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Abstract21

In the consensus protocols used in most cryptocurrencies, participants called miners must find22

valid blocks of transactions, appending them to a shared tree-like data structure. Ideally, the rules of23

the protocol should ensure that miners maximize their gains if they follow a default strategy, which24

consists on appending blocks only to the longest branch of the tree, called the blockchain. Our goal25

is to understand under which circumstances are miners encouraged to follow the default strategy.26

However, most of the existing models work with simplified payoff functions, without considering27

the possibility that rewards decrease over time because of the game rules (like in Bitcoin), nor28

integrating the fact that a miner naturally prefers to be paid earlier than later (the economic concept29

of discount). In order to integrate these factors, we consider a more general model where issues such30

as economic discount and decreasing rewards can be set as parameters of an infinite stochastic game31

in which players always try to produce valid blocks. In this model, we study the limit situation in32

which a miner does not receive a full reward for a block if it stops being in the blockchain. We show33

that if rewards are not decreasing, then miners do not have incentives to create new branches, no34

matter how high their hash power is. On the other hand, when working with decreasing rewards35

similar to those in Bitcoin, we show that miners have an incentive to create such branches; however,36

the minimal proportion of hash power for which it happens is close to half.37
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1 Introduction42

The Bitcoin Protocol [14, 15, 16], or Nakamoto Protocol, introduces a novel decentralized43

network-consensus mechanism that is trustless and open for anyone connected to the Internet.44

This open and dynamic topology is supported by means of an underlying currency (a so-called45

cryptocurrency [16]), to encourage/discourage participants to/from taking certain actions.46

The largest network running this protocol at the time of writing is the Bitcoin network, and47

its underlying cryptocurrency is Bitcoin (BTC). The success of Bitcoin lead the way for48

several other cryptocurrencies; some of them are replicas of Bitcoin with slight modifications49

(e.g. Litecoin [27] or Bitcoin Cash [25]), while others introduce more involved modifications50

(e.g. Ethereum [26, 22] or Monero [28]).51

The data structure used in these protocols is an append-only record of transactions, which52

are assembled into blocks, and appended to the record once they are marked as valid. The53

incentive to generate valid new blocks is an amount of currency, which is known as the block54

reward. In order to give value to the currencies, the proof-of-work framework mandates that55

participants generating new blocks are required to solve some computationally hard problem56

per each new block. This is known as mining, and the number of problems per second that a57

miner can solve is referred to as her hash power. Agents who participate in the generation of58

blocks are called miners. In Bitcoin, for example, the hard problem corresponds to finding59

blocks with a hash value that, when interpreted as a number, is less than a certain threshold.60

Since hash functions are pseudo-random, the only way to generate a valid block is to try with61

several different blocks, until one of them has a hash value below the established threshold.62

Miners are not told where to append the new blocks they produce. The only requirement63

is that new blocks must include a pointer to a previous block in the data structure, which64

then naturally forms a tree of blocks. The consensus data structure is generally defined as65

the longest branch of such a tree, also known as the blockchain. In terms of cryptocurrencies,66

this means that the only valid currency should be the one that originates from a block in67

the blockchain. Miners looking to maximise their rewards may then attempt to create new68

branches out of the blockchain, to produce a longer branch that contains more of their blocks69

(and earn more block rewards) or to produce a branch that contains less blocks of a user they70

are trying to harm. This opens up several interesting questions: under what circumstances71

are miners encouraged to produce a new branch in the blockchain? What is the optimal72

strategy of miners assuming they have a rational behaviour? Finally, how can we design new73

protocols where miners do not have incentives to deviate from the main branch?74

Our goal is to provide a model of mining that can incorporate different types of block75

rewards (including the decreasing rewards used in e.g. Bitcoin, where rewards for block76

decrease after a certain amount of time), as well as the economic concept of discount, i.e. the77

fact that miners prefer to be rewarded sooner than later, and that can help in answering the78

previous questions. Since mining protocols vary with each cryptocurrency, distilling a clean79

model that can answer these questions while simultaneously covering all practical nuances80

of currencies is far from trivial [10]. Instead, we abstract from these rules and focus on the81

limit situation in which a miner does not receive the full reward for a block if it stops being82

in the blockchain. More precisely, the reward for a block b is divided into an infinite number83

of payments, and the miner loses some of them whenever b does not belong to the blockchain.84

This limit situation represents miners with a strong incentive to put–and maintain–their85

blocks in the blockchain, and is relevant when studying cryptocurrencies as a closed system,86

where miners do not wish to spend money right away but rather be able to cash-out their87

wealth at any point in time. In terms of how mining is performed, we consider these two88



M. Arenas et al. 50:3

simple rules: each player i is associated a fixed value hi specifying her proportion of the89

hash power against the total hash power, and she tries in each step to append a new block90

somewhere in the tree of blocks, being hi her probability of succeeding.91

The last two rules mentioned above are the standard way of formalizing mining in a92

cryptocurrency On the other hand, the way a miner is rewarded for a block in our model93

takes us on a different path from most of current literature, wherein agents typically mine94

with the objective of cashing-out as soon as possible or after an amount of time chosen a95

priori [10, 2]. Far from being orthogonal, our framework is complementary with these studies,96

as it allows to validate some of the assumptions and results obtained in these articles with97

miners who have stronger motives to mine and keep their blocks in the blockchain.98

Contributions. Our first contribution is a model for blockchain mining, given as an infinite99

stochastic game in which maximising the utility corresponds to both putting blocks in the100

blockchain and maintaining them there for as long as possible. A benefit of our model is101

that using few basic design parameters we can accommodate different cryptocurrencies, and102

not focus solely on Bitcoin, while also allowing us to account for fundamental factors such103

as deflation, or discount in the block reward. The second contribution of our work is a104

set of results about strategies in two different scenarios. First, we study mining under the105

assumption that block rewards are constant (as it will eventually be in cryptocurrencies with106

tail-emission such as Monero or Ethereum), and secondly, assuming that per-block reward107

decreases over time (a continuous approximation to Bitcoin rewards).108

In the first scenario of constant rewards, we show that the default strategy of always109

mining on the latest block of the blockchain is indeed a Nash equilibrium and, in fact,110

provides the highest possible utility for all players. Therefore with constant reward, we111

prove that long forks should not happen, as it is not an optimal strategy. On the other112

hand, if block reward decreases over time, we prove that strategies that involve forking the113

blockchain can be a better option than the default strategy, and thus we study what is the114

best strategy for miners when assuming everyone else is playing the default strategy. We115

provide different strategies that involve branching at certain points of the blockchain, and116

show how to compute their utility. When we analyse which one of these strategies is the best,117

we see that the choice depends on the hash power, the rate at which block rewards decrease118

over time, and the usual financial discount rate. We confirm the commonly held belief that119

players should start deviating from the default strategy when they approach 50% of the120

network’s hash power (also known as 51% attack), but we go further: there are more complex121

strategies that prove better than default even with less than 50% of the hash power. Further122

investigation is needed but these results complement and improve our current understanding123

of mining strategies and tend to show that even with decreasing reward long forks should124

not happen if no miner is holding close to 50% of the hash power, therefore validate the125

assumption used in most previous works (see e.g. [10, 2]).126

Related work. Our framework takes us on a different path that most of current literature127

offering a game-theoretic characterisation for blockchain mining [10, 2, 11], which typically128

model the reward of players as the proportion of their blocks with respect to the total number129

of blocks (we pay for each block). Each choice has its own benefits; our choice allows us130

to analyse different forms of rewards and also introduce a discount factor on the utility,131

which we view as one of the main advantages of our model. It is also common to introduce132

assumptions that limit the set of strategies. For instance, Kiayias et.al. [10] assume that133

only one block per depth generates reward, which is natural in their framework but limits134
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the set of valid strategies they consider. Moreover, Biais et.al.[2] assume that the reward of135

a block depends on the proportion of hash-power dedicated to blockchains containing it at a136

time chosen a priori. These assumptions do not take into account every potential forking137

strategies, or the fact that a miner may want to adapt his cash-out strategy based on the138

situation. Lastly, our framework cannot deal with strategies that feature a tactical release of139

blocks often referred as selfish mining, in which miners opt not to release new blocks in hope140

that these will give them a future advantage [19, 6, 8, 18, 17]. Our model can be extended to141

account for most of those strategies, for example by defining states as a tuple of trees, one for142

each player. However work studying precise problems and taking into account the intrinsic143

cost of mining like electricity [23, 2] cannot easily be added to our framework, because it144

requires a continuous time-based model for mining.145

Among other works that approach cryptocurrency mining from a game-theoretical point146

of view, we mention [12, 3], noting that these differ from our work either in the choice of a147

reward function, the space of mining strategies considered, or both. As far as we are aware,148

our work is the first to provide a model that can account for multiple choices in the reward149

function (say, constant reward or decreasing reward), and without any assumption on the set150

of strategies. Recently, the perks of adding new functionalities to bitcoin’s mining protocol151

have been studied: In [11], it is shown that a pay-forward option would ensure optimality of152

the default behaviour, even when miner rewards are mainly given as transaction fees. There153

is also interesting work regarding mining strategies in multi-cryptocurrency markets [5, 20],154

and a number of articles on network properties of the Bitcoin protocol, as well as technical155

considerations regarding its security and privacy (see e.g. the survey by Conti et al. [4]).156

Interestingly, some network settings can inflict undesired mining behaviour [1, 9, 24].157

Proviso. Due to the lack of space, some proofs are deferred to the full version.158

2 A Game-theoretic Formalisation of Crypto-Mining159

The mining game is played by a set P = {0, 1, , . . . ,m− 1} of players, with m ≥ 2. In this160

game, each player gains some reward depending on the number of blocks she owns. Every161

block must point to a previous block, except for the first block which is called the genesis162

block. Thus, the game defines a tree of blocks. Each block is put by one player, called the163

owner of this block. Each such tree is called a state of the game, or just state, and represents164

the knowledge that each player has about the blocks that have been mined thus far.165

The key question for each player is, then, where do I put my next block? The general166

rule in cryptocurrencies is that miners are only allowed to spend their reward if their blocks167

belongs to the blockchain, which in this paper is simply the longest chain of blocks in the168

current state (the model is general enough to consider other forms of blockchain such as169

Ethereum’s notion, but some of the results may change with this other definition). Thus,170

players face essentially two possibilities: put their blocks right after the end of the blockchain,171

or try to fork, betting that a smaller chain will eventually become the blockchain. As the172

likelihood of mining the next block is directly related to the comparative hash power of a173

player, we model mining as an infinite stochastic game, in which the probability of executing174

the action of a player p is given by her comparative hash power.175

In what follows we define the components of the game considered in this paper. Our176

formalisation is similar to others in the literature [10, 11], except for the way in which miners177

are rewarded and the way in which these rewards are accumulated in the utility function. As178

these elements are fundamental for our model, we analyse them in detail in Section 2.1.179
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Blocks, states and the notion of blockchain. In a game played by m players, a block is180

defined as a string b over the alphabet {0, 1, . . ., m−1}. We denote by B the set of all blocks,181

that is, B = {0, 1, . . . ,m − 1}∗. Each block apart from ε has a unique owner, defined by182

the function owner : (B r {ε}) → {0, 1, . . . ,m− 1} such that owner(b) is equal to the last183

symbol of b. As in [10], a state of the game is defined as a tree of blocks. More precisely, a184

state of the game, or just state, is a finite and nonempty set of blocks q ⊆ B that is prefix185

closed. That is, q is a set of strings over the alphabet {0, 1, . . . ,m − 1} such that if b ∈ q,186

then every prefix of b (including the empty word ε) also belongs to q. Note that a prefix187

closed subset of B uniquely defines a tree with ε as the root. The intuition here is that188

each element of q corresponds to a block that was put into the state q by some player. The189

genesis block corresponds to ε. When a player p decides to mine on top of a block b, she puts190

another block into the state defined by the string b · p, where we use notation b1 · b2 for the191

concatenation of two strings b1 and b2. Notice that with this terminology, given b1, b2 ∈ q,192

we have that b2 is a descendant of b1 in q if b1 is a prefix of b2, which is denoted by b1 � b2.193

Moreover, a path in q is a nonempty set π of blocks from q for which there exist blocks b1, b2194

such that π = {b | b1 � b and b � b2}; in particular, b2 is a descendant of b1 and π is said to195

be a path from b1 to b2. Finally, let Q be the set of all possible states in a game played by196

m players, and for a state q ∈ Q, let |q| be its size, measured as the cardinality of the set q197

of strings (or blocks).198

The blockchain of a state q, denoted by bc(q), is the path π in q of largest length, in the199

case this path is unique. If two or more paths in q are tied for the longest, then we say that200

the blockchain in q does not exist, and we assume that bc(q) is not defined (so that bc(·) is201

a partial function).202

I Example 2.1. Consider the following state q of the game with players P = {0, 1}:203

ε
0

1 11
110

111 1111 11110
204

In this case, we have that q = {ε, 0, 1, 11, 110, 111, 1111, 11110}, so q is a finite and prefix-205

closed subset of B = {0, 1}∗. The owner of each block b ∈ q r {ε} is given by the the last206

symbol of b; for instance, we have that owner(11) = 1 and owner(11110) = 0. Moreover,207

the longest path in q is π = {ε, 1, 11, 111, 1111, 11110}, so that the blockchain of q is π (in208

symbols, bc(q) = π). Finally, |q| = 8, as q is a set consisting of eight blocks (including the209

genesis block ε).210

Assume now that q′ is the following state of the game:211

ε
0

1 11
110 · · · 11 0 · · · 0︸ ︷︷ ︸

n

111 · · · 11 1 · · · 1︸ ︷︷ ︸
n

212

We have that bc(q′) is not defined since the paths π1 = {ε, 1, 11, 110, · · · , 110n} and π2 =213

{ε, 1, 11, 111, · · · , 111n} are tied for the longest path in q′. J214

Actions of a miner. On each step, each miner chooses a block in the current state, and215

attempts to mine on top of this block. Thus, in each turn, each of the players race to place216

the next block in the state, and only one of them succeeds. The probability of succeeding is217
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directly related to the comparative amount of hash power available to this player, the more218

hash power the more likely it is that she will mine the next block. Once a player places a219

block, this block is added to the current state, obtaining a different state from which the220

game continues.221

Let p ∈ P. Given a block b ∈ B and a state q ∈ Q, we denote by mine(p, b, q) an action222

in the mining game in which player p mines on top of block b. Such an action mine(p, b, q) is223

considered to be valid if b ∈ q and b · p 6∈ q. The set of valid actions for player p is collected224

in the set:225

Ap = {mine(p, b, q) | b ∈ B, q ∈ Q and mine(p, b, q) is a valid action}.226

Moreover, given a ∈ Ap with a = mine(p, b, q), the result of applying a to q, denoted by a(q),227

is defined as the state q ∪ {b · p}. Finally, we denote by A the set of combined actions for228

the m players, that is, A = A0 ×A1 × · · · ×Am−1.229

Miner’s Pay-off. Most cryptocurrencies follow these rules for miner’s payment: (1) Miners230

receive a possibly delayed one-time reward per each block they mine. (2) The only blocks231

that are valid are those in the blockchain; if a block is not in the blockchain then the reward232

given for mining this block cannot be spent.233

The second rule enforces that we cannot just give miners the full block reward when they234

put a block at the top of the current blockchain or after a delay, because blocks out of the235

blockchain may eventually give the same reward as valid ones. To illustrate this, consider the236

state q′ in Example 2.1, where we have two paths (π1 and π2) competing to be the blockchain,237

and consider π2 to be the latest path to be mined upon to reach q′. If player 0 had already238

been fully paid for any blocks 110i, where i ≤ n, then if π2 win the race and becomes the239

blockchain, such block 110i would not be part of the blockchain anymore but still has given240

full reward to player 0. To the best of our knowledge other attempts to formalize mining,241

especially bitcoin’s mining partially emancipate from this rule, as only the first block to be242

confirmed will be paid, and artificially nullify the incentive to engage in long races.243

In the following sections we will show how different reward functions can be used to244

understand different mining scenarios that arise in different cryptocurrencies. For now we245

assume, for each player p ∈ P, the existence of a reward function rp : Q→ R such that the246

reward of p in a state q is given by rp(q). Moreover, the combined reward function of the247

game is R = (r0, r1, . . . , rm−1). In Section 2.1 we provide a detailed explanation of how our248

pay-off model can be used to pay for blocks and at the same time to ensure that players try249

to maintain their blocks in the blockchain.250

Transition probability function. As a last component of the game, we assume that Pr :251

Q×A×Q→ [0, 1] is a transition probability function satisfying that for every state q ∈ Q252

and combined action a = (a0, a1, . . . , am−1) in A, we have that
∑m−1

p=0 Pr(q,a, ap(q)) = 1.253

Notice that if p1 and p2 are two different players, then for every action a1 ∈ Ap1 , every254

action a2 ∈ Ap2 and every state q ∈ Q, it holds that a1(q) 6= a2(q). Thus, we can think of255

Pr(q,a, ap(q)) as the probability that player p places the next block, which will generate the256

state ap(q). As we have mentioned, such a probability is directly related with the hash power257

of player p, the more hash power the likely it is that action ap is executed and p mines the258

next block before the rest of the players. In what follows, we assume that the hash power259

of each player does not change during the mining game, which is captured by the following260

condition: for each player p ∈ P, we have that Pr(q,a, ap(q)) = hp for every q ∈ Q and261

a ∈ A with a = (a0, a1, . . . , am−1). We refer to such a fixed value hp as the hash power of262



M. Arenas et al. 50:7

player p. Moreover, we assume that hp > 0 for every player p ∈ P, as if this is not the case263

then p can be removed from the game.264

The mining game: definition, strategy and utility. Putting together all the components,265

a mining game is a tuple (P,Q,A,R,Pr), where P is the set of players, Q is the set of266

states, A is the set of combined actions, R is the combined pay-off function and Pr is the267

transition probability function.268

A strategy for a player p ∈ P is a function s : Q → Ap. We define Sp as the set of
all strategies for player p, and S = S0 × S1 × · · · × Sm−1 as the set of combined strategies
for the game (recall that P = {0, . . . ,m − 1} is the set of players). To define the notions
of utility and equilibrium, we need some additional notation. Let s = (s0, . . . , sm−1) be a
combined strategy. Then given q ∈ Q, define s(q) as the combined action (s0(q), . . . , sm−1(q)).
Moreover, given an initial state q0 ∈ Q, the probability of reaching state q ∈ Q, denoted by
Prs(q | q0), is defined as 0 if q0 6⊆ q (that is, if q is not reachable from q0), and otherwise
it is recursively defined as follows: if q = q0, then Prs(q | q0) = 1; otherwise, we have that
|q| − |q0| = k, with k ≥ 1, and

Prs(q | q0) =
∑

q′∈Q :
q0⊆q′ and |q′|−|q0|=k−1

Prs(q′ | q0) ·Pr(q′, s(q′), q).

In this definition, if for a player p we have that sp(q′) = a and a(q′) = q, then Pr(q′, s(q′), q) =269

hp. Otherwise, we have that Pr(q′, s(q′), q) = 0 (this is well defined since there can be at270

most one player p whose action in the state q′ leads us to the state q). For readability271

we write Prs(q) instead of Prs(q | {ε}) to denote the probability of reaching state q from272

the intial state {ε} that contains only the genesis block ε. The framework just described273

corresponds to a Markov Decision Process [13], but we do not explore this connection in this274

paper because we are not interested in the steady distributions of these processes.275

Finally, we define the utility of players given a particular strategy. As is common when276

looking at personal utilities, we define it as the summation of the expected rewards, where277

future rewards are discounted by a factor of β ∈ (0, 1) which is used to model the fact that278

money in the present is worth more than money in the future.279

I Definition 2.1. The β–discounted utility of a player p for a strategy s from a state q0 in280

the mining game, denoted by up(s | q0), is defined as:281

up(s | q0) = (1− β) ·
∑

q∈Q : q0⊆q

β|q|−|q0| · rp(q) ·Prs(q | q0).282

Notice that the value up(s | q0) may not be defined if this series diverges. To avoid this283

problem, from now on we assume that for every pay-off function R = (r0, . . . , rm−1), there284

exists a polynomial P such that |rp(q)| ≤ P (|q|) for every player p ∈ P and state q ∈ Q.285

Under this simple yet general condition, which is satisfied by the pay-off functions considered286

in this paper and in other game-theoretical formalisation’s of Bitcoin mining [10], we can287

show that up(s | q0) is a real number. Moreover, as for the definition of the probability of288

reaching a state from the initial state {ε}, we use notation up(s) for the β–discounted utility289

of player p for the strategy s from {ε}, instead of up(s | {ε}).290

2.1 On the pay-off and utility of a miner291

As mentioned earlier, we design our pay-off model with the goal of incentivising players to292

mine in the blockchain, and to keep their blocks in the blockchain. In this sense, the payment293
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of a miner for a block b should be proportional to the amount of time b has been in the294

blockchain; in particular, the miner should be penalised if b ceases to be in the blockchain,295

and this penalty should decrease with time. In what follows, we explain how our pay-off296

model meets this goal.297

Given a player p and a state q, for every block b ∈ q assume that the reward obtained by298

p for the block b in q is given by rp(b, q), so that rp(q) =
∑

b∈q rp(b, q). This decomposition299

can be done in a natural and straightforward way for the pay-off functions considered in this300

paper and in other game-theoretical formalisations of cryptomining [10, 11]. The reward for301

a mined block b is not granted immediately according to Definition 2.1, instead, a portion of302

rp(b, q) is paid in each state q where b is in. In other words, if a miner owns a block, then303

she will be rewarded for this block in every state where this block is part of the blockchain,304

in which case rp(b, q) > 0.305

Hence, in our model, a miner is payed a portion of a block’s reward each time it is306

included in the blockchain, and even though she gets payed infinitely many times for each307

block, the discount factor in the definition of utility ensures that there is no overpay. In308

other words, when a player mines a new block, she will receive the full amount for this block309

only if she manages to maintain the block in the blockchain up to infinity. Otherwise, if this310

block ceases to be in the blockchain, the miner receives only a fraction of the full amount311

and, thus, is penalised. Formally, given a combined strategy s, we can define the utility of a312

block b for a player p, denoted by ub
p(s), as follows:313

ub
p(s) = (1− β) ·

∑
q∈Q : b∈bc(q)

β|q|−1 · rp(q, b) ·Prs(q).314

For simplicity, here we assume that the game starts in the genesis block ε, and not in an315

arbitrary state q0. The discount factor in this case is β|q|−1, since |{ε}| = 1.316

To see that we pay the correct amount for each block, assume that there is a maximum317

value for the reward of a block b for player p, which is denoted by Mp(b). Thus, we have318

that there exists q1 ∈ Q such that b ∈ q1 and Mp(b) = rp(b, q1), and for every q2 ∈ Q such319

that b ∈ q2, it holds that rp(b, q2) ≤Mp(b). Again, such an assumption is satisfied by most320

currently circulating cryptocurrencies, by the pay-off functions considered in this paper, and321

by other game-theoretical formalisations of cryptomining [10, 11]. Then we have that:322

I Proposition 2.2. For every player p ∈ P, block b ∈ B and combined strategy s ∈ S, it323

holds that: ub
p(s) ≤ β|b| ·Mp(b).324

Thus, the utility obtained by player p for a block b is at most β|b| ·Mp(b), that is, the325

maximum reward that she can obtained for the block b in a state multiplied by the discount326

factor β|b|, where |b| is the minimum number of steps that has to be performed to reach327

a state containing b from the initial state {ε}. Moreover, a miner can only aspire to get328

the maximum utility for a block b if once b is included in the blockchain, it stays in the329

blockchain in every future state. This tell us that our framework puts a strong incentive for330

each player in maintaining her blocks in the blockchain.331

3 Equilibria with constant reward332

The first version of the game we analyse is when the reward function rp(q) pays each block in333

the blockchain the same amount c. This is important for understanding what happens when334

currencies such as Ethereum or Monero switch to tail-emission, changing from a decreased335

reward scheme to a constant reward scheme. Further, it also helps us to establish the main336

techniques we use.337
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ε 1 10 100 1001
10011

10010
Figure 1 Although two paths are competing to become the blockchain, the blocks up to 1001

will contribute to the reward in both paths.

3.1 Defining constant reward338

When considering the constant reward c for each block, rp(q) will equal c times the number339

of blocks owned by p in the blockchain bc(q) of q, when the latter is defined. On the other340

hand, when bc(q) is not defined it might seem tempting to simply define rp(q) = 0. However,341

even if there is more than one longest path from the root of q to its leaves, it is often the342

case that all such paths share a common subpath (for instance, when two competing blocks343

are produced with a small time delay). While in this situation the blockchain is not defined,344

the miners know that they will at least be able to collect their reward on the portion of the345

state these two paths agree on. Figure 1 illustrates this situation.346

Recall that a block b is a string over the alphabet P, and we use notation |b| for the347

length of b as a string. Moreover, given blocks b1, b2, we use b1 � b2 to indicate that b1 is a348

prefix of b2 when considered as strings. Then we define:349

longest(q) = {b ∈ q | for every b′ ∈ q : |b′| ≤ |b|}350

meet(q) = {b ∈ q | for every b′ ∈ longest(q) : b � b′}.351

Intuitively, longest(q) contains the leaves of all paths in the state q that are currently352

competing to be the blockchain, and meet(q) is the path from the genesis block to the353

last block for which all these paths agree on. For instance, if q is the state from Figure 1,354

then we have that longest(q) = {10011, 10010}, and meet(q) = {ε, 1, 10, 100, 1001}. Notice355

that meet(q) is well defined as � is a linear order on the finite and non-empty set {b ∈356

q | for every b′ ∈ longest(q) : b � b′}. Also notice that meet(q) = bc(q), whenever bc(q) is357

defined.358

The reward function we consider in this section, which is called constant reward, is359

then defined for a player p as follows :360

rp(q) = c ·
∑

b∈meet(q)

χp(b),361

where c is a positive real number, χp(b) = 1 if owner(b) = p, and χ(p) = 0 otherwise.362

Notice that this function is well defined since meet(q) always exists. Moreover, if q has a363

blockchain, then we have that meet(q) = bc(q) and, hence, the reward function is defined for364

the blockchain of q.365

3.2 The default strategy maximizes the utility366

Let us start with analysing the simplest strategy, which we call the default strategy: regardless367

of what everyone else does, keep mining on the blockchain. More precisely, a player following368

the default strategy tries to mine upon the final block that appears in the blockchain of a369

state q. If the blockchain in q does not exist, meaning that there are at least two longest370

paths from the genesis block, then the player tries to mine on the final block of the path371

that maximizes her reward, which in the case of constant reward corresponds to the path372
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containing the largest number of blocks belonging to her (if there is more than one of these373

paths, then between the final blocks of these paths she chooses the first according to a374

lexicographic order on the strings in {0, . . . ,m− 1}∗). Notice that this is called the default375

strategy as it reflects the desired behaviour of the miners participating in the Bitcoin network.376

For a player p, let us denote this strategy by DFp, and consider the combined strategy377

DF = (DF0,DF1, . . . ,DFm−1).378

We can easily calculate the utility of player p under DF. Intuitively, a player p will
receive a fraction hp of the next block that is being placed in the blockchain, corresponding
to her hash power. Therefore, at stage i of the mining game, the blockchain defined by the
game will have i blocks, and the expected amount of blocks owned by the player p will be
hp · i. The total utility for player p is then

up(DF) = (1− β) · hp · c ·
∞∑

i=0
i · βi = hp · c ·

β

(1− β) .

The question then is: can any player do better? As we show in the following theorem,379

the answer is no, as the default strategy maximizes the utility.380

I Theorem 3.1. Let p be a player, β be a discount factor in (0, 1) and up be the utility381

function defined in terms of β. Then for every combined strategy s: up(s) ≤ up(DF).382

The proof of this theorem relies on the fact that, under constant rewards, forking becomes383

less profitable because all blocks are worth the same amount of money, regardless of their384

position. This fact, combined with the economic discount, provides little incentives for385

players to sacrifice some time in order to fight for a longer blockchain: their reward is higher386

if instead of fighting they just keep mining on the blockchain.387

A strategy s is a Nash equilibrium from a state q0 in the mining game for m play-388

ers if for every player p ∈ P and every strategy s for player p (s ∈ Sp), it holds that389

up(s | q0) ≥ up((s−p, s) | q0) (here as usual we use (s−p, s) to denote the strategy390

(s0, s1, . . . sp−1, s, sp+1, . . . , sm−1)). As a corollary of Theorem 3.1, we obtain391

I Corollary 3.2. For every β ∈ (0, 1), the strategy DF is a Nash equilibrium.392

Hence, miners looking to maximise their wealth are better off with the default strategy.393

Especially this results prove that long fork should not happen and therefore validate the394

underlying assumption of other models [10]. Interestingly, previous work shows that under a395

setting in which miners are rewarded for the fraction of blocks they own against the total396

number of blocks, and no financial discount is assumed, then default strategy may not be an397

optimal strategy [10]. This suggests that miner’s behaviour can really deviate depending on398

what are their short and long term goals, and we believe this is an interesting direction for399

future work.400

4 Decreasing Reward401

Miner’s fees in many cryptocurrencies, including Bitcoin and Monero, are not constant, but402

decrease over time. We model such fees as a constant factor α ∈ [0, 1] that is lowered after403

every new block in the blockchain. That is, we use the following reward function rp for all404

players p ∈ P, denoted as the α-discounted reward:405

rp(q) = c ·
∑

b∈meet(q)

α|b| · χp(b).406
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Figure 2 Dashed arrows indicate when player 1 does a fork. The first block (block 0) is mined
by player 0. At this point, player 1 decides to fork (mining the block 1), and successfully mines the
blocks 11 and 111 on this branch. When player 0 mines the block 1110, player 1 decides to fork
again, mining the blocks 1111 and 11111.

In this section, we show that forking can be a good strategy when miner’s fees decrease over407

time. Not only we confirm the folklore fact that it is profitable to fork with more than half408

of the hash power, but our exploration gives us a concrete strategy that beats the default409

with less than half of the hash power.410

4.1 When is forking a good strategy?411

To calculate when forking is a viable option, we consider a scenario when one of our m412

players decides to deviate from the default strategy, while the remaining players all follow413

the default strategy. In this case we can reduce the m player game to a two player game,414

where all the players following the default strategy are represented by a single player with415

the combined hash power of all these players. Therefore in this section we will consider that416

the mining game is played by two players 0 and 1, where 0 represents the miners behaving417

according to the default strategy, and 1 the miner trying to determine whether forking is418

economically more viable than mining on the existing blockchain. We always assume that419

player 1 has hash power h, while player 0 has hash power 1− h.420

Let us first show the utility for player 1 when she uses the default strategy DF =421

(DF0,DF1).422

I Lemma 4.1. If h is the hash power of player 1, then423

u1(DF) = h · c · α · β
(1− α · β) .424

As in the case of constant reward, this corresponds to h times the utility of winning all the425

blocks in the single blockchain generated by the default strategy.426

Now suppose that player 1 deviates from the default strategy, and considers a strategy427

based on forking the blockchain once player 0 mines a block. How would this new strategy428

look? In this section we consider the strategy AF (for always fork), where player 1 forks429

as soon as player 0 mines a block in the blockchain, and she continues mining on the new430

branch until it becomes the blockchain. Here player 1 is willing to fork every time player431

0 produces a block in the blockchain. In other words, in AF, player 1 tries to have all the432

blocks in the blockchain. This strategy is depicted in Figure 2.433

The utility of always forking. We want to answer two questions. On the one hand, we434

want to know whether AF is a better strategy than DF1 for player 1, under the assumption435

that player 0 uses DF0, and under some specific values of α, β and h. On the other hand,436

and perhaps more interestingly, we can also answer a more analytical question: given realistic437

values of α and β, how much hash power does player 1 need to consider following AF438

instead of DF1? Answering both questions requires us to compute the utility for the strategy439

AF = (DF0,AF).440
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I Theorem 4.2. Let C(x) = 1−
√

1−4x
2x denote the generating function of Catalan numbers.441

If h is the hash power of player 1, then442

u1(AF) = Φ
1− Γ , where Φ and Γ are defined as:443

444
Φ = α · β · h · c

(1 − α) ·
[
C(β2 · h · (1 − h)) − α · C(α · β2 · h · (1 − h))

]
,445

Γ = α · β · h · C(α · β2 · h · (1 − h))446447

Let us give some intuition on this result. Player 1, adopting the AF strategy, will always448

start the game mining on ε, regardless of how many blocks player 0 manages to append,449

and continues until her branch is the longest. Therefore, the only states that contribute to450

player 1’s utility are those in where she made at least one successful fork (all others states451

give zero reward to her). Having player 1 achieved the longest branch once, say, at block b,452

both players will now mine on b and the situation repeats as if b were ε, with proper shifting453

in the reward and β-discount. In other words, we have u1(AF) = Φ + Γ · u1(AF), where Φ454

is the contribution of a single successful fork, and Γ is the shifting factor, from which we455

obtain the expression for u1(AF) given before.456

Now, in order to quantify the contribution of Φ on successful forks, we need to sum457

over all possible moments of time in which this fork was finally made, weighted by the458

possibility that such a fork was actually made. However, this is not direct because there may459

be different paths leading to the same state, and therefore the probability of forking at a460

certain stage depends on the length and the form of the state. We quantify these by bringing461

out an analogy between Dyck words [21] and paths leading to states in which player 1 forks462

successfully for the first time. Then the theorem uses the fact that the number of Dyck463

words of length 2m is the m-th Catalan number.464

When is AF better than DF? With the closed forms for u1(DF) and u1(AF), we can465

compare the utilities of these strategies for player 1 for fixed and realistic values of α and466

β, but varying her hash power. For α we calculate the compound version of the discount467

in Bitcoin, that is, a value of α that would divide the reward by half every 210.000 blocks,468

i.e.α = 0.9999966993. For β we calculate the 10-minute rate that is equivalent to the US469

real interest rate in the last few years, which is approximately 2%. This gives us a value of470

β = 0.9999996156.471

Figure 4a shows the value of the utility of player 1 for the combined strategies AF and472

DF (this figure also includes two other strategies that will be explained in the next section).473

The plot data was generated using GMP C++ multi precision library [7]. The point where474

the utility for AF and DF meet is h = 0.499805 ± 0.000001, which means that player 1475

should use AF as soon as she controls more than this proportion of the hash power (a similar476

result was obtained in [10], although in a model without discounted reward).477

4.2 Giving up for more utility478

By adding a little more flexibility to the strategy of always forking, we can identify approaches479

that make a fork profitable with less hash power. The families of strategies that we study480

in this section involve two parameters. The first parameter, denoted by k, regulates how481

far back the miner will fork, when confronted with a chain of blocks she does not own. The482

second parameter, called the give-up time, and denoted by `, tells us the maximum number483

of blocks that the player’s opponent is allowed to extend the current blockchain with before484

the player gives up mining on the forking branch. If the player does not manage to transform485
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Figure 4 Comparing the utilities of three forking strategies against the default strategy

her fork into the new blockchain before her opponent mines more than ` blocks, she will486

restart the strategy treating the tail of the current blockchain as the new genesis block. We487

denote these strategies by Gk
` .488

I Example 4.3. Let us compare G2
3 and AF. Since k = 2, both strategies take the same489

action when the state is {ε}, {ε, 0}, and {ε, 0, 00}, namely, mining at ε. Hence, assume that490

both strategies are facing a chain of three blocks owned by player 0, as shown in Figure 3(a).491

In this case, AF would again try to do a fork from the genesis block as no block belongs to492

player 1. On the other hand, G2
3 would try to fork on the dotted line, that is, the second493

block that does not belong to her. The second difference is provided by the give-up time,494

which is shown in Figure 3(b). Normally, AF is willing to continue forking regardless of the495

hope of winning, therefore the move for the state in Figure 3(b) would still be to mine upon496

her own block 11. On the other hand, G2
3 has now seen 4 blocks from the start of the fork497

(one more than the maximum ` = 3), so with this strategy player 1 instead gives up and498

tries to mine upon 0000, rebooting the strategy as if 0000 was the genesis block. Note also499

that AF = G∞∞.500

Define Gk
` as the combined strategy (DF0,Gk

` ). We obtain an analytical form similar to501

that of Theorem 4.2, except in this case the set of paths leading to winning states has a more502

complex combinatorial nature, as expected when taking into account the parameters k and `.503

I Theorem 4.4. For every pair of positive integers `, k with k < `, we have that:

u1(Gk
` ) = Φ`,k

1− Γ`,k
,

where Φ`,k and Γ`,k are rational functions of α, β and h.504
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In the proof of this theorem, we develop precise expressions for Φ`,k,Γ`,k. The proof extends505

the techniques used to show Theorem 4.2, where we again look to compute the weighted506

sum of all states where player 1 manages to fork. This weighted sum, however, requires507

much more involved computation; we use a new combinatorial result that involve two sets of508

polynomials related to Dyck words.509

We use Theorem 4.4 to analyse these strategies, plotting them, as we did before, for510

α = 0.9999966993 and β = 0.9999996156. Figures 4a and 4b give interesting information511

about the advantages of these strategies. We fix k = 1, and plot in Figure 4a the utilities of512

combined strategies DF, G1
4, G1

5 and AF. In Figure 4b, we zoom in around the values of513

the hash power where DF intersects with G1
4 and G1

5. As we see in the figures, for a fork514

window k = 1, the optimal amount time player 1 should be willing to fight for a branch515

before giving up depends on the hash power. With little hash power the likelihood of winning516

a branch is small, so player 1 should give up as early as possible. However, the more hash517

power she obtains, the better it is to wait more. Interestingly, with more than 46.7% of the518

hash power, player 1 already should start using strategy G1
4 to defeat the default strategy,519

and with more than 48.6% hash power, she should adopt G1
5. We know that player 1 should520

use AF not before around h = 0.499805, so this gives us a lot of extra room to look for521

optimal strategies if we are willing to fork (especially considering that every percentage of522

hash power in popular cryptocurrencies may cost millions).523

Plots for strategies with k > 1 present a similar behaviour: the more hash power we have,524

the more we should be willing to fight for our forks. The strategies we include in Figure 4525

beat the default strategy under the least amount of hash power amongst any combination526

of values for k and ` with k < ` ≤ 100. The comparison is much less straightforward when527

looking at varying values of both k and `, but in general, the more hash power the bigger the528

window of blocks one should aim to do a fork, and the more one should wait before giving up.529

5 Concluding remarks530

Our model of mining via a stochastic game allows for an intuitive representation of miners’531

actions as strategies, and gives us a way of understanding the rational behaviour of miners532

looking to accumulate cryptocurrency wealth. As it is the first model to provide payoff to533

miners for every branching strategy we can validate the commonly accepted assumption that534

long forks are not a viable strategy. In this respect, we would like to identify strategies that535

are a Nash equilibrium for the case of decreasing rewards. However, this has proven to be a536

difficult task. In particular, one can show that the default strategy can never be part of such537

an equilibrium, no matter how small the hash power is for one of the players, if the strategy538

of another player involves forks of any length. This means that one must look for much more539

complex strategies to find such an equilibrium.540

One of the advantages of our model is its generality: it can be adapted to specify more541

complex actions, study other forms of reward and include cooperation between miners. For542

example, we are currently looking at strategies that involve withholding a mined block to543

the rest of the network, for which we need a slight extension of the notions of action and544

state. It would be very interesting how this model and previous work combine into a model545

where miner’s behavior can deviate depending on both their short-and long-term goals. We546

would also like to study incentives under different models of cooperation between miners,547

and also other forms of equilibria in a dynamic setting.548
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