canonical vector bni is

equal to the bn
1
. This is due to the fact that for-loops iterate over the

canonical vectors in a fixed order. We discuss this more in the next

paragraph. In particular, we can define a for-MATLANG expression
min(), which when evaluated on an instance, returns 1 if its input

vector is bn
1
, and returns 0 otherwise. Given min(), consider now

the for-MATLANG expression

forv,X. min(v) · e(v,X/e0) + (1 − min(v)) · e(v,X ),

where we explicitly list v and X as matrix variables on which e po-
tentially depends on, and where e(v,X/e0) denotes the expression

obtained by replacing every occurrence of X in e with e0. When

evaluating this expression on an instance I, A0 is initial set to the

zero matrix, in the first iteration (whenv = bn
1
and thus min(v) = 1)

we have A1 = ⟦e⟧(I[v := bn
1
,X := ⟦e0⟧(I)]), and for consecutive

iterations (when only the part related to 1 − min(v) applies) Ai is
updated as before. Clearly, the result of this evaluation is equal to

⟦forv,X =e0. e⟧(I).
As an illustration, we consider the Floyd-Warshall algorithm

given in the Introduction.

Example 3.5. Consider the following expression:

eFW := forvk , X1=A. X1 +

forvi , X2. X2 +

forvj , X3. X3 +

(vTi · X1 · vk · v
T
k · X1 · vj ) ×vi · v

T
j

The expression eFW simulates the Floyd-Warshall algorithm by

updating the matrixA, which is stored in the variable X1. The inner

sub-expression here constructs an n ×n matrix that contains one in

the position (i, j) if and only if one can reach the vertex j from i by
going through k , and zero elsewhere. If an instance I assigns to A
the adjacency matrix of a graph, then ⟦eFW ⟧(I)will be equal to the
matrix produced by the algorithm given in the Introduction. □

Order. By introducing for-loops we not only extend MATLANG with

bounded recursion, we also introduce order information. Indeed, the

semantics of the for operator assumes that the canonical vectors

b1,b2, . . . are accessed in this order. It implies, among other things,

that for-MATLANG expressions are not permutation-invariant. We

can, for example, return the bottom right-most entry in a matrix.

Indeed, consider the expression emax := forv,X.v which, for it

to be well-typed, requires both v and X to be of type (α , 1). Then,
⟦emax⟧(I) = bnn , for n = D(α), simply because initially, X = 0,
but X will be overwritten by bn

1
,bn

2
, . . . ,bnn , in this order. Hence,

at the end of the evaluation bnn is returned. To extract the bottom

right-most entry from a matrix, we now simply use eTmax ·V · emax.

Although the order is implicit in for-MATLANG, we can explicitly

use this order in for-MATLANG expressions. More precisely, the order

on canonical vectors is made accessible by using the matrix:

S≤ =


1 1 · · · 1

0 1 · · · 1

...
...
. . . 1

0 0 · · · 1


.

We observe that S≤ has the property that bTi · S≤ · bj = 1, for two

canonical vectors bi and bj of the same dimension, if and only if

i ≤ j. Otherwise, bTi · S≤ · bj = 0. Interestingly, we can build the

matrix S≤ with the following for-MATLANG expression:

e≤ = forv,X.X + ((X · emax) +v) · v
T +v · eTmax,

where emax is as defined above. The intuition behind this expression

is that by using the last canonical vector bn , as returned by emax,

we have access to the last column of X (via the product X · emax).

We use this column such that after the i-th iteration, this column

contains the i-th column of S≤ . This is done by incrementingX with

v · eTmax. To construct S≤ , in the i-th iteration we further increment

X with (i) the current last column in X (via X · emax · v
T
) which

holds the (i − 1)-th column of S≤ ; and (ii) the current canonical

vector (via v · vT ). Hence, after iteration i , X contains the first i

4



columns of S≤ and holds the ith column of S≤ in its last column. It

is now readily verified that X = S≤ after the nth iteration.

It should be clear that if we can compute S≤ using e≤ , then we

can easily define the following predicates and vectors related with

the order of canonical vectors:

• succ(u,v) such that succ(bni ,b
n
j ) = 1 if i ≤ j and 0 otherwise.

Similarly, we can define succ+(u,v) such that succ+(bni ,b
n
j ) =

1 if i < j and 0 otherwise;

• min(u) such that min(bni ) = 1 if i = 1 and min(bni ) = 0

otherwise;

• max(u) such that max(bni ) = 1 if i = n and min(bni ) = 0

otherwise; and

• emin and emax such that ⟦emin⟧(I) = bn
1
and ⟦emax⟧(I) = bnn ,

respectively.

The definitions of these expressions are detailed in the appendix.

Having order information available results in for-MATLANG to be
quite expressive. We heavily rely on order information in the next

sections to compute the inverse of matrices and more generally to

simulate low complexity Turing machines and arithmetic circuits.

4 ALGORITHMS IN LINEAR ALGEBRA

One of our main motivations to introduce for-loops is to be able

to express classical linear algebra algorithms in a natural way. We

have seen that for-MATLANG is quite expressive as it can check for

cliques, compute the transitive closure, and can even leverage a

successor relation on canonical vectors. The big question is how

expressive for-MATLANG actually is. We will answer this in the next

section by connecting for-MATLANGwith arithmetic circuits of poly-

nomial degree. Through this connection, one can move back and

forth between for-MATLANG and arithmetic circuits, and as a conse-

quence, anything computable by such a circuit can be computed

by for-MATLANG as well. When it comes to specific linear algebra

algorithms, the detour via circuits can often be avoided. Indeed, in

this section we illustrate that for-MATLANG is able to compute LU

decompositions of matrices. These decompositions form the basis of

many other algorithms, such as solving linear systems of equations.

We further show that for-MATLANG is expressive enough to com-

pute matrix inversion and the determinant. We recall that matrix

inversion and determinant need to be explicitly added as separate

operators in MATLANG [7] and that the LARA language is unable to

invert matrices under usual complexity-theoretic assumptions [4].

4.1 LU decomposition

A lower-upper (LU) decomposition factors a matrixA as the product

of a lower triangular matrix L and upper triangular matrix U . This

decomposition, and more generally LU decomposition with row

pivoting (PLU), underlies many linear algebra algorithms and we

next show that for-MATLANG can compute these decompositions.

LU decomposition by Gaussian elimination. LU decomposi-

tion can be seen as a matrix form of Gaussian elimination in which

the columns of A are reduced, one by one, to obtain the matrix U .

The reduction of columns of A is achieved as follows. Consider the

first column [A11, . . . ,An1]
T
ofA and define c1 := [0,α21, . . . ,αn1]

T

with α j1 := −
Aj1
A11

. Let T1 := I + c1 · b
T
1
and consider T1 · A. That is,

the jth row ofT1 ·A is obtained by multiplying the first row ofA by

α j1 and adding it to the jth row of A. As a result, the first column

of T1 · A is equal to [A11, 0, . . . , 0]
T
, i.e., all of its entries below the

diagonal are zero. One then iteratively performs a similar computa-

tion, using a matrix Ti := I + ci · b
T
i , where ci now depends on the

ith column inTi−1 · · ·T1 ·A. As a consequence,Ti ·Ti−1 · · ·T1 ·A is

upper triangular in its first i columns. At the end of this process,

Tn · · ·T1 · A = U where U is the desired upper triangular matrix.

Furthermore, it is easily verified that each Ti is invertible and by

defining L := T−1

1
· · · · · T−1

n one obtains a lower triangular ma-

trix satisfying A = L ·U . The above procedure is only successful

when the denominators used in the definition of the vectors ci are
non-zero. When this is the case we call a matrix A LU-factorizable.

In case when such a denominator is zero in one of the reduction

steps, one can remedy this situation by row pivoting. That is, when
the ith entry of the ith row in Ti−1 · · ·T1 · A is zero, one replaces

the ith row by jth row in this matrix, with j > i , provided that ithe
entry of the jth row is non-zero. If no such row exists, this implies

that all elements below the diagonal are zero already in column i
and one can proceed with the next column. One can formulate this

in matrix terms by stating that there exists a permutation matrix

P , which pivots rows, such that P · A = L · U . Any matrix A is

LU-factorizable with pivoting.
Implementing LU decomposition in for-MATLANG.We first as-

sume that the input matrices are LU-factorizable. We deal with

general matrices later on. To implement the above procedure, we

need to compute the vector ci for each column i . We do this in two

steps. First, we extract from our input matrix its ith column and set

all its upper diagonal entries to zero by means of the expression:

col(V ,y) := forv,X. succ+(y,v) · (vT ·V · y) · v + X .

Indeed, when V is assigned to a matrix A and y to bi , we have that
X will be initially assigned A0 = 0 and in consecutive iterations,

Aj = Aj−1 + b
T
j · A · bi if j > i (because succ+(bi ,bj ) = 1 if j > i)

and Aj = Aj−1 otherwise (because succ+(bi ,bj ) = 0 for j ≤ i).
The result of this evaluation is the desired column vector. Using

col(V ,y), we can now compute Ti by the following expression:

reduce(V ,y) := eId + f/(col(V ,y),−(y
T ·V · y) · 1(y)) · yT ,

where f/ : R2 → R : (x ,y) 7→ x/y is the division function. When

V is assigned to A and y to bi , f/(col(A,bi),−(b
T
i · A · bi ) · 1(bi ))

is equal to the vector ci used in the definition of Ti . To perform the

reduction steps for all columns, we consider the expression:

eU (V ) := (fory,X =eId. reduce(X ·V ,y) · X ) ·V .

That is, when V is assigned A, X will be initially A0 = I , and then

Ai = reduce(Ai−1 · A,bi) = Ti · Ti−1 · · ·T1 · A, as desired. We

show in the appendix that, because we can obtain the matrices Ti
in for-MATLANG and that these are easily invertible, we can also

construct an expression eL(V ) which evaluates to L when V is

assigned to A. We may thus conclude the following.

Proposition 4.1. There exists for-MATLANG[f/] expressions eL(V )
and eU (V ) such that ⟦eL⟧(I) = L and ⟦eU ⟧(I) = U form an LU-
decomposition of A, where mat(V ) = A and A is LU-factorizable. □

We remark that the proposition holds when division is added

as a function in F in for-MATLANG. When row pivoting is needed,

we can also obtain a permutation matrix P such that P · A = L ·U
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holds by means of an expression in for-MATLANG, provided that we
additionally allow the function f>0, where f>0 : R → R is such

that f>0(x) := 1 if x > 0 and f>0(x) := 0 otherwise.

Proposition 4.2. There exist expressions eL−1P (M) and eU (M)
in for-MATLANG[f/, f>0] such that L−1 · P = ⟦eL−1P ⟧(I) and U =
⟦eU ⟧(I), satisfy L−1 · P · A = U . □

Intuitively, by allowing f>0 we introduce a limited form of

if-then-else in for-MATLANG, which is needed to continue re-

ducing columns only when the right pivot has been found.

4.2 Determinant and inverse

Other key linear algebra operations include the computation of the

determinant and the inverse of a matrix (if the matrix is invertible).

As a consequence of the expressibility in for-MATLANG[f/, f>0] of

LU-decompositions with pivoting, it can be shown that the deter-

minant and inverse can be expressed as well.

However, the results in the next section (connecting for-MATLANG
with arithmetic circuits) imply that the determinant and inverse

of a matrix can already be defined in for-MATLANG[f/]. So instead

of using LU decomposition with pivoting for matrix inversion and

computing the determinant, we provide an alternative solution.

More specifically, we rely on Csanky’s algorithm for comput-

ing the inverse of a matrix [11]. This algorithm uses the char-

acteristic polynomial pA(x) = det(xI − A) of a matrix. When

expanded as a polynomial pA(x) =
∑n
i=0

cix
i
and it is known

that A−1 = −1

cn
∑n−1

i=0
ciA

n−1−i
if cn , 0. Furthermore, c0 = 1,

cn = (−1)ndet(A) and the coefficients ci of pA(x) are known to

satisfy the system of equations S · c = s given by:

©«

1 0 0 · · · 0 0

S1 2 0 · · · 0 0

S2 S1 3 · · · 0 0

...
...

...
...

... 0

Sn−1 Sn−2 Sn−3 · · · S1 n

ª®®®®®®¬
·

©«

c1

c2

c3

...

cn

ª®®®®®®¬
=

©«

S1

S2

S3

...

Sn

ª®®®®®®¬
,

with Si = tr(Ai ). We show, in the appendix, that we can construct all

ingredients of this system of equations in for-MATLANG[f/]. By ob-

serving that the matrix S is a lower triangular matrix with non-zero

elements on its diagonal, we can write it in the formDS +(S−DS ) =

DS · (I +D
−1

S · (S −DS )) with DS the diagonal matrix consisting of

the diagonal entries of S . Hence S−1 = (I +D−1

S · (S −DS ))
−1 · D−1

S .

We remark D−1

S can simply be obtained by inverting the (non-zero)

elements on the diagonal by means of f/ in for-MATLANG[f/]. Fur-

thermore, we observe that (I+D−1

S (S−DS ))
−1 =

∑n
i=0
(D−1

S (S−DS ))
i

which is something we can compute in for-MATLANG[f/] as well.

Hence, we can invert S and obtain the vector (c1, . . . , cn )
T
as S−1 ·s .

To compute A−1
it now suffices to compute

−1

cn
∑n−1

i=0
ciA

n−1−i
.

To find the determinant, we compute (−1)ncn . All this can be done

in for-MATLANG[f/]. We may thus conclude:

Proposition 4.3. There are for-MATLANG[f/] expressions edet(V )
and einv(V ) such that ⟦edet⟧(I) = det(A), and ⟦einv⟧(I) = A−1

when I assigns V to A and A is invertible. □

5 EXPRESSIVENESS OF FOR LOOPS

In this section we explore the expressive power of for-MATLANG.
Given that arithmetic circuits [1] capture most standard linear al-

gebra algorithms [29, 30], they seem as a natural candidate for

comparison. Intuitively, an arithmetic circuit is similar to a boolean

circuit [3], except that it has gates computing the sum and the prod-

uct function, and processes elements of R instead of boolean values.

To connect for-MATLANG to arithmetic circuits we need a notion

of uniformity of such circuits. After all, a for-MATLANG expression

can take matrices of arbitrary dimensions as input and we want to

avoid having different circuits for each dimension. To handle inputs

of different sizes, we thus consider a notion of uniform families

of arithmetic circuits, defined via a Turing machine generating a

description of the circuit for each input size n.
What we show in the remainder of this section is that any func-

tion f which operates on matrices, and is computed by a uniform

family of arithmetic circuits of bounded degree, can also be com-

puted by a for-MATLANG expression, and vice versa. In order to keep
the notation light, we will focus on for-MATLANG schemas over

“square matrices” where each variable has type (α ,α), (α , 1), (1,α),
or (1, 1), although all of our results hold without these restrictions

as well. In what follows, we will write for-MATLANG to denote

for-MATLANG[∅], i.e. the fragment of our language with no addi-

tional pointwise functions. We begin by defining circuits and then

show how circuit families can be simulated by for-MATLANG.

5.1 From arithmetic circuits to for-MATLANG
Let us first recall the definition of arithmetic circuits. An arithmetic
circuit Φ over a set X = {x1, . . . ,xn } of input variables is a directed
acyclic labeled graph. The vertices of Φ are called gates and denoted
by д1, . . . ,дm ; the edges in Φ are called wires. The children of a

gate д correspond to all gates д′ such that (д,д′) is an edge. The

parents of д correspond to all gates д′ such that (д′,д) is an edge.

The in-degree, or a fan-in, of a gate д refers to its number of children,

and the out-degree to its number of parents. We will not assume any

restriction on the in-degree of a gate, and will thus consider circuits

with unbounded fan-in. Gates with in-degree 0 are called input gates
and are labeled by either a variable inX or a constant 0 or 1. All other

gates are labeled by either + or ×, and are referred to as sum gates
or product gates, respectively. Gates with out-degree 0 are called

output gates. When talking about arithmetic circuits, one usually

focuses on circuits with n input gates and a single output gate.

The size ofΦ, denoted by |Φ|, is its number of gates andwires. The

depth ofΦ, denoted by depth(Φ), is the length of the longest directed
path from any of its output gates to any of the input gates. The

degree of a gate is defined inductively: an input gate has degree 1,

a sum gate has a degree equal to the maximum of degrees of its

children, and a product gate has a degree equal to the sum of the

degrees of its children. When Φ has a single output gate, the degree
of Φ, denoted by degree(Φ), is defined as the degree of its output

gate. If Φ has a single output gate and its input gates take values

from R, then Φ corresponds to a polynomial in R[X ] in a natural

way. In this case, the degree ofΦ equals the degree of the polynomial

corresponding to Φ. If a1, . . . ,an are values in R, then the result of

the circuit on this input is the value computed by the corresponding

polynomial, denoted by Φ(a1, . . . ,ak ).
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In order to handle inputs of different sizes, we use the notion

of uniform circuit families. An arithmetic circuit family is a set

of arithmetic circuits {Φn | n = 1, 2, . . .} where Φn has n input

variables and a single output gate. An arithmetic circuit family

is uniform if there exists a LOGSPACE-Turing machine, which

on input 1
n
, returns an encoding of the arithmetic circuit Φn for

each n. We observe that uniform arithmetic circuit families are

necessarily of polynomial size. Another important parameter is the

circuit depth. A circuit family is of logarithmic depth, whenever

depth(Φn ) ∈ O(loдn). We now show that for-MATLANG subsumes

uniform arithmetic circuit families that are of logarithmic depth.

Theorem 5.1. For any uniform arithmetic circuit family {Φn | n =
1, 2, . . .} of logarithmic depth there is a for-MATLANG schema S and
an expression eΦ using a matrix variable v , with typeS(v) = (α , 1)
and typeS(e) = (1, 1), such that for any input values a1, . . . ,an :
• If I = (D, mat) is a MATLANG instance such that D(α) = n
and mat(v) = [a1 . . . an ]

T .
• Then ⟦eΦ⟧(I) = Φn (a1, . . . ,an ).

It is important to note that the expression eΦ does not change

depending on the input size, meaning that it is uniform in the

same sense as the circuit family being generated by a single Turing

machine. The different input sizes for a for-MATLANG instance are
handled by the typing mechanism of the language.

Proof sketch.The proof of this Theorem, which is the deepest tech-

nical result of the paper, depends crucially on two facts: (i) that any

polynomial time Turing machine working within linear space and

producing linear size output, can be simulated via a for-MATLANG
expression; and (ii) that evaluating an arithmetic circuit Φn can be

done using two stacks of depth n.
Evaluating Φn on input (a1, . . . ,an ) can be done in a depth-first

manner by maintaining two stacks: the gates-stack that tracks the

current gate being evaluated, and the values-stack that stores the

value that is being computed for this gate. The idea behind having

two stacks is that whenever the number of items on the gates-stack

is higher by one than the number of items on the values-stack, we

know that we are processing a fresh gate, and we have to initialize

its current value (to 0 if it is a sum gate, and to 1 if it is a product gate),

and push it to the values-stack. We then proceed by processing the

children of the head of the gates-stack one by one, and aggregate

the results using sum if we are working with a sum gate, and by

using product otherwise.

In order to access the information about the gate we are process-

ing (such as whether it is a sum or a product gate, the list of its

children, etc.) we use the uniformity of our circuit family. Namely,

we know that we can generate the circuit Φn with a LOGSPACE-

Turing machineMΦ by running it on the input 1
n
. Using this ma-

chine, we can in fact compute all the information needed to run

the two-stack algorithms described above. For instance, we can

construct a LOGSPACE machine that checks, given two gates д1

and д2, whether д2 is a child of д1. Similarly, we can construct a

machine that, given д1 and д2 tells us whether д2 is the final child

of д1, or the one that produces the following child of д1 (according

to the ordering given by the machineMΦ). Defining these machines

based of MΦ is similar to the algorithm for the composition of

two LOGSPACE transducers, and is commonly used to evaluate

arithmetic circuits [1].

To simulate the circuit evaluation algorithm that uses two stacks,

in for-MATLANG we can use a binary matrix of size n × n, where
n is the number of inputs. The idea here is that the gates-stack

corresponds to the first n − 3 columns of the matrix, with each

gate being encoded as a binary number in positions 1, . . . ,n − 3 of

a row. The remaining three columns are reserved for the values-

stack, the number of elements on the gates stack, and the number of

elements on the values stack, respectively. The number of elements

is encoded as a canonical vector of size n. Here we crucially depend
on the fact that the circuit is of logarithmic depth, and therefore the

size of the two stacks is bounded by n (apart from the portion before

the asymptotic bound kicks-in, which can be hard-coded into the

expression eΦ). Similarly, given that the circuits are of polynomial

size, we can assume that gate ids can be encoded into n − 3 bits.

This matrix is then updated in the same way as the two-stack

algorithm. It processes gates one by one, and using the successor

relation for canonical vectors determines whether we have more

elements on the gates stack. In this case, a new value is added to the

values stack (0 if the gate is a sum gate, and 1 otherwise), and the

process continues. Information about the next child, last child, or

input value, are obtained using the expression which simulates the

Turing machine generating this data about the circuit (the machines

used never produce an output longer than their input). Given that

the size of the circuit is polynomial, say nk , we can initialize the

matrix with the output gate only, and run the simulation of the

two-stack algorithm for nk steps (by iterating k times over size n
canonical vectors). After this, the value in position (1,n − 2) (the

top of the values stack) holds the final results. □

While Theorem 5.1 gives us an idea on how to simulate arithmetic

circuits, it does not tell us which classes of functions over real

numbers can be computed by for-MATLANG expressions. In order to

answer this question, we note that arithmetic circuits can be used

to compute functions over real numbers. Formally, a circuit family

{Φn | n = 1, 2, . . .} computes a function f :

⋃
n≥1
Rn 7→ R, if for

any a1, . . . an ∈ R it holds that Φn (a1, . . . ,an ) = f (a1, . . . ,an ). To
make the connection with for-MATLANG , we need to look at circuit

families of bounded degree.

A circuit family {Φn | n = 1, 2, . . .} is said to be of polynomial
degree if degree(Φn ) ∈ O(p(n)), for some polynomialp(n). Note that
polynomial size circuit families are not necessarily of polynomial

degree. An easy corollary of Theorem 5.1 tells us that all functions

computed by uniform family of circuits of polynomial degree and

logarithmic depth can be simulated using for-MATLANG expressions.
However, we can actually drop the restriction on circuit depth due

to the result of Valiant et. al. [32] and Allender et. al. [2] which

says that any function computed by a uniform circuit family of

polynomial degree (and polynomial depth), can also be computed

by a uniform circuit family of logarithmic depth. Using this fact,

we can conclude the following:

Corollary 5.2. For any function f computed by a uniform family
of arithmetic circuits of polynomial degree, there is an equivalent
for-MATLANG formula ef .

Note that there is nothing special about circuits that have a

single output, and both Theorem 5.1 and Corollary 5.2 also hold for

functions f :

⋃
n≥1
Rn 7→ Rs(n), where s is a polynomial. Namely,

in this case, we can assume that circuits for f have multiple output
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gates, and that the depth reduction procedure of [2] is carried out for

each output gate separately. Similarly, the construction underlying

the proof of Theorem 5.1 can be performed for each output gate

independently, and later composed into a single output vector.

5.2 From for-MATLANG to circuits

Now that we know that arithmetic circuits can be simulated using

for-MATLANG expressions, it is natural to ask whether the same

holds in the other direction. That is, we are asking whether for each

for-MATLANG expression e over some schema S there is a uniform

family of arithmetic circuits computing precisely the same result

depending on the input size.

In order to handle the fact that for-MATLANG expressions can pro-
duce anymatrix, and not just a single value, as their output, we need

to consider circuits which have multiple output gates. Similarly,

we need to encode matrix inputs of a for-MATLANG expression in

our circuits. We will write Φ(A1, . . . ,Ak ), where Φ is an arithmetic

circuit with multiple output gates, and eachAi is a matrix of dimen-

sions αi × βi , with αi , βi ∈ {n, 1} to denote the input matrices for

a circuit Φ. We will also write type(Φ) = (α , β), with α , β ∈ {n, 1},
to denote the size of the output matrix for Φ. We call such circuits

arithmetic circuits over matrices. When {Φn | n = 1, 2, . . .} is a

uniform family of arithmetic circuits over matrices, we will assume

that the Turing machine for generating Φn also gives us the infor-

mation about how to access a position of each input matrix, and

how to access the positions of the output matrix, as is usually done

when handling matrices with arithmetic circuits [29]. The notion

of degree is extended to be the sum of the degrees of all the output

gates. With this at hand, we can now show the following result.

Theorem 5.3. Let e be a for-MATLANG expression over a schema
S, and let V1, . . . ,Vk be the variables of e such that typeS(Vi ) ∈
{(α ,α), (α , 1), (1,α), (1, 1)}. Then there exists a uniform arithmetic
circuit family over matrices Φn (A1, . . . ,Ak ) such that:
• For any instance I = (D, mat) such that D(α) = n and
mat(Vi ) = Ai it holds that:
• ⟦e⟧(I) = Φn (A1, . . . ,Ak ).

It is not difficult to see that the proof of Theorem 5.1 can also be

extended to support arithmetic circuits over matrices. In order to

identify the class of functions computed by for-MATLANG expres-

sions, we need to impose one final restriction: than on the degree

of an expression. Formally, the degree of for-MATLANG expression e
over a schema S, is the minimum of the degrees of any circuit fam-

ily {Φn | n = 1, 2, . . .} that is equivalent to e . That is, the expression
e is of polynomial degree, whenever there is an equivalent circuit

family for e of a polynomial degree. For example, all for-MATLANG
expressions seen so far have polynomial degree. With this defini-

tion, we can now identify the class of functions for which arithmetic

circuits and for-MATLANG formulas are equivalent. This is the main

technical contribution of the paper.

Corollary 5.4. Let f be a functionwith inputmatricesA1, . . . ,Ak
of dimensions α × β , with α , β ∈ {n, 1}. Then, f is computed by a
uniform circuit family over matrices of polynomial degree if and only
if there is a for-MATLANG expression of polynomial degree for f .

Note that this result crucially depends on the fact that expres-

sions in for-MATLANG are of polynomial degree. Some for-MATLANG

expression are easily seen to produce results which are not poly-

nomial. An example of such an expression is, for instance, eexp =
forv,X = A.X · X , over a schema S with typeS(v) = (γ , 1),
and typeS(X ) = (1, 1). Over an instance which assigns n to γ this

expression computes the function a2
n
, for A = [a]. Therefore, a

natural question to ask then is whether we can determine the de-

gree of a for-MATLANG expression. Unfortunately, as we show in

the following proposition this question is in fact undecidable.

Proposition 5.5. Given a for-MATLANG expression e over a schema
S, it is undecidable to check whether e is of polynomial degree.

Of course, one might wonder whether it is possible to define a

syntactic subclass of for-MATLANG expressions that are of polyno-
mial degree and can still express many important linear algebra

algorithms. We identify one such class in Section 6.1, called sum-
MATLANG, and in fact show that this class is powerful enough to

capture relational algebra on (binary) K-relations.

5.3 Supporting additional operators

The equivalence of for-MATLANG and arithmetic circuits we prove

above assumes that circuits can only use the sum and product

gates (note that even without the sum and the product function,

for-MATLANG can simulate these operations viamatrix sum/product).

However, both arithmetic circuits and expressions in for-MATLANG
can be allowed to use a multitude of functions over R. The most

natural addition to the set of functions is the division operator,

which is crucially needed in many linear algebra algorithms, such

as, for instance, Gaussian elimination, or LU decomposition (re-

call Proposition 4.1). Interestingly, the equivalence in this case still

holds, mainly due to a surprising result which shows that (almost

all) divisions can in fact be removed for arithmetic circuits which

allow sum, product, and division gates [1].

More precisely, in [6, 24, 31] it was shown that for any function of

the form f = д/h, whereд andh are relatively prime polynomials of

degreed , if f is computed by an arithmetic circuit of size s , then both
д and h can be computed by a circuit whose size is polynomial in

s +d . Given that we can postpone the division without affecting the

final result, this, in essence, tells us that division can be eliminated

(pushed to the top of the circuit), andwe canworkwith sum-product

circuits instead. The degree of a circuit for f , can then be defined

as the maximum of degrees of circuits for д and h. Given this fact,

we can again use the depth reduction procedure of [2], and extend

Corollary 5.4 to circuits with division.

Corollary 5.6. Let f be a function taking as its input matri-
ces A1, . . . ,Ak of dimensions α × β , with α , β ∈ {n, 1}. Then, f is
computed by a uniform circuit family over matrices of polynomial
degree that allows divisions, if and only if there is a for-MATLANG[f/]
expression of polynomial degree for f .

An interesting line of future work here is to see which additional

functions can be added to arithmetic circuits and for-MATLANG
formulas, in order to preserve their equivalence. Note that this will

crucially depend on the fact that these functions have to allow the

depth reduction of [2] in order to be supported.
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6 RESTRICTING THE POWER OF FOR LOOPS

We conclude the paper by zooming in on some special fragments of

for-MATLANG and in which matrices can take values from an arbi-

trary (commutative) semiringK . In particular, we first consider sum-
MATLANG, in which iterations can only perform additive updates, and

show that it is equivalent in expressive power to the (positive) rela-

tional algebra on K-relations. We then extend sum-MATLANG such
that also updates involving pointwise-multiplication (Hadamard

product) are allowed. The resulting fragment, FO-MATLANG, is shown
to be equivalent in expressive power to weighted logics. Finally, we

consider the fragment prod-MATLANG in which updates involving

sum and matrix multiplication, and possibly order information,

is allowed. From the results in Section 4, we infer that the latter

fragment suffices to compute matrix inversion. An overview of the

fragments and their relationships are depicted in Figure 1.

6.1 Summation matlang and relational algebra

When defining 4-cliques and in several other expressions we have

seen so far, we only update X by adding some matrix to it. This

restricted form of for-loop proved useful throughout the paper, and

we therefore introduce it as a special operator. That is, we define:

Σv .e := forv,X.X + e .

We define the subfragment of for-MATLANG, called sum-MATLANG,
to consist of the Σ operator plus the “core” operators in MATLANG,
namely, transposition, matrix multiplication and addition, scalar

multiplication, and pointwise function applications.

One property of sum-MATLANG is that it only allows expressions of
polynomial degree. Indeed, one can easily show that sum-MATLANG
can only create matrix entries that are polynomial in the dimension

n of the expression. More precisely, we can show the following:

Proposition 6.1. Every expression in sum-MATLANG is of polyno-
mial degree.

Interestingly enough, this restricted version of for-loop already

allows us to capture the MATLANG operators that are not present

in the syntax of sum-MATLANG. More precisely, we see from Ex-

amples 3.1 and 3.2 that the one-vector and diag operator are ex-

pressible in sum-MATLANG. Combined with the observation that the

4-clique expression of Example 3.3 is in sum-MATLANG, the following
result is immediate.

Corollary 6.2. MATLANG is strictly subsumed by sum-MATLANG.

What operations over matrices can be defined with sum-MATLANG
that is beyond MATLANG? In [8], it was shown that MATLANG is strictly
included in the (positive) relational algebra on K-relations, denoted
by RA+K [18].

2
It thus seems natural to compare the expressive

power of sum-MATLANG with RA+K . The main result in this section

is that sum-MATLANG and RA+K are equally expressive over binary

schemas. To make this equivalence precise, we next give the defini-

tion of RA+K [18] and then show how to connect both formalisms.

Let D be a data domain and A a set of attributes. A relational

signature is a finite subset of A. A relational schema is a function

R on finite set of symbols dom(R) such that R(R) is a relation

2
The algebra used in [8] differs slightly from the one given in [18]. In this paper we

work with the original algebra RA+K as defined in [18].

signature for each R ∈ dom(R). To simplify the notation, from

now on we write R to denote both the symbol R and the relational

signature R(R). Furthermore, we write R ∈ R to say that R is a

symbol of R. For R ∈ R, an R-tuple is a function t : R → D. We

denote by tuples(R) the set of all R-tuples. Given X ⊆ R, we denote
by t[X ] the restriction of t to the set X .

A semiring (K , ⊕, ⊙, 0, 1) is an algebraic structure where K is a

non-empty set, ⊕ and ⊙ are binary operations over K , and 0, 1 ∈ K .
Furthermore, ⊕ and ⊙ are associative operations, 0 and 1 are the

identities of ⊕ and ⊙ respectively, ⊕ is a commutative operation, ⊙

distributes over ⊕, and 0 annihilates K (i.e. 0 ⊙ k = k ⊙ 0 = 0). As

usual, we assume that all semirings in this paper are commutative,

namely, ⊙ is also commutative. We use

⊕
X or

⊙
X for the ⊕-

or ⊙-operation over all elements in X , respectively. Typical exam-

ples of semirings are the reals (R,+,×, 0, 1), the natural numbers

(N,+,×, 0, 1), and the boolean semiring ({0, 1},∨,∧, 0, 1).

Fix a semiring (K , ⊕, ⊙, 0, 1) and a relational schema R. A K-
relation of R ∈ R is a function r : tuples(R) → K such that the

support supp(r ) = {t ∈ tuples(R) | r (t) , 0} is finite. A K-instance
J of R is a function that assigns relational signatures of R to K-

relations. Given R ∈ R, we denote by RJ the K-relation associated

to R. Recall that RJ is a function and hence RJ (t) is the value in K
assigned to t . Given a K-relation r we denote by adom(r ) the active
domain of r defined as adom(r ) = {t(a) | t ∈ supp(r ) ∧ a ∈ R}.
Then the active domain of an K-instance J of R is defined as

adom(J) =
⋃
R∈R adom(RJ ).

An RA+K expression Q over R is given by the following syntax:

Q := R | Q ∪Q | πX (Q) | σX (Q) | ρf (Q) | Q ▷◁ Q

where R ∈ R, X ⊆ A is finite, and f : X → Y is a one to one

mapping with Y ⊆ A. One can extend the schema R to any expres-

sion over R recursively as follows: R(R) = R, R(Q ∪Q ′) = R(Q),
R(πX (Q)) = X , R(σX (Q)) = R(Q), R(ρf (Q)) = X where f : X →
Y , and R(Q ▷◁ Q ′) = R(Q) ∪ R(Q ′) for every expressionsQ andQ ′.
We further assume that any expression Q satisfies the following

syntactic restrictions: R(Q ′) = R(Q ′′) whenever Q = Q ′ ∪ Q ′′,
X ⊆ R(Q ′) whenever Q = πX (Q

′) or Q = σX (Q
′), and Y = R(Q ′)

whenever Q = ρf (Q
′) with f : X → Y .

Given an RA+K expressionQ and a K-instance J of R, we define

the semantics ⟦Q⟧J as a K-relation of R(Q) as follows. For X ⊆ A,
let EqX (t) = 1 when t(a) = t(b) for every a,b ∈ X , and EqX (t) = 0

otherwise. For every tuple t ∈ R(Q):

if Q = R, then ⟦Q⟧J (t) = RJ (t)
if Q = Q1 ∪Q2, then ⟦Q⟧J (t) = ⟦Q1⟧J (t) ⊕ ⟦Q2⟧J (t)
if Q = πX (Q

′), then ⟦Q⟧J (t) =
⊕

t ′:t ′[X ]=t ⟦Q ′⟧J (t ′)
if Q = σX (Q

′), then ⟦Q⟧J (t) = ⟦Q ′⟧J (t) ⊙ EqX (t)
if Q = ρf (Q

′), then ⟦Q⟧J (t) = ⟦Q ′⟧J (t ◦ f )
if Q = Q1 ▷◁ Q2, then ⟦Q⟧J (t) = ⟦Q1⟧J (t[Y ]) ⊙ ⟦Q2⟧J (t[Z ]),

where Y = R(Q1) and Z = R(Q2). It is important to note that the⊕
-operation in the semantics of πX (Q

′) is well-defined given that

the support of ⟦Q ′⟧J is always finite.

We are now ready for comparing sum-MATLANG with RA+K . First

of all, we need to extend sum-MATLANG from R to any semiring. Let

Mat[K] denote the set of all K-matrices. Similarly as for MATLANG
over R, given a MATLANG schema S, a K-instance I over S is a pair

I = (D, mat), where D : Symb 7→ N assigns a value to each size
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symbol, and mat : M 7→ Mat[K] assigns a concrete K-matrix to

eachmatrix variable. Then it is straightforward to extend the seman-

tics of MATLANG, for-MATLANG, and sum-MATLANG from (R,+,×, 0, 1)
to (K , ⊕, ⊙, 0, 1) by switching + with ⊕ and × with ⊙.

The next step to compare sum-MATLANGwith RA+K is to represent

K-matrices asK-relations. LetS = (M, size) be a MATLANG schema.

On the relational side we have for each size symbol α ∈ Symb \ {1},
attributes α , rowα , and colα in A. Furthermore, for each V ∈ M
and α ∈ Symb we denote by RV and Rα its corresponding relation

name, respectively. Then, given S we define the relational schema

Rel(S) such that dom(Rel(S)) = {Rα | α ∈ Symb} ∪ {RV | V ∈ M}
where Rel(S)(Rα ) = {α } and:

Rel(S)(RV ) =


{rowα , colβ } if size(V ) = (α , β)

{rowα } if size(V ) = (α , 1)

{colβ } if size(V ) = (1, β)

{} if size(V ) = (1, 1).

Consider now a matrix instance I = (D, mat) over S. Let V ∈ M
with size(V ) = (α , β) and let mat(V ) be its correspondingK-matrix

of dimensionD(α)×D(β). To encode I as aK-instance in RA+K , we
use as data domain D = N \ {0}. Then we construct the K-instance

Rel(I) such that for each V ∈ M we define R
Rel(I)

V (t) := mat(V )i j
whenever t(rowα ) = i ≤ D(α) and t(colβ ) = j ≤ D(β), and 0

otherwise. Furthermore, for each α ∈ Symb we define R
Rel(I)
α (t) :=

1 whenever t(α) ≤ D(α), and 0 otherwise. In other words, Rα
and Rβ encodes the active domain of a matrix variable V with

size(V ) = (α , β). Given that the RA+K framework of [18] represents

the “absence” of a tuple in the relation with 0, we need to separately

encode the indexes in a matrix. This is where R
Rel(I)
α and R

Rel(I)

β are

used for.We are now ready to state the first connection between sum-
MATLANG and RA+K by using the previous encoding. The proof of the

proposition below is by induction on the structure of expressions.

Proposition 6.3. For each sum-MATLANG expression e over schema
S such that S(e) = (α , β) with α , 1 , β , there exists an RA+K ex-
pression Φ(e) over relational schema Rel(S) such that Rel(S)(Φ(e)) =
{rowα , rowβ } and such that for any instance I over S,

⟦e⟧(I)i, j = ⟦Φ(e)⟧Rel(I)(t)
for tuple t(rowα ) = i and t(colβ ) = j. Similarly for when e has
schema S(e) = (α , 1), S(e) = (1, β) or S(e) = (1, 1), then Φ(e)
has schema Rel(S)(Φ(e)) = {rowα }, Rel(S)(Φ(e)) = {colα }, or
Rel(S)(Φ(e)) = {}, respectively.

We now move to the other direction. To translate RA+K into sum-

MATLANG, we must restrict our comparison to RA+K over K-relations
with at most two attributes. Given that linear algebra works over

vector and matrices, it is reasonable to restrict to unary or binary

relations as input. Note that this is only a restriction on the input

relations and not on intermediate relations, namely, expressions can

create relation signatures of arbitrary size from the binary input

relations. Thus, from now we say that a relational schema R is

binary if |R | ≤ 2 for every R ∈ R. We also make the assumption

that there is an (arbitrary) order, denoted by <, on the attributes

in A. This is to identify which attributes correspond to rows and

columns when moving to matrices. Then, given that relations will

be either unary or binary and there is an order on the attributes, we

write t = (v) or t = (u,v) to denote a tuple over a unary or binary

relation R, respectively, where u and v is the value of the first and

second attribute with respect to <.

Consider a binary relational schema R. With each R ∈ R we

associate a matrix variable VR such that, if R is a binary relational

signature, then VR represents a (square) matrix, and, if not (i.e. R
is unary), then VR represents a vector. Formally, fix a symbol α ∈
Symb \ {1}. Let Mat(R) denote the MATLANG schema (MR , sizeR )
such thatMR = {VR | R ∈ R} and sizeR (VR ) = (α ,α) whenever
|R | = 2, and sizeR (VR ) = (α , 1) whenever |R | = 1. Take now

a K-instance J of R and suppose that adom(J) = {d1, . . . ,dn }
is the active domain of J (the order over adom(J) is arbitrary).
Then we define the matrix instance Mat(J) = (DJ , matJ ) such

that DJ (α) = n, matJ (VR )i, j = RJ ((di ,dj )) whenever |R | = 2,

and matJ (VR )i = RJ ((di )) whenever |R | = 1. Note that, although

each K-relation can have a different active domain, we encode

them as square matrices by considering the active domain of the

K-instance. By again using an inductive proof on the structure of

RA+K expressions, we obtain the following result.

Proposition 6.4. Let R be a binary relational schema. For each
RA+K expression Q over R such that |R(Q)| = 2, there exists a sum-
MATLANG expression Ψ(Q) over MATLANG schema Mat(R) such that
for any K-instance J with adom(J) = {d1, . . . ,dn } over R,

⟦Q⟧J ((di ,dj )) = ⟦Ψ(Q)⟧(Mat(J))i, j .

Similarly for when |R(Q)| = 1, or |R(Q)| = 0 respectively.

It is important to remark that the expression Q of the previous

result can have intermediate expressions that are not necessary

binary, given that the proposition only restricts that the input rela-

tion and the schema of Q must have arity at most two. We recall

from [8] that MATLANG corresponds to RA+K where intermediate ex-

pressions are at most ternary, and this underlies, e.g., the inability of

MATLANG to check for 4-cliques. In sum-MATLANG, we can deal with

intermediate relations of arbitrary arity. In fact, each new attribute

can be seen to correspond to an application of the Σ operator. For

example, in the 4-clique expression, four Σ operators are needed,

in analogy to how 4-clique is expressed in RA+K .
Given the previous two propositions we derive the following

conclusion which is the first characterization of relational algebra

with a (sub)-fragment of linear algebra.

Corollary 6.5. sum-MATLANG and RA+K over binary relational
schemas are equally expressive.

As a direct consequence, we have that sum-MATLANG cannot com-

pute matrix inversion. Indeed, using similar arguments as in [7],

i.e., by embedding RA+K in (infinitary) first-order logic with count-

ing and by leveraging its locality, one can show that sum-MATLANG
cannot compute the transitive closure of an adjacency matrix. By

contrast, the transitive closure can be expressed by means of matrix

inversion [7]. We also note that the evaluation of the Σ operator is

independent of the order in which the canonical vectors are con-

sidered. This is because ⊕ is commutative. Hence, sum-MATLANG
cannot express the order predicates mentioned in Section 3.
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6.2 Hadamard product and weighted logics

Similarly to using sum, we can use other operations to update X
in the for-loop. The next natural choice is to consider products of

matrices. In contrast to matrix sum, we have two options: either

we can choose to use matrix product or to use the pointwise matrix

product, also called the Hadamard product. We treat matrix product

in the next subsection and first explain here the connection of sum

and Hadamard product operators to weighted logics.

For the rest of this section, fix a semiring (K , ⊕, ⊙, 0, 1). The
Hadamard product over K-matrices can be defined as the pointwise

application of ⊙ between two matrices of the same size. Formally,

we define the expression e ◦ e ′ where e, e ′ are expressions with
respect to S and typeS(e) = typeS(e

′) for some schema S =

(M, size). Then the semantics of e ◦e ′ is the pointwise application
of ⊙, namely, ⟦e ◦ e ′⟧(I)i j = ⟦e⟧(I)i j ⊙ ⟦e ′⟧(I)i j for any instance

I of S. This enables us to define, similar as for Σv , the pointwise-
product quantifier Π◦v as follows:

Π◦v . e := forv,X =1.X ◦ e .

where 1 is a matrix with the same type as X and all entries equal to

the 1-element ofK (i.e., we need to initializeX accordingly with the

⊙-operator). We cal FO-MATLANG the subfragment of for-MATLANG
that consists of sum-MATLANG extended with Π◦v .

Example 6.6. Similar to the trace of a matrix, a useful function

in linear algebra is to compute the product of the values on the

diagonal. Using the Π◦v operator, this can be easily expressed:

edp(V ) := Π◦v . vT ·V · v .

Clearly, the inclusion of this new operator extends the expressive

power to sum-MATLANG. For example, ⟦edp⟧(I) can be an exponen-

tially large number in the dimension n of the input. By contrast, one

can easily show that all expressions in sum-MATLANG can only return
numbers polynomial in n. That is, FO-MATLANG is more expressive

than sum-MATLANG and RA+K .
Tomeasure the expressive power of FO-MATLANG, we useweighted

logics [13] (WL) as a yardstick. Weighted logics extend monadic

second-order logic from the boolean semiring to any semiring K .
Furthermore, it has been used extensively to characterize the ex-

pressive power of weighted automata in terms of logic [14]. We

use here the first-order subfragment of weighted logics to suit our

purpose and, moreover, we extend its semantics over weighted

structures (similar as in [17]).

A relational vocabulary Γ is a finite collection of relation symbols

such that each R ∈ Γ has an associated arity, denoted by arity(R).
A K-weighted structure over Γ (or just structure) is a pair A =

(A, {RA }R∈Γ) such thatA is a non-empty finite set (i.e. the domain)

and, for each R ∈ Γ, RA : Aarity(R) → K is a function that associates

to each tuple in Aarity(R)
a weight in K .

Let X be a set of first-order variables. A K-weighted logic (WL)

formula φ over Γ is defined by the following syntax:

φ := x = y | R(x̄) | φ ⊕ φ | φ ⊙ φ | Σx .φ | Πx .φ

where x ,y ∈ X , R ∈ Γ, and x̄ = x1, . . . ,xk is a sequence of variables

inX such that k = arity(R). As usual, we say that x is a free variable

ofφ, if x is not below Σx orΠx quantifiers (e.g. x is free in Σy.R(x ,y)
but y is not). Given that K is fixed, from now on we talk about

structures and formulas without mentioning K explicitly.

An assignment σ over a structure A = (A, {RA }R∈Γ) is a func-
tion σ : X → A. Given x ∈ X and a ∈ A, we denote by σ [x 7→ a] a
new assignment such that σ [x 7→ a](y) = a whenever x = y and

σ [x 7→ a](y) = σ (y) otherwise. For x̄ = x1, . . . ,xk , we write σ (x̄)
to say σ (x1), . . . ,σ (xk ). Given a structure A = (A, {RA }R∈Γ) and
an assignment σ , we define the semantics ⟦φ⟧A (σ ) of φ as follows:

if φ := x = y, then ⟦φ⟧A (σ ) =
{

1 if σ (x) = σ (y)
0 otherwise

if φ := R(x̄), then ⟦φ⟧A (σ ) = RA (σ (x̄))
if φ := φ1 ⊕ φ2, then ⟦φ⟧A (σ ) = ⟦φ1⟧A (σ ) ⊕ ⟦φ2⟧A (σ )
if φ := φ1 ⊙ φ2, then ⟦φ⟧A (σ ) = ⟦φ1⟧A (σ ) ⊙ ⟦φ2⟧A (σ )
if φ := Σx .φ ′, then ⟦φ⟧A (σ ) =

⊕
a∈A⟦φ ′⟧A (σ [x 7→ a])

if φ := Πx .φ ′, then ⟦φ⟧A (σ ) =
⊙

a∈A⟦φ ′⟧A (σ [x 7→ a])

When φ contains no free variables, we omit σ and write ⟦φ⟧A
instead of ⟦φ⟧A (σ ).

For comparing the expressive power of FO-MATLANGwithWL, we

have to show how to encode MATLANG instances into structures and
vice versa. For this, wemake two assumptions to put both languages

at the same level: (1) we restrict structures to relation symbols of

arity at most two and (2) we restrict instances to square matrices.

The first assumption is for the same reasons as when comparing

sum-MATLANG with RA+K , and the second assumption is to have a

crisp translation between both languages. Indeed, understanding

the relation of FO-MATLANG with WL for non-square matrices is

slightly more complicated and we leave this for future work.

Let S = (M, size) be a schema of square matrices, that is, there

exists an α such that size(V ) ∈ {1,α } × {1,α } for every V ∈ M.

Define the relational vocabulary WL(S) = {RV | V ∈ M} such
that arity(RV ) = 2 if size(V ) = (α ,α), arity(RV ) = 1 if size(V ) ∈
{(α , 1), (1,α)}, and arity(RV ) = 0 otherwise. Then given a ma-

trix instance I = (D, mat) over S define the structure WL(I) =

({1, . . . ,n}, {RIV }) such that D(α) = n and RIV (i, j) = mat(V )i, j if

size(V ) = (α ,α), RIV (i) = mat(V )i if size(V ) ∈ {(α , 1), (1,α)}, and

RIV = mat(V ) if size(V ) = (1, 1).
To encode weighted structures into matrices and vectors, the

story is similar as for RA+K . Let Γ be a relational vocabulary where

arity(R) ≤ 2. Define Mat(Γ) = (MΓ , sizeΓ) such that MΓ =

{VR | R ∈ Γ} and sizeΓ(VR ) is equal to (α ,α), (α , 1), or (1, 1) if
arity(R) = 2, arity(R) = 1, or arity(R) = 0, respectively, for some

α ∈ Symb. Similarly, let A = (A, {RA }R∈Γ) be a structure with

A = {a1, . . . ,an }, ordered arbitrarily. Then we define the matrix

instance Mat(A) = (D, mat) such that D(α) = n, mat(VR )i, j =

RA (ai ,aj ) if arity(R) = 2, mat(VR )i = RA (ai ) if arity(R) = 1, and

mat(VR ) = RA otherwise.

Let S be a MATLANG schema of square matrices and Γ a relational

vocabulary of relational symbols of arity at most 2. We can then

show the equivalence of FO-MATLANG and WL as follows.

Proposition 6.7. Weighted logics over Γ and FO-MATLANG over S
have the same expressive power. More specifically,
• for each FO-MATLANG expression e over S such that S(e) =
(1, 1), there exists a WL-formula Φ(e) over WL(S) such that
for every instance I of S, ⟦e⟧(I) = ⟦Φ(e)⟧WL(I).
• for each WL-formula φ over Γ without free variables, there ex-
ists a FO-MATLANG expression Ψ(φ) such that for any structure
A over Mat(Γ), ⟦φ⟧A = ⟦Ψ(φ)⟧(Mat(A)).
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ML

sum-ML ≡ RA+K

4Cliqe

FO-ML ≡ WL

DP

prod-ML + S<

Inv

Det

for-ML ≡ Arithmetic Circuits

PLU

Figure 1: Fragments of for-MATLANG and their equivalences.

The functions 4Cliqe, DP (diagonal product), Inv, Det,

and PLU decomposition are placed in their fragments.

6.3 Matrix multiplication as a quantifier

In a similar way, we can consider a fragment in which sum and the

usual product of matrices can be used in for-loops. Formally, for an

expression e we define the operator:

Πv . e = forv,X = I.X · e .

where I is the identity matrix. We call prod-MATLANG the subfrag-
ment of for-MATLANG that consists of sum-MATLANG extended with

Πv . It is readily verified that Π◦v can expressed in terms of Πv .
Furthermore, by contrast to the Hadamard product, matrix multi-

plication is a non-commutative operator. As a consequence, one

can formulate expressions that are not invariant under the order in

which the canonical vectors are processed.

Proposition 6.8. Every expression in FO-MATLANG can be defined
in prod-MATLANG. Moreover, there exists an expression that uses the
Πv quantifier that cannot be defined in FO-MATLANG.

What is interesting is that sum-MATLANG extended with Πv suf-

fices to compute the transitive closure, provided that we allow for

the f>0 function. Indeed, one can use the expression eTC(V ) :=

f>0

(
Πv . (eId +V )

)
for this purpose because ⟦eTC⟧(I) = f>0

(
(I +

A)n
)
whenI assigns ann×n adjacency matrixA toV , and non-zero

entries in (I +A)n coincide with non-zero entries in the transitive

closure ofA. Furthermore, if we extend this fragment with access to

the matrix S< , defining the (strict) order on canonical vectors, then

Csanky’s matrix inversion algorithm becomes expressible (if f/ is
allowed). We leave the study of this fragment and, in particular, the

relationship to full for-MATLANG, for future work.
Finally, in Figure 1 we show a diagram of all the fragments of

for-MATLANG introduced in this section and their corresponding

equivalent formalisms.

7 CONCLUSIONS

We proposed for-MATLANG, an extension of MATLANG with limited

recursion, and showed that it is able to capturemost of linear algebra

due to its connection to arithmetic circuits. We further revealed

interesting connections to logics on annotated relations. Our focus

was on language design and expressivity. An interesting direction

for future work relates to efficient evaluation of (fragments) of

for-MATLANG. A possible starting point is [9] in which a general

methodology for communication-optimal algorithms for for-loop

linear algebra programs is proposed.
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APPENDIX

A PRELIMINARIES

We first introduce some additional notations and describe simplifications that will be used later in the appendix.

A.1 Definitions

We sometimes want to iterate over k canonical vectors. We define the following shorthand notation:

forv1, . . . ,vk ,X. e(X ,v1, . . . ,vn ) :=forv1,X1.X1+

forv2,X2=X1.X2+

forv3,X3=X2.X3+

. . .

forvk ,Xk =Xk−1
. e(Xk ,v1, . . . ,vk ).

To reference ℓ different vector variables X1, . . . ,Xℓ in every iteration and update them in different ways we define:

forv,X1, . . . ,Xℓ. (e1(X1,v), e2(X2,v), . . . , el (Xℓ ,v)) := forv,X. e1(X · emin,v) · (ediag(e1(X
T )) · emin)

T+

e2(X · emin+1,v) · (ediag(e1(X
T )) · emin+1)

T + . . . + eℓ(X · emax,v) · (ediag(e1(X
T )) · emax)

T

We note that for the latter expression to be semantically correct v has to be of type γ × 1, both Xi and ei for i = 1, . . . , ℓ have to be of type

α × 1, and X has to be of type α × β , where D(β) = ℓ. Here we use ediag(e1(X
T )) to compute the β × β identity and ensure the typing of the

emin+i . When evaluated on an instance I, emin, emin+i evaluate to b
D(β )
1

and b
D(β )
1+i , respectively, and we show their defining expressions in

section B.1. Similarly for emax = b
D(β )
n . The combinations of both previous operators results in:

forv1, . . . ,vk ,X1, . . . ,Xℓ. (e1(X1,v1, . . . ,vk ), e2(X2,v1, . . . ,vk ), . . . , eℓ(Xℓ ,v1, . . . ,vk )) := forv1, . . . ,vk ,X. e ′(X ,v1, . . . ,vk )

where

e ′(X ,v1, . . . ,vk ) :=e1(X · emin,v1, . . . ,vk ) · (ediag(e1(X
T )) · emin)

T

+ e2(X · emin+1,v1, . . . ,vk ) · (ediag(e1(X
T )) · emin+1)

T

+ . . . + eℓ(X · emax,v1, . . . ,vk ) · (ediag(e1(X
T )) · emax)

T

(1)

(2)

(3)

It is clear that this expression iterates over k canonical vectors and references ℓ independent vectors updating each of them in their particular

way.

A.2 Simplifications

When showing results based on induction of expressions in for-MATLANG, it is often convenient to assume that function applications

f (e1, . . . , ek ) for f ∈ Fk are restricted to the case when all expressions e1, . . . , ek have type 1 × 1. This does not loose generality. Indeed, for

general function applications f (e1, . . . , ek ), if we have Σ, scalar product and function application on scalars (here denoted by f1×1), we can

simulate full function application, as follows:

f (e1, . . . , ek ) := ΣviΣvj . f1×1(v
T
i · e1 · vj , . . . ,v

T
i · ek · vj ) ×vi · v

T
j .

Furthermore, it also convenient at times to use the pointwise functions f k⊙ : Rk 7→ R : (x1, . . . ,xk ) 7→ x1 × · · · · xk and f k⊕ : Rk 7→ R :

(x1, . . . ,xk ) 7→ x1 + · · ·+ xk . In fact, it is readily observed that adding these functions does not extend the expressive power of for-MATLANG:

Lemma A.1. We have that for-MATLANG[∅] ≡ for-MATLANG[{ f k⊙ , f
k
⊕ | k ∈ N}].

In fact, this lemma also holds for the smaller fragments we consider. We also observe that having f 2

⊙ : R2 → R allows us to define scalar

multiplication:

e1 × e2 := f⊙(1(e2)
T · e1 · 1(e2)

T , e2).

Conversely, f k⊙ can be expressed using scalar multiplication, as can be seen from our simulation of general function applications by pointwise

function application on scalars. Finally, a notational simplification is that when using scalars a ∈ R in our expressions, we write sometimes a
instead of [a]. For example, (1 − e1(v)

T · v) stands for ([1] − e1(v)
T · v).
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B PROOFS OF SECTION 3

B.1 Order predicates

We detail how order information on canonical vectors can be obtained in for-MATLANG. We provide explicit expressions for the operators

mentioned in Section 3 and furthermore, we also define expressions for operators that will be used in our proofs.

To begin with, we can easily obtain the last canonical vector using the expression

emax := forv,X.v .

In other words, we simply overwrite X with the current canonical vector in each iteration. Hence, at the end, X is assigned to the last

canonical vector.

As already mentioned in the main body of the paper, to define an order relation for canonical vectors, we notice that the following matrix:

S≤ =


1 1 · · · 1

0

. . .
. . .

...

. . . . . . . . . . . . 1

0 · · · · · · 1


.

has the property that for two canonical vectors bi and bj of the same dimension,

bTi · S≤ · bj =

{
1 if i ≤ j

0 otherwise.

We observe that S≤ can be expressed in for-MATLANG as follows:

S≤ := forv,X.X +
(
(X · emax) +v

)
· vT +v · eTmax,

where emax is as defined above. The intuition behind this expression is that by using the last canonical vector bn , as returned by emax, we

have access to the last column of X (via the product X · emax). We use this column such that after the i-th iteration, this column contains the

i-th column of S≤ . This is done by incrementing X with v · eTmax. To construct S≤ , in the i-th iteration we further increment X with (i) the

current last column in X (via X · emax · v
T
) which holds the (i − 1)-th column of S≤ ; and (ii) the current canonical vector (via v · vT ). Hence,

after iteration i , X contains the first i columns of S≤ and holds the ith column of S≤ in its last column. It is now readily verified that X = S≤
after the nth iteration.

By defining

succ(u,v) := uT · S≤ · v,

we obtain an order relation that allows us to discern whether one canonical vector comes before the other in the order given by S≤ . If we
want a strict order, we can just use the matrix S< := S≤ − eId, where eId is an expression in for-MATLANG which returns the identity matrix

(of appropriate dimension). Given this, we define

succ+(u,v) := uT · S< · v .

from which we can also derive

max(u) := uT · emax.

which is an expression that returns the last canonical vector.

Interestingly, we can also define the previous relation between canonical vectors. For this, we require the following matrix:

Prev =


0 1 · · · 0

0

. . .
. . .

...

. . . . . . . . . . . . 1

0 · · · · · · 0


,

Using this matrix, we have that for a canonical vector bi :

Prev · bi =

{
bi−1, if i > 1.

0, if i = 1.

where 0 is a vector of zeros of the same type as bi . Notice also that 1(u)T · Prev · u is equal to zero, for a canonical vector u, if and only if

u = b1 is the first canonical vector, and zero otherwise. Therefore the expression min(u) is defined as

min(u) := 1 − 1(u)T · Prev · u,

and, when evaluated over canonical vectors, will result in 1 if and only if u = b1 is the first canonical vector. To define the first canonical

vector in the order given by for, we can then write:

emin := forv,X.X +min(v) ×v,
14



Finally, we show that Prev can be defined using the following for-MATLANG expression:

ePrev := forv,X.X +
(
(1 −max(v)) ×v · eTmax − (X · emax) · e

T
max + (X · emax) · v

T )
.

Here, X is initialized as 0 and thus in the first iteration we put b1 in the last column of X (note that X · emax is also zero in the first iteration).

Next, in iteration two, we add a matrix that has the stored vector X · emax (the previous canonical vector) in the column indicated by v (the

current canonical vector) and v − X · emax in the last column, to replace the vector stored. As a consequence, b2 is now stored in the last

column. In the last iteration, we have bn−1 already in the last column, so no further update of X is required.

To get the next relation we simply do eNext = eTPrev. We have that for a canonical vector bi :

Next · bi =

{
bi+1, if i < n.

0, if i = n.

In this way, we also can obtain the following operators for a canonical vector v :

prev(v) := ePrev · v .

next(v) := eNext · v .

More generally, we define

egetPrevMatrix(v) := Πw .succ(w,v) × ePrev + (1 − succ(w,v)) × eId
egetNextMatrix(v) := Πw .succ(w,v) × eNext + (1 − succ(w,v)) × eId

expressions that, when v is interpreted as canonical vector bi , output Previ and Nexti respectively. Note that

Prevj · bi =

{
bi−j , if i > j .

0, if i ≤ j .

and

Nextj · bi =

{
bi+j , if i + j ≤ n.

0, if i + j > n.

Finally, define

emin+i := egetNextMatrix(. . . egetNextMatrix︸                                  ︷︷                                  ︸
i times

(emin))

and

emax−i := egetPrevMatrix(. . . egetPrevMatrix︸                                  ︷︷                                  ︸
i times

(emax))

We note that some these expressions were already used in Section A.1.

C PROOFS OF SECTION 4

We next provide more details about how to perform LU-decomposition (without and with pivoting) and to compute the determinant and

inverse of a matrix.

C.1 LU-decomposition

We start with LU-decomposition without pivoting. We recall proposition 4.1:

Proposition 4.1. There exists for-MATLANG[f/] expressions eL(V ) and eU (V ) such that ⟦eL⟧(I) = L and ⟦eU ⟧(I) = U form an LU-
decomposition of A, where mat(V ) = A and A is LU-factorizable.

Proof. Let A be an LU-factorizable matrix. We already explained how the expression eU (V ) is obtained in the main body of the paper, i.e.,

eU (V ) := (fory,X =eId. reduce(X ·V ,y) · X ) ·V .

We recall that eU (A) = Tn · · · · ·T1 · A with L−1 = Tn · · · · ·T1. Let

eL−1 (V ) := fory,X =eId. reduce(X ·V ,y) · X .

such that

eU(V ) := eL−1 (V ) ·V .

It now suffices to observe that, since Tn = I ,

L−1 = (I − c1 · b
T
1
) · · · (I − cn−1 · b

T
n−1
)

= I − c1 · b
T
1
− · · · − cn−1 · b

T
n−1
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and hence,

L = (I + c1 · b
T
1
) · · · (I + cn−1 · b

T
n−1
)

= I + c1 · b
T
1
+ · · · + cn−1 · b

T
n−1
.

As a consequence, to obtain L from L−1
we just need to multiply every entry below the diagonal by −1. Since both L and L−1

are lower

triangular, this can done by computing L = −1 × L−1 + 2 × I . Translated into for-MATLANG, this means that we can define

eL(V ) := −1 × eL−1 (V ) + 2 × eId,

which concludes the proof of the proposition. □

C.2 LU-decomposition with pivoting

We next consider LU-decomposition with pivoting. We recall proposition 4.2:

Proposition 4.2. There exist expressions eL−1P (V ) and eU (V ) in for-MATLANG[f/, f>0] such that L−1 · P = ⟦eL−1P ⟧(I) andU = ⟦eU ⟧(I),
satisfy L−1 · P · A = U , where I is an instance such that mat(V ) = A.

Proof. We assume that f/ and f>0 are in F . Let A be an arbitrary matrix. By contrast to when A is LU-factorizable, during the LU-

decomposition process we may need row interchange (pivoting) in each step of the iteration. Let us assume that row interchange is needed

immediately before step k , 1 ≤ k ≤ n. In other words, we now aim to reduce the k-th column of Ak = Tk−1
· · ·T1 · A, or Ak = A if k = 1, but

now Ak has a zero pivot, i.e., (Ak )kk = 0. Let P be the matrix that denotes the necessary row interchange. If we know P , then to compute

Tk we need to perform reduce(P · X · A,v) in this iteration, where reduce(·,) is the expression in for-MATLANG reducing a column, as

explained in the main body of the paper. Furthermore, we need to apply the permutation P to the current result, resulting in the expression

forv,X = I. reduce(P · X · A,v) · P · X . We now remark that P is a permutation matrix of the form P = I − u · uT and it denotes an

interchange (if multiplied by left) of rows i and j if u = (bi − bj ). Note that we are performing a row interchange for column k and thus i = k
and j > k − 1. If no interchange is needed, i = j = k and P = I . Also note that when k = n no interchange takes place. Furthermore, if no

suitable bj can be found, this implies that no interchange is required as well and we can move on to next column.

To find the vector u in P , we can, for example, find the first entry j ≥ k in column k of Ak that holds a non-zero value. More generally, we

can find the first entry in a vector a that holds a non-zero value by using the function f>0. Indeed, consider the following expression:

neq(a,u) := forv,X.
(
1 − e1(v)

T · X
)
× f>0

(
(vT · a)2

)
×v +max(v) ×

(
1 − e1(v)

T · X
)
×

(
1 − f>0

(
(vT · a)2

))
× u

Here, neq(a,u) receives two n dimensional vectors a and u and outputs a canonical vector bj such that aj is the first non-zero entry of a, or

u if such non-zero value does not exist in a. We check for f>0((·)
2) in case a negative number is tested. The above expression simply checks

in each iteration whether X already holds a canonical vector. If so, then X is not updated. Otherwise, X is replaced by the current canonical

vector bj if and only if bTj · a is non-zero. Furthermore, when the final canonical vector is considered and X does not hold a canonical vector

yet and bTn · a is zero, the vector u is returned.

We use neq(a,u) to find a pivot for a specific column. Let us assume again that we want to find a pivot in column k of Ak . We can

then first make all entries in that column, with indexes smaller or equal to k , zero, just as we did by means of col(·, ·) in the definition of

reduce(·,). Except, now we also need to make the kthe entry zero as well. Let us denote by coleq(·, ·) the operation col(·, ·), as defined in

the main body of the paper, but using succ instead of succ+ (to include the k entry). Given this, we can construct P = I − u · uT as follows:

ePu (A,u) := eId −
[
u − neq(coleq(A,u),u)

]
·
[
u − neq(coleq(A,u),u)

]T
.

From the explanations given above, it should be clear that ePu (A,u) computes the necessary permutation matrix of Ak for the column

indicated by u, or I if no permutation is needed, or if such permutation does not exist (so we skip the current column). Also, we have to

modify the reduce(V ,y) operators, as follows:

reduce(V ,y) := eId + f>0

(
(yT ·V · y)2

)
× f/(col(V ,y),

[
−(yT ·V · y) × e1(y) +

(
1 − f>0

(
(yT ·V · y)2

))
× e1(y)

]
) · yT ,

so that whenV is interpreted by a matrix B and y = bi , it returns I + cib
T
i if Bii is not zero. If Bii = 0 then we divide col(B,bi) by e1(bi ) (so

we don’t get undefined), but we don’t add cibTi precisely because Bii = 0, and return the identity so nothing happens. We check for f>0((·)
2)

in case a negative number is tested.

Finally, we define

eL−1P (V ) := forv,X =eId. reduce(ePv (X ·V ,v) · X ·V ,v) · ePv (X ·V ,v) · X

and eU(V ) := eL−1P (V ) ·V as the desired expressions.

As a final observation, in the definition of eL−1P (V ) we interlaced permutation matrices with the Ti ’s. More specifically, Ak = Tk · P ·

Tk−1
· · ·T1 · A. We observe, however, that for ℓ ≤ k − 1 and Tℓ = I − cℓ · b

T
ℓ
, we have that bT

ℓ
· P = bℓ because bℓ has zeroes in positions in

the rows involved in the row exchange P . Also, note that P2 = I and thus

P ·Tℓ · P = P2 − P · cℓ · b
T
ℓ · P = I − ĉℓ · b

T
l = T̂ℓ .
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As a consequence,

Tk · P ·Tk−1
· · ·T1 = Tk · P ·Tk−1

· P2 ·Tk−2
· P2 · · · P2 ·T1 · P

2 = Tk · (P ·Tk−1
· P) · · · (P ·T1 · P) · P = T̂k−1

· · · T̂1 · P ,

and thus we may assume that P occurs at the end. Hence, we obtain L−1 · P · A = U . □

C.3 Determinant and inverse

We next turn our attention to computing the inverse and determinant of a matrix. To show Proposition 4.3 we first show that it holds when

considering non-singular lower or upper triangular matrices.

Lemma C.1. There are for-MATLANG[f/] expressions eupperDiagInv(V ) and elowerDiagInv(V ) such that ⟦eupperDiagInv⟧(I) = A−1 when I assigns
V to an invertible upper triangular matrix A and ⟦elowerDiagInv⟧(I) = A−1 when I assigns V to an invertible lower triangular matrix A.

Proof. We start by considering the expression:

eps(V ) := eId + Σv .Πw . [succ(w,v) ×V + (1 − succ(w,v)) × eId] .

Here, eps(A) results in I +A +A2 + · · · +An for any matrix A. In the expression, the outer loop defines which power we compute. That is,

when v is the ith canonical vector, we compute Ai . Computing Ai is achieved via the inner product loop, which uses succ(w,v) to determine

whetherw comes before or is v in the ordering of canonical vectors. When this is the case, we multiply the current result by A, and whenw
is greater than v , we use the identity as not to affect the already computed result. We add the identity at the end.

Now, let A be an n × n matrix that is upper triangular and let DA be the matrix consisting of the diagonal elements of A, i.e.,

DA =


a11 · · · · · · 0

0 a22 · · · 0

0

. . .
...

...
... · · · · · · ann


.

We can compute DA by the expression:

egetDiag(V ) := Σv .(vT ·V · v) ×v · vT .

Let T = A − DA, then

A−1 = [DA +T ]
−1 =

[
DA

(
I + D−1

A T
)]−1

=
(
I + D−1

A T
)−1

D−1

A .

We now observe that D−1

A simply consists of the inverses of the elements on the diagonal. This can be expressed, as follows:

ediagInverse(V ) := Σv . f/(1,v
T ·V · v) ×v · vT = Σv . f/(1,v

T ·V · v) ×v · vT ,

Where f/ is the division function. In the last equality we take advantage of the fact that the diagonals of A and DA are the same.

We now focus on the computation of

(
I + D−1

A ·T
)−1

. First, by construction, D−1

A ·T is strictly upper triangular and thus nilpotent, such

that

(
D−1

A ·T
)n
= 0, where n is the dimension of A. Recall the following algebraic identity

(1 + x)

( m∑
i=0

(−x)i

)
= 1 − (−x)m+1.

By choosingm = n − 1 and applying it to x = D−1

A ·T , we have(
I + D−1

A ·T
) (n−1∑

i=0

(−D−1

A ·T )
i

)
= I −

(
−D−1

A ·T
)n
= I .

Hence, (
I + D−1

A ·T
)−1

=

n−1∑
i=0

(−D−1

A ·T )
i =

n∑
i=0

(−D−1

A ·T )
i .

We now observe that

eps(−1 × D−1

A ·T ) =
n∑
i=0

(−D−1

A ·T )
i =

(
I + D−1

A ·T
)−1

,

and thus

A−1 = eps
(
−1 ×

[
ediagInverse(A)(A − egetDiag(A))

] )
ediagInverse(A).

Seeing this as an expression:

eupperDiagInv(V ) := eps
(
−1 ×

[
ediagInverse(V )(V − egetDiag(V ))

] )
ediagInverse(V ),
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we see that when interpreting V as an upper triangular invertible matrix, eupperDiagInv(A) evaluates to A
−1
.

To deal with invertible lower triangular matrices A, we observe that
(
A−1

)T
=

(
AT

)−1

and AT is upper triangular. Hence, it suffices to

define

elowerDiagInv(V ) := eupperDiagInv(V
T )T .

This concludes the proof of the lemma. □

We are now ready to prove proposition 4.3. We recall:

Proposition 4.3. There are for-MATLANG[f/] expressions edet(V ) and einv(V ) such that ⟦edet⟧(I) = det(A), and ⟦einv⟧(I) = A−1 when I
assigns V to A and A is invertible.

Proof. LetA be ann×nmatrix. Asmentioned in themain body of the paper, wewill implement Csanky’s algorithm. LetpA(x) := det(xI−A)
denote characteristic polynomial of A. We write pA(x) = 1 +

∑n
i=1

cix
i
and let Si := 1

i+1
tr(Ai ) with tr(·) the trace operator which sums up

the diagonal elements of a matrix. Then, the coefficients c1, . . . , cn are known to satisfy
3

©«

1 0 0 · · · 0 0

S1 1 0 · · · 0 0

S2 S1 1 · · · 0 0

...
...

...
...

... 0

Sn−1 Sn−2 Sn−3 · · · S1 1

ª®®®®®®¬︸                                           ︷︷                                           ︸
S

·

©«

c1

c2

c3

...

cn

ª®®®®®®¬︸︷︷︸
c̄

=

©«

S1

S2

S3

...

Sn

ª®®®®®®¬︸︷︷︸
¯b

and furthermore, cn = (−1)ndet(A) and if cn , 0, then

A−1 =
1

cn

n−1∑
i=0

ciA
n−1−i ,

with c0 = 1. It is now easy to see that we can compute the S ′i s in for-MATLANG. Indeed, for i = 1, . . . ,n we can consider

epowTr(V ,v) := Σw .wT ·
(
epow(V ,v) ·V

)
·w

with

epow(V ,v) := Πw .(succ(w,v) ×V + (1 − succ(w,v)) × eId).

We have that epow(A,bj ) = Aj
and thus epowTr(A,bj ) = tr(Aj ). Define:

eS (V ,v) := f/(1, 1 + Σw .succ(w,v)) × epowTr(V ,v).

Here eS (A,bi ) = Si . Note that i + 1 is computed summing up to the dimension indicated by v , and adding 1. We can now easily construct the

vector
¯b used in the system of equations by means of the expression:

e ¯b (V ) := Σw .eS (V ,w) ×w .

We next construct the matrix S . We need to be able to shift a vector a in k positions, i.e., such that (a1, . . . ,an ) 7→ (0, . . . ,a1, . . . ,an−k ). We

use egetNextMatrix defined in section B.1, i.e., we define:

eshift(a,v) := Σw .(wT · a) × (egetNextMatrix(v) ·w)

performs the desired shift when u is assigned a vector a and v is bk . The matrix S is now obtained as follows:

S(V ) := eId + Σv .eshift(e ¯b (V ),v) · v
T

We now observe that S is lower triangular with nonzero diagonal entries. So, Lemma C.1 tells us that we can invert it, i.e., elowerDiagInv(S) = S−1
.

As a consequence,

ec̄ (V ) := elowerDiagInv(S(V )) · e ¯b (V ).

outputs c̄ whenV is interpreted as matrixA. Observe that we only use the division operator. We now have all coefficients of the characteristic

polynomial of A.
We can now define

edet(V ) :=
((
(Πw .(−1) × e1(V ))

T · emax

)
× ec̄ (V )

)T
· emax,

an expression that, whenV is interpreted as any matrix A, outputs det(A). Here, (Πw .(−1) × e1(V )) is the n dimensional vector with (−1)n in

all of its entries. Since cn = (−1)ndet(A), we extract (−1)n (−1)ndet(A) = det(A) with emax.

3
We use a slightly different, but equivalent, system of equations than the one mentioned in the paper.
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For the inverse, we have that

A−1 =
1

cn

n−1∑
i=0

ciA
n−1−i =

1

cn
An−1 +

n−1∑
i=1

ci
cn

An−1−i .

We compute
1

cnA
n−1

as

f/(1, ec̄ (A)
T · emax) × epow(A, emax)

and

∑n−1

i=1

ci
cnA

n−1−i
as

Σv . f/

(
ec̄ (A)

T · v, ec̄ (A)
T · emax

)
× einvPow(A,v),

where

einvPow(V ,v) := Πw .(1 −max(w)) × [(1 − succ(w,v)) ×V + succ(w,v) × eId] +max(w) × eId.

Here, einvPow(A,bi ) = An−1−i
and einvPow(A,bn ) = I . Note that we always multiply by eId in the last step. To conclude, we define:

einv(V ) := f/(1, ec̄ (V )
T · emax) × epow(V , emax) +

[
Σv . f/

(
ec̄ (V )

T · v, ec̄ (V )
T · emax

)
× einvPow(V ,v)

]
,

an expression that, when V is interpreted as any invertible matrix A, computes A−1
. □

As an observation, here we only use operators Σ and Π defined in section 6. We also assume access to order.

D PROOFS OF SECTION 5

D.1 Linear space functions

We start by showing a crucial ingredient for making the correspondence between for-MATLANG and arithmetic circuits. More specifically,

we show that any polynomial time Turing machine, working within linear space and producing linear space output, can be simulated in

for-MATLANG. For this proof and section only, we will denote the canonical vectors as e1, . . . , en , since b will be used to represent a value on

a position of a tape.

We consider deterministic Turing Machines (TM) T consisting of ℓ read-only input tapes, denoted by R1, . . . ,Rℓ , a work tape, denoted by

W , and a write-only output tape, denoted by O . The TM T has a set Q ofm states, denoted by q0, . . . ,qm . We assume that q0 is the initial

state and qm is the accepting state. The input and tape alphabet are Σ = {0, 1} and Γ = Σ ∪ {▷,◁}, respectively. The special symbol ▷
denotes the beginning of each of the tapes, the symbol ◁ denotes the end of the ℓ input tapes. The transition function ∆ is defined as usual,

i.e., ∆ : Q × Γℓ+2 → Q × Γ2 × {←,⊔,→}ℓ+2
such that ∆(q, (a1, . . . ,aℓ ,b, c)) =

(
q′, (b ′, c ′), (d1, . . . , dℓ+2

)
)
with di ∈ {←,⊔,→}, means that

when T is in state q and the ℓ + 2 heads on the tapes read symbols a1, . . . ,aℓ ,b, c , respectively, then T transitions to state q′, writes b ′, c ′ on
the work and output tapes, respectively, at the position to which the work and output tapes’ heads points at, and finally moves the heads on

the tapes according d1, . . . , dℓ+2
. More specifically,← indicates a move to the left,→ a move to the right, and finally, ⊔ indicates that the

head does not move.

We assume that ∆ is defined such that it ensures that on none of the tapes, heads can move beyond the leftmost marker ▷. Furthermore,

the tapes R1, . . . ,Rℓ are treated as read-only and the heads on these tapes cannot move beyond the end markers ◁. Similarly, ∆ ensures that

the output tapeO is write only, i.e., its head cannot move to the left. We also assume that ∆ does not change the occurrences of ▷ or writes ◁
on the work and output tape.

A configuration of T is defined in the usual way. That is, a configuration of the input tapes is of the form ▷w1qw2◁ with w1,w2 ∈ Σ
∗

and represents that the current tape content is ▷w1w2◁, T is in state q and the head is positioned on the first symbol of w2. Similarly,

configurations of the work and output tape are represented by ▷w1qw2. A configuration ofT is consists of configurations for all tapes. Given

two configurations c1 and c2, we say that c1 yields c2 if c2 is the result of applying the transition function ∆ of T based on the information in

c1. As usual, we close this “yields” relation transitively.

Given ℓ input wordsw1, . . . ,wℓ ∈ Σ
∗
, we assume that the initial configuration ofT is given by

(
q0▷w1◁,q0▷w2◁, . . . ,q0▷wℓ◁,q0▷,q0▷

)
and an accepting configuration is assumed to be of the form

(
▷qmw1◁,▷qmw2◁, . . . ,▷qmwℓ◁,▷qm ,▷qmw

)
for somew ∈ Σ∗. We say thatT

computes the function f : (Σ∗)ℓ → Σ∗ if for everyw1, . . . ,wℓ ∈ Σ
∗
, the initial configuration yields (transitively) an accepting configuration

such that the configuration on the output tape is given by ▷qm f (w1, . . . ,wℓ).

We assume that onceT reaches an accepting configuration it stays indefinitely in that configuration (i.e., it loops). We further assume that

T only reaches an accepting configuration when all its input words have the same size. Furthermore, when all inputs have the same size, T
will reach an accepting configuration.

We say that T is a linear space machine when it reaches an accepting configuration on inputs of size n by using O(n) space on its work

tape and additionally needs O(nk ) steps to do so. A linear input-output function is a function of the form f =
⋃
n≥0

fn : (Σn )ℓ → Σn . In
other words, for every ℓ words of the same size n, f returns a word of size n. We say that a linear input-output function is a linear space
input-output function if there exists a linear space machine T that for every n ≥ 0, on inputw1, . . . ,wℓ ∈ Σ

n
the TM T has fn (w1, . . . ,wℓ)

on its the output tape when (necessarily) reaching an accepting configuration.
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Proposition D.1. Let f =
⋃
n≥0

fn : (Σn )ℓ → Σn be a linear space input-ouput function computed by a linear space machine T withm
states, ℓ input tapes, which consumes O(n) space and runs in O(nk−1) time on inputs of size n. There exists (i) aMATLANG schema S = (M, size)
whereM consists matrix variables4 Q1, . . . ,Qm ,R1, . . . ,Rℓ ,H1, . . . ,Hℓ ,W1, . . . ,Ws ,HW1

, . . . ,HWs ,O,HO ,v1, . . . ,vk with size(V ) = α × 1

for all V ∈ M; and (ii) aMATLANG expression ef over S such that for the instance I = (D,mat) over S with D(α) = n and

mat(Ri ) = vec(wi ) ∈ R
n , for i ∈ [ℓ] and all other matrix variables instantiated with the zero vector in Rn

for wordsw1, . . . ,wℓ ∈ Σ
n and such that vec(wi ) is the n × 1-vector encoding the wordwi , we have that mat(O) = vec(fn (w1, . . . ,wn )) ∈ R

n

after evaluating ef on I.

Proof. The expression ef we construct will simulate the TM T . To have some more control on the space and time consumption of T , let

us first assume that n is large enough, say larger than n ≥ N , such that T runs in sn space and cnk−1 ≤ nk time for constants s and c . We

deal with n < N later on.

To simulate T we need to encode states, tapes and head positions. The matrix variables inM mentioned in the proposition will take these

roles. More specifically, the variables R1, . . . ,Rℓ will hold the input vectors,W1, . . . ,Ws will hold the contents of the work tape, where s is
the constant mentioned earlier, and O will hold the contents of the output tape. The vectors corresponding to the work and output tape are

initially set to the zero vector. The vector for the input tape Ri is set to vec(wi ), for i ∈ [ℓ].
With each tape we associate a matrix variable encoding the position of the head. More specifically, H1, . . . ,Hℓ correspond to the input

tape heads, HW1
, . . . ,HWs are the heads for the work tape, and HO is the head of the output tape. All these vectors are initialised with the

zero vector. Later on, these vectors will be zero except for a single position, indicating the positions in the corresponding tapes the heads

point to. For those positions j, 1 < j < n, the head vectors will carry value 1. When j = 1 or n and when it concerns positions for the input

tape, the head vectors can carry value 1 or 2. We need to treat these border cases separately because we only have n positions available to

store the input words, whereas the actual input tapes consist of n + 2 symbols because of ▷ and ◁. So when, for example, H1 has a 1 in its

first entry, we interpret it as the head is pointing to the first symbol of the input wordw1. When H1 has a 2 in its first position, we interpret

it as the head pointing to ▷. The end marker ◁ is dealt with in the same way, by using value 1 or 2 in the last position of H1. We use this

encoding for all input tapes, and also for the work tapeW1 and output tape O with the exception that no end marker ◁ is present.

To encode the states, we use the variables Q1, . . . ,Qm . We will ensure that when T is in state qi when mat(Qi ) = [1, 0, . . . , 0]
T ∈ Rn ,

otherwise mat(Qi ) is the zero vector in Rn .
Finally, the variablesv1, . . . ,vk represent k canonical vectors which are used to iterate in for-loops. By iterating over then, we can perform

nk iterations, which suffices for simulating the O(nk−1) steps used by T to reach an accepting configuration.

With these matrix variables in place, we start by defining ef . It will consists of two subexpressions e
≥N
f , for dealing with n ≥ N , and e<Nf ,

for dealing with n < N . We explain the expression e≥Nf first.

In our expressions we use subexpressions which we defined before in section B.1. These subexpression require some auxiliary variables,

as detailed below. As a consequence, ef will be an expressions defined over an extended schema S′. Hence, the instance I in the statement

of the Proposition is an instance I ′ of S′ which coincides with I on S and in which the auxiliary matrix variables are all instantiated with

zero vectors or matrices, depending on their size.

Now, we specify the finite auxiliary variables involved in the for-MATLANG expression. These arise when computing the following

for-MATLANG expressions defined

• ePrev(z,Z , z
′,Z ′), and expression over auxiliary variables z, z′, Z and Z ′ with size(z) = size(z′) = size(Z ) = α × 1 and size(Z ′) = α ×α .

On input I ′ with mat(z) = mat(z′) = mat(Z ) the zero column vector of dimension n, and mat(Z ′) the zero n × n matrix, ⟦ePrev⟧(I ′)
returns the n × n matrix Prev such that

Prev · ei :=

{
ei−1 if i > 1

0 if i = 1.

• eNext(z,Z , z
′,Z ′), and expression over auxiliary variables z, z′, Z and Z ′ with size(z) = size(z′) = size(Z ) = α × 1 and size(Z ′) = α ×α .

On input I ′ with mat(z) = mat(z′) = mat(Z ) the zero column vector of dimension n, and mat(Z ′) the zero n × n matrix, ⟦eNext⟧(I ′)
returns the n × n matrix Next such that

Next · ei :=

{
ei+1 if i < n

0 if i = n.

• min(v, z,Z , z′,Z ) with auxiliary variables z, z′, Z and Z ′ as before, and v is one of the (vector) variables inM. For an n × 1 vector v,
on input I ′[v ← v]

⟦min⟧(I ′[v ← v]) :=

{
1 if v = e1

0 otherwise.

4
We also need a finite number of auxiliary variables, these will be specified in the proof.
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• max(v, z,Z , z′,Z ) with auxiliary variables z, z′, Z and Z ′ as before, and and v is one of the (vector) variables inM. For an n × 1 vector

v, on input I ′[v ← v]

⟦max⟧(I ′[v ← v]) :=

{
1 if v = en
0 otherwise.

• emin(z,Z , z
′,Z ′, z′′,Z ′′), an expressions with auxiliary variables z, z′, z′′, Z , Z ′ and Z ′′ with size(z) = size(z′) = size(z′′) = size(Z ) =

size(Z ′′) = α × 1 and size(Z ′) = α × α . On input I ′ with matrix variables instantiated with zero vectors (or matrix for Z ′),
⟦emin⟧(I ′) = e1.

• emax(z,Z , z
′,Z ′, z′′,Z ′′), an expressions with auxiliary variables z, z′, z′′, Z , Z ′ and Z ′′ with size(z) = size(z′) = size(z′′) = size(Z ) =

size(Z ′′) = α × 1 and size(Z ′) = α × α . On input I ′ with matrix variables instantiated with zero vectors (or matrix for Z ′),
⟦emax⟧(I ′) = en .

We thus see that we only need z, z′, z′′,Z ,Z ′,Z ′′ as auxiliary variables and these can be re-used whenever ef calls these functions. From

now one, we omit the auxiliary variables from the description of ef .

Let us first define e≥Nf . Since we want to simulate T we need to be able to check which transitions of T can be applied based on a current

configuration. More precisely, suppose that we want to check whether δ (qi , (a1, . . . ,aℓ ,b, c)) is applicable, then we need to check whetherT
is in state qi , we can do this by checking min(Qi ), and whether the heads on the tapes read symbols a1, . . . ,aℓ ,b, c . We check the latter by

the following expressions. For the input tape Ri we define

test_inpib :=


(1 −min(1/2 · Hi )) · (1 −max(1/2 · Hi )) · (1 − R

T
i · Hi ) if b = 0

(1 −min(1/2 · Hi )) · (1 −max(1/2 · Hi )) · (R
T
i · Hi ) if b = 1

min(1/2 · Hi ) if b = ▷

max(1/2 · Hi ) if b = ◁,

which returns 1 if and only if either b ∈ {0, 1} is the value in mat(Ri ) at the position encoded by mat(Hi ), or when b = ▷ and mat(Hi ) is the

vector (2, 0, . . . , 0) ∈ Rn , or when b = ◁ and mat(Hi ) is the vector (0, 0, . . . , 2) ∈ R
n
. Similarly, for the output tape we define

test_outb :=


(1 −min(1/2 · HO )) · (1 −O

T · HO ) if b = 0

(1 −min(1/2 · HO )) · (O
T · HO ) if b = 1

min(1/2 · HO ) if b = ▷,

and for the work tapesW1, . . . ,Ws we define

test_workib :=


(1 −min(1/2 · HWi )) · (1 −W

T
i · HWi )) if b = 0

(1 −min(1/2 · HWi )) · (W
T
i · HWi ) if b = 1

min(1/2 · HWi ) if b = ▷ and i = 1.

We then combine all these expressions into a single expression for qi ∈ Q , a1, . . . ,aℓ ,b, c ∈ Γ:

isconfqi ,a1, ...,aℓ,b,c := min(Qi ) ·
©«

ℓ∏
j=1

test_inpjaj
ª®¬ · ©«

s∑
j=1

test_workjb
ª®¬ · test_outc .

This expression will return 1 if and only if the vectors representing the tapes, head positions and states are such that Qi is the first canonical

vector (and thusT is in state qi ), the heads point to entries in the tape vectors storing the symbols a1, . . . ,aℓ ,b, c or they point to the first (or

last for input tapes) positions but have value 2 (when the symbols are ▷ or ◁).
To ensure that at the beginning of the simulation ofT by e≥Nf we correctly encode that we are in the initial configuration, we thus need to

initialise all vectors mat(H1),mat(H2), . . . ,mat(Hℓ),mat(HW1
),mat(HO ) with the vector (2, 0, 0, . . . , 0) ∈ R since all heads read the symbol

▷. Similarly, we have to initialise Q1 with the first canonical vector since T is in state q0.

We furthermore need to be able to correctly adjust head positions. We do this by means of the predecessor and successor expressions

described above. A consequence of our encoding is that we need to treat the border cases (corresponding to ▷ and ◁) differently. More

specifically, for the input tapes Ri and heads Hi we define

move_inpid :=


2 ×min(Hi ) × Hi + 1/2 ×max(1/2 × Hi ) × Hi + (1 −min(Hi ))(1 −max(1/2 × Hi )) × ePrev · Hi if d =←

2 ×max(Hi ) × Hi + 1/2 ×min(1/2 × Hi ) × Hi + (1 −min(1/2 × Hi ))(1 −max(Hi )) × eNext · Hi if d =→

Hi if d = ⊔.

In other words, we shift to the previous (or next) canonical vector when d is← or→, respectively, unless we need to move to or from the

position that will hold ▷ or ◁. In those case we readjust mat(Hi ) (which will either (1, 0, . . . , 0), (2, 0, . . . , 0), (0, . . . , 0, 1) or (0, . . . , 0, 2)) by
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either dividing or multiplying with 2. In this way we can correctly infer whether or not the head points to the begin and end markers. For

the output tape we proceed in a similar way, but only taking into account the begin marker and recall that we do not have moves to the left:

move_outpd :=

{
1/2 ×min(1/2 × HO ) × HO + (1 −min(1/2 × HO )) × eNext × HO if d =→

HO if d = ⊔.

Since we represent the work tape by s vectorsW1, . . . ,Ws we need to ensure that only one of the head vectors HWi has a non-zero value and

that by moving left or right, we need to appropriately update the right head vector. We do this as follows. We first consider the work tapes

Wi for i , 1, s and define

move_workid :=


−min(HWi ) × HWi + (1 −min(HWi )) × ePrev · HWi +min(HWi+1

) × emax if d =←

−max(HWi ) × HWi + (1 −max(HWi )) × eNext · HWi +max(HWi−1
) × emin if d =→

HWi if d = ⊔.

In other words, we set the HWi to zero when a move brings us to eitherWi−1 orWi+1, we move the successor or predecessor when staying

withinWi , or initialise HWi with the first or last canonical vector when moving fromWi−1 toWi (right move) or fromWi+1 toWi (left move).

For i = s we can ignore the parts in the previous expression that involveWs+1 (which does not exist):

move_worksd :=


−min(HWs ) × HWi + (1 −min(HWs )) × ePrev · HWs if d =←

−max(HWs ) × HWs + (1 −max(HWs )) × eNext · HWs +max(HWs−1
) × emin if d =→

HWs if d = ⊔.

For i = 1, we can ignore the part involvingW0 (which does not exist) but have to take ▷ into account:

move_work1

d :=


2 ×min(HW1

) × HWi + (1 −min(HW1
)) × ePrev · HW1

+min(HW2
) × emax if d =←

1/2 ×min(1/2 × HW1
) × HW1

+ (1 −max(1/2 × HW1
)) × eNext · HW1

if d =→

HW1
if d = ⊔.

A final ingredient for defining e≥Nf are expressions which update the work and output tape. To define these expression, we need the position

and symbol to put on the tape. For the output tape we define

write_outpb :=


min(1/2 × HO ) ×O if b = ▷

(1 −min(1/2 × HO )) ×
(
(1 −OT · HO ) ×O + (O

T · HO ) × (O − HO )
)

if b = 0

(1 −min(1/2 × HO )) ×
(
(1 −OT · HO ) × (O + HO ) + (O

T · HO ) ×O
)

if b = 1

and similarly for the work tapes i , 1:

write_workib :=


Wi if b = ▷

(1 −WT
i · HWi ) ×Wi + (W

T
i · HWi ) × (Wi − HWi ) if b = 0

(1 −WT
i · HWi ) × (Wi + HWi ) + (W

T
i · HWi ) ×Wi if b = 1,

and forW1 we have to take care again of the begin marker:

write_work1

b :=


min(1/2 × HW1

) ×W1 if b = ▷

(1 −min(1/2 × HW1
) ×

(
(1 −WT

1
· HW1

) ×W1 + (W
T
1
· HW1

) × (W1 − HW1
)

)
if b = 0

(1 −min(1/2 × HW1
) ×

(
(1 −WT

1
· HW1

) × (W1 + HW1
) + (WT

1
· HW1

) ×W1

)
if b = 1.

We are now finally ready to define e≥Nf :

e≥Nf := forv1, . . . ,vk ,Q1, . . . ,Qm ,H1, . . . ,Hℓ ,W1, . . . ,Ws ,HW1
, . . . ,HWs ,O,HO .

(eQ1
, . . . , eQm , eH1

, . . . , eHℓ
, eW1
, . . . , eWs , eHW

1

, . . . , eHWs
, eO , eHO ).
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We refer to section A.1 for the definition of this form of the for-loop. The expressions used are (we use⋆ below to mark irrelevant information

in the transitions):

eQ1
:=

©«
k∏
j=1

min(vi )
ª®¬ × emin +

∑
(qi ,a1, ...,aℓ,b,c)

∆(qi ,a1, ...,aℓ,b,c)=(q1,⋆)

isconfqi ,a1, ...,aℓ,b,c × emin

eQ j :=
∑

(qi ,a1, ...,aℓ,b,c)
∆(qi ,a1, ...,aℓ,b,c)=(qj ,⋆)

isconfqi ,a1, ...,aℓ,b,c × emin for j , 1

eHi := 2

©«
k∏
j=1

min(vi )
ª®¬ × emin +

∑
(q,a1, ...,aℓ,b,d )

∆(q,a1, ...,aℓ,b,c)=(⋆,di,⋆)

isconfq,a1, ...,aℓ,b,c ×move_inpidi

eHWi
:= 2

©«
k∏
j=1

min(vi )
ª®¬ × emin +

∑
(q,a1, ...,aℓ,b,d )

∆(q,a1, ...,aℓ,b,c)=(⋆,dℓ+1,⋆)

isconfq,a1, ...,aℓ,b,c ×move_workidℓ+1

eHO := 2

©«
k∏
j=1

min(vi )
ª®¬ × emin +

∑
(q,a1, ...,aℓ,b,d )

∆(q,a1, ...,aℓ,b,c)=(⋆,dℓ+2)

isconfq,a1, ...,aℓ,b,c ×move_outpdℓ+2

eWi :=
∑

(q,a1, ...,aℓ,b,d )
∆(q,a1, ...,aℓ,b,c)=(⋆,b′,c ′,⋆)

isconfq,a1, ...,aℓ,b,c × write_work
i
b′

eO :=
∑

(q,a1, ...,aℓ,b,d )
∆(q,a1, ...,aℓ,b,c)=(⋆,b′,c ′,⋆)

isconfq,a1, ...,aℓ,b,c × write_outpc ′ .

The correctness of e≥Nf should be clear from the construction (one can formally verify this by induction on the number of iterations). We

next explain how the border cases n < N can be dealt with. For each n < N and every possible input wordsw1, . . . ,wℓ of size n, we define a
for-MATLANG expression which checks whether mat(Ri ) = vec(wi ) for each i ∈ [ℓ]. This can be easily done since n can be regarded as a

constant. For example, to check whether mat(Ri ) = [0, 1, 1]T we simply write

(1 − RTi · emin) × (R
T
i · eNext · emin) × (1 − R

T
i · eNext · eNext · emin) × (1 − e1(Ri )

T · eNext · eNext · eNext · emin)

which will evaluate to 1 if and only if mat(Ri ) = [0, 1, 1]T . We note that the final factor is in place to check that the dimension of mat(Ri ) is
three. We denote by ein,w the expression which evaluates to 1 if and only if mat(Ri ) = vec(w) for |w | = n. We can similarly write any word

w of fixed size in the matrix variable O . For example, suppose thatw = 101 then we write

O + emin + eNext · eNext · emin.

We write en,w be the expression which writew of size |w | = n in matrix variable O . Then, the expressions

en,w1, ...,wn,w := e1

n,w1

· · · · · eℓnwℓ
· en,w

will write w in O if and only if mat(Ri ) = vec(wi ) for i ∈ [ℓ]. We now simply take the disjunction over all words w1, . . . ,wℓ ∈ Σn and

w = fn (w1, . . . ,wℓ) ∈ Σ
n
:

en :=
∑

w1, ...,wℓ ∈Σn
en,w1, ...,wℓ,fn (w1, ...,wℓ )

,

which correctly evaluates fn . We next take a further disjunction by letting ranging from n = 0, . . . ,N − 1:

e<Nf :=

N−1∑
n=0

en

Since every possible input is covered and only a unique expression en,w1, ...,wℓ,fn (w1, ...,wℓ )
will be triggered e<Nf will correctly evaluate f

on inputs smaller than N .

Our final expression ef is now given by

ef := e<Nf + dim_is_greater_thanN × e
≥N
f
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where dim_is_greater_thanN is the expression e1(Ri )
T · eNext · · · · · eNext︸               ︷︷               ︸

N times

which will evaluate to 1 if an only if the input dimension is larger

or equal than N . □

D.2 Circuit evaluation

We prove theorem 5.1:

Theorem 5.1. For any uniform arithmetic circuit family {Φn | n = 1, 2, . . .} of logarithmic depth there is a for-MATLANG schema S and an
expression eΦ using a matrix variable v , with typeS(v) = (α , 1) and typeS(e) = (1, 1), such that for any input a1, . . . ,an to the circuit Φn :

• If I = (D, mat) is a MATLANG instance such that D(α) = n and mat(v) = [a1 . . . an ]
T

• Then ⟦e⟧(I) = Φn (a1, . . . ,an ).

Proof. Let Φn be a circuit with n input gates and such that it can be computed by a L−uniform arithmetic circuit of log-depth. Each gate

of the circuit that encodes f has an id ∈ {0, 1}n . From now on, when we write д for a gate of the circuit, we mean the id encoding д. Let nk

be a polynomial such that the number of wiresW (n) ≤ nk for n big enough. Further, we assume that 2W (n) ≤ nk . We need this because the

for-matlang simulation of the circuit is in a depth first search way, so 2W (n) wires will be traversed. Then we have that:

• the number of gates is bounded by nk .
• we need at most k log(n) bits to store the id of a gate.

• the depth of the circuit is at most k ′ log(n) for some k ′.

So, let n0 and k such that ∀n ≥ n0 :

2W (n) ≤ nk

k ⌈log(n)⌉ ≤ n − 3

k ′⌈log(n)⌉ ≤ n

 (⋆)
We know n0 and k exist. Let n ≥ n0. Towards the end, we will deal with the case when n < n0.

Let д be a gate. The children of д are denoted by д1, . . . ,дl .

д

д1 · · · дl

For example, a circuit that encodes the function f (a1,a2,a3,a4) = a1a2 + a3a4 is

+

×

a1 a2

×

a3 a4

We can simulate the polynomial x2 + xy by doing f (A) where A = [x x x y]T . The main idea is to traverse the circuit top down in a

depth first search way and store visited gates in a stack and its corresponding current values in another stack, and aggregate in the iterations

according to the gate type.

For a stack S , the operations are standard:

• S.push(s): pushes s into S .
• S.pop: pops the top element.

• S.size: the length of the stack.

• S.top: the top element in the stack.
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For the pseudo-code, G andV denote stacks of gates and values, respectively. The property that holds during the simulation is that the

value inV[i] is the value that G[i] currently outputs. The algorithm ends with G = [дroot] andV = [vroot] after traversing the circuit, and

returns vroot
During the evaluation algorithm there will be two possible configurations of G andV .

(1) G.size = V.size + 1: this means that G.top is a gate that we visit for the first time and we need to initialize its value.

(2) G.size = V.size: here V.top is the value of evaluating the circuit in gate G.top. Therefore, we need to aggregate the value

V.top to the parent gate of д.

We assume the circuit has input gates, +,×-gates and allow constant 1-gate.

The idea is to traverse the circuit top down in a depth first search way. For example, in the circuit f (a1,a2,a3,a4) = a1a2 + a3a4 above,

we would initialize the output gate value as 0 because it is a + gate, so G = {+},V = {0}. Then stack the left × gate to G, stack its initial

value (i.e. 1) toV . Now stack a1 to G and its value (i.e. a1) toV . Since we are on an input gate we pop the gate and value pair off of G and

V respectively, aggregate a1 toV.top and continue by stacking the a2 gate to G. We pop a2 off ofV (and its gate off of G) and aggregate

its value toV.top. We pop and aggregate the value of the left × gate toV.top (the root value). Then continue with the right × gate branch

similarly.

For the pseudo-code, we supply ourselves with the following functions:

– isplus (д): true if and only if д is a +-gate.

– isprod (д): true if and only if д is a ×-gate.

– isone (д): true if and only if д is a 1-gate.

– isinput (д): true if and only if д is an input gate.

– getfirst (д): outputs the first child of д.
– getinput (д): outputs A[i] when д is the i-th input.

– not_last (д1,д2): true if and only if д2 is not the last child gate of д1.

– next_gate (д1,д2): outputs the next child gate of д1 after д2.

– getroot(): outputs the root gate of the circuit.

The corresponding {0, 1}n → {0, 1}n functions are:

– isplus (д): 1 if and only if д is a +-gate.

– isprod (д): 1 if and only if д is a ×-gate.

– isone (д): 1 if and only if д is a 1-gate.

– isinput (д): 1 if and only if д is an input gate.

– getfirst (д): outputs the id of the first child of д.
– getinput (д): outputs canonical vector bi , where the i-th input gate of Φn is encoded by д.
– not_last (д1,д2): 1 if and only if д2 is not the last child gate of д1.

– next_gate (д1,д2): outputs the id of the next child gate of д1 after д2.

– getroot(): outputs the id of the root gate of the circuit.

The previous functions are all definable by an L-transducer and can be defined from the L-transducer of f . Then, by proposition D.1, for

each of these functions there is a for-MATLANG expression that simulates them.

Now, we give the pseudo-code of the top-down evaluation. We define the functions Initialize (algorithm 1), Aддreдate (algorithm 2) and

Evaluate (algorithm 3). The main algorithm is Evaluate .

Algorithm 1 Initialize (pseudo-code)

1: function Initialize(G,V,A) ▷ The stacks and input. Here, G.size = V.size + 1

2: if isplus (G.top) then
3: V.push(0)
4: G.push(getfirst (G.top))
5: else if isprod (G.top) then
6: V.push(1)
7: G.push(getfirst (G.top))
8: else if isone (G.top) then
9: V.push(1)
10: else if isinput (G.top) then
11: V.push(A [getinput (G.top)])

12: return G,V
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Algorithm 2 Aggregate (pseudo-code)

1: function Aggregate(G,V) ▷ Here, G.size = V.size
2: д = G.pop
3: v = V.pop
4: if isplus (G.top) then
5: V.top = V.top +v
6: else if isprod (G.top) then
7: V.top = V.top · v

8: if not_last (G.top,д) then
9: G.push(next_gate (G.top,д))

10: return G,V

Algorithm 3 Evaluate (pseudo-code)

1: function Evaluate(A) ▷ Input n × 1 vector A. Here, G andV are empty

2: G.push(getroot())
3: while G.size , 1 orV.size , 1 do

4: if G.size , V .size then
5: (G,V) := Initialize(G,V,A)
6: else

7: (G,V) := Aggregate(G,V)

8: returnV.top

The Evaluate algorithm gives us the output of the circuit. Note that after each iteration it either holds that G.size = V.size + 1 or

G.size = V.size. Furthermore, when we start we have G.size = 1 andV.size = 0. The condition G.size = 1 andV.size = 1 holds

only when we have traversed all the circuit, and the value inV.top is the value that the root of the circuit outputs after its computation.

Next, we show how to encode this algorithm in for-MATLANG.

Let n0 ∈ N be big enough for (⋆) to hold and let n ≥ k . Hence, the number of gates (values) is bounded by nk and we need k log(n) bits to
encode the id of each gate.

To simulate the two stacks G andV we keep a matrix X of dimensions n × n.

• Column n will store a canonical vector that marks the top of stack V (values).

• Column n − 1 will store a canonical vector that marks the top of stack G (gates).

• Column n − 2 is the stack of values where X [1,n − 2] is the bottom of the stack.

• Columns 1 to n − 3 are the stack of gates.

If we have j gates in the stack and currently G.size = V.size then X would look like:

X =



id1 v1 0 0

id2 v2 0 0

...
...
...
...

idj vj 1 1

0 0 0 0

...
...
...
...

0 0 0 0


.

Since n ≥ n0, (⋆) holds and thus we never use more than n − 3 bits to encode an id. Also, j ≤ n given that we never keep more gates than

the depth of the tree. As a consequence, we never keep more than n values either.

An important detail is that the ids of the gates are encoded as idr 000 for it to have dimension n, where idr is the corresponding binary

number in reverse.

We make a series of definitions to make the notation more clear. Refer to section B.1 for more information about these expressions.

Let bi be the i-th canonical vector. Next and Prev denote the successor and predecessor matrices respectively, such that

Next · bi =

{
bi+1 if i ≤ n

0 otherwise
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Prev · bi =

{
bi−1 if i ≥ n

0 otherwise

We write expressions emin for the first canonical vector and emax for the last canonical vector. For any i we write

emin+i = Nexti · emin

emax+i = Previ · emax

We use the extra {0, 1}n → {0, 1}n functions that have a for-MATLANG translation:

min(e) =

{
1 if e = emin

0 otherwise

max(e) =

{
1 if e = emax

0 otherwise

succ(bi ,bj ) =

{
1 if i ≤ j

0 otherwise

When used in for-MATLANG these functions output [0] and [1].
Now

eV := emax−2

eGtop := emax−1

eVtop := emax

For a canonical vector, let

Iden(bi ) := Σv .succ(v,bi ) · (v · vT ).

This matrix has ones in the diagonal up to position i marked by ei . We define the following sub-matrices of X :

Vtop := X · eVtop

V := Iden(Vtop ) · X · eV

Gtop := X · eGtop

G := Iden(Gtop ) · X · Iden(emax−3)

For example, if we are in a step where G.size = V.size + 1 then

X =



id1 v1 0 0

id2 v2 0 0

...
...

...
...

idj−1 vj−1 0 1

idj 0 1 0

0 0 0 0

...
...

...
...

0 0 0 0


,G =



id1 0 0 0

id2 0 0 0

...
...
...
...

idj−1 0 0 0

idj 0 0 0

0 0 0 0

...
...
...
...

0 0 0 0


,V =



v1

v2

...

vj−1

0

0

...

0


,Gtop =



0

0

...

0

1

0

...

0


,Vtop =



0

0

...

1

0

0

...

0


Here, V is a vector encoding the stack of values in X and G is a matrix encoding the stack of gates in X . Note that what is over the top of

the stacks is always set to zero due to Iden(Gtop ) and Iden(Vtop ). Also, note that G is of the same size as X . We sometimes omit the zeroes

due to simplicity.

To set the initial state (algorithm 3 line 2) we define the for-MATLANG expression:

START := emin · getroot()
T + emin · e

T
Gtop
.

For the initialize step, we define the for-MATLANG expressions: INIT_PLUS (algorithm 1, lines 2, 3, 4), INIT_PROD (algorithm 1, lines 5, 6, 7),

CONST (algorithm 1, lines 8, 9) and INPUT (algorithm 1, lines 10, 11):
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INIT_PLUS := isplus
(
GT ·Gtop

)
×

[
G + (Next ·Gtop ) · getfirst

(
GT ·Gtop

)T
+ Next ·Gtop · e

T
Gtop

+V · eTV + Next ·Vtop · e
T
Vtop

]
INIT_PROD := isprod

(
GT ·Gtop

)
×

[
G + (Next ·Gtop ) · getfirst

(
GT ·Gtop

)T
+ Next ·Gtop · e

T
Gtop

+ (V + Next · vtop ) · eTV + Next ·Vtop · e
T
Vtop

]
CONST := isone

(
GT ·Gtop

)
×

[
G + (V + Next ·Vtop ) · eTV + Next ·Vtop · e

T
Vtop

]
INPUT := isinput

(
GT ·Gtop

)
×

[
G +

(
V +

(
vT · Next ·Vtop · getinput

(
GT ·Gtop

)T ))
· eTV + Next ·Vtop · e

T
Vtop

]
Where v is the matrix variable stated in the theorem, the one associated with the input A of the circuit. Here, GT ·Gtop is to get the current

id in the top of the stack. In INIT_PLUS we get the current stack G, we add Next ·Gtop · getfirst
(
GT ·Gtop

)T
which is an n × n matrix

with the first child ofGT ·Gtop in the next row. Then Next ·Gtop · e
T
Gtop

adds Next ·Gtop to the n − 1 column to mark the gate we added as

the top. Next, we do the same with the values by adding V · eV + Next ·Vtop · eTVtop .

The for-MATLANG expression equivalent to algorithm 1 is

INIT := INIT_PLUS + INIT_PROD + CONST + INPUT.

The idea is to return the matrix for the next iteration. Recall that here G.size = V.size+ 1. So, when the operation is INPUT or CONST,

if we start with



id1 v1 0 0

id2 v2 0 0

...
...

...
...

idj−1 vj−1 0 1

idj 0 1 0

0 0 0 0

...
...

...
...

0 0 0 0


, then we return



id1 v1 0 0

id2 v2 0 0

...
...

...
...

idj−1 vj−1 0 0

idj vj 1 1

0 0 0 0

...
...

...
...

0 0 0 0


.

When the operation is INIT_PLUS or INIT_PROD, if we start with



id1 v1 0 0

id2 v2 0 0

...
...

...
...

idj−1 vj−1 0 1

idj 0 1 0

0 0 0 0

0 0 0 0

...
...

...
...

0 0 0 0



, then we return



id1 v1 0 0

id2 v2 0 0

...
...

...
...

idj−1 vj−1 0 0

idj vj 0 1

idj+1 0 1 0

0 0 0 0

...
...

...
...

0 0 0 0



.

For the aggregate expression (algorithm 2) we do the following. Let

E [bi , c] = Σv .(vT · bi ) · c · v · v
T + (1 −vT · bi ) · v · v

T ,

namely, it is the identity with c in position (i, i).
We define the expressions: AGG_PLUS (algorithm 2, lines 4, 5), AGG_PROD (algorithm 2, lines 6, 7), IS_NOT_LAST (algorithm 2, lines 8,

9), IS_LAST and POP:
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POP := Iden(Prev ·Gtop ) ·G + Prev ·Vtop · eTVtop

AGG_PLUS := isplus
(
GT ·

(
P ·Gtop

) )
×

[(
Iden(Prev ·Vtop ) ·V +

(
VT ·Vtop

) (
Prev ·Vtop

) )
· eTV

]
AGG_PROD := isprod

(
GT ·

(
P ·Gtop

) )
×

[(
E
[
Prev ·Vtop ,VT ·Vtop

]
· Iden(Prev ·Vtop ) ·V

)
· eTV

]
IS_NOT_LAST := not_last

(
GT ·

(
P ·Gtop

)
,GT ·Gtop

)
×

[
Gtop · next_gate

(
GT ·

(
Prev ·Gtop

)
,GT ·Gtop

)T
+Gtop · e

T
Gtop

]
IS_LAST :=

(
1 − not_last

(
GT ·

(
P ·Gtop

)
,GT ·Gtop

))
×

[ (
Prev ·Gtop

)
· eTGtop

]
The for-MATLANG expression equivalent to algorithm 2 is

AGG := POP + AGG_PLUS + AGG_PROD + IS_NOT_LAST + IS_LAST.

The Evaluate method (algorithm 3) is defined as follows:

EVAL[v] =

eTmin ·
{
forX ,v1, . . . ,vk. :(

Πk
i=1

min(vi )
)
× START+(

1 − Πk
i=1

min(vi )
)
×

( (
1 −min(Gtop ) ·min(Vtop )

)
×

[(
1 −GT

top ·Vtop
)
× INIT +

(
GT
top ·Vtop

)
× AGG

]
+min(Gtop ) ×min(Vtop ) × X

)
}
· eV

Note that the for-expression does the evaluation. The final output is in X [1,max − 2], we extract this value by multiplying the final result

as eTmin · [for(. . .)] · eV .
Finally, we need to take care of all n < n0, where (⋆) does not necessarily hold. For any i , let:

Eval[i,A] := the 1 × 1 matrix with the value of the polynomial Φn (A) when n = i .

Then we define:

Φn (a1, . . . ,ai ) = Σn0−1

i=0

(
eTmin+i · (ediag(e1(v)) · emax)

)
× EVAL[i,v] +

(
(Nextn0 · emin)

T · e1(v)
)
× EVAL[v].

Above, (eTmin+i · emax) checks if the dimension is equal to i (we multiply by the n × n identity ediag(e1(v)) to ensure typing), and (Nextn0 ·

emin)
T · e1(emin) checks if the dimension is greater or equal than n0.

□

D.3 From MATLANG to uniform ACs

We consider circuits over matrices (multiple output gates). We will write Φ(A1, . . . ,Ak ), where Φ is an arithmetic circuit with multiple

output gates, and each Ai is a matrix of dimensions αi × βi , with αi , βi ∈ {n, 1} to denote the input matrices for a circuit Φ. We will also

write typeS(Φ) = (α , β), with α , β ∈ {n, 1}, to denote the size of the output matrix for Φ. When {Φn | n = 1, 2, . . .} is a uniform family of

arithmetic circuits over matrices, we will assume that the Turing machine for generating Φn also gives us the information about how to

access a position of each input matrix, and how to access the positions of the output matrix, as is usually done when handling matrices with

arithmetic circuits [29]. The notion of degree is extended to be the sum of the degrees of all the output gates. The former will be denoted as

Φn [i, j] when typeS(Φ) = (n,n), Φn [i, 1] when typeS(Φ) = (n, 1), Φn [1, j] when typeS(Φ) = (1,n) and Φn when typeS(Φ) = (1, 1). Also,
when we write a ⊕ b we mean

+

a b

When we write

⊕n
l=1

al we mean
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+

a1 · · · an

Same with ⊗. Now we prove the statement.

Theorem 5.3. Let e be a for-MATLANG expression over a schema S, and let V1, . . . ,Vk be the variables of e such that typeS(Vi ) ∈
{(α ,α), (α , 1), (1,α), (1, 1)}. Then there exists a uniform arithmetic circuit family over matrices Φn (A1, . . . ,Ak ) such that:

• For any instance I = (D, mat) such that D(α) = n and mat(Vi ) = Ai it holds that:
• ⟦e⟧(I) = Φn (A1, . . . ,Ak ).

Proof. Let e be a for-MATLANG expression.
If e = V then Φen := Φ(A), and we have that

• If typeS(V ) = (1, 1) then typeS(Φ
e
n ) = (1, 1) and Φen has the one input/output gate.

• If typeS(V ) = (1,α) then typeS(Φ
e
n ) = (1,n) and Φen has n input/output gates.

• If typeS(V ) = (α , 1) then typeS(Φ
e
n ) = (n, 1) and Φen has n input/output gates.

• If typeS(V ) = (α ,α) then typeS(Φ
e
n ) = (n,n) and Φen has n2

input/output gates.

If e = e ′T then Φen = Φe
′

n .

• If typeS(Φ
e ′
n ) = (1, 1) then Φen = Φe

′

n and type(Φen ) = (1, 1).

• If typeS(Φ
e ′
n ) = (1,n) then type(Φen ) = (n, 1) and Φen [i, 1] := Φe

′

n [1, i].

• If typeS(Φ
e ′
n ) = (n, 1) then type(Φen ) = (1,n) and Φen [1, j] := Φe

′

n [j, 1].

• If typeS(Φ
e ′
n ) = (n,n) then type(Φen ) = (n,n) and Φen [i, j] := Φe

′

n [j, i].

If e = 1(e ′) where typeS(Φe
′

n ) = (α , β) then typeS(Φ
e
n ) = (α , 1) and Φen [i, 1] := 1.

If e = e1 + e2 we have

• When typeS(Φ
e1

n ) = typeS(Φ
e2

n ) = (1, 1) then typeS(Φ
e
n ) = (1, 1) and Φen := Φe1

n ⊕ Φe2

n .

• When typeS(Φ
e1

n ) = typeS(Φ
e2

n ) = (1,n) then typeS(Φ
e
n ) = (1,n) and Φen [1, j] := Φe1

n [1, j] ⊕ Φe2

n [1, j].
• When typeS(Φ

e1

n ) = typeS(Φ
e2

n ) = (n, 1) then typeS(Φ
e
n ) = (n, 1) and Φen [i, 1] := Φe1

n [i, 1] ⊕ Φe2

n [i, 1].
• When typeS(Φ

e1

n ) = typeS(Φ
e2

n ) = (n,n) then typeS(Φ
e
n ) = (n,n) and Φen [i, j] := Φe1

n [i, j] ⊕ Φe2

n [i, j].

If e = f (e1, . . . , ek ) we have two cases

• When f is the function f⊙ (recall that this function is definable in MATLANG[∅] by Lemma A.1) then

– If typeS(Φ
e1

n ) = . . . = typeS(Φ
ek
n ) = (1, 1) then Φen :=

⊗k
l=1

Φ
el
n .

– If typeS(Φ
e1

n ) = . . . = typeS(Φ
ek
n ) = (1,n) then Φen [1, j] :=

⊗k
l=1

Φ
el
n [1, j].

– If typeS(Φ
e1

n ) = . . . = typeS(Φ
ek
n ) = (n, 1) then Φen [i, 1] :=

⊗k
l=1

Φ
el
n [i, 1].

– If typeS(Φ
e1

n ) = . . . = typeS(Φ
ek
n ) = (n,n) then Φen [i, j] :=

⊗k
l=1

Φ
el
n [i, j].

• When f is any function, we prove the case when typeS(Φ
e1

n ) = . . . = typeS(Φ
ek
n ) = (1, 1) (only case necessary, as discussed in

Appendix A.2). Here Φen is

f

Φe1

n · · · Φ
ek
n

Note that since for the context of this result we only consider for-MATLANG = MATLANG[∅], this case is not strictly necessary, modulo

for f⊙, f⊕ due to Lemma A.1. However, if we extend the circuits with the same functions allowed in for-MATLANG, then our inductive

construction still goes through, as just illustrated.

If e = e1 · e2 we have

• When typeS(Φ
e1

n ) = (1, 1) and typeS(Φ
e2

n ) = (1, 1) then typeS(Φ
e
n ) = (1, 1) and Φen := Φe1

n ⊗ Φe2

n .

• When typeS(Φ
e1

n ) = (1, 1) and typeS(Φ
e2

n ) = (1,n) then typeS(Φ
e
n ) = (1,n) and Φen [1, j] := Φe1

n ⊗ Φe2

n [1, j].
• When typeS(Φ

e1

n ) = (n, 1) and typeS(Φ
e2

n ) = (1, 1) then typeS(Φ
e
n ) = (n, 1) and Φen [i, 1] := Φe1

n [i, 1] ⊗ Φe2

n .

• When typeS(Φ
e1

n ) = (n, 1) and typeS(Φ
e2

n ) = (1,n) then typeS(Φ
e
n ) = (n,n) and Φen [i, j] := Φe1

n [i, 1] ⊗ Φe2

n [1, j].
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• When typeS(Φ
e1

n ) = (1,n) and typeS(Φ
e2

n ) = (n, 1) then typeS(Φ
e
n ) = (1, 1) and

Φen :=

n⊕
k=1

(
Φe1

n [1,k] ⊗ Φe2

n [k, 1]
)
.

• When typeS(Φ
e1

n ) = (1,n) and typeS(Φ
e2

n ) = (n,n) then typeS(Φ
e
n ) = (1,n) and

Φen [1, j] :=

n⊕
k=1

(
Φe1

n [1,k] ⊗ Φe2

n [k, j]
)
.

• When typeS(Φ
e1

n ) = (n,n) and typeS(Φ
e2

n ) = (n, 1) then typeS(Φ
e
n ) = (n, 1) and

Φen [i, 1] :=

n⊕
k=1

(
Φe1

n [i,k] ⊗ Φe2

n [k, 1]
)
.

• When typeS(Φ
e1

n ) = (n,n) and typeS(Φ
e2

n ) = (n,n) then typeS(Φ
e
n ) = (n,n) and

Φen [i, j] :=

n⊕
k=1

(
Φe1

n [i,k] ⊗ Φe2

n [k, j]
)
.

If e = forX ,v. e ′(X ,v), then define Φ0
as the zero matrix circuit typeS(Φ

0) = (1, 1) if typeS(Φ
e ′
n ) = (1, 1) and typeS(Φ

0) = (n,n) if

typeS(Φ
e ′
n ) = (n,n). Also, Φ

0 = 0 and Φ0[i, j] = 0 ∀i, j for each case respectively. Now for i = 1, . . . ,n, define Φvi as the circuit such that

typeS(Φ
vi ) = (n, 1) and Φvi [i, 1] := 1 and zero otherwise. Finally, define

Φen = Φe
′

n

(
Φe
′

n

(
· · ·

(
Φe
′

n

(
Φ0,Φv1

)
,Φv2

)
· · · ,Φvn−1

)
,Φvn

)
.

Note that every circuit adds a constant number of layers except when e = forX ,v. e ′(X ,v). This means that the depth still is polynomial.

When e = forX ,v. e ′(X ,v) we have that the depth of the circuit is n ·p(n), where the depth of e ′(X ,v) is p(n), so it also remains polynomial.

Here, we do not need to translate scalar multiplication because it can be simulated using the ones operator and f⊙ (see section A.2).

Finally, we remark that when composing the circuits the fact that uniformity is preserved (i.e. the resulting circuit can be generated

by a LOGSPACE machine) is proved analogously as when composing two LOGSPACE transducers [3]. The only more involved case is

treating for-loop construction, however, notice here that we only need to keep track of where we are in the evaluation (i.e. which vi we are
processing), and not of all the previous results, given that they update the resulting matrix in a fixed order.

□

D.4 Undecidability

Let e be a for-MATLANG expression over a matrix schema S = (M, size) and let V1, . . . ,Vk be the variables of e , each of type (α ,α),
(1,α), (α , 1) or (1, 1). We know from Theorem 5.3 that there exists a uniform arithmetic circuit family {Φn | n = 1, 2, . . .} such that

⟦e⟧(I) = Φn (A1, . . . ,Ak ) for any instance I such that D(α) = n and mat(Vi ) = Ai for i = 1, . . . ,k . We are interested in deciding whether

there exists such a uniform arithmetic circuit family {Φn | n = 1, 2, . . .} of polynomial degree, i.e., such that degree(Φn ) = O(p(n)) for some

polynomial p(x). If such a circuit family exists, we call e of polynomial degree.

Proposition 5.5. Given a for-MATLANG expression e over a schema S, it is undecidable to check whether e is of polynomial degree.

Proof. We show undecidability based on the following undecidable language:

{⟨M⟩ | M is a deterministic TM which halts on the empty input},

where ⟨M⟩ is some string encoding ofM . Consider a TMM described by (Q, Γ = {0, 1},q0,qm ,∆) with Q = {q1, . . . ,qm } its states, q1 being

the initial state and qm being the halting state, Γ is the tape alphabet, and ∆ is a transition function from Q × Γ → Q × Γ × {←,⊔,→}. The
simulation of linear space TM, as given in the proof of Proposition D.1 can be easily modified to any TM M provided that we limit the

execution ofM to exactly n steps. Let eM denote this expression. Similarly as in the linear space TM simulation, we have vector variables

Q1, . . . ,Qm encoding the states, a single relationT encoding the tape and relation HT encoding the position of the tape. When an instance I

assigns n to α , we have a tape of length n at our disposal. This suffices if we letM run for n steps. We further observe that all vector variables

can be assumed to be zero, initially. This is because we do not have input. So, let I0

n denote the instance which assigns vector variables to the

n-dimensional zero vector. Furthermore, by contrast to the linear space TM simulation, we use a single vector v (instead of k such vectors) to

simulate n steps ofM . Finally, we modify the expression given in the proof of Proposition D.1 such ⟦eM⟧(I0

n ) returns 1 ifM halts in at most

n steps, and 0 ifM did not halt yet after n steps.

As a consequence, whenM does not halt, ⟦eM⟧(I0

n ) = 0 for all n ≥ 0. WhenM halts, there will be an n such that ⟦eM⟧(I0

n ) = 1 It now

suffices to consider the for-MATLANG expression

dM := eM · eexp
31



where eexp = forv,X = 1(X )T · 1(X ).X · X such that eexp(I
0

n ) = n2
n
. Then, when M does not halt we can clearly compute dM with a

constant degree circuit “0” for any n, otherwise, the circuit needed will be of exponential degree for at least one n, simply because no

polynomial degree uniform circuit family can compute n2
n
. In other words, deciding whether dM has polynomial degree coincides with

deciding whetherM halts. □

E PROOFS OF SECTION 6

E.1 From sum-MATLANG to RA+K
We prove proposition 6.3.

Proposition 6.3. For each sum-MATLANG expression e over schema S such that S(e) = (α , β) with α , 1 , β , there exists a RA+K expression
Q(e) over relational schema Rel(S) such that Rel(S)(Q(e)) = {rowα , rowβ } and such that for any instance I over S,

⟦e⟧(I)i, j = ⟦Q(e)⟧Rel(I)(t)
for tuple t(rowα ) = i and t(colβ ) = j. Similarly for when e has schema S(e) = (α , 1), S(e) = (1, β) or S(e) = (1, 1), then Q(e) has schema
Rel(S)(Q(e)) = {rowα }, Rel(S)(Q(e)) = {colα }, or Rel(S)(Q(e)) = {}, respectively.

Proof. We start from a matrix schema S = (M, size), whereM ⊂ V is a finite set of matrix variables, and size : V 7→ Symb × Symb is

a function that maps each matrix variable to a pair of size symbols. On the relational side we have for each size symbol α ∈ Symb \ {1},
attributes α , rowα , and colα in A. We also reserve some special attributes γ1,γ2, . . . whose role will become clear shortly. For each V ∈ M
and α ∈ Symb we denote by RV and Rα its corresponding relation name, respectively.

Then, givenS we define the relational schema Rel(S) such that dom(Rel(S)) = {Rα | α ∈ Symb}∪{RV | V ∈ M} where Rel(S)(Rα ) = {α }
and for all V ∈ M:

Rel(S)(RV ) =


{rowα , colβ } if size(V ) = (α , β)

{rowα } if size(V ) = (α , 1)

{colβ } if size(V ) = (1, β)

{} if size(V ) = (1, 1).

Next, for a matrix instance I = (D, mat) over S, let V ∈ M with size(V ) = (α , β) and let mat(V ) be its corresponding K-matrix of

dimension D(α) × D(β). The K-instance in RA+K according to I is Rel(I) with data domain D = N \ {0}. For each V ∈ M we define

R
Rel(I)

V (t) := mat(V )i j whenever t(rowα ) = i ≤ D(α) and t(colβ ) = j ≤ D(β), and 0 otherwise. Also, for each α ∈ Symb we define

R
Rel(I)
α (t) := 1 whenever t(α) ≤ D(α), and 0 otherwise. If size(V ) = (α , 1) then R

Rel(I)

V (t) := mat(V )i1 whenever t(rowα ) = i ≤ D(α) and

0 otherwise. Similarly, if size(V ) = (1, β) then R
Rel(I)

V (t) := mat(V )1j whenever t(colβ ) = j ≤ D(β) and 0 otherwise. If size(V ) = (1, 1)

then R
Rel(I)

V (()) := mat(V )11.

Let e be a sum-MATLANG expression. In the following we need to distinguish between matrix variables v that occur in e as part of a

sub-expression Σv .(·), i.e., those variables that will be used to iterate over by means of canonical vectors, and those that are not. To make

this distinction clear, we use v1,v2, . . . for those “iterator” variables, and capital V for the other variables occurring in e . For simplicity, we

assume that each occurrence of Σ has its own iterator variable associated with it.

We define free (iterator) variables, as follows. free(V ) := ∅, free(v) := {v}, free(eT ) := free(e), free(e1 + e2) := free(e1) ∪ free(e2),

free(e1 · e2) := free(e1) ∪ free(e2), free(f⊙(e1, . . . , ek )) := free(e1) ∪ · · · ∪ free(ek ), and free(e = ΣV .e1) = free(e1) \ {v}. We will explicitly

denote the free variables in an expression e by writing e(v1, . . . ,vk ).
We now use the following induction hypotheses:

• If e(v1, . . . ,vk ) is of type (α , β) then there exists a RA+K expression Q such that Rel(S)(Q(e)) = {rowα , colβ ,γ1, . . . ,γk } and such that

⟦Q(e)⟧
Rel(I)(t) = ⟦e⟧(I[v1 ← bi1 , . . . ,vk ← bik ])i, j

for tuple t(rowα ) = i , t(colβ ) = j and t(γs ) = is for s = 1, . . . ,k .

• If e(v1, . . . ,vk ) is of type (α , 1) then there exists a RA+K expression Q such that Rel(S)(Q(e)) = {rowα ,γ1, . . . ,γk } and such that

⟦Q(e)⟧
Rel(I)(t) = ⟦e⟧(I[v1 ← bi1 , . . . ,vk ← bik ])i,1

for tuple t(rowα ) = i , and t(γs ) = is for s = 1, . . . ,k . And similarly for when e is type (1, β).
• If e(v1, . . . ,vk ) is of type (1, 1) then there exists a RA+K expression Q such that Rel(S)(Q(e)) = {γ1, . . . ,γk } and such that

⟦Q(e)⟧
Rel(I)(t) = ⟦e⟧(I[v1 ← bi1 , . . . ,vk ← bik ])1,1

for tuple t(γs ) = is for s = 1, . . . ,k .

Clearly, this suffices to show the proposition since we there consider expressions e for which free(e) = ∅, in which case the above statements

reduce to the one given in the proposition.
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The proof is by induction on the structure of sum-MATLANG expressions. In line with the simplifications in Section A.2, it suffices to

consider pointwise function application with f⊙ instead of scalar multiplication. (We also note that we can express the one-vector operator

in sum-MATLANG, so scalar multiplication can be expressed using f⊙ in sum-MATLANG).
Let e be a sum-MATLANG expression.

• If e = V then Q(e) := RV .
• If e = vp then Q(e) := σ{rowα ,γp }

(
ρrowα→α (Rα ) ▷◁ ργp→α (Rα )

)
when vp is of type (α , 1). It is here that we introduce the attribute γp

associated with iterator variable vp . We note that

⟦Q(vp )⟧Rel(I)(t) = ⟦vp⟧(I[vp ← bj ])i,1 = (bj )i,1

for t(rowα ) = i and t[γp ] = j . Indeed, (bj )i,1 = 1 if j = i and this holds when t(rowα ) = t[γp ] = j , and (bj )i,1 = 0 if j , i and this also

holds when t(rowα ) , t[γp ] = j.

• If e(v1, . . . ,vk ) = (e1(v1, . . . ,vk ))
T
with S(e1) = (α , β) then

Q(e) :=


ρ

rowα→colα ,colβ→rowβ

(
Q(e1)

)
if α , 1 , β ;

ρ
rowα→colα

(
Q(e1)

)
if α , 1 = β ;

ρ
colβ→rowβ

(
Q(e1)

)
if α = 1 , β ;

Q(e1) if α = 1 = β .

• If e = e1(v1, . . . ,vk ) + e2(v1, . . . ,vk ) with S(e1) = S(e2) = (α , β) then Q(e) := Q(e1) ∪Q(e2). We assume here that e1 and e2 have the

same free variables. This is without loss of generality. Indeed, as an example, suppose that we have e1(v1,v2) and e2(v2,v3). Then, we

can replace e1 by e1(v1,v2,v3) = (v
T
3
·v3) × e1(v1,v2) and similarly, e2 by e2(v1,v2,v3) = (v

T
1
·v1) × e2(v2,v3), where in addition we

replace scalar multiplication with its simulation using f⊙ and the ones vector, as mentioned earlier.

• If e = f⊙(e1, . . . , ek ) with S(ei ) = S(ej ) for all i, j ∈ [1,k], then Q(e) := Q(e1) Z · · · Z Q(ek ).
• If e = e1 · e2 with S(e1) = (α ,γ ) and S(e2) = (γ , β), we have two cases. If γ = 1 then Q(e) := Q(e1) Z Q(e2). If γ , 1 then

Q(e) := π{rowα ,colβ ,γ1, ...,γk }

(
ρC→colγ (Q(e1)) Z ρC→rowγ (Q(e2))

)
,

whenRel(S)(Q(e1)) = {rowα , colγ ,γ ′
1
, . . . ,γ ′

ℓ
}, Rel(S)(Q(e2)) = {rowγ , colβ ,γ

′′
1
, . . . ,γ ′′

ℓ
} and {γ1, . . . ,γk } = {γ

′
1
, . . . ,γ ′k ,γ

′′
1
, . . . ,γ ′′m }.

• If e(v1, . . . ,vp−1,vp+1, . . . ,vk ) = Σvp .e1(v1, . . . ,vk ) where S(e1) = (α , β) and S(V ) = (γ , 1). Then we do

Q(e) := π
Rel(S)(Q (e1))\{γp }Q(e1).

Indeed, by induction we know that

⟦Q(e1)⟧Rel(I)(t) = ⟦e⟧(I[v1 ← bi1 , . . . ,vk ← bik ])i, j

for tuple t(rowα ) = i , t(colβ ) = j and t(γs ) = is for s = 1, . . . ,k . Hence, for t(rowα ) = i , t(colβ ) = j and t(γs ) = is for s = 1, . . . ,k
and s , p,

⟦Q(e1)⟧Rel(I)(t) :=
⊕

ip=1, ...,D(γ )

⟦e1⟧(I[v1 ← bi1 , . . . ,vk ← bik ])i, j ,

which precisely corresponds to

⟦Σvp .e1(v1, . . . ,vk )⟧(I[v1 ← bi1 , . . . ,vp−1 ← bp−1,vp+1 ← bp+1, . . . ,vk ← bk ])i, j .

All other cases, when expressions have type (α , 1), (1, β) or (1, 1) can be dealt with in a similar way. □

E.2 From RA+K to sum-MATLANG
Let R be binary relational schema. For each R ∈ R we associate a matrix variable VR such that, if R is a binary relational signature, then VR
represents a (square) matrix, if R is unary, then VR represents a vector and if |R | = 0 then VR represents a constant. Formally, fix a symbol

α ∈ Symb \ {1}. Let Mat(R) denote the MATLANG schema (MR , sizeR ) such thatMR = {VR | R ∈ R} and sizeR (VR ) = (α ,α) whenever
|R | = 2, sizeR (VR ) = (α , 1) whenever |R | = 1 and sizeR (VR ) = (1, 1) whenever |R | = 0. Let J be the K-instance of R and suppose that

adom(J) = {d1, . . . ,dn } is the active domain (with arbitrary order) of J . Define the matrix instance Mat(J) = (DJ , matJ ) such that

DJ (α) = n, matJ (VR )i, j = RJ ((di ,dj )) whenever |R | = 2, matJ (VR )i = RJ ((di )) whenever |R | = 1, and matJ (VR )1,1 = RJ whenever

|R | = 0. Note that we consider the active domain of the whole K-instance.
We next translate RA+K expressions in to sum-MATLANG expressions over an extended schema. More specifically, for each attributeA ∈ A we

define a vector variable vA of type (α , 1). Then for each RA+K expression Q with attributes A1, . . . ,Ak we define a sum-MATLANG expression
eQ (vA1

, . . . ,vAk ) of type (1, 1) such that the following inductive hypothesis holds:

⟦eQ⟧(Mat(J)[vA1
← bi1 , . . . ,vAk ← bik ]) = ⟦Q⟧J (t) (∗)

where t(As ) = is for s = 1, . . . ,k . The proof of this claim follows by induction on the structure of expressions:

• If Q = R, then eQ := vTA1

·VR · vA2
if R(R) = {A1,A2} with A1 < A2; eQ := VT

R · vA if R(R) = {A}; and eQ := VR if R(R) = {}.
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• If Q = Q1 ∪Q2 then eQ := eQ1
+ eQ2

.

• If Q = πY (Q1) for Y ⊆ R(Q1) and {B1, . . . ,Bl } = R(Q1) \ Y then

eQ := ΣvB1
. ΣvB2

. . . . ΣvBl . eQ1

• If Q = σY (Q1) with Y ⊆ R(Q1) then

eQ := eQ1
·

∏
A,B∈Y

(vTA · vB ).

Here Π is the matrix multiplication of expressions of type (1, 1).

• If Q = ρX 7→Y (Q1) then

eQ := eQ1
[vB ← vA | A ∈ X ,B ∈ Y ,A 7→ B].

In other words, we rename variable vB with variable vB in all the expression eQ1
.

• If Q = Q1 ▷◁ Q2 then eQ := eQ1
· eQ1

where the product is over expression of type (1, 1).

One can check, by induction over the construction, that the inductive hypothesis (∗) holds in each case. Now we can obtain proposition 6.4.

Proposition 6.4. Let R be a binary relational schema. For each RA+K expression Q over R such that |R(Q)| = 2, there exists a sum-MATLANG
expression Ψ(Q) over MATLANG schema Mat(R) such that for any K-instance J with adom(J) = {d1, . . . ,dn } over R,

⟦Q⟧J ((di ,dj )) = ⟦Ψ(Q)⟧(Mat(J))i, j .

Similarly for when |R(Q)| = 1, or |R(Q)| = 0 respectively.

Proof. As a consequence of the previous discussion above, when Q is a RA+K expression such that R(Q) = {A1,A2} with A1 < A2 then

we define

Ψ(Q) = ΣvA1
. ΣvA2

. eQ · (vA1
· vTA2

).

Instead, when R(Q) = {A} we have
Ψ(Q) = ΣvA . (vA · eQ ).

And when R(Q) = {} we have
Ψ(Q) = eQ .

By using the inductive hypothesis (∗) one can check that Ψ(Q) works in each case as expected. □

E.3 Weighted logics and FO-MATLANG
We prove proposition 6.7:

Proposition 6.7. Weighted logics over Γ and FO-MATLANG over S have the same expressive power. More specifically,
• for each FO-MATLANG expression e over S such that S(e) = (1, 1), there exists a WL-formula Φ(e) over WL(S) such that for every instance
I of S, ⟦e⟧(I) = ⟦Φ(e)⟧WL(I).
• for each WL-formula φ over Γ without free variables, there exists a FO-MATLANG expression Ψ(φ) such that for any structureA over Mat(Γ),
⟦φ⟧A = ⟦Ψ(φ)⟧(Mat(A)).

Proof. Both directions are proved by induction on the structure of expressions.

(FO-MATLANG to WL) First, let S = (M, size) be a schema of square matrices, that is, there exists an α such that size(V ) ∈ {1,α } × {1,α }
for every V ∈ M. Define the relational vocabulary WL(S) = {RV | V ∈ M} such that arity(RV ) = 2 if size(V ) = (α ,α), arity(RV ) = 1

if size(V ) ∈ {(α , 1), (1,α)}, and arity(RV ) = 0 otherwise. Then given a matrix instance I = (D, mat) over S with D(α) = n define the

structure WL(I) = ({1, . . . ,n}, {RIV }) such that RIV (i, j) = mat(V )i, j if size(V ) = (α ,α), R
I
V (i) = mat(V )i if size(V ) ∈ {(α , 1), (1,α)}, and

RIV = mat(V ) if size(V ) = (1, 1).
Similar to the proof of Proposition 6.3, for each expression e(v1, . . . ,vk ) of type (α ,α)we must encode in WL the α and the vector variables

v1, . . . ,vk . For this, we use variables x
row
α , xcolα , and xvi for each variablev1, . . . ,vk . Then we use the following inductive hypothesis (similar

to Proposition 6.3):

• If e(v1, . . . ,vk ) is of type (α ,α) then there exists a WL formula φe (x
row
α ,x

col
α ,xv1

, . . . ,xvk ) such that

⟦φe⟧WL(I)(σ ) = ⟦e⟧(I[v1 ← bi1 , . . . ,vk ← bik ])i, j

for assignment σ with σ (x rowα ) = i , σ (x
col
α ) = j and σ (xvs ) = is for s = 1, . . . ,k .

• If e(v1, . . . ,vk ) is of type (α , 1) then there exists a WL formula φe (x
row
α ,xv1

, . . . ,xvk ) such that

⟦φe⟧WL(I)(σ ) = ⟦e⟧(I[v1 ← bi1 , . . . ,vk ← bik ])i

for assignment σ with σ (x rowα ) = i and σ (xvs ) = is for s = 1, . . . ,k . And similarly for when e is type (1,α).
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• If e(v1, . . . ,vk ) is of type (1, 1) then there exists a WL formula φe (xv1
, . . . ,xvk ) such that

⟦φe⟧WL(I)(σ ) = ⟦e⟧(I[v1 ← bi1 , . . . ,vk ← bik ])

for assignment σ with σ (xvs ) = is for s = 1, . . . ,k .

If we prove the previous statement we are done, because the last bullet is what we want to show when e has no free vector variables. Then

rest of the proof is to go by induction on the structure of FO-MATLANG expressions. For a WL-formula φ and FO-variables x ,y, we will write
φ[x 7→ y] the formula φ when x is replaced with y all over the formula (syntactically). Let e be a FO-MATLANG expression.

• If e := V and S(e) = (α ,α) then φe := RV (x
row
α ,x

col
α ). Similarly, if S(e) is of type (α , 1), (1,α), or (1, 1), then φe := RV (x

row
α ),

φe := RV (x
col
α ), and φe := RV , respectively.

• If e := v , for v ∈ {v1, . . . ,vk }, and S(v) = (α , 1) then φe := x rowα = xv . Similarly, if S(v) = (1,α) then φe := xcolα = xv .

• if e := eT
1
and S(e) = (α ,α) then

φe := φe1
[x rowα 7→ xcolα ,x

col
α 7→ x rowα ].

Similarly, if S(e) is equal to (α , 1) or (1,α) then φe := φe1
[x rowα 7→ xcolα ] and φe := φe1

[xcolα 7→ x rowα ], respectively.

• If e = e1 + e2 with S(e1) = S(e2), then φe := φe1
⊕ φe2

.

• If e = f⊙(e1, . . . , ek ) with S(ei ) = S(ej ) for all i, j ∈ [1,k], then φe := φe1
⊙ φe2

· · · ⊙ φek .

• If e = e1 · e2 with S(e1) = S(e2) = (α ,α), then φe := Σy. φe1
[xcolα 7→ y] ⊙ φe2

[x rowα 7→ y] where y is a fresh variable not mentioned in

φe1
or φe2

. Instead, if S(e1) = (α
′, 1) and S(e2) = (1,α

′′) with α ′,α ′′ ∈ {α , 1}, then φe := φe1
⊙ φe2

.

• If e = Σv .e1(v), then we define φe := Σxv . φe1
(xv ).

• If e = Π◦v .e1(v), then φe := Πxv . φe1
(xv ).

From the construction it is now straightforward to check that the inductive hypothesis holds for all cases. To conclude this direction, we

have to define Φ(e) := φe for every expression e and we are done.

(WL to FO-MATLANG)We now encode weighted structures into matrices and vectors. Let Γ be a relational vocabulary where arity(R) ≤ 2.

Define Mat(Γ) = (MΓ , sizeΓ) such thatMΓ = {VR | R ∈ Γ} and sizeΓ(VR ) is equal to (α ,α), (α , 1), or (1, 1) if arity(R) = 2, arity(R) = 1, or

arity(R) = 0, respectively, for some α ∈ Symb. Similarly, let A = (A, {RA }R∈Γ) be a structure with A = {a1, . . . ,an }, ordered arbitrarily.

Then we define the matrix instance Mat(A) = (D, mat) such that D(α) = n, mat(VR )i, j = RA (ai ,aj ) if arity(R) = 2, mat(VR )i,1 = RA (ai ) if

arity(R) = 1, and mat(VR )1,1 = RA otherwise.

Similar to the above direction, we have to encode the FO variables of a formula φ with vector variables in the equivalent FO-MATLANG
expression eφ . For this, for each FO variable x we define a vector variable vx of type (α , 1). Then for each formula φ(x1, . . . ,xk ) we define an
expression eφ (vx1

, . . . ,vxk ) of type (1, 1) such that for every assignment σ of x1, . . . ,xk we have:

⟦eφ⟧(Mat(A)[vx1
← bi1 , . . . ,vx1

← bik ]) = ⟦φ⟧A (σ )
such that σ (xs ) = is for every s ≤ k . Note that when the formula has no free variables, the proof of the proposition is shown. Finally, we

proceed by induction over the formula φ over Γ.

• If φ := x = y, then eφ := vTx · vy .

• If φ := R(x ,y), then eφ := vTx ·VR · vy . Similarly, if φ := R(x) or φ := R, then eφ := VT
R · vx and eφ := VR , respectively.

• If φ = φ1 ⊕ φ2, then eφ := eφ1
+ eφ2

.

• If φ = φ1 ⊙ φ2, then eφ := f⊙(eφ1
, eφ2
).

• If φ = Σx . φ1, then eφ := Σvx . eφ1
.

• If φ = Π◦x .φ1, then eφ := Πvx . eφ1
.

The inductive hypothesis can be proved following the above construction. To finish the proof, we define Ψ(φ) := eφ and the proposition is

shown.

□
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E.4 Matrix inversion in prod-MATLANG extended with order

We conclude by verifying that the fragment defined in Section 6.3, i.e, prod-MATLANG extended with order and f>0, can perform matrix

inversion and compute the determinant. To this aim, we verify that all order predicates in Section B.1 can be derived using Σ, Π, f>0 and

eS< . Given this, it suffices to observe that Csanky’s algorithm, as shown in Section C.3, only relies on expressions using Σ and Π and order

information on canonical vectors and f/. As consequence, our fragment can perform matrix inversion and compute the determinant.

It remains to show that if we have eS< , using Σ and Π and f>0 we can can define all order predicates from Section B.1. We note that due

to the restricted for-loops in Σ and Π, we do not have access to the intermediate result in the iterations and as such, it is unclear whether

order information can be computed. This is why we assume access to eS< .
We first remark that if we have eS< , we can also obtain eS≤ by adding eId. Hence, we can compute succ and succ+ as well. Furthermore,

emin := Σv . [Πw .succ(w,v)] ×v .

emax := Σv . [Πw . (1 − succ(w,v))] ×v .

Both expressions are only using Σ and Π and succ, so are in our fragment. Furthermore, if we have f>0 then we can define

ePred := eS< − f>0(e
2

S< )

Also, recall that eNext := eTPred. As a consequence, we can now define prev(v) and next(v) as in B.1. Similarly, it is readily verified that also

egetPrevMatrix(V ), egetNextMatrix(V ), emin+i and emax+i can be expressed in our fragment.
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