
Querying graphs with data

Domagoj Vrgoč

Doctor of Philosophy

Laboratory for Foundations of Computer Science

School of Informatics

University of Edinburgh

2014

Abstract

Graph data is becoming more and more pervasive. Indeed, services such as Social Networks

or the Semantic Web can no longer rely on the traditional relational model, as its structure

is somewhat too rigid for the applications they have in mind.For this reason we have seen a

continuous shift towards more non-standard models. First it was the semi-structured data in the

1990s and XML in 2000s, but even such models seem to be too restrictive for new applications

that require navigational properties naturally modelled by graphs. Social networks fit into the

graph model by their very design: users are nodes and their connections are specified by graph

edges. The W3C committee, on the other hand, describes RDF, the model underlying the

Semantic Web, by using graphs. The situation is quite similar with crime detection networks

and tracking workflow provenance, namely they all have graphs inbuilt into their definition.

With pervasiveness of graph data the important question of querying and maintaining it has

emerged as one of the main priorities, both in theoretical and applied sense. Currently there

seem to be two approaches to handling such data. On the one hand, to extract the actual data,

practitioners use traditional relational languages that completely disregard various navigational

patterns connecting the data. What makes this data interesting in modern applications, however,

is precisely its ability to compactly represent intricate topological properties that envelop the

data. To overcome this issue several languages that allow querying graph topology have been

proposed and extensively studied. The problem with these languages is that they concentrate

on navigation only, thus disregarding the data that is actually stored in the database.

What we propose in this thesis is the ability to do both. Namely, we will study how query

languages can be designed to allow specifying not only how the data is connected, but also how

data changes along paths and patterns connecting it. To thisend we will develop several query

languages and show how adding different data manipulation capabilities and different navi-

gational features affects the complexity of main reasoningtasks. The story here is somewhat

similar to the early success of the relational data model, where theoretical considerations led

to a better understanding of what makes certain tasks more challenging than others. Here we

aim for languages that are both efficient and capable of expressing a wide variety of queries of

interest to several groups of practitioners. To do so we willanalyse how different requirements

affect the language at hand and at the end provide a good base of primitives whose inclusion

into a language should be considered, based on the applications one has in mind. Namely,

we consider how adding a specific operation, mechanism, or capability to the language affects

practical tasks that such an addition plans to tackle. In theend we arrive at several languages,

all of them with their pros and cons, giving us a good overviewof how specific capabilities of

the language affect the design goals, thus providing a soundbasis for practitioners to choose

from, based on their requirements.

iii

Acknowledgements

First and foremost, I would like to thank my supervisor Leonid Libkin for his support and

advice during my studies. In addition to allowing me to immerse myself in a colourful and

lively scientific environment, he also managed to introduceme to the finest spirits that the

Scottish countryside has to offer, on which I am undoubtedlygrateful.

Next, I would like to thank Jan Van den Bussche and Wenfei Fan for agreeing to be on my

examination committee and for providing many useful suggestions.

I would also like to thank Mladen Vuković, who supervised my studies in Zagreb and in-

troduced me to the area of mathematical logic that finally ledme, although following a slightly

uneven path, to computer science and database theory.

A special mention goes to Juan for encouraging me in difficulttimes and suffering through

the trouble of writing papers with me. Out of many great people I had the luck to meet during

the previous years I am particularly grateful to my other co-authors: Egor, Wim and Tony.

Many thanks also go to Diego, Claire and Myrto for reading parts of this thesis and provid-

ing many helpful comments.

Finally, I would like to thank friends and family for their support.

This work and my studies were made possible by the generous support of EPSRC grants

G049165 and J015377, as well as FET-Open Project FoX, grant agreement 233599.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my own

except where explicitly stated otherwise in the text, and that this work has not been submitted

for any other degree or professional qualification except asspecified.

(Domagoj Vrgoč)

v

Table of Contents

1 Introduction 1

1.1 Graph databases and their languages 1

1.2 Contributions .4

1.3 Other related work .9

2 Preliminaries 11

2.1 Graph databases .12

2.2 Regular path queries and extensions 15

2.3 Nested regular expressions 17

2.4 Query evaluation .19

2.5 Path languages and Graph languages 20

I Path languages 25

3 From words to paths 27

3.1 Data words vs data paths .. 29

3.2 Ruling out bad alternatives 31

4 Languages for data paths 35

4.1 Register automata as a query language 37

4.2 Regular queries with memory (RQMs) 42

4.3 Regular queries with binding (RQBs) 53

4.4 Regular queries with data tests (RQDs) 59

4.5 Variable automata .. 67

4.6 Summary of complexity results 74

5 Additional features 75

5.1 Languages with inverse .. . 76

5.2 Conjunctive queries .. . 81

5.3 Adding variables to register automata 83

vii

6 The language theory gap 89

6.1 Register automata .. 92

6.2 Regular expressions with memory 98

6.3 Regular expressions with binding 107

6.4 Regular expressions with equality 119

6.5 Variable automata .. 126

6.6 Summary of language theoretic properties 130

II Graph languages and beyond 133

7 Graph XPath 135

7.1 The language and its many variants 137

7.2 Query evaluation .143

7.3 Expressive power .146

7.3.1 Expressiveness of navigational languages 147

7.3.2 Expressiveness of data languages 156

7.4 Hierarchy of the fragments 160

7.5 Conjunctive Graph XPath queries 163

7.6 Summary . 164

8 Beyond graphs – TriAL 167

8.1 Graph databases and RDF .169

8.2 An Algebra for RDF . 175

8.3 A Declarative Language .. 180

8.4 Query Evaluation .184

8.5 Low-complexity fragments 188

8.6 Expressive power .195

8.7 Summary . 207

III Analysing the languages: Comparison and Containment 209

9 Comparing the languages 211

9.1 Path queries . 211

9.2 Moving up the food chain .. 212

9.3 Triple algebra and graph languages 217

9.4 The complete picture .. 224

viii

10 Query containment 227

10.1 Containment of path queries 229

10.1.1 Containment of RQMs . 230

10.1.2 Containment of RQDs . 237

10.1.3 Impact of inverse on containment 240

10.1.4 Containment of Variable automata 243

10.2 GXPath and its many fragments 244

10.2.1 Containment of navigational languages 244

10.2.2 Containment with data values .. . 252

10.2.3 Coming back to the core . 253

10.3 Summary of containment results 254

IV Wrapping up 257

11 Conclusions and future work 259

11.1 Choosing the right language 260

11.2 Where to go from here .263

Bibliography 267

Index 276

ix

Nemiri

Zaboravi nemire

Blaise Cendrars

Chapter 1

Introduction

1.1 Graph databases and their languages

In recent years we have witnessed a renewal of interest in managing and maintaining graph

structured data, motivated by a high demand from services that find the traditional relational

model too restrictive. The the origins of the graph data model can be traced back to the 1960s

and the network model used by Charles Bachman as a template for designing one of the first

general-purpose database management systems called Integrated Data Store and developed

at General Electric [Bachman, 1973]. With the emergence of relational databases the model

was then abandoned in the seventies and early eighties, but was again revisited during late

eighties [Cruz et al., 1987, Consens and Mendelzon, 1990], when it was used for searching

and storing hypertext systems [Consens and Mendelzon, 1989], and started regaining popular-

ity with the prominence of semi-structured data in the 1990s[Abiteboul et al., 1999]. How-

ever, its full potential only became apparent with the emergence of the Semantic Web [W3C

Consortium, 2013, Pérez et al., 2010, Gutierrez et al., 2011] and Social networks [Ronen and

Shmueli, 2009, San Martín and Gutierrez, 2009, Fan, 2012], where the data is naturally repre-

sented in a graph like structure [Klyne and Carroll, 2004]. Other applications of the graph data

model also include crime detection networks [Fan et al., 2010b, Fan et al., 2010a], biological

databases [Olken, 2003,Leser, 2005,Milo et al., 2002] and querying workflow and data prove-

nance [Anand et al., 2010, Dey et al., 2013]. As a result of this there are now several vendors

offering graph database products [Neo4j, 2013,Dex, 2013] and a steady stream of research lit-

erature on the subject (for a survey see e.g. [Angles and Gutierrez, 2008,Barceló, 2013,Wood,

2012]).

In all of these applications data is modelled by a graph, withnodes representing entities in

the database and edges representing various connections these entities can form. For example

if we are describing a social network it is natural to represent users by nodes, with edges

symbolizing the connection between two users, such as friends, co-workers, relatives and so

1

2 Chapter 1. Introduction

type_name = Movie

genre = Drama

title = The Mill and The Cross

duration = 96

title = N is a Number

duration = 57

name = Paul Erd ős

age = ⊥

type_name = Documentary

genre = Biographic

name = Tomasz Luczak

age = 55

name = Charlotte Rampling

age = 67

title = Searching for Debra Winger

duration = 100

name = Sean Penn

age = 53

title = Mystic River

duration = 137

name = Kevin Bacon

age = 55

name = Rosanna Arquette

age = 54

name = Clint Eastwood

age = 83

cast

type

cast

cast typ
e

cast cast

type cast

type cast

cast

director

director

Figure 1.1: A movie database represented as a graph

on. Another example would be a movie database where each nodestores information about a

specific movie, movie genre, or actor, while the edges of the graph tell us how two entities are

connected. We could for instance have an edge between a node representing a specific actor

and a node representing a movie the actor had starred in, or anedge connecting a movie with

its generic description. One such database is presented in Figure 1.1. Since nodes can form

different types of connections, it is usual to assign labelsto the edges connecting them. Finally,

nodes themselves contain the actual data, such as the information about the movie title and

duration, actor’s names and ages, etc. The data is of course modelled as the usual relational

data with attribute values coming from an infinite domain [Angles and Gutierrez, 2008].

One of the fundamental issues related to graph data is of course the question of querying

it. When designing query languages one is primarily concerned with striking a good balance

between expressivity and efficiency. Namely, a language hasto be capable of describing a wide

variety of relevant queries , while at the same time keeping the complexity of main reasoning

tasks low. To achieve this for graph data two separate approaches have been studied in the past.

The first approach treats the graph model as a relational database and uses traditional rela-

tional languages to extract the data. For example in the database above one could ask for all

movies of the same duration, or all actors of the same age. Theclass of queries one typically

uses to express such properties is the class ofconjunctive queries[Abiteboul et al., 1995].

On the other hand, what makes graph databases attractive in modern applications is the abil-

ity to query intricate navigational patterns between objects, thus obtaining more information

about thetopologyof the stored data. For example, considering the database inFigure 1.1 one

might want to find pairs of actors connected by collaborationconnections. This query would

give us that Paul Erd̋os and Charlotte Rampling have collaborated since they bothco-starred

with Tomasz Luczak. The same can be said for Kevin Bacon and Paul Erdős, but the sequence

1.1. Graph databases and their languages 3

of collaborations is now longer. Taking into considerationthat our databases can grow by in-

serting more data, it is easy to see that no fixed number of collaborators can be set in advance to

answer this query, thus calling for languages that allow full transitive closure. A basic building

block for such languages are typicallyregular path queries, or RPQs, that select nodes con-

nected by a path described by a regular language over the labelling alphabet [Cruz et al., 1987].

Extensions of RPQs with more complex patterns, backward navigation and relations over paths

have been studied extensively too [Abiteboul and Vianu, 1999, Barceló et al., 2012a, Barceló

et al., 2012b,Calvanese et al., 2000,Calvanese et al., 2009,Consens and Mendelzon, 1990].

Note that both of these approaches treat the data and the topological patterns enveloping it

as two separate entities. Thus, the querying mechanisms onedeals with generally fall into one

of the following categories:

• queries aboutdata, i.e., essentially relational queries (e.g., finding pairsof actors of the

same age), or

• queries abouttopologysuch as finding nodes connected by a path with a certain label

(e.g., actors who are connected via collaboration links).

However, both approaches have some serious shortcomings. As mentioned above, treating

the graph model as a relational database, while allowing to extract information about the stored

data, completely ignores topological queries that explorevarious patterns connecting the data.

On the other hand, traditional graph languages such as RPQs and their extensions talk only

about the topology, while ignoring the data. What both of these approaches are incapable

of doing is combining data and topology. As an example of a query that involves such a

combination, one could for example ask for people who have a finite Bacon number (that is,

there is a sequence of collaboration connections linking them with Kevin Bacon). Note that

here we have to test that the name attribute of the final actor in the sequence is indeed Kevin

Bacon and not some arbitrary value. Another example is a query that finds actors connected

via professional links restricted to actors of the same age.In this case, comparison of data

values (having the same age) is done for every node along the path. A similar query might ask

for people with a finite Bacon number, but such that collaboration connections must always go

through movies – documentaries will no longer suffice. In ourexample this would still give us

that Tomasz Luczak has a finite Bacon number, but Paul Erdős does not, because his connection

is realized by co-starring in a documentary.

Since answering such queries lies at the very core of many applications using the graph

data model, this opens up space for the main focus of this dissertation which is the design

and analysis of languages for querying graph data in a way that allows combining navigational

patterns with the data they connect. To this end we will propose several languages, based on

traditional and new approaches and explore how they stack one against the other, as well as how

4 Chapter 1. Introduction

they relate to previously proposed languages, both relational and graph-oriented. The purpose

of such a study is, of course, to point to a good set of primitives that should be present in any

graph query language, either theoretical or applied. In theend we will describe several such

sets and argue why they could serve as a logical core of a good language for querying graph

data.

1.2 Contributions

Describingthegraph language, both efficient and expressive enough to capture a combination

of data and navigational queries, is a difficult task, especially taking into consideration that

different groups of users might have different requirements when it comes to the type of queries

they wish to ask. The main contribution of this dissertationthen is to develop several classes

of query languages for graphs with data and to analyse how adding various data manipulation

capabilities and navigational features affects the efficiency of the main reasoning tasks such as

query evaluation and query containment, as well as how it relates to the expressive power of

the language.

To explain two main design principles for the languages we propose it is important to notice

the duality present in traditional graph languages that disregard data values and only reason

about edge labels. To illustrate this consider for instanceRPQs, a standard building block for

any navigational language over graphs. An RPQ query is specified by a regular expression and

it retrieves all pairs of nodes connected by a path whose edgelabels form a word belonging to

the language defined by this expression. Therefore, in this context one uses a language theoretic

formalism to specify the set of allowed path labels and then searches for a path in the graph

whose label belongs to this set. We call such languagespath languages. On the other hand

more advanced languages, such asnested regular expressions, or NREs ([Pérez et al., 2010]),

work directly on graphs, allowing to search for patterns that can no longer be described by paths

alone. Such a query could for instance check if in a sequence of collaborating actors from the

example above each movie appearing on the path connecting them has a director entered into

the database. These languages will be calledgraph languages. Following this duality we will

be talking about path languages and graph languages when considering data values as well.

Path languages We start with the more traditional path based approach and consider various

language theoretic formalisms that allow for data values inaddition to a finite set of labels. The

question then is how to select the one appropriate for the task of querying data graphs? Here

we will be governed by the usual objective of keeping the complexity of the query evaluation

problem – that is the problem of determining if an object belongs to the answer of a particular

query – low. This will allow us to immediately rule out several well studied formalisms, such

1.2. Contributions 5

as FO [Bojanczyk et al., 2011], Pebble automata [Kaminski and Tan, 2008], or LTL with

freeze quantifiers [Demri and Lazić, 2009], leaving us with the model ofregister automata

[Kaminski and Francez, 1994], which we modify for our purposes. The class of queries defined

by register automata, calledregular data path queries, or RDPQs for short, has reasonable

complexity bounds, in fact matching those of the usual relational languages, and relatively

high expressive power, at least when specifying propertiesof paths is concerned. Its main

shortcoming, however, is the relatively cumbersome and unintuitive syntax that is unlikely to

attract much interest from the practitioners.

In order to overcome this, we develop an expression analogueof register automata called

regular expressions with memory. These expressions have the same relationship with register

automata as ordinary regular expressions do with NFAs, thatis they define the same class of

languages, but are much easier to read and specify. To mimic registers they will use variables,

allowing one to store a value into a variable in the same way asit would have been stored in

a register. The class of queries they give rise to, calledregular queries with memory(RQMs)

retain the PSPACE complexity bound of the RDPQ query evaluation problem (dropping to

NLOGSPACE if the query is fixed – also known as data complexity in the literature [Vardi,

1982]). This, coupled with easy and intuitive syntax makes them much more useful than regis-

ter automata as a graph query language.

To lower the complexity of the query evaluation problem we then look into various ways of

restricting register automata orRQMs, while still retaining most of the expressive power that

powerful data manipulation mechanisms used there allow. Examining regular expressions with

memory one immediately notices that they do not define properscope of variables – a feature

very common in programming languages and software verification. It is therefore natural to

look at a restriction that limits this. By giving variables scope we arrive at the class ofregular

queries with binding, orRQBs. Surprisingly, it turns out that the complexity of query evaluation

remains the same, although the language has slightly weakerexpressive power.

So far we only considered languages operating with variables or registers explicitly, grant-

ing high expressive power in terms of data value comparisons. In order to develop an effi-

cient, yet expressive language, we turn to a class of queriesthat allows testing for data value

(in)equality at the beginning and the end of a subpath only. This first-in-last-out discipline will

allow us to obtain very low combined complexity (PTIME to be more precise), while still being

able to express many interesting graph queries. The class ofqueries is calledregular queries

with data testsand will be important in understanding how data tests in query languages relate

to the ones in first-order logic.

Finally, in order to develop a language that still has the ability to store data values in vari-

ables, but at the same time has query evaluation complexity bellow the one ofRQMs we turn

to variable automata. We extend this formalism, introduced first in [Grumberg et al., 2010a]

6 Chapter 1. Introduction

to reason about words over infinite alphabets, to work over data graphs. The complexity here

is reasonable, namelyNP-complete and the different nature of data comparisons thatsuch au-

tomata use makes them orthogonal to the previously proposedlanguages.

An important issue in query language design is enriching thebase theoretical languages

with features required from database practitioners. In thecontext of graph databases two of the

most important such features are the ability to traverse edges backwards and allowing conjunc-

tive queries to be formed from simple graph queries. Indeed,it has been argued before [Cal-

vanese et al., 2000, Calvanese et al., 2003] that the inverseoperator is a required feature of

any practical graph language, while the usefulness of conjunctive queries has been well studied

both on relational databases [Abiteboul et al., 1995] and ongraphs [Barceló et al., 2012b,Frey-

denberg and Schweikardt, 2011,Bienvenu et al., 2013]. We therefore study the impact of such

extensions on previously proposed languages. It turns our that adding inverses has no impact

on the complexity of query evaluation (however, it will turnour to have a big impact on query

containment, as we later show), and results on conjunctive queries are the best possible in light

of the results for more restricted languages.

Overall, we see that as far as path languages are concerned, powerful data manipulation

features come with a price of relatively high complexity. This is also coupled with relatively

poor navigational power, since such languages can only define paths. We address this issue

when defining graph languages.

The results on path languages are presented in Chapters 3 and4. Extending the languages

with inverses, conjunction and the ability to use variablesin a more general way is presented in

Chapter 5. Most of these results appeared previously in [Libkin and Vrgǒc, 2012b] and [Libkin

et al., 2013c]. Languages with inverse were briefly studied in [Kostylev et al., 2014] and

conjunctive queries for some classes were considered in [Libkin and Vrgǒc, 2012b]. Note that

in this dissertation all of the languages come equipped withthe ability to check equality with a

constant, which was not present in the aforementioned sources.

Language theoretic aspects of path languages As mentioned previously, to define path

languages, one uses a language theoretic formalism to specify the set of allowed path labels.

To properly analyse such languages one must also understandbasic properties of formalisms

defining them. Indeed, we will later use language containment problem to infer results on

query containment of path languages, and the results on how the languages compare one to

another over graphs will follow from the study on the expressivity of their language theoretic

counterparts.

Since we introduced several new language theoretic formalism in Chapter 4, it is important

to understand their properties. We do this in Chapter 6, where we consider these formalisms

in the setting of data words (basically words that in each position carry a letter from a finite

1.2. Contributions 7

alphabet and a data value from an infinite domain) and determine the complexity of basic al-

gorithmic tasks such as membership, nonemptiness or containment for them. We also look at

usual closure properties and show how formalisms compare one to another in terms of expres-

sive power.

Most of the results from Chapter 6 have previously appeared in [Libkin and Vrgǒc, 2012a,

Libkin et al., 2013c]. Some of the result that were missing inthese publications are presented

here for the first time.

Graph languages Having considered several languages using the traditionalpath-based ap-

proach, in Chapter 7 we turn our attention to languages operating directly over graphs. Extend-

ing the idea of nested regular expressions [Pérez et al., 2010], as well as some previous work

based on algebras for binary relations [Fletcher et al., 2012, Fletcher et al., 2011], we show

how a well established query language from the XML context, namelyXPath, can be adapted

to suit our purposes. Using the branching capabilities of such languages, coupled with data

value tests, we can now for instance search for all the actorsin our sample data graph from

Figure 1.1 who have a finite Bacon number, but stipulate that the connection is made by co-

starring in movies and not documentaries. Tomasz Luczak is then still an answer to our query,

however, Paul Erd̋os is not, since his link to Kevin Bacon goes through the documentary "N is

a Number".

The language we propose is calledGXPath and we study its query evaluation properties and

connections to logic. We obtain good complexity bounds (namely PTIME for any reasonable

variant of the language), as well as the ability to express many queries of interest in the graph

setting. We also show that the language is strongly rooted inlogic, as it is equivalent to an

extension of FO with binary transitive closure over graphs.This, together with the fact that its

navigational fragment is just PDL [Harel et al., 2000] in disguise, makesGXPath a definitive

graph language when navigation is the main priority, and a strong candidate for practitioners to

consider when choosing the appropriate language for their purposes. Its main deficiency, the

inability to freely use memory in a way that, for instance,RQMs do, is somewhat lessened by

the fact thatXPath-style data tests that the language uses have been tried and tested over time

by XML practitioners, however, there are still some properties thatRQMs can express that are

outside the scope ofGXPath.

Note that most of the results from Chapter 7 appeared previously in [Libkin et al., 2013a].

Some results, such as the complete hierarchy of the languagefragments, connections to FO

with data value tests, and conjunctive queries based onGXPath, are however new and appear

here for the first time.

RDF and graph data RDF databases are often cited as one of the most important application

of the graph data model, however, there is a slight mismatch between data graphs and RDF

8 Chapter 1. Introduction

Triplestores. Although big majority of RDF data is indeed a graph, the model itself allows

edge labels to be objects themselves, thus permitting them to be a source of another edge. This

fact becomes increasingly important in areas such as data integration, provenance tracking, or

querying and maintaining clustered data.

In Chapter 8 we develop a language with such applications in mind. On top of that, we

design the language specifically for RDF data, thus making itclosed in the same way that rela-

tional algebra never takes the user outside of the relational model. The language, calledTriAL,

is based on the concepts of relational algebra, but also allows a limited amount of recursion.

Here we study the usual query evaluation problem, compare the language to previously pro-

posed languages for RDF (namely SPARQL and nSPARQL [Harris and Seaborne, 2013,Pérez

et al., 2010]) and compare it to traditional relational languages. We also show that, due to its

close connections with relational algebra, the language has a well defined Datalog equivalent,

making it very attractive to the users. The main conclusion here is that treating RDF data model

as a graph database has some inherent limitations and considering it in full generality leads to

a richer theory, subsuming that of graphs alone. On the otherhand, this study also allows to

transfer RDF techniques back to graphs, allowing more general navigational and data patterns.

Most of the results appearing in Chapter 8 were previously presented in [Libkin et al.,

2013b].

Comparing the languages To obtain a complete picture of the graph querying landscape,

in Chapter 9 we compare previously introduced languages in terms of expressive power. As it

turns out, the ability to use variables makes path languagesincomparable to the navigationally

richer query classes such asGXPath or TriAL. On the other hand, variable automata turn out

to be orthogonal to all of the other languages because of their somewhat unnatural ability to

guess assignments beforehand, thus giving them the abilityto reason globally, unlike the other

languages which are based on the automata or expressions that are in essence local.

Although most of the results in Chapter 9 have already appeared in the publications where

the languages were originally introduced (see above), someof the results are new and have not

been considered previously.

Query containment Finally, in Chapter 10 we will initiate the study of static analysis aspects

of our languages. Here we concentrate on the problem of querycontainment which asks us to

determine, given two queries in some language, if the answerset of the first query is contained

in the answer set of the second query over all possible data graphs. Query containment is a fun-

damental database theory problem [Abiteboul et al., 1995] and is crucial in several important

database tasks such as query optimisation, view definition and maintenance and view-based

query answering. In this chapter we study the problem for previously proposed languages and

1.3. Other related work 9

determine the decidability border based on both data manipulation abilities as well as naviga-

tional features a language allows. It turns out that decidability can not be established without

severe restrictions on the use of negation and data inequalities, but once these are excluded

from the language we generally obtain reasonable complexity bounds, ranging from PSPACE

to EXPSPACE. While we obtain a relatively complete picture for the classof path languages

and several of their extensions, the situation is far from being resolved in the case ofGXPath,

where the abundance of fragments promises to be a fruitful ground for future research, similarly

as was the case withXPath over trees [Figueira, 2010b].

Most of the results presented in Chapter 10 already appearedin [Kostylev et al., 2014],

however some results, such as containment forTriAL and several fragments ofGXPath, are

presented for the first time.

Remark 1. Following the usual assumption of XMLdata trees, where each node carries a

single data value [Bojanczyk et al., 2009, Kaminski and Tan,2008, Segoufin, 2006], we will

also consider graphs where each node has only one data value attached to it. Note that this is

not a real restriction, as multiple attributes can be modelled with additional outgoing edges,

labelled with the attribute name, and ending in a node whose data value is the value of the

appropriate attribute. Furthermore, as we show in Section 2.1, one can go from one model to

the other without having any effect on the presented results. There we also show how the graph

from Figure 1.1 can be modelled using this assumption.

This simplification is done mostly for the ease of notation, but, as already mentioned, all of

the results still hold if one assumes nodes with multiple attributes.

1.3 Other related work

As we mentioned earlier most current approaches to queryinggraph database separate the data

aspect and the topological aspect of such databases. That mixing of these two modes of query-

ing is needed became apparent in the early days of graph database systems when users started

asking questions about propagating the data along paths andpatterns. The first system that rec-

ognized the necessity of treating both data and topology as equal was GOOD [Gyssens et al.,

1994], however, the navigational features used there were rather rudimentary [Van den Buss-

che and Vossen, 1993], as the system was focused on managing object-oriented databases. The

Lorel system [Abiteboul et al., 1997] partially addresses this problem by allowing conjunctive

RPQs with variables returning nodes whose data values can beaccessed and compared. This,

however, still does not resolve the issue, as it does not allow data to be propagated along the

path: it first extracts nodes using navigational queries (namely CRPQs) and after that filters

the data from extracted nodes by a relational mechanism. Interestingly, despite these defi-

ciencies, the system actually matches many capabilities ofcurrent commercial graph systems

10 Chapter 1. Introduction

such as Neo4j [Neo4j, 2013], Dex [Dex, 2013], or Gremlin [Gremlin, 2013]. Several other

systems based on similar principles were developed in 1990sand 2000s ([Fernández et al.,

2000,Amer-Yahia et al., 2009] – for a survey see [Angles and Gutierrez, 2008]), but to the best

of our knowledge none of them had the ability to ask queries that mix data and topology be-

yond basic tasks that essentially amount to treating the twoseparately. Furthermore, the main

concern in these approaches was usability and they were seldom looked at from a theoretical

perspective, so issues such as query evaluation and static analysis aspects of these languages

are not that well understood.

Chapter 2

Preliminaries

In this chapter we will provide necessary background information about graph databases, for-

mally define the model used throughout this thesis and give a brief overview of graph query

languages studied in the past. We begin by describing the model in Section 2.1 and explaining

how it generalizes the usual graph data model. We also illustrate how theoretical restrictions

imposed by the formal definition can easily be lifted in a moreapplied setting which requires

multiple attributes and values per node, as in e.g. social networks. Following that we define

the class of regular path queries, or RPQs, which had formed the basis of every graph database

language since its inception in the late eighties [Cruz et al., 1987, Consens and Mendelzon,

1990]. Following that we will review information about somemore general languages recently

proposed in the context of RDF databases [Pérez et al., 2010].

One of the main issues governing the design of a query language is the efficiency of the

query evaluation problem. Indeed, it is this problem that often makes or breaks a proposed

language and some elegant theoretical constructions have to be discarded if they give an unrea-

sonable rise in computational complexity of this problem. In Section 2.4 we define the query

evaluation problem formally and review main results about classical graph query languages

such as RPQs and NPQs.

Lastly, in Section 2.5 we discuss differences and similarities between two main language

design principles for graph databases. Namely, we identifyclasses of path queries, whose main

design principle is to define sets of permissible paths usingsome language theoretic formalism,

and graph queries, that operate directly on graph, usually going beyond the reach of paths. We

also show how path queries can be redefined to work directly ongraphs and show that the two

approaches are equivalent.

11

12 Chapter 2. Preliminaries

2.1 Graph databases

As mentioned in the introduction, the model of data we consider here is that of a graph database.

In what follows we will take the approach where data resides in the nodes, however a different

approach, with data residing in the edges is also possible and later on we will show that the two

are equivalent. Next we define graph databases formally.

Let Σ be a finite alphabet, andD a countably infinite set of data values. Data graphs will

have edges labelled by letters fromΣ and nodes that store data values fromD.

Definition 2.1.1 (Data graphs). A data graph, or a graph database(over Σ and D) is a triple

G= 〈V,E,ρ〉, where:

• V is a finite set of nodes;

• E ⊆V×Σ×V is a set of labeled edges; and

• ρ : V →D is a function that assigns a data value to each node in V.

An example of a graph database is given in Figure 2.1. Here we assume that edge labels

area,b and data values are integers.

1v1 1v3 3 v5

2

v2

1

v4

a

a

b

b

a

b

b

Figure 2.1: A graph database with data values

Note that traditionally [Cruz et al., 1987, Angles and Gutierrez, 2008, Calvanese et al.,

2003] graph databases had no data values attached to them andthus amounted to finite edge

labelled graphs. When we disregard data values and consideronly edge labels we simply drop

the functionρ from the above definition.

Query languages that do not refer to data values, but only traverse graph edges, such as

RPQs and NRQs introduced below, will be callednavigational languages.

On single value vs. multiple values Here we assume that each node has only a single data

value assigned to it. In a more applied setting, such as the one presented in Figure 1.1, we

might want to view nodes as small databases themselves, thusstoring multiple data values

or relations. Assumption that each node has only a single data value is not a real restriction

2.1. Graph databases 13

as multiple attributes can be modelled by extra outgoing edges from one node, each with the

attribute name as the label and attribute value as the data value of the node it points to. This

solution is illustrated in Figure 2.2. Furthermore, the waywe design languages will make it

easy to extend them to work with multiple data values.

name: Luigi

email: l@nes.com

age: 27

user1

Luigi

user1

l@nes.com

27

email

age

multiple attributes

Figure 2.2: Dealing with multiple data values in a social network

Applying such a transformation to the graph in Figure 1.1, wewould obtain the following

graph. Note that for compactness of presentation we only show how to model the age attribute

of certain actors, since this is all we will need in the futureexamples.

Movie

The Mill and The Cross

N is a Number

Paul Erd ős

Documentary

Tomasz Luczak

Charlotte Rampling

Searching for Debra Winger

Sean Penn

Mystic River Kevin Bacon

Rosanna Arquette

Clint Eastwood

55

53
55

67

cast

type

ca
st

cast typ
e

cast ca
st

type cast

typ
e cast

cast

director

director

age

age
age

age

Figure 2.3: A movie database represented as a graph – now with a single data value per node

Placement of labels and data values In defining our model we followed the traditional

approach where labels reside on the edges and data values in the nodes [Abiteboul et al.,

1999, Cruz et al., 1987, Mendelzon and Wood, 1995, Consens and Mendelzon, 1990]. Other

approaches are of course possible and have been considered over the years. For example in the

XML setting it is usual that labels as well as data values are attached to the nodes, while child

edges in trees modelling the data remain unlabelled [Neven,2002, Segoufin, 2007, Figueira,

2010a, Figueira, 2010b]. Regarding data values, it may alsomake sense to place them on the

14 Chapter 2. Preliminaries

edges, for example when each edge label also has an associated value attached to it, as in

e.g. [Ioannidis et al., 2011]. And there is, of course, the approach where both edges and nodes

carry labels and data [Neo4j, 2013, Dex, 2013]. All of these approaches have their pros and

cons, however it is easy to see that they are all essentially equivalent. Since the setting we

will be using is fixed (that is, we assume labels on edges and values in nodes), all of the query

languages will be designed to operate in this setting. However, it is important to note that this

poses no restrictions, as all of the languages can easily be redefined to accommodate for data

values in the edges, or labels in the nodes, without affecting any of the complexity bounds. To

see this assume that we have a model with both nodes and edges carrying a label from a finite

alphabet and a datum from an infinite domain. We could then assume that this model amounts

to "splitting" edges into two and adding self loops to emulate node labels. This process is

illustrated below.

nodetype = user

age = 25

user578

nodetype = user

age = 27

user7784

edgetype=link

created = 11-10-13

transfering to model

with data in the nodes

created = 11-10-13

v

age = 25

user578

age = 27

user7784

user user

link_in link_out

Figure 2.4: Simulating the model with data in both nodes and edges

Here we assumed that nodetype and edgetype attributes are simply labels from a finite

alphabet, while age is an integer. Each edge is replaced by a node with one incoming and one

outgoing edge corresponding to the original edge label, pointing to and from a node with the

data value. Labels on the nodes are simulated by self loops. This shows how we can view

graphs with data both in the nodes and in the edges as data graphs from our definition. It is

important to note that, in the case when data is stored assuming values both in nodes and edges,

one does not need to restructure the data, as queries can be modified in run-time, taking into

account the way the data is stored.

On node ids and data values It is important to remark here that data values do not amount to

node ids. Indeed, in the database from Figure 2.1 both nodesv1 and e.g.v4 have the same data

value, namely 1, but they are not the same entity in the database. This illustrates that in general

2.2. Regular path queries and extensions 15

data values can not be used as node ids, unless we assume that each node is assigned a different

data value. For reasons discussed in Section 3.2, none of thequery languages considered in

this thesis will allow checking this, thus making it a globalstatement outside of the reach of

our model. Furthermore, assuming that node ids are the same as data values might lead to some

confusion in e.g. a genealogy database where two nodes mightcarry the same name, but it is

important to be aware that they represent a different entity.

Paths Most of the classical graph query languages rely on defining paths between two nodes

of a graph. In graphs with data, paths, however, carry some extra information. Consider, for

example, a pathv1v2v5v3 in the graph from Figure 2.1. If we traverse it by starting inv1, reading

its data value, then reading the label of(v1,v2), then the data value inv2, etc., we end up with

the following sequence: 1a2b3a1. We shall refer to such sequences asdata paths.

Next we define the notion of paths and data paths formally.

A path between nodesv1 andvn in a graph is a sequence

π = v1a1v2a2v3 . . .vn−1an−1vn (2.1)

such that each(vi ,ai ,vi+1), for i < n, is an edge inE. Corresponding to the pathπ (2.1) we

have adata path

wπ = ρ(v1)a1ρ(v2)a2ρ(v3) . . .ρ(vn−1)an−1ρ(vn) (2.2)

which is a sequence of alternating data values and labels, starting and ending with data values.

The set of alldata paths, i.e., such alternating sequences overΣ andD, will be denoted by

Σ[D]∗. For both paths and data paths, we use the notationλ(π) or λ(wπ) to denote their label,

i.e. the worda1 . . .an−1 ∈ Σ∗.

2.2 Regular path queries and extensions

The core class of queries for graph databases is the one of regular path queries or RPQs. These

queries are purely navigational and disregard data values.However, as we will shortly see, they

form a natural base for all languages that include any sort ofnavigation in graphs. RPQs are

based on the principle of describing permitted paths in a graph. Since edges in data graphs are

labelled by letters from a finite alphabet it is natural to describe the set of permitted paths as a

regular language over this alphabet.

Regular path queries Formally regular path queries, or RPQs for short, are queries of the

form Q= x
L
−→ y, whereL is a regular language over some fixed finite alphabetΣ, specified

by a regular expression or a finite state automaton [Cruz et al., 1987,Consens and Mendelzon,

1990,Calvanese et al., 2003]. Given a data graphG (the data in the nodes will be irrelevant for

16 Chapter 2. Preliminaries

RPQs), answer of a queryQ on G, denoted byQ(G), is the set of all pairs(v,v′) of nodes inG

such that:

• There is a pathπ in G, starting withv and ending withv′, and

• The labelλ(π) is a word fromL.

Note here a degree of separation between queries and language formalisms defining them.

Namely, we have a regular expression (or an NFA) defining the languageL of permissible paths

(or rather their labels), while the queryQ itself looks for paths in a graph whose label belongs to

this setL of permissible paths. We will call such languagespath languagessince they amount

to finding a path in the graph and matching the label of this path with a corresponding language

defining the query.

An example of an RPQ is e.g.

Q= x
(ab)∗
−→ y.

From database in Figure 2.1 this query will extract e.g.(v1,v4) since pathπ = v1av2bv5av3bv4

has the labelababwhich belongs to the language of(ab)∗. The other pairs in the answerQ(G)

are(v1,v5),(v1,v3) and(v5,v4).

The fact that regular languages are closed under conjunction can lead us to a conclusion

that taking two regular expressionse1 ande2 one can define a query which extracts pairs of

nodes connected by two path, one ine1 and another ine2. However the expression defining

intersection ofe1 ande2 specifies a query that returns nodes connected by a single path whose

label belongs to both languages. In fact, to define queries asking for multiple paths one has to

use conjunctive regular path queries (CRPQs).

Conjunctive regular path queries Conjunctive RPQs, or CRPQs [Consens and Mendelzon,

1990] are the closure of RPQs under conjunction and existential quantification. Formally, they

are expressions of the form

ϕ(x) = ∃y
n∧

i=1

(zi
Li−→ ui), (2.3)

where all variableszi ,ui come fromx,y. The semantics naturally extends the semantics of

RPQs:ϕ(a) is true inG iff there is a tupleb of nodes such that, for everyi ≤ n, every pairvi,v′i

interpretingzi andui is in the answer to the RPQzi
Li−→ ui .

We can now ask queries as e.g. the following one:

ϕ(x,y) = (x
b∗
−→ y)∧ (x

ba
−→ y).

The queryϕ will return all pairs(v,v′) of nodes such that there are pathsπ1 andπ2, both

starting withv and ending withv′ such thatλ(π1) belongs to language ofb∗, whileλ(π2) equals

ba. Applied to the graph in Figure 2.1 this query will return(v2,v3).

2.3. Nested regular expressions 17

Two-way regular path queries A natural extension of RPQs is to allow them to traverse

graph edges backwards. Indeed, such a functionality is often required in practical scenarios,

for example in a genealogy database one might want to reason about ancestors and in a crime

detection scenario links are often tracked backwards to locate the main supplier of trafficked

goods. RPQs extended with this ability are calledtwo-way regular path queriesor 2RPQs

[Consens and Mendelzon, 1990,Calvanese et al., 2000,Calvanese et al., 2003].

Formally, letΣ be a finite alphabet. We will denote byΣ± the setΣ∪{a− : a ∈ Σ}. The

letter a− denotes that an edge is supposed to be traversed in a backwarddirection (note that

edge labels can also be viewed as binary relations between nodes, thusa− would be the reverse

of relationa). If p∈ Σ± we usep− to denote the inverse ofp. That is if p= a, for somea∈ Σ

then p− = a−, and if p= a−, thenp− = a. A 2RPQ overΣ is then an expression of the form

Q= x
e
−→ y, wheree is a regular expression or a finite state automaton overΣ±.

In order to define semantics of 2RPQs we need the notion of a semipath. A semipath

between nodesv0 andvn in a graphG= (V,E) is a sequenceπ of the formv0p1v1p2 . . . pnvn,

wheren≥ 0 and for eachi we havepi ∈ Σ± and(vi−1,a,vi) ∈ E if pi = a and(vi ,a,vi−1) ∈ E,

if pi = a−. Intuitively, a semipath amounts to traversing graph edgesboth backwards and

forwards, as dictated by the sequence of labelsp1, . . . , pn. Then the answer to a 2RPQQ over

G, denotedQ(G), is the set of all pairs(v,v′) of nodes connected by a semipath whose label

λ(π) = p1 · · · pn belongs to the language ofe.

A sample 2RPQ is e.g.

Q= x
a−b−b∗
−→ y.

For a graph in Figure 2.1 we haveQ(G) = {(v3,v5),(v3,v2),(v3,v3),(v3,v4)}.

It is straightforward to define a class of conjunctive queries using 2RPQs as atoms, much

like CRPQs use RPQs. This class of queries is calledconjunctive two-way regular path queries

or C2RPQs.

2.3 Nested regular expressions

One of the most apparent shortcomings of RPQs and related formalisms is their inability to

abstract away from paths. In semi-structured data one oftenneeds to define patterns connecting

certain nodes, or exhibit some structural properties of theunderlying model that can not be

captured by paths alone. For example in a social network scenario we might want to test if

there is a chain of users connected by friends links and that along this chain each person likes

the same type of music. This would be modelled by checking foran outgoing edge labelled

likesto a node representing some music type (here we assume that the number of types is known

in advance; in a more realistic setting we will need data values to model types of music). Note

that since the length of such a chain can be arbitrary this cannot be defined using CRPQs,

18 Chapter 2. Preliminaries

since the number of conjuncts of a CRPQ is fixed in advance. Thus, even though they can

define some simple patterns, CRPQs fail to express many properties of interest when querying

graphs. Indeed, the importance of ability to define patternsinstead of paths was recognized

in the study of XML, where even the most basic languages allowbranching from the main

path and checking if a certain condition is satisfied along the path. XML languages, and most

notably XPath [Xpath, 1999, Benedikt and Koch, 2008, ten Cate and Marx, 2007], considered

to be the logical core for querying XML documents [ten Cate and Lutz, 2009], form a good

basis for graph language design and in later chapters we willshow how the underlying ideas

can be transferred from XML to graphs.

The first language influenced by XPath’s functionality to allow branching away from a

path (and thus defining patterns) is that of nested path queries, or NPQs. This language, first

introduced in [Pérez et al., 2010], was created in order to capture certain navigational aspect

of RDF documents [Klyne and Carroll, 2004] that lie beyond reach of the proposed SPARQL

standard [Harris and Seaborne, 2013]. The expressions defining NPQs, called nested regular

expressions, are themselves quite simple and amount to extending RPQs with inverses and

nesting operators. The intuition behind nesting is that it acts like a test that a certain node in the

path has to satisfy. The test itself is defined by a nested regular expression – hence the name.

Next we define NREs.

Nested regular expressions,or NRE, over a finite alphabetΣ extend ordinary regular ex-

pressions with the nesting operator and inverses [Pérez et al., 2010, Barceló et al., 2012c].

Formally they are defined as follows:

n := ε | a | a− | n·n | n∗ | n+n | [n]

wherea ranges overΣ.

Intuitively NREs define binary relations consisting of pairs of nodes connected by a path

specified by theNRE. When interpreted on a data graphG the relations are defined inductively

as follows:

JεKG = {(v,v) | v∈V}

JaKG = {(v,v′) | (v,a,v′) ∈ E}

Ja−KG = {(v,v′) | (v′,a,v) ∈ E}

Jn·n′KG = JnKG◦ Jn′KG

Jn+n′KG = JnKG∪ Jn′KG

Jn∗KG = the reflexive transitive closure ofJnKG

J[n]KG = {(v,v) | ∃v′ such that(v,v′) ∈ JnKG}.

A nested path query, or NPQ, is an expression of the formQ= x
e
−→ y, wheree is aNRE.

Given a data graphG, the answer toQ onG, denotedQ(G) is the setJeKG.

2.4. Query evaluation 19

An example of an NPQ is the e.g.:

Q= x
(b[a−])+
−→ y.

It checks that node at the end of eachb-labelled edge also has an incominga-labelled edge.

For the graph in Figure 2.1 we haveJeKG = {(v2,v3),(v2,v4),(v3,v4)}. Note that(v2,v5) is not

in the answer toesincev5 has no incominga-labelled edges.

Note that the semantics of a NPQs is defined directly on graphs, not taking a detour through

language theory like e.g. RPQs do. We will call such languages graph languages.

2.4 Query evaluation

One of the main problems associated with query languages is that ofquery evaluation, or as it

is sometimes called,query answering. Indeed, gauging applicability of some language often

depends on obtaining desirable complexity bounds of this problem. Studying query evaluation

problem for a wide range of graph query languages that deal with data values constitutes the

main portion of this dissertation and throughout the subsequent chapters we will explore how

different features impact the complexity of the problem.

To define the query evaluation problem formally assume that we have a query languageL

over some finite alphabetΣ and a queryQ(x) from L returning tuples of nodes from a data

graphG. Here we writeQ(x) to denote thatQ returns tuples of length|x|. The query evaluation

problem for languageL is then defined as follows:

PROBLEM: QUERY EVALUATION (L)

INPUT: A queryQ(x) with |x|= k, a graph databaseG overΣ and a tuplev∈Vk.

QUESTION: Is v∈Q(G) ?

When studying query evaluation we will be interested in the complexity of this problem.

Stated as above, this is often referred to ascombined complexityof query evaluation problem

[Vardi, 1982]. In databases we are often interested in the variant of this problem where the

query Q is fixed, and only the graphG (together with tuplev) is given as the input. This

version is referred to as thedata complexity of the query evaluation problem.

We will now review basic results about combined and data complexity of the languages

introduced in previous sections.

Fact 2.4.1([Cruz et al., 1987]). Both data and combined complexity of evaluating RPQ queries

are NLOGSPACE-complete.

This easily follows from the observation that in the case of RPQs one is given a graphG and

a tuple of nodess, t, along with the regular expressioneas the input. To check if(s, t) ∈Q(G),

20 Chapter 2. Preliminaries

whereQ= x
e
−→ y, it suffices to observe thatG can be viewed as an automaton withs the initial

and t the final state. Then the result follows from performing classical product construction

of the graph with the automaton fore, where we check this product for nonemptiness on-

the-fly. The lower bound follows from the fact that complexity of reachability in graphs is

NLOGSPACE-hard [Jones, 1975].

It was also shown that if one allows only simple paths in a graph (that is paths that repeat

no nodes), then both data and combined complexity jump to NP-complete [Mendelzon and

Wood, 1995]. We however do not require paths to be simple, so the mentioned result does not

affect our presentation.

When moving to CRPQs a jump in combined complexity occurs.

Fact 2.4.2([Consens and Mendelzon, 1990, Barceló et al., 2012b]). Combined complexity of

evaluating CRPQs isNP-complete. Data complexity isNLOGSPACE-complete.

The data complexity bound follows from the same technique asfor RPQs (but now using

multiple automata). Bound for combined complexity is obtained by guessing a polynomial

length witnessing paths and verifying that the guess is correct. The lower bound follows from

a matching bound for relational conjunctive queries [Chandra and Merlin, 1977].

It is also known that adding inverses incurs no extra computational cost.

Fact 2.4.3([Calvanese et al., 2000]). Both combined and data complexity of evaluating 2RPQs

are NLOGSPACE-complete.

This observation is straightforward, since evaluating 2RPQs is the same as evaluating RPQs

over an extended alphabet.

For NPQs query evaluation is very efficient. In fact it is linear.

Fact 2.4.4([Pérez et al., 2010]). Both combined and data complexity of evaluating NPQs are

in PTIME. In fact, checking if a pair(v,v′) belongs to Q(G) can be done in O(|G|× |e|), where

Q= x
e
−→ y.

This algorithm relies heavily on the solution to the model checking problem for proposi-

tional dynamic logic [Harel et al., 2000].

2.5 Path languages and Graph languages

Examining carefully the semantics of NPQs one can see that they are in fact defined to operate

directly on graphs, without taking an intermediate step through language theory as e.g. RPQs

do. Indeed, the distinction betweenNREs and NPQs is purely artificial, and introduced only

in order to keep the notation consistent throughout the thesis. We have already mentioned

that such languages, whose semantics is dependant on the graphs and not language theory

2.5. Path languages and Graph languages 21

formalism defining the set of allowed paths, will be called graph languages and their semantics

graph semantics.

RPQs on the other hand start with the premise of specifying the set of allowed path labels

and then their semantics is defined by finding paths in the graph whose label belongs to this set

of allowed paths. Therefore there is a certain duality when dealing with such languages, which

we call path languages. Namely, there is a language theoretic formalism (regular languages in

the case of RPQs) that defines the set of allowed path labels and then there is the query itself

whose semantics depends on two things:

1. Finding paths in the graph, and

2. Checking that the path label belongs to the language of thedefining expression.

We have mentioned already that such languages are called path languages, since they rely

on finding paths in the graph and do not operate on the graphs themselves. In order to underline

this connection between queries and language theoretic models defining them we will be us-

ing such a duality between expressions defining path labels and the queries themselves, when

appropriate. Therefore in the forthcoming chapters we willbe dealing with:

• Path languages– when the underlying idea is to describe the set of permissible path

labels and then the semantics calls for finding paths in the graph whose labels belong to

this set.

• Graph languages– when queries are defined to operate directly on graphs and when

paths alone no longer suffice to capture the intended semantics.

Important thing to note is that e.g.NREs can not be used in the same manner as regular

expressions, since they no longer define paths, but patterns. Indeed, using the nesting operator,

one can specify various patterns in a graph that are no longercaptured by paths alone. Note

that NREs could also be used to define sets of words (i.e. their semantics could be adopted

to paths instead of graphs), where the nesting would only look ahead (or backwards) along a

single path; however, this approach, although interestingin its own right [Reutter, 2013a], falls

outside the scope of this thesis.

An important and useful observation is that path languages can always be defined to operate

directly over graphs, where the definition simply captures the intended behaviour of navigating

the graph along a path with the permissible label. This is particularly useful when one wants to

define the semantics of e.g. the inverse operator, since the somewhat counter intuitive notion of

a semi-path is no longer needed. In fact defining semantics ofpath queries directly on graphs,

called thegraph semantics of path queries, also gives a uniform way of looking at queries that

is in a sense more relational then the traditional path semantics given above. However, due to

22 Chapter 2. Preliminaries

historical reasons, and to exemplify the underlying designprinciple of path queries, we will in

general use the path semantics when dealing with such queries.

Next we show how to define graph semantics for RPQs.

Graph semantics for RPQs Here we define graph semantics of RPQs and 2RPQs formally

and show that it matches the path semantics above. Recall that 2RPQs (which subsume the

class of RPQs) are defined using expressions specified by the following grammar:

e := ε | a | a− | e·e | e∗ | e+e, (2.4)

wherea ranges over a fixed finite alphabetΣ. Note that these are simply regular expressions

over the extended alphabetΣ±, just as in the definition of 2RPQs.

The graph semantics of such an expressione over a graph databaseG is then defined as

follows:

JεKG = {(v,v) | v∈V}

JaKG = {(v,v′) | (v,a,v′) ∈ E}

Ja−KG = {(v,v′) | (v′,a,v) ∈ E}

Je·e′KG = JeKG◦ Je′KG

Je+e′KG = JeKG∪ Je′KG

Je∗KG = the reflexive transitive closure ofJeKG

In the end we simply define (2)RPQs as queries of the formQ= x
e
−→ y, wheree is defined

by the grammar above, and setQ(G) = JeKG. Same as for NPQs andNREs, this extra step,

separating expressions from the queries they define, is simply syntactic and we do so only to

keep the notation uniform. Note that (2)RPQs now operate directly over graphs. It is however

easy to show that the two semantics coincide.

Lemma 2.5.1. Let e be an expression defined by the grammar 2.4. Then for any data graph

G and a pair v,v′ of nodes in G it holds that(v,v′) ∈ JeKG if and only if there is a semi-pathπ

connecting v and v′ such that the labelλ(π) belongs to the language of e, when e is viewed as

a regular expression overΣ±.

Note here that when only RPQs are considered semi-paths are replaced by paths. The

lemma is proved by a straightforward induction on the structure of the expressione.

Remark 2. Since for graph semantics there is no longer a real difference between the expres-

sions defining the queries and the queries themselves, we will often simply use the expressions

to denote queries and vice versa. Therefore, we will useNREs when talking about NPQs, or

use the expressions from grammar 2.4 when talking about 2RPQs.

2.5. Path languages and Graph languages 23

A short note on the structure Seeing how there is a divide amongst the class of navigational

graph languages, it is only natural that in our search for suitable querying framework for graphs

with data we follow that divide. In that respect, we will begin our study using the more tradi-

tional approach of path languages in Part I, where various formalisms defining languages that

handle data values will be used to describe the set of allowedpaths. Here we will begin with

some well established language theoretic formalisms, but will also define new ones, opening

space to study them in separation, as well as when used to query graphs. Following that we will

expand on the idea of NPQs and define several languages designed to work directly on graphs

in Part II. There we will also consider what happens when we try to transfer ideas from graphs

to a more general setting of RDF triplestores. Finally, in Part III we will examine how path

and graph languages compare to each other, thus giving us a complete picture of the current

landscape of languages for graphs with data.

Part I

Path languages

25

Chapter 3

From words to paths

In order to define queries on graphs with data we will have to decide whether we will be using

the traditional approach of path queries (e.g. RPQs, 2RPQs), or the more general approach

of graph queries such as NPQs. In this part of the dissertation we will concentrate on path

queries, showing how, even when we want to reason not only about the shape of the path, but

also about the values appearing along it, these can be definedusing some standard language

theoretic formalisms that take data value comparisons intoconsideration. In order to illustrate

what a suitable formalism for describing both navigationaland data aspects of graphs might be

consider the following data graph.

1v1 1v3 3 v5

2

v2

1

v4

a

a

b

b

a

b

b

Figure 3.1: Graph database with data values

Over such a graph a typical RPQ may ask for pairs of nodes connected by a path from

the regular language(ab)∗. In the graph in Fig. 3.1, one possible answer is(v1,v3), another –

(v1,v5). To combine this with data values, we may ask queries of the following kind:

• Find nodes connected by a path from(ab)∗ such that the data values at the beginning and

at the end of the path are the same. In this case,(v1,v3) is still in the answer but(v1,v5)

is not.

• We may extend comparisons to other nodes on the path, not onlyto the first and the last

27

28 Chapter 3. From words to paths

node. For example, we may ask for nodes connected by paths along which the data value

remains the same, or on which all data values are different from the first one. The pair

(v1,v3) is in the answer to the first query (the pathv1v4v3 witnesses it), while the pair

(v1,v5) is in the answer to the second, as witnessed by the pathv1v2v5.

What kind of languages can we use in place of regular languages to specify paths with

data? To answer this, consider, for example, a pathv1v2v5v3 in the graph. If we traverse it by

starting inv1, reading its data value, then reading the label of(v1,v2), then the data value in

v2, etc., we end up with the following data path: 1a2b3a1. Data paths are extremely close to

an object that has been actively studied in the XML context – namely,data words[Bojanczyk,

2010,Bojanczyk et al., 2011,Segoufin, 2006,Segoufin, 2007]. A data word is a word in which

every position is labelled by both a letter from a finite alphabet (e.g.,a or b) and a data value

(e.g., a number). Data paths are essentially data words withan extra data value. We can

represent the data path 1a2b3a1 as a data word
(#

1

)(a
2

)(b
3

)(a
1

)
, where # is a special symbol

reserved for the extra data value.

We can thus use multiple formalisms developed for data words(with a minor adjustment

for the extra value) to specify data paths. Such formalisms abound in the literature, and include

first-order and monadic second-order logic with data comparisons [Bojanczyk et al., 2009,

Bojanczyk et al., 2011], LTL with freeze quantifiers [Demri and Lazíc, 2009], XPath fragments

[Bojanczyk, 2010, Figueira, 2009], and various automata models such as pebble and register

automata [Bouyer et al., 2001,Kaminski and Francez, 1994,Kaminski and Tan, 2008,Kaminski

and Tan, 2006,Neven et al., 2004].

The question is then, which one to choose? To answer this, we look at data complexity of

query answering for each of these formalisms. We show that aslong as the formalism is capable

of expressing what is perhaps the most primitive language with data value comparisons (two

data values are equal) and is closed under complementation,thendatacomplexity is NP-hard.

Clearly one cannot tolerate such high data complexity, and this rules out most of the above

mentioned formalisms exceptregister automata.

Before examining this issue, in the following section we will show how to go from data

paths to data words and vice versa. In particular we will argue that the approach when graph

databases are defined in such a way that data values reside in the nodes (as in Section 2.1)

naturally gives rise to data paths, while graphs with data inthe edges are better suited for

working with data words. Both of the approaches have their strengths and weaknesses, but as

we will shortly see, they are essentially equivalent.

3.1. Data words vs data paths 29

3.1 Data words vs data paths

As mentioned before, data words can easily be used in place ofdata paths. To see this, consider

e.g. a data path 1a3c1. This data path can be replaced by the data word
(#

1

)(a
3

)(c
1

)
. Here we

take the approach that the missing symbol from the finite alphabet is replaced by the special

label #. Then when defining the language one has to make sure that the first letter symbol is

not considered. This, however, will be easily achievable inany of the data word formalisms

discussed below.

On the other hand, to move from data words to data paths we willhave to add an extra data

value. Let⊥ be a new data value, not used in the domain of the considered language. Then the

data word
(b

1

)(a
3

)(c
1

)
is replaced by the data path⊥b1a3c1; that is, we add this special symbol

⊥ to the start of the path to denote the missing data value.

To see where this discrepancy between the two approaches comes from, consider a typical

graph database, as for example the one in Figure 3.1. A path inthis database is e.g.v1v2v5v3.

When traversing this path we see that each edge comes with a label and two data values as-

signed to its ends. Therefore, by reading data values and edge labels in order in which they

appear on this path we obtain the sequence 1a2b3a1, that is, we end up with a data path. This

approach, where data values are placed in the nodes is more usual for graph databases [Abite-

boul et al., 1999] and has historically prevailed over the model where data values reside in the

edges. One of the main reasons for this is the fact that in a graph database nodes are themselves

considered to be small databases, thus carrying data, whichis naturally modelled by data values

from an infinite domain.

The dual approach, where data values reside in the edges, hasby now been mostly aban-

doned. However, its main attraction is that it allows path labels to be described in terms of data

words, which are, unlike data paths, symmetric objects, andthus much easier to manipulate.

For example concatenating data words is straightforward, while doing the same for data paths

requires some attention (namely, one has to make sure that the last value in the first path equals

the first one in the second path). In what follows, mostly to stay with the traditional approach

to graph querying, we will consider the model where data resides in the nodes, although, as we

now show, the two approaches are equivalent. Note that this equivalence comes as a no surprise

as a similar duality is present in the are of formal verification, where one can use both labelled

transition systems and Kripke structures as models for temporal or modal logic formulas.

In a model where data values are in the edges a typical edge looks like the one in the

following figure.

v v′

(a
d

)

30 Chapter 3. From words to paths

If we wanted to convert a usual data graphG, as defined in Section 2.1, we would have to,

for each nodev in G add a new nodesv and an edge labelled
(#

ρ(v)
)

from sv to v. Furthermore,

each edge(v,a,v′) in G has to be replaced by the edge(v,
(a

ρ(v′)
)
,v′). This is illustrated in the

following example:

1

v1

7

v2

1

v3

b

c

a

GraphG with data values in the nodes

v1 v2 v3

s1 s2 s3

(b
7

)

(c
7

)

(a
1

)

(#
1

) (#
7

) (#
1

)

An equivalent graphG′ with data values in the edges

To see that the two graphs from the figure above indeed represent the same set of data

paths consider for example the pathπ = v1bv2av3 and the associated data path 1b7a1. As we

mentioned above we will represent this data path with the data word
(#

1

)(b
7

)(a
1

)
. But then the

corresponding path inG′ simply starts ins1 and continues along the nodes fromG, that is the

whole path iss1
(#

1

)
v1
(b

7

)
v2
(a

1

)
v3 and the label of this path is obviously the one required. The

intuition behind this transformation is to push data valuesto the incoming edge, with a new

nodesv for every nodev to allow it to be the start point of some path. Therefore we seethat

using data word formalisms to reason about data paths, or going from the model where data

resides in the nodes to the one where it is in the edges, present no problems.

Going from graph with data values in the edges back to the oneswhere it is in the nodes is

a bit more cumbersome, as now we can not simply push the value to one node, since there can

be multiple edges between the nodes. The solution then, is toadd a new node for each edge of

the graph and assign it the data value of that edge. The new node is then connected to the graph

by adding an extra label. All of the nodes from before are assigned the same data value⊥,

signifying that this value should be skipped. This solutionis illustrated in the following image.

v1 v2

(a
1

)

(b
7

)

An graph with data values in the edges

⊥v1 ⊥ v2

1

e1

7

e2

a

b
$

$

An equivalent graph with data values in the nodes

Note that here the equivalent data path would require a bit more padding than in the other

case. For example the pathv1
(a

1

)
v2 would now correspond tov1ae1$v2, and thus data path

3.2. Ruling out bad alternatives 31

⊥a1$⊥, with special symbol $ denoting that the following data value ⊥ should be ignored.

It is however easy to see that such a behaviour can easily be encoded by any of the data path

formalisms we study in the following chapter.

Seeing how the two approaches differ, from now on we will use the traditional model where

data resides in the nodes and develop language formalisms for describing data paths. As we

have shown, it is straightforward to adapt data word formalisms to work in this setting, however,

to keep notation consistent, we will redefine all of the data word formalisms to operate directly

on data paths. We will briefly return to the setting of data words in Chapter 6, where we show

how formalisms introduced specifically for data paths can beadapted to work on data words.

In that chapter we will deal with main language theoretic issues connected to such languages

and show how they relate one to another.

3.2 Ruling out bad alternatives

A data path query is an expression of the formQ= x
L
−→ y, whereL is a set of data paths.

Depending on which formalism we use to specify allowed languagesL we will have different

classes of data path queries.

Therefore, to talk about data path queries, as just defined, we need to express properties

of paths with data. As we already mentioned, these are essentially data words, with an extra

data value attached. Quite a few languages and automata models have been developed for data

words over the past few years, mainly in connection with the study of XML, especially XPath.

We now give a quick overview of them. A more extensive survey can be found in [Segoufin,

2006].

FO(∼) and MSO(∼) These are first-order logic and monadic second-order logic extended

with the binary predicate∼ saying that data values in two positions are the same. For

example,∃x∃y a(x)∧ a(y)∧ x∼ y says that there are twoa-labeled positions with the

same data value. Two-variable fragments of FO(∼) and existential MSO with the∼

predicate have been shown to have decidable satisfiability problem [Bojanczyk et al.,

2009,Bojanczyk et al., 2011].

Pebble automata These are basically finite state automata equipped with a finite set of peb-

bles. To ensure regular behavior pebbles are required to adhere to a stack discipline. The

automata are modeled in such a way that the last placed pebbleacts as the automaton

head and we are allowed to drop and lift pebbles over the current position. In addition

to this we can also compare the current data value to the one that already has a pebble

placed over it. Algorithmic properties and connections with logics have been extensively

studied in [Neven et al., 2004].

32 Chapter 3. From words to paths

LTL ↓ This is the standard LTL expanded with a freeze operator thatallows us to store the

current data value into a memory location and use it for future comparisons. The full

logic has undecidable satisfiability problem, but various decidable restrictions are known

[Demri and Lazíc, 2009,Demri et al., 2007].

Register automata These are in essence finite state automata extended with a finite set of

registers allowing us to store data values. Although first studied only on words over

infinite alphabet [Kaminski and Francez, 1994, Neven et al.,2004, Sakamoto and Ikeda,

2000] they are easily extended to handle data words, as illustrated in [Demri and Lazić,

2009,Segoufin, 2006]. They act as usual finite state automatain the sense that they move

from one position to another by reading the appropriate letter from the finite alphabet,

but are also allowed to compare the current data value with ones already stored in the

registers.

XPath fragments XPath is the standard language for navigating in XML documents, i.e., for

describing paths in a way that may also include conditions ondata values that occur

in documents. Fragments of XPath (with and without data values) have been exten-

sively studied, see, e.g., [Benedikt et al., 2008, Bojanczyk et al., 2009]. While in gen-

eral the satisfiability problem is undecidable, several decidable restrictions are known,

e.g., [Figueira, 2009,Figueira and Segoufin, 2011].

In deciding which formalism to choose, we look at thedata complexityof evaluating data

path queries, and try to rule out those for which data complexity is intractable. Technically,

a formalism just defines a set of allowed languagesL ⊆ Σ[D]∗. As before, a queryQ is then

simply an expression of the formQ= x
L
−→ y. Thus each formalism for defining allowed lan-

guagesL gives rise to an associated class of queries. It turns out that most of the formalisms for

data words/paths are actually not suitable for graph querying. This is implied by the following

result. LetLeq be the language of data paths that contain two equal data values. We will denote

its complement, i.e. the language of all data paths containing pairwise different data values by

Leq.

Theorem 3.2.1. The data complexity of evaluating Q= x
Leq
−→ y over data graphs isNP-

complete.

Proof. The proof is by showing that withLeq, one can encode the 2-disjoint-paths problem

which is NP-complete [Fortune et al., 1980]. This problem isto check, for a graphG and four

nodess1, t1,s2, t2 in G, whether there exist two paths inG, one froms1 to t1 and the other from

s2 to t2 that have no nodes in common. First, we argue that we can assume thats1, t1,s2, and

t2 to be distinct. This is because we can always add two new nodesfor each repeated node

3.2. Ruling out bad alternatives 33

and connect them with all the nodes the repeated node was connected to, thus modifying our

problem to have all source and target nodes different.

Assume thatG = 〈V,E〉 is a digraph ands1, t1,s2, t2 are four distinct nodes inG. Recall

that our query isQ= x
Leq
−→ y. Since the query will disregard edge labels we can takeΣ = {a}.

We will construct a data graphG′ and two nodess, t ∈G′ such that(s, t) ∈Q(G′) if and only if

there are two disjoint paths inG from s1 to t1 and froms2 to t2.

Let V = {v1, . . . ,vn}. The graphG′ will contain two disjoint isomorphic copies ofG (ex-

tended with data values and labels) connected by a single edge. We define the two isomorphic

copiesG1 = 〈V1,E1,ρ1〉 andG2 = 〈V2,E2,ρ2〉 by:

• V1 = {v′1, . . . ,v
′
n},

• V2 = {v′′1, . . . ,v
′′
n},

• E1 = {(v′i ,a,v
′
j) : (vi ,v j) ∈ E},

• E2 = {(v′′i ,a,v
′′
j) : (vi ,v j) ∈ E} and

• ρ1(v′i) = ρ2(v′′i) = i, for i = 1. . .n,

and then letG′ = 〈V ′,E′,ρ′〉, where

• V ′ =V1∪V2,

• E′ = E1∪E2∪{(t ′1,a,s
′′
2)} and

• ρ′ = ρ1∪ρ2.

Note thatρ′ is well defined sinceV1 andV2 are disjoint. Finally, we defines= s′1 andt = t ′′2 .

We claim that(s, t) ∈ Q(G′) if and only if there are two disjoint paths inG from s1 to t1

and froms2 to t2 in G. To see this assume first that(s, t) ∈ Q(G′). This means that we have a

path inG′ which starts ins′1 and ends int ′′2 . In particular, it must pass the edge fromt ′1 to s′′2,

since this is the only edge connecting the two graphs. Also, since all data values on this path

are different, we know that no node can repeat, i.e., the pathcontains no two copies of the same

node inG. But then we simply split this path into two disjoint paths inG since the structure of

edges inG′ is the same as the one inG with the exception of edge betweent ′1 ands′′2.

Conversely, assume that we have two disjoint paths froms1 to t1 and froms2 to t2 in G.

Notice that we can assume these two paths to contain no loops,since loops can be removed

while keeping the paths disjoint. To obtain a data path froms to t in Leq, we simply follow the

corresponding path froms′1 to t ′1 in G1 (and thus inG′), traverse the edge betweent ′1 ands′′2 and

then follow the path inG2 (and thus inG′) from s′′2 to t ′′2 corresponding to the path froms2 to t2

in G. Since the two paths inG have no node in common and do not have loops, all data values

on the constructed data path froms to t in G′ are different.

This completes the proof.

34 Chapter 3. From words to paths

Note thatLeq is about the simplest property one can express about data paths/words; it

would be hard to imagine a formalism that cannot check for theequality of data values. The

corollary below effectively rules out closure under complement for such formalisms if they are

to be used in graph querying.

Corollary 3.2.2. Assume that we have a formalism for data paths that can define Leq and that

is closed under complement. Then data complexity of evaluating data path queries isNP-hard.

This immediately rules out FO(∼) and its two-variable fragment, LTL with the freeze

quantifier, and pebble automata.

The only hope we have among standard formalisms isregister automata, since they are

not closed under complementation [Kaminski and Francez, 1994]. In the following chapter we

show that we can achieve good query answering complexity using register automata and some

of their restrictions, while still retaining sufficient expressive power.

Remark 3. It is important to note that we will come back to FO in Chapter 7, where its

semantics will be defined directly on graphs. As a consequence, in that context negation will be

limited to the active domain, and not to the set of all data words as here, therefore expressing

that all data values along a path are different will no longerbe possible.

In Chapter 7 we will also come back to XPath, which we do not consider in the context of

path queries. The main reason for this is the fact that XPath is intrinsically a graph (originally

tree) language, and even when it is used to reason about data words the semantics relies on

defining patterns [Figueira, 2010b] in a same way as on trees.Indeed, when used over data

words XPath simply treats them as trees and is thus not a true path language. Another reason

not to study XPath as a path language is that even the more general graph approach already

yields very efficient query evaluation algorithms (combined complexity is alwaysPTIME and

for some fragments even linear).

Chapter 4

Languages for data paths

This chapter will consider classes of graph query languagesbased on the principle of defining

paths in a graph. As already mentioned, we will take the classical approach of RPQs and

consider language theoretic formalisms defining sets of data paths, while the query will then

be satisfied if we can find a data path in the graph whose label belongs to the defined set. In

that respect, we will differentiate between a language formalism used (e.g. regular expressions

in the case of RPQs) and the class of queries they give rise to (that is RPQs).

In Chapter 3 we showed that due to unreasonably high data complexity most formalisms

defining languages of data words(all of which can easily be adapted to define data paths) can

be ruled out, with the notable exception of register automata.

These automata, originally introduced in [Kaminski and Francez, 1994] to work with words

over infinite alphabets and later extended to data words [Segoufin, 2006, Demri and Lazić,

2009], give rise to a class of queries called regular data path queries, or RDPQs for short. Here

we study their query answering problem and present an algorithm, based on computing the

product of automata, which, when nonemptiness is checked on-the-fly, gives an NLOGSPACE

data complexity and PSPACE combined complexity bound. The bound for data complexity is

good (it matches the usual RPQs) and the bound for combined complexity is tolerable (equiv-

alent to that of FO, but higher than the NP bound for conjunctive RPQs or the PTIME bound

for RPQs).

However, automata are not an ideal way of specifying conditions in queries. In RPQs, we

use regular expressions rather than NFAs. While some regular expressions have been consid-

ered for register automata [Kaminski and Tan, 2006], they are very far from intuitive1 and lack

the expressive power to capture register automata. Therefore we propose three types of regular

expressions that can be used in queries, all of them subsumedby register automata.

The first, called regular expressions with memory and givingrise to regular queries with

1For instance to express the languageLeq of paths with two equal data values the formalism in [Kaminski
and Tan, 2006] uses the expressiony∗{y} · /0 x · /0 y∗{y} · /0 x · /0 y∗{y} , while the class of regular expressions with equality
introduced in Section 4.4 defines the same language using a simple expressionΣ∗ · (Σ+)= ·Σ∗.

35

36 Chapter 4. Languages for data paths

memory (or RQMs), is close in spirit to automata themselves and it lets one store a data value

and use it later. For example, to express the query “connected by a path along which the data

value remains the same”, we would use the expression↓x.(Σ[x=])∗. This expression says: store

the first value of the path intox, and then go along, if labels are arbitrary (Σ) and the condition

x=, meaning that the value is equal tox, holds. These expressions are much easier to write

than the automata, and at the same time they can be translatedinto register automata; thus

data complexity of queries remains in NL. We show that the combined complexity remains the

same as for automata, i.e., PSPACE-complete (except in a rather limited case when the Kleene

star is not used: then it drops to NP-complete). Later on we will also show that they have the

same expressive power as register automata.

One unusual feature of regular expressions with memory and the associated class of queries

is that they do not define proper scope of variables. Indeed, the variable, once stored, can be

used at any point further on. This behaviour, although necessary to show equivalence with

register automata, seems very unnatural, so in the following section we study the language

with proper scoping rules defined. We will show that this language is strictly weaker than the

two above, however, this is not reflected on the evaluation problem, as it remains PSPACE-hard

for combined complexity.

This motivates a third class of expressions that restrict the ability to compare data values

along the path; instead, one can only do comparisons for chosen subexpressions. A simple

example of such an expression isΣ+
=, which denotes nonempty data paths that have same data

value at the beginning and at the end of the path:Σ+ indicates the label of the path, and the

subscript= states the condition for the first and the last data values. A slightly more elaborate

example isΣ∗ ·Σ+
= ·Σ∗. It says that a subpath conforms toΣ+

=, i.e., it denotes data paths on

which two data values are equal. For expressions of this kind, called regular expressions with

equality, we give a polynomial-time algorithm for combinedcomplexity. The key idea is to

translate expressions into push-down automata and then take the product with an automaton

obtained efficiently from the graph database.

Finally, we will consider variable automata, introduced recently in [Grumberg et al., 2010a]

to define languages over an infinite alphabet. Here we redefinethem on data paths and show that

the corresponding class of queries, called regular querieswith variables (or RQVs) has com-

bined complexity of query evaluation between that of register automata and the much weaker

regular expressions with equality. These automata themselves, however, are incomparable with

register automata and can even not express some properties definable by regular expressions

with equality.

4.1. Register automata as a query language 37

4.1 Register automata as a query language

As stated in the previous chapter, register automata are theonly standard formalism for defining

classes of data words that does not immediately lead to NP-hard data complexity of queries

on graphs with data. In this section we define them and study query evaluation for data path

queries based on these automata. We will slightly alter the definition of register automata used

in e.g. [Demri and Lazíc, 2009, Segoufin, 2006] to work on data paths rather than datawords,

without affecting their desirable properties.

As mentioned earlier register automata move from one state to another by reading the

appropriate letter from the finite alphabet and comparing the data value to one previously stored

into the registers. Our version of register automata will use slightly more involved comparisons

which will be boolean combinations of atomic=, 6= comparisons of data values.

To define such conditions formally, assume that, for eachk> 0, we have variablesx1, . . . ,xk.

Then conditions inCk are given by the grammar:

c := x=i | x
6=
i |e

= |e6= | c∧c | c∨c | ¬c, 1≤ i ≤ k,

wheree is a data value fromD, also referred to as theconstant. Let D⊥ = D ∪{⊥}, where

⊥ is a special symbol signifying that the register is empty. The satisfaction of a condition is

defined with respect to a data valued ∈D and a tupleτ = (d1, . . . ,dk) ∈Dk
⊥ as follows:

• d,τ |= x=i iff d = di ;

• d,τ |= x6=i iff d 6= di ;

• d,τ |= e= iff d = e;

• d,τ |= e6= iff d 6= e;

• d,τ |= c1∧c2 iff d,τ |= c1 andd,τ |= c2 (and likewise forc1∨c2);

• d,τ |= ¬c iff d,τ 2 c.

In what follows,[k] is a shorthand for{1, . . . ,k} andε for a condition that is true for any

valuation and data value (e.g.c∨¬c).

Definition 4.1.1 (Register data path automata). Let Σ be a finite alphabet, and k a natural

number. A k-register data path automatonis a tupleA = (Q,q0,F,τ0,δ), where:

• Q=Qw∪Qd, where Qw and Qd are two finite disjoint sets of word states and data states;

• q0 ∈Qd is the initial state;

• F ⊆Qw is the set of final states;

• τ0 ∈Dk
⊥ is the initial configuration of the registers;

• δ = (δw,δd) is a pair of transition relations:

– δw⊆Qw×Σ×Qd is the word transition relation;

– δd ⊆Qd×Ck×2[k]×Qw is the data transition relation.

The intuition behind this definition is that since we alternate between data values and word

38 Chapter 4. Languages for data paths

symbols in data paths, we also alternate between data states(which expect data value as the

next symbol) and word states (which expect alphabet lettersas the next symbol). We start with

a data value, soq0 is a data state, end with a data value, so final states, seen after reading that

value, are word states.

In a word state the automaton behaves like the usual NFA (but moves to a data state using

its word transition function). In a data state, the automaton checks if the current data value and

the configuration of the registers satisfy a condition, and if they do, moves to a word state and

updates some of the registers with the read data value. Both functionalities are illustrated in

the following image, where in the data transition automatonchecks if data value is different

that the one stored in register seven and then moves to a word state while storing the value into

registers from the setI .

Word transition: Data transition:

q

word state

q′

data state

a
r

data state

r ′

word state

x6=7 , I

Note that we could have modelled constants by storing them into the initial assignment

(possibly using more registers). We put them into conditions however, to have a uniform way of

handling them when we define RQBs and RQMs in the following sections. When the condition

ε is used, or whenI = /0 (that is we do not store the data value into some register) we will omit

them from the transition in the image above.

Now we formally define acceptance of a data path by a register automaton. Given a data

pathw= d0a0d1a1 . . .an−1dn, where eachdi is a data value and eachal is a letter, a configuration

of A on w is a tuple(j,q,τ), where j is the current position of the symbol inw thatA reads,q

is the current state andτ ∈Dk
⊥ is the current content of the registers. The initial configuration

is (0,q0,τ0) and any configuration(j,q,τ) with q∈ F is a final configuration.

From a configurationC= (j,q,τ) we can move to a configurationC′ = (j +1,q′,τ′) if one

of the following holds:

• the jth symbol is a lettera, there is a transition(q,a,q′) ∈ δw, andτ′ = τ; or

• the current symbol is a data valued, and there is a transition(q,c, I ,q′) ∈ δd such that

d,τ |= c andτ′ coincides withτ except that theith component ofτ′ is set tod whenever

i ∈ I .

A data pathw is accepted byA if A can move from the initial configuration to a final

configuration after readingw. The language of data paths accepted byA is denoted byL(A).

Example 4.1.2.Next we provide three examples of data path languages and register automata

recognizing them.

4.1. Register automata as a query language 39

1. The following automaton recognizes the language of all data paths where the first data

value differs from all the others and the label is a∗. It operates by storing the first data

value into the register x, which is denoted here and in the examples below by↓ x. It then

moves to the state q1, where it loops(by alternating between q2 and q1), while checking

that the data value being read is different from the one stored in x. If this is satisfied it

ends its computation in an accepting state q1.

q0start q1 q2
↓ x

a

x6=

2. The language of paths where all data values are the same andthe label of each path

starts with an a and is then followed by an arbitrary number ofbs is defined by the

automaton below. Similarly as in the example above we store the first data value into

the register x and then move to q1, where the automaton checks that the first letter is a.

It then proceeds to loop over bs by making sure that each data value equals to the one

stored, ending its accepting run in the state q3.

q0start q1 q2 q3
↓ x a

x=

b

3. To illustrate how comparisons with constants work we now construct the automaton

defining the language where each data value equals the first one, but the second value

is different from 5. It proceeds as above, storing the first value into its register, with the

exception that after reading the second value it explicitlychecks if it is different from 5.

q0start q1 q2 q3 q4
↓ x a 56=∧x=

a

x=

Regular data path queries

Our first class of queries on graphs with data is based on register data path automata.

Definition 4.1.3. A regular data path query (RDPQ)over a fixed finite alphabetΣ is an expres-

sion Q= x
A
−→ y whereA is a register data path automaton overΣ.

Given a data graph G, the result of the query Q(G) consists of pairs of nodes(v,v′) such

that there is a data path w from v to v′ that belongs to L(A).

40 Chapter 4. Languages for data paths

Example 4.1.4. Coming back to the movie database from Figure 2.3, assume that, for each

edge labelledcast that connects a movie or a documentary with an actor, we also have an

edge going in the other direction labelledstars_in. For example we will add one such edge

connectingKevin Bacon with Mystic River, or Charlotte Rampling with The Mill and The Cross.

We can then ask for all people who have a finite Bacon number using the query Q= x
A
−→ y,

specified by the following register automatonA :

q0start q1

q2 q3

q4 q5
/0

stars_in

= Kevin Bacon

/0

/0

cast

To improve readability we write= c instead of c= when comparing a data value with the

constant c. The automaton works by traversing a sequence ofstars_in · cast edges, which

connect all pairs of actors who co-starred in a same film, but also makes sure that the last data

value equalsKevin Bacon.

Note that in addition to the actor with a finite Bacon number, this query also returns the

node corresponding to Kevin Bacon.

To evaluate RDPQs, we transform both a data graphG and ak-register data path automaton

A into NFAs over an extended alphabet and reduce query evaluation to NFA nonemptiness.

More precisely, to evaluateQ(G), we do the following:

1. LetD be the set of all data values inG.

2. TransformG= 〈V,E,ρ〉 into a graphG′ = 〈V ′,E′〉 over the alphabetΣ∪D as follows:

• V ′ = {vs,vt | v∈V}

• E′ = {(vt ,a,v′s) | (v,a,v
′) ∈ E}

⋃
{(vs,ρ(v),vt) | v∈V}

Basically, we split each nodev with a data valued into a source nodevs and a target node

vt and add ad-labeled edge between them; after that we restore the edges fromE so that

they go from target to source nodes. This is illustrated below.

4.1. Register automata as a query language 41

vs vt v′s v′t

d

v

d′

v′

d a d′

a

⇓

3. Transform the automatonA = (Q,q0,F,τ0,(δw,δd)) into an NFAAD = (Q′,q′0,F
′,δ′)

over the alphabetΣ∪D as follows:

• Q′ = Q×Dk
0, with D0 = D∪{⊥}∪{τ0(i)|i = 1. . .k};

• q′0 = (q0,τ0);

• F ′ = F×Dk
0;

• δ′ includes two types of transitions.

(a) Whenever we have a transition(q,a,q′) in δw, we add transitions

((q,τ),a,(q′ ,τ)) to δ′ for all τ ∈ Dk
0.

(b) Whenever we have a transition(q,c, I ,q′) in δd, we add transitions

((q,τ),d,(q′ ,τ′)) if d,τ |= c and τ′ is obtained fromτ by putting d in posi-

tions from the setI .

For two nodesv,v′ of G, we turnG′ into an NFAAG′,v,v′ by lettingvs be its initial state and

v′t be its final state. Then we have the following.

Proposition 4.1.5. Let Q= x
A
−→ y be anRDPQ, and G a data graph whose data values form

a set D⊆D. Then

(v,v′) ∈Q(G) ⇔ L(AG′,v,v′ ×AD) 6= /0.

Proof. It follows immediately from the construction that the automatonAD accepts precisely

those data paths formL(A) that have data values fromD. To see this it suffices to show that

every accepting run ofAD corresponds to an accepting run ofA and vice versa, in the case

of paths whose data values come formD. But this follows easily sinceAD has all possible

configurations of registers at it’s disposal.

To see that the statement of Proposition holds assume first that (v,v′) ∈ Q(G). Then there

is a data pathwπ = d0a0d1a1 . . .an−1dn from v to v′ such thatwπ ∈ L(A). Since this is a data

path inG starting withv and ending withv′ it must also be a word in the language ofAG′,v,v′ .

On the other hand, since it is inL(A), it must also be inL(AD), sinceAD is simply restriction

of A to alphabet in which data values come only from the setD. ThusL(AG′,v,v′ ×AD) 6= /0.

Conversely, assume thatL(AG′,v,v′ × AD) 6= /0. Then there is a data pathwπ =

d0a0d1a1 . . .an−1dn such thatwπ ∈ L(AG′,v,v′) andwπ ∈ L(AD). But then by constructionwπ

42 Chapter 4. Languages for data paths

must be a data path inG from v to v′. Also wπ ∈ L(A), sinceL(AD) is simply a restric-

tion of language ofA to data paths whose data values come fromD. But this implies that

(v,v′) ∈Q(G).

Thus, query evaluation, like in the case of the usual RPQs, isreduced to automata

nonemptiness, although this time the automata are over larger alphabets. Since the construction

is polynomial in the size ofG and exponential in the size ofA (ask gets into the exponent), we

immediately get a PTIME upper bound for data complexity and an EXPTIME upper bound for

combined complexity. By performing on-the-fly nonemptiness checking for the product, we

can lower these bounds.

Theorem 4.1.6. Data complexity ofRDPQs over data graphs is inNL, and the combined

complexity ofRDPQs over data graphs isPSPACE-complete.

We only need to prove PSPACE-hardness, since upper PSPACE bound follows from on-the-

fly method for checking nonemptiness of exponential size automata. But this is an immediate

consequence of Proposition 4.2.3 and Theorem 4.2.7, which are proved for a more restricted

language.

The bound for data complexity cannot be lowered as there exist simple RPQs for which

data complexity is NL-complete.

4.2 Regular queries with memory (RQMs)

Regular data path queries based on register automata have acceptable complexity bounds: data

complexity is the same as for RPQs, and combined complexity,although exceeding the bounds

on conjunctive queries and RPQs, is the same as for relational calculus or for RPQs extended

with regular relations. Despite this, RDPQs as we defined them have no chance to lead to a

practical language as it is inconceivable that the user willspecify a register automaton over data

paths. Even for queries such as RPQs and their extensions, conditions are normally specified

via regular expressions.

Our goal now is to introduce regular expressions that can be used in place of register au-

tomata in data path queries. Note that as long as they expresslanguages accepted by register

automata, we shall achieve an NL bound on data complexity by Theorem 4.1.6.

The first class of queries, studied in this section, is based on an extension of regular ex-

pressions withmemorythat lets us specify when data values are remembered and whenthey

are used. The basic idea is this: we can write expressions like ↓x.a+[x=] saying: store the

current data value inx and check that after reading a word froma+ we see the same data value

(conditionx= is true). This will define data paths of the formda. . .ad. Such expressions are

4.2. Regular queries with memory (RQMs) 43

relatively easy to write and understand (much easier than automata), and the complexity of

their query evaluation will not exceed that of register automata.

Definition 4.2.1 (Expressions with memory). Let Σ be a finite alphabet and x1, . . . ,xk a set of

variables. Thenregular expressions with memoryare defined by the grammar:

e := ε | a | e+e | e·e | e+ | e[c] | ↓x.e (4.1)

where a ranges over alphabet letters, c over conditions inCk, and x over tuples of variables

from x1, . . . ,xk.

A regular expression with memory e is well-formed if it satisfies two conditions:

• Subexpressions e+, e[c], and↓x.e are not allowed if e reduces toε. Formally, e reduces

to ε if it is ε, or it is e1+e2 or e1 ·e2 or e+1 or e1[c] or ↓x.e1 where e1 (and e2) reduce to

ε.

• No variable appears in a condition before it appears in↓x.

The class of well-formed regular expressions with memory isdenoted by

REG(Σ[x1, . . . ,xk]).

The extra condition of being well-formed is to rule out pathological cases likeε[c] for

checking conditions over empty subexpressions, ora[x=] for checking equality with a variable

that has not been defined. In what follows we always assume that regular expressions with

memory are well-formed.

The intuition behind the expressions is that they process a data path in the same way that

the register automaton would, by storing data values in variables, using these variables for

comparisons and moving through the word by reading a letter from the finite alphabet. Note

that when we bound a variable we do not specify the scope of this binding. This means that

the variable can be used at any point after it was bounded tillthe end of the expression and is

analogous to how register automata store and use data values.

Example 4.2.2.We now give four examples of such expressions and languages they recognize,

before formally defining their semantics.

1. The expression↓x.(a[x6=])+ defines the language of data paths where all edges are la-

beleda and the first data value is different from all other data values. It starts by binding

x to the first data value; then it proceeds checking that the letter is a and conditionx6=

is satisfied, which is expressed bya[x6=]; the expression is then put in the scope of+ to

indicate that the number of such values is arbitrary.

2. The expression↓x.(ab)+[x6=] denotes the language of data paths whose label is of the

form ab. . .ab and for which the first data value is different from the last. Note that the

44 Chapter 4. Languages for data paths

order of+ and condition is now different: the condition is checked after verifying that

the label is in(ab)+, i.e., at the end of the word.

3. The expression↓x.a+[x=]+ ε denotes the language of data paths where all labels area

and the first data value is equal to the last. Note that one suchdata path is simply of the

form d, for d ∈D, with labelε.

4. The languageLeq of data paths in which two data values are the same (see Section 3.2)

is given by the expressionΣ∗ · ↓x.Σ+[x=] ·Σ∗, whereΣ is the shorthand fora1+ . . .+al ,

wheneverΣ = {a1, . . . ,al} andΣ∗ is the shorthand forΣ++ ε. It says: at some point,

bind x, and then check that after one or more edges, we have the same data value.

5. The language where each data value equals the first one, butthe second value is different

from 5 is given by↓ x.a[56= ∧ x=](a[x=])∗. It operates similarly as the expression in the

first example, except that it tests for equality with the firstdata value, while explicitly

testing that the second value differs from 5.

SemanticsFirst, we define theconcatenationof two data pathsw = d1a1 . . .an−1dn and

w′ = dnan . . .am−1dm as w ·w′ = d1a1 . . .an−1dnan . . .am−1dm. Note that it is only defined if

the last data value ofw equals the first data value ofw′. The definition naturally extends to

concatenation of several data paths. Ifw= w1 · · ·wl , we shall refer to it as asplitting of a data

path (intow1, . . . ,wl).

The semantics is defined by means of a relation(e,w,σ) ⊢ σ′, wheree∈REG(Σ[x1, . . . ,xk])

is a regular expression with memory,w is a data path, and bothσ and σ′ are k-tuples over

D ∪{⊥} (the symbol⊥ means that a register has not been assigned yet). The intuition is as

follows: one can start with a memory configurationσ (i.e., values ofx1, . . . ,xk) and parsew

according toe in such a way that at the end the memory configuration isσ′. The language ofe

is then defined as

L(e) = {w | (e,w,⊥) ⊢ σ for someσ},

where⊥ is the tuple ofk values⊥.

The relation⊢ is defined inductively on the structure of expressions. Recall that the empty

word corresponds to a data path with a single data valued (i.e., a single node in a data graph).

We use the notationσx=d for the valuation obtained fromσ by setting all the variables inx to

d.

• (ε,w,σ) ⊢ σ′ iff w= d for somed ∈D andσ′ = σ.

• (a,w,σ) ⊢ σ′ iff w= d1ad2 andσ′ = σ.

• (e1 · e2,w,σ) ⊢ σ′ iff there is a splittingw = w1 ·w2 of w and a valuationσ′′ such that

(e1,w1,σ) ⊢ σ′′ and(e2,w2,σ′′) ⊢ σ′.

• (e1+e2,w,σ) ⊢ σ′ iff (e1,w,σ) ⊢ σ′ or (e2,w,σ) ⊢ σ′.

4.2. Regular queries with memory (RQMs) 45

• (e+,w,σ) ⊢ σ′ iff there are a splittingw = w1 · · ·wm of w and valuationsσ =

σ0,σ1, . . . ,σm = σ′ such that(w,wi,σi−1) ⊢ σi for all i ∈ [m].

• (↓x.e,w,σ) ⊢ σ′ iff (e,w,σx=d) ⊢ σ′, whered is the first data value ofw.

• (e[c],w,σ) ⊢ σ′ iff (e,w,σ) ⊢ σ′ andσ′,d |= c, whered is the last data value ofw.

Take note that in the last item we require thatσ′, and notσ, satisfiesc. The reason for this

is that our initial assignment might change before reachingthe end of the expression and we

want this change to be reflected when we check that conditionc holds.

Translation into automata We now show that regular expressions with memory can be effi-

ciently translated into register automata.

Proposition 4.2.3. For each regular expression with memory e∈ REG(Σ[x1, . . . ,xk]) one can

construct, inDLOGSPACE, a k-register data path automatonAe such that L(e) = L(Ae).

More precisely, the automatonAe = (Q,q0,F,⊥,δ) (over data domainD ∪{⊥}) has the

property that for any two valuationsσ,σ′ and a data path w, we have(e,w,σ) ⊢ σ′ iff the

automaton(Q,q0,F,σ,δ) has an accepting run on w that ends with the register configuration

σ′.

Proof. We prove this by induction on the structure ofe. Note that the initial assignment ofAe

is not specified in advance. We will simply put the assignmentin as needed, since it does not

change the structure of the underlying automaton. In what follows we will identify the vector

x of variables with the set of registers (i.e. positions) it corresponds to. For example the vector

(x3,x5) will correspond to the setI = {3,5} of registers.

If (e,w,σ) ⊢ σ′, we will write w∈ L(e,σ,σ′) and similarly if Ae = (Q,q0,F,⊥,δ) started

with σ acceptsw with σ′ in the registers, we writew∈ L(Ae,σ,σ′).

• If e= ε, thenAe = (Q,q0,F,⊥,δ), whereQ = {d}∪{w} is the set of states,q0 = d is

the initial state,F = {w} the set of final states and the only transition is(d,ε, /0,w).

• If e= a, for somea ∈ Σ then Ae = (Q,q0,F,⊥,δ), whereQ = {d1,d2} ∪ {w1,w2} is

the set of states,q0 = d1 the initial state,F = {w2} the final state and the transition

functions are as follows:δw = {(w1,a,d2)} is the word transition relation, andδd =

{(d1,ε, /0,w1),(d2,ε, /0,w2)} is the data transition relation.

• If e = e1 + e2 then by the inductive hypothesis we already have automataAe1 =

(Q1,d1,F1,⊥,δ1) andAe2 = (Q2,d2,F2,⊥,δ2) with the desired property. The registers

of Ae will be the union of registers ofAe1 andAe2. To obtain the desired automaton we

setAe = (Q,d0,F,⊥,δ), where

– Q= Q1∪Q2∪{d0}, whered0 is a new data state,

46 Chapter 4. Languages for data paths

– F = F1∪F2,

– To δ we add all transitions fromAe1 andAe2 and in addition, for every transition

(d,c, I ,w) ∈ δ1∪δ2, whered = d1, or d = d2, we add a transition(d0,c, I ,w).

To see that this automaton has the desired property assume that w ∈ L(e1 + e2,σ,σ′).

This means(e1 + e2,w,σ) ⊢ σ′. By definition, (e1,w,σ) ⊢ σ′ or (e2,w,σ) ⊢ σ′. By the

induction hypothesis it follows that eitherAe1, or Ae2 acceptsw and halts withσ′ in

the registers (when started withσ). From this it is clear thatAe can simulate the same

accepting run when started withσ in the registers(by using the transition fromd0 to the

appropriate automaton and continuing on the same run there). (Note that all conclusions

here are equivalences.)

• If e= ↓x.e1 then again by the induction hypothesis we haveAe1 = (Q1,d1,F1,⊥,δ1) with

the desired property. The automaton forAe is defined asAe = (Q1∪{d0},d0,F1,⊥,δ),

whered0 is a new data state andδ contains all the transitions ofAe1 and in addition,

for every transition(d1,c, I ,w), going from the initial state ofAe1, we add a transition

(d0,c, I ∪ x,w) to δ. The registers ofAe are the union of registers ofAe1 and |x| new

registers.

To see the equivalence, assume thatw∈ L(e,σ,σ′). By definition(e,w,σ) ⊢ σ′. It follows

that (e1,w,σx=v1) ⊢ σ′, wherev1 is the first data value inw andσx=v1 is the same asσ

except that every register inx containsv1. By the induction hypothesis we know that

Ae1 with σx=v1 as initial assignment has an accepting run onw ending withσ′ in the

registers. But thenAe starting withσ in the registers can go through the same run with

the exception that the first transition will changeσ to σx=v1 and since all other transitions

are the same we have the desired result. (Note that all conclusions here are equivalences.)

It is important to note that potential confusion of the variables will cause no conflicts.

To see this assume we have a transition(d1,c, I ,w) in Ae1 and we start withσ as initial

assignment. IfI andx have variables in common it will not matter, since all of themwill

get replaced by the same value, namely the first data value ofw. This means that the first

step of the run will end up with the same result. Also note thatno transition inδd with d1

as the first component will havec 6= ε, since this would amount to an expression starting

with a condition, something disallowed by our syntax.

• If e= e1[c] then letAe1 = (Q1,d1,F1,⊥,δ1) be an automaton fore1 as before. We define

Ae= (Q,d1,F,⊥,δ) whereQ= Q1∪{wf}, with wf a new state,F = {wf } and for every

transition(d,c′, I ,w) wherew∈ F1 we add a transition(d,c′ ∧ c, I ,wf) to Ae. We have

to add a new state simply because our original automaton could have looped back from

some final state.

To get the equivalence assume again thatw∈ L(e,σ,σ′). By definition(e1,w,σ) ⊢ σ′ and

4.2. Regular queries with memory (RQMs) 47

σ′,v |= c, wherev is the last data value inw. From the induction hypothesis we get an

accepting run ofAe1 with σ as initial configuration andσ′ as final one. But sinceσ′,v |= c

instead of the last transition we can simply make a transition to wf in Ae (since all other

transitions are the same). We again notice that all the implications can be reversed, i.e.

we can prove the equivalence.

• If e= e1 ·e2, take againAe1 andAe2 as above. The automaton fore is simply the union

of the previous two automata, but in addition to the already existing transitions we add

the following: for every(d,c, I ,w) in Ae1, wherew ∈ F1 and for every(d2,c′, I ′,w′) in

Ae2, whered2 is the initial state ofAe2, we add(d,c∧ c′, I ∪ I ′,w′) to δ. Note thatI is

going to be an empty set, since we work with well formed expressions. We also maked1

the initial state andF2 the set of final states. The registers ofAe are again the union of

registers ofAe1 andAe2.

To get the desired result once again assume thatw∈ L(e,σ,σ′). This means(e,w,σ) ⊢

σ′, which implies that there exists someσ′′ and a splittingw = w1 ·w2 of w such that

(e1,w1,σ) ⊢ σ′′ and(e2,w2,σ′′) ⊢ σ′. By the induction hypothesis we know that there

is an accepting run ofAe1 on w1 starting withσ and ending withσ′′ in the registers and

also an accepting run ofAe2 on w2 starting withσ′′ and ending withσ′ in the registers.

But we can simply combine these two runs into an accepting runof Ae on w. We do

so by settingσ as initial assignment and tracing the run ofAe1 till the final state. Now

instead of taking the last transition we will take one of the newly added transitions from

the next to final state inAe1 to the next to first state inAe2. Note that we can do this since

we know there is an accepting run ofAe2 on w2 and sincew= w1 ·w2, so their last and

first data value, respectively, coincide. Note that at this point we end up withσ′′ in the

registers and can continue the accepting run ofAe2 and thusAe.

Conversely, if we have an accepting run ofAe on w, we split the run, and thus the path,

into the part before and after taking the new transition added while constructing the

automaton. Note that we have to take this transition in orderto pass from the initial state,

which is in Ae1 part of Ae, to a final state, which is in aAe2 part of Ae. From this it

follows thatw∈ L(e).

• If e= e+1 , then let againAe1 be the automaton from the induction hypothesis. Note first

that this automaton has at least four states, since Proj(e1) 6= ε, where Proj(e) denotes the

projection to the finite alphabetΣ, and transitions going directly from initial to final state

can only accept the empty word, so they will not alter computations or acceptance. We

let the automaton forebe the same as the one fore1, but we add the following transitions:

for every(d,c, I ,w) with w∈ F1 and for every(d1,c′, I ′,w′), whered1 is the initial state

of Ae1, we add(d,c∧c′, I ∪ I ′,w′) to our transition function, thus bypassing the last and

48 Chapter 4. Languages for data paths

the first state.

Assume now that(e,w,σ) ⊢ σ′. Then either(e1,w,σ) ⊢ σ′, so we are done by the induc-

tion hypothesis, orw= w1 · · ·wk with k≥ 2 and valuationsσ1, . . . ,σk+1 exist such that

(e1,wi,σi) ⊢ σi+1 for i = 1, . . . ,k. But then by the induction hypothesis we have compu-

tations ofAe1 with σi as the initial assignment andσi+1 as final assignment that accept

wi, for i = 1, . . . ,k. Note that this actually means that we start withσ, do a computa-

tion for w1, end withσ2 in the registers, then take the new transition bypassing theend

state for this computation and thus starting the computation with σ2 in the registers(and

updating the registers as dictated by the first transition inthe new cycle), etc., until we

reachσ′ after readingwk, thus acceptingw.

For the converse, ifAe acceptsw when started withσ and ended withσ′ then we simply

split the data path for every time we take the additional transitions added in the con-

struction ofAe. From this we get computations ofAe1 on sub-paths with intermediate

valuations. By the induction hypothesis we have acceptanceof these subpaths bye1 with

appropriate valuations and thus the membership of the entire pathw in L(e,σ,σ′) .

This concludes the proof. To see that the construction can becarried out in DLOGSPACE

we use the well known fact that DLOGSPACEalgorithms can be composed [Papadimitriou,

1993].

A natural question to ask is do regular expressions with memory define the same class of

queries as register automata. We will prove that this is indeed true when addressing the problem

from a language theory point of view in Section 6.2.

Defining queries using Regular expressions with memory

We now deal with the following class of queries.

Definition 4.2.4. A regular query with memoryis an expression Q= x
e
−→ y, where e is regular

expression with memory.

Given a data graph G, the result of the query Q(G) consists of pairs of nodes(v,v′) such

that there is a data path w from v to v′ that belongs to L(e).

The class of these queries is denoted by RQM.

Example 4.2.5.To illustrate some interesting queries expressed by RQMs weagain turn to the

movie database from Figure 2.3. Same as in the Example 4.1.4 we will assume that eachcast

edge has a correspondingstars_in edge going in the other direction.

• To express the query from Example 4.1.4 returning actors that have a finite Bacon num-

ber we can use Q= x
e
−→ y, where e is given by (starts_in · cast)+[=Kevin Bacon].

4.2. Regular queries with memory (RQMs) 49

• To find movies having at least two different actors staring inthem we would use the RQM

Q= x
e
−→ y, where e is↓ x. cast ↓ y. stars_in [x=]·cast[y6=]. Note that here, in addition to

the movie we also return one of the actors. The expressions first stores the movie name

into the variable x and after that moves to first of the actors.Following this it stores

the actor’s name into y and moves back to the movie using astars_in edge and checking

that it arrived at the same movie by comparing the data value with the one stored into x.

Following that the expression simply traverses anothercast edge, ensuring it reached a

different actor by comparing the value in the node to y.

Using Proposition 4.2.3 combined with Theorem 4.1.6 we immediately obtain:

Corollary 4.2.6. Data complexity of RQM queries is inNL.

From the same connection we also get the upper bound (PSPACE) for combined complexity.

It turns out that we can achieve PSPACE-hardness with expressions with memory. Thus, we

have

Theorem 4.2.7.Combined complexity of evaluating RQM queries isPSPACE-complete.

Proof. The PSPACE upper bound follows from Theorem 4.1.6 and Proposition 4.2.3. Thus

we only have to prove PSPACE-hardness. For this we do a reduction from regular automata

nonuniversality problem. The idea is to simulate on the fly reachability testing in the powerset

automaton by using two sets of variables, each of the size of the automaton, for coding the

current and the next state.

Let A = (Q,Σ,δ,q1,F) be a finite state automaton, whereQ = {q1, . . . ,qn} and F =

{qi1, . . . ,qik}. We will construct a fixed graphG with 5 nodes, containing two distinguished

nodess andt in G and construct, in polynomial time, a regular expression with memorye,of

lengthO(n×|Σ|), such that(s, t) ∈Q(G) if and only if L(A) 6= Σ∗, whereQ= x
e
−→ y.

The graphG is shown below:

1

v1

0

v2

1

v3

0

v4

0

v5

a a a
a

a

a a a

We now sets= v1 andt = v5.

Since we are trying to demonstrate nonuniversality of the automatonA we simulate reach-

ability checking in the powerset automaton forA . To do so we designate two distinct data

values,t and f , and code each state of the powerset automaton as ann-bit sequence oft/ f val-

ues, where theith bit of the sequence is set tot if the stateqi is included in our state ofA . Since

50 Chapter 4. Languages for data paths

we are checking reachability we will need only to remember the current and the next state of

A . In what follows we will code those two states using variables s1, . . . ,sn andw1, . . . ,wn and

refer to them as stable tape and work tape. Our expressione will code data paths that describe

successful runs ofA by demonstrating how one can move from one state of this automaton

to another (as witnessed by their codes in stable and work tapes), starting with the initial and

ending in a final state.

We will define several expressions and explain their role. Wewill use two sets of variables,

s1 throughsn andw1, . . . ,wn to denote stable and work tape (i.e. current and next state inthe

powerset automaton). All of these variables will only contain two values,t and f , which are

bound in the beginning and that will correspond to 0 and 1 in the graphG.

The first expression we need is:

init := ↓t.a[t 6=]↓ f .a[t=]↓s1.a[f
=]↓s2. . . .a[f

=]↓sn.a.

This expression codes two different values ast and f and initializes stable tape to contain

encoding of initial state (the one where only initial state fromA can be reached). That is, a data

path is in the language of this expression if and only if it starts with two different data values

and continues withn data values that form a sequence in 10∗.

end := a[f=∧s=i1] ·a[f
=∧s=i2] · · ·a[f

= ∧s=ik], whereF = {qi1, . . . ,qik}.

This expression is used to check that we have reached a state not containing any final state

from the original automaton. That is, a data path is inL(end) if and only if it consists ofk data

values, all equal tof and where value stored insi j also equalsf , for j = 1. . .k.

Next we define expressions that will reflect updating of the work tape according to the

transition function ofA . Assume thatδ(qi ,b) = {q j1, . . . ,q jl }. We define

uδ(qi ,b) :=
(
a[t=∧s=i] ·a[t

=]↓w j1. . . .a[t
=]↓w jl .a

)
+a[f=∧s=i].

Also, if δ(qi ,b) = /0 we simply putuδ(qi ,b) := ε.

This expression will be used to update the work tape by writing true to corresponding

variables if the stateqi is tagged witht on the work tape (and thus contained in the current state

of A). If it is false we skip the update.

Since we have to define update according to all transitions from all the states corresponding

to chosen letter we get:

update :=
∨

b∈Σ

∧

qi∈Q

uδ(qi ,b).

This simply states that we non deterministically pick the next symbol of the word we are

guessing and move to the next state accordingly.

4.2. Regular queries with memory (RQMs) 51

We still have to ensure that the tapes are copied at the beginning and end of each step, so

we define:

step := (a[f=]↓w1. . . .a[f
=]↓wn.a) ·update · (a[w

=
1]↓s1. . . .a[w

=
n]↓sn.a).

This simply initializes the work tape at the beginning of each step, proceeds with the update

and copies the new state to stable tape. Note the few odd a’s atthe end of the expressions.

These will not affect what we what to achieve and are here for syntactical reasons(to get a

proper expression).

Finally we have

e := init · (step)∗ ·end.

Here we usestep∗ as abbreviation forstep++ ε.

We claim that forQ= x
e
−→ y, we have(s, t) ∈Q(G) if and only if L(A) 6= Σ∗.

Assume first thatL(A) 6= Σ∗. This means that there is a path from the initial to the final

state in the powerset automaton forA . That is, there is a wordw from Σ∗ not in the language

of A . This path can in turn be described by pairs of assignment of valuest/ f to stable and

work tape, where each transition is witnessed by the corresponding letter of the alphabet. But

then the path froms to t in G that belongs toL(e) is the one that first initializes the stable tape

(i.e. the variabless1, . . . ,sn) to initial state of the powerset automaton, then runs the updates

of the tape according tow and finally ends in a state where all variables correspondingto end

states ofA are taggedf . Note that we can describe this path inG, since we start ins and put

1 into t in nodev1, 0 into f in nodev2. After that 1 is assigned tos1 in v3 and 0 tos2, . . . ,sn

by looping throughv4. After that each transition is reflected by going throughv3 andv4 as

necessary, to update tapes witht/ f and finally going tov5 and looping there to check that all

si ’s corresponding to end states are taggedf .

Conversely, each path froms to t in L(e) corresponds to a run of the powerset automaton

for A . That is, the part of path corresponding toinit sets the initial state. Then the part of this

path that corresponds tostep∗ corresponds to updating our tapes in a way that properly codes

one step of powerset automaton. Finally,end denotes that we have reached a state where all

end states ofA have been tagged byf , thus, an accepting state forA .

The question is whether we can reduce this complexity – ideally to PTIME, but at least to

NP, to match the combined complexity of conjunctive queries. The following corollary (to the

proof of Theorem 4.2.7) shows that many restrictions will not work.

Corollary 4.2.8. Combined complexity of evaluating RQM queries remainsPSPACE-hard for

expressions that use at most one+ and 6= symbol, are specified over a singleton alphabet

Σ = {a}, and are evaluated over a fixed graph.

In one case, we can lower the complexity.

52 Chapter 4. Languages for data paths

Proposition 4.2.9. Combined complexity of RQM queries whose regular expressions do not

have subexpressions of the form e+ is NP-complete.

Proof. Recall that fore∈ REG(Σ[x1, . . . ,xk]), by Proj(e) we denote the projection ofe to the

finite alphabetΣ.

First we show NP-membership. Since we do not use+ we know that every data path in the

language of expressione uses at most|Proj(e)| letters and one more data value. Assume now

that we are given a data graphG, two nodess, t ∈G and an expression with memorye. To see

if (s, t) ∈ Q(G), for Q = x
e
−→ y, we use the following algorithm. First compute the register

automatonAe for e. Note that this can be done in DLOGSPACE. Then nondeterministically

guess a data pathwπ in G from s to t that is of length at most|Proj(e)|. Now also guess

2|λ(wπ)|+ 1 states ofAe and check that the pathwπ is accepted byAe, as witnessed by this

sequence of states, and thus is inL(e). It is straightforward to see that this can be done in

polynomial time and since our guesses are of polynomial (in fact linear) size we get the desired

result.

For hardness we do a reduction fromk-CLIQUE. This problem asks for a given graphG

and a numberk, to determine ifG has a clique of size at leastk.

Suppose we are given an undirected graphG and a numberk. We will construct a data

graphG′ with |G|+2 nodes, select two nodess, t ∈G′ and construct a regular expression with

memoryek of sizeO(k2) such thatG contains ak-clique if and only if there is a data path from

s to t in G′ that satisfiesek.

TakeΣ = {a,b} and makeG directed by adding edges in both directions for every edge in

G. Label all the edges bya and add two more nodessandt. Add an edge froms to every other

node excepts, t and label them withb. Also add an edge from every node inG to t and label

them byb. To finish the construction just add a different data value toevery node. We call the

resulting graphG′.

To defineek we use an auxiliary expressionδi defined as:

δi := a[x=1] ·a[x
=
i] ·a[x

=
2] ·a[x

=
i] . . .a[x

=
i−1] ·a[x

=
i].

This expression will simply allow us to test that the currentnode is connected to all nodes

previously selected in our potential clique.

Now we can defineek inductively as follows:

• e1 := b· ↓x1.a[x
6=
1],

• e2 := e1 · ↓x2.a[x
6=
1 ∧x6=2],

• ei := ei−1 · ↓xi .δi ·a[x
6=
1 ∧ . . .∧x6=i], for i = 3, . . . ,k−1 and

• ek := ek−1 · ↓xk.δk ·b.

4.3. Regular queries with binding (RQBs) 53

Next we show that there is ak-clique inG iff there is a data path forms to t in G′ that satisfies

ek.

Suppose first that there is ak-clique in G. Then we simply move froms to an arbitrary

point in that clique using theb labeled edge and traverse the clique back and forth until we

reach thek-th element of the clique. Note that starting from the third element, whenever we

select a different node in the clique we have to move back and forth between this node and all

previously selected ones to satisfyδi , but since we have a clique this is possible. Finally, after

selecting the last node and verifying that it is connected toall the others we move tot using a

b labelled edge.

Now suppose that there is a data path froms to t in G′ that satisfiesek. This means that

we will be able to selectk different nodesn1, . . . ,nk in G with data values stored inx1, . . . ,xk.

Since all data values in the graph are different they also actas ids. Now take any twoni ,n j with

i < j ≤ k. Then we know thatni andn j are connected inG because after selectingn j we have

to go throughδ j which containsa[x=i] ·a[x
=
j] and since no two data values inG are the same

this means that we have an edge betweenni andn j . This completes the proof.

The restriction, while achieving better combined complexity, is too strong, as it effectively

restricts one to languages of data paths whose projections on Σ∗ are finite. All the examples we

saw earlier use subexpressionse+. So if we want to achieve tractability, we need to look at a

very different way of restricting expressions. This is whatwe do in the next two sections.

4.3 Regular queries with binding (RQBs)

When examining Regular expressions with memory one asymmetry becomes apparent quite

quickly. Namely, they do not define the scope of variables. Toillustrate this, consider the

following regular expression with memory:

↓ x.a· (a[x6=] ↓ x.a)∗ ·a[x=].

This expression re-binds variablex inside the scope of another binding, and then crucially,

when this happens, the original binding ofx is lost! Such expressions really mimic the be-

haviour of register automata, which makes them more procedural than declarative. Although

this behaviour is necessary to show equivalence between register automata and regular expres-

sions with memory, as we will demonstrate in Section 6.2, it goes against the usual practice of

writing logical expressions and programs that have bound variables.

Therefore it makes sense to study expressions that have proper scoping rules defined. In

this section we show that using such expressions makes writing graph queries more natural,

however, it does not garner any decrease in computational requirements when querying graphs.

54 Chapter 4. Languages for data paths

In a later section we will also study these expressions from alanguage theory point of view and

show that they are strictly weaker than register automata.

Definition 4.3.1 (Expressions with binding). Let Σ be a finite alphabet and x1, . . . ,xk a set of

variables. Thenregular expressions with bindingare defined by the grammar:

e := ε | a | e+e | e·e | e+ | e[c] | ↓x.{e} (4.2)

where a ranges over alphabet letters, c over conditions inCk, andx over tuples of variables

from x1, . . . ,xk.

As before we will assume that all the expressions are well-formed.

The class of well-formed regular expressions with binding is denoted byREB(Σ[x1, . . . ,xk]).

Note that the scope of variablesx in an expression of the form↓x.{e} is explicitly denoted

by parenthesis which make it extend only in the subexpression e. For example the last occur-

rence ofx in ↓x.{(a[x6=])∗} ·a[x=] is outside of the scope of↓ x and will thus not be compared

to the first data value in the word, as would be the case in a regular expression with memory.

Since regular expressions with binding have proper scoping, they also have the usual notion

of free and bound variables. A variablex is bound if it occurs in the scope of some↓ x operator

and free otherwise. More precisely, free variables of an expression are defined inductively:ε

anda have no free variables, ine[c] all variables occurring inc are free, ine1+e2 ande1 ·e2

the free variables are those ofe1 ande2, the free variables ofe+ are those ofe, and the free

variables of↓x.{e} are those ofe exceptx. We will write e(x1, . . . ,xl) if x1, . . . ,xl are the free

variables ine.

A valuation on the variablesx1, . . . ,xk is a partial functionν : {x1, . . . ,xk} 7→ D. For a

valuationν, we write ν[xi ← d] to denote the valuationν′ obtained by fixingν′(xi) = d and

ν′(x) = ν(x) for all otherx 6= xi . Likewise, we writeν[x← d] for a simultaneous substitution of

values fromd = (d1, . . . ,dl) for variablesx= (x1, . . . ,xl) andν[x← d] whend1 = . . .= dl = d.

Also notationν(x) = d means thatν(xi) = di for all i ≤ l .

Let e(x) be from REB(Σ[x1, . . . ,xk]). A valuationν is compatible withe, if ν(x) is defined.

The semantics of a regular expression with bindinge is given with respect to a compatible

valuationν : {x1, . . . ,xk} 7→D and it denotes the set of data pathsL(e,ν) inductively as follows:

• L(ε,ν) = {d | d ∈D}.

• L(a,ν) = {dad′ | d,d′ ∈D}.

• L(e+e′,ν) = L(e,ν)∪L(e′,ν).

• L(e·e′,ν) = L(e,ν) ·L(e′,ν).

• L(e+,ν) = L(e,ν)+.

• L(e[c],ν) = {d1a1 . . .akdk+1 ∈ L(e,ν)|dk+1,ν |= c}.

4.3. Regular queries with binding (RQBs) 55

• L(↓x.{e},ν) = {d1a1 . . .akdk+1|d1a1 . . .akdk+1 ∈ L(e,ν[x← d1])}.

If an expression has no free variables it is calledclosed. When dealing with closed regular

expressions with binding it is not necessary to specify a valuation. We can thus talk aboutL(e),

the language of data paths defined by a closed expressione.

Next we give a few examples of regular expressions with binding and languages they define.

Example 4.3.2. Here we give some examples of data path languages definable byregular

expressions with binding. These will be similar to the ones given in Example 4.2.2 to demon-

strate that one can define some interesting properties of data paths even with the restrictions

that proper scoping rules impose.

1. The language where all data values differ from the first oneis given by the expression

↓x.{(a[x6=])+}.

2. The language where first data value differs from the last one is given by↓x.{a∗a[x6=]}.

3. The language where two data values are equal is given by a∗ · ↓x.{a∗a[x=]} ·a∗.

4. The language where each data value equals the first one, butthe second value is different

from 5 is given by↓ x.{a[56= ∧x=](a[x=])∗}.

It is straightforward to see that regular expressions with binding are subsumed by regis-

ter automata and expressions with memory. Moreover, going from expressions with binding to

expressions with memory (and thus register automata) is trivially achieved by renaming of vari-

ables. For instance regular expression with binding↓x.{a[x=] · ↓x.{a[x6=]} ·a[x=]} is equivalent

to regular expression with memory↓ x.a[x=]· ↓ y.a[y6=] ·a[x=]. We thus obtain the following.

Proposition 4.3.3.For every regular expression with binding e we can constructan equivalent

regular expression with memory e′ in DLOGSPACE.

When comparing the formalisms in Section 6.3 we will show that the converse is not true.

Queries based on expressions with binding

Similarly as when dealing with RQMs, we now define a class of queries based on regular

expressions with binding.

Definition 4.3.4. A regular query with bindingis an expression Q= x
e
−→ y, where e is a closed

regular expression with binding.

Given a data graph G, the result of the query Q(G) consists of pairs of nodes(v,v′) such

that there is a data path w from v to v′ that belongs to L(e).

The class of these queries is denoted by RQB.

56 Chapter 4. Languages for data paths

Example 4.3.5. To give an example of an RQB query we note that both expressions in Ex-

ample 4.2.5 can be expressed with a properly defined scope. While the expression find-

ing people with a finite Bacon number already is a regular expression with binding, to

find movies having at least two different actors we use Q= x
e
−→ y, where e equals

↓x.{cast↓y.{stars_in[x=] · cast[y6=]}}.

Using Proposition 4.3.3 combined with Corollary 4.2.6 we immediately obtain:

Corollary 4.3.6. Data complexity of RQB queries isNL-complete.

Seeing how scoping puts a restriction on the expressive power of languages, and since the

expressions used to show hardness in Theorem 4.2.7 use the fact that no scope is defined for

the variables they use, one might hope that query evaluationfor RQBs might be more efficient

that forRQMs. However, we show next that this is not the case.

Theorem 4.3.7.The combined complexity of query evaluation for RQBs isPSPACE-complete.

Proof.Note that the upper bound follows from Proposition 4.3.3 andCorollary 4.2.6.

Now we prove the PSPACE-hardness of our theorem. The reduction is form QBF.

Let

Ψ = ∀xn∃yn . . .∀x1∃y1 ϕ

ϕ = (ℓ1,1∨ ℓ1,2∨ ℓ1,3)∧ (ℓ2,1∨ ℓ2,2∨ ℓ2,3)∧ ·· ·∧ (ℓm,1∨ ℓm,2∨ ℓm,3)

where eachℓi, j is a literal. We call a literalℓi, j anegativeliteral, if it is a negation of a variable.

Otherwise, we call it apositiveliteral.

For eachi ∈ {0,1, . . . ,n}, we will denoteΨi = ∀xi∃yi . . .∀x1∃y1ϕ. Hence,Ψ0 = ϕ and

Ψn = Ψ. We are going to construct (in polynomial time) a graphG, two nodess, t ∈ G and a

closed regular expression with bindingr such that for theRQB Q= x
r
−→ y it holds that

Ψ is true if and only if (s, t) ∈Q(G).

Construction of the graph G and the two nodes s, t ∈G: The graphG is a data graph over

Σ = {a,b,#,$}. Its construction is done inductively oni ∈ {0,1, . . . ,n}, whereGi,si , ti are

constructed fromΨi . The desired graphG and the two nodess, t ∈ V(G) is the following

graph.

s sn tn t

$
· · · · · ·· · ·

Gn

4.3. Regular queries with binding (RQBs) 57

The construction ofGi,si , ti is inductive oni. The graphG0 and the two verticess0, t0 are

as follows.

-1

s0

e1,1

v1

e1,2

v2

e1,3

v3

em,1

v3m−2

em,2

v3m−1

em,3

v3m = t0

a a a a aa
· · · · · ·· · ·

where

ei, j =

{

1 if the literalℓi, j is positive

0 if the literalℓi, j is negative

Now we show the construction ofGi,si , ti . Suppose we already constructedGi−1,si−1, ti−1.

ThenGi ,si , ti is as follows.

-1

si

0

1

0

si−1 ti−1

1

ti

0

1

b

b

b

b

b

b

b

b

b

b

· · · · · ·· · ·

Gi−1

The construction of the expression r:In the following we are going to show the construc-

tion of the expressionr. We first show how to construct an auxiliary expressionr i , for each

i = 0,1, . . . ,n, which is based on the formulaΨi . The desired expressionr is then defined as

r = #· rn ·$.

The expressionr i is defined inductively oni = 0. . .n. First we set

r0 = clause1 ·clause2 · · ·clausem,

where each clausei is defined as follows.

clausei = a[x=i,1] ·a·a+a·a[x=i,2] ·a+a·a·a[x=i,3]

andxi,1,xi,2,xi,3 are the variables in the literalsℓi,1, ℓi,2, ℓi,3, respectively.

Now, assuming we have the expressionr i−1, we definer i as follows.

r i =
(

b↓xi .{b↓yi .{b· r i−1} ·b[x
=
i]}
)∗

.

Finally we setr = #· rn ·$.

It is straightforward to verify that the construction of both the data graphG and the expres-

sionr runs in time polynomial in the length of the formulaΨ.

58 Chapter 4. Languages for data paths

Remark 4. For every i= 0,1, . . . ,n,

• the formulaΨi has free variables xi+1,yi+1, . . . ,xn,yn;

• the expression ri has free variables xi+1,yi+1, . . . ,xn,yn.

Moreover, for a tupled ∈ {0,1}2(n−i), we writeΨi(d) to denote the formulaΨi in which the

variables xi+1,yi+1, . . . ,xn,yn are assigned withd. We also define the query Qd
i = x

r i ,ν(d)
−→ y,

whereν(d) is the valuation assigning values ind to xi+1,yi+1, . . . ,xn,yn. Then we have(v,v′)∈

Qd
i (G) if and only if there is a pathπ from v to v′ in G such that wπ ∈ L(r i ,ν(d)). Note that the

query here is dependant on the valuationν.

To prove thatΨ is true if and only if(s, t) ∈Q(G), we prove the following claim.

Claim 4.3.8. For each i= 0,1, . . . ,n and for every tupled ∈ {0,1}2(n−i), Ψi(d) is true if and

only if (si , ti) ∈Qd
i (Gi).

Proof. The proof is by induction oni. The basis isi = 0. We have to prove thatΨi(d) is true if

and only if(s0, t0) ∈Qd
0(G0).

Let for eachk = 1, . . . ,m and j = 1,2,3, we writedk, j to denote the 0-1 value assigned to

the variable in the literalℓk, j . Let ν denote the valuation whereν(x1),ν(y1), . . . ,ν(xn),ν(yn)

are assigned withd, respectively. Then, we have

Ψ0(d) is true

m

every clause(ℓk,1∨ ℓk,2∨ ℓk,3) is true under the assignmentν

m

for eachk= 1, . . . ,m, there existsj ∈ {1,2,3} such that

dk, j =

{

1 if ℓk, j is positive

0 if ℓk, j is negative

m

for eachk= 1, . . . ,m,wπk ∈ L(clausei ,ν) where

πk = v3k+0av3k+1av3k+2av3k+3

m

(s0, t0) ∈Qd
0(G0)

For the induction hypothesis, we assume thatΨi(d) is true if and only if(si , ti) ∈ Qd
i (Gi).

4.4. Regular queries with data tests (RQDs) 59

For the induction step, we prove the claim fori+1, which follows from the following equality.

Ψi+1(d) is true

m

there existe0,e1 ∈ {0,1} such thatΨi(d0e0) and Ψi(d1e1) are true

m

there existe0,e1 ∈ {0,1} such that(si , ti) ∈Qd0e0
i (Gi) and(si , ti) ∈Qd1e1

i (Gi) ∈ Q (r i ,Gi).

m

there exists a pathπ from si+1 to ti+1 such thatwπ ∈ L(r i+1,ν(d))

The last inequality follows from the definition ofr i+1, where

r i+1 =
(

b↓xi+1.{b↓yi+1.{b· r i} ·b[x
=
i+1]}

)∗
.

and to go from the vertexsi+1 to ti+1, the pathπ has to go thoroughGi at least twice: once

when the variablexi+1 is assigned with 0 and at least once when the variablexi+1 is assigned

with 1. Thus, we haveΨi+1(d) is true if and only if(si+1, ti+1) ∈Qd
i+1(Gi+1).

This concludes the proof of the hardness part, hence, our theorem.

4.4 Regular queries with data tests (RQDs)

The class of regular expressions for data paths that lets us lower the combined complexity of

queries to PTIME permits testing for equality or inequality of data values atthe beginning or the

end of a data (sub)path. For example,(Σ+)6= denotes the set of all data paths having different

first and last data values. The languageLeq of data paths on which two data values are the same

is given byΣ∗ · (Σ+)= ·Σ∗: it checks for the existence of a nonempty subpath (with label in Σ+)

such that the nodes at the beginning and at the end of this subpath have the same data value,

indicated by subscript=.

To allow for constants we will usesimplified conditions. These are simply conjunctions of

the forme= ande6=, wheree ranges overD. Then a data valued satisfies a simplified condition

c, denotedd |= c, if τ,d |= c, whereτ is an empty assignment. Note that the valuation itself is

irrelevant here.

Definition 4.4.1 (Expressions with equality). Let Σ be a finite alphabet. Thenregular expres-

sions with equalityare defined by the grammar:

e := ε | a | e+e | e·e | e+ | e[c] | e= | e6= (4.3)

where a ranges over alphabet letters and c is a simplified condition.

60 Chapter 4. Languages for data paths

The languageL(e) of data paths denoted by a regular expression with equalitye is defined

as follows.

• L(ε) = {d | d ∈D}.

• L(a) = {dad′ | d,d′ ∈D}.

• L(e·e′) = L(e) ·L(e′).

• L(e+e′) = L(e)∪L(e′).

• L(e+) = {w1 · · ·wk | k≥ 1 and eachwi ∈ L(e)}.

• L(e[c]) = {d1a1 . . .an−1dn ∈ L(e) | dn |= c}.

• L(e=) = {d1a1 . . .an−1dn ∈ L(e) | d1 = dn}.

• L(e6=) = {d1a1 . . .an−1dn ∈ L(e) | d1 6= dn}.

These expressions sacrifice the ability to store data values, making it only possible to check

for (in)equality at the start and the end of chosen subexpressions. The only exception is testing

against constants, but since these tests are so natural froma database point of view we include

them in the definition. Looking at Example 4.2.2, all languages except the first can be defined

by regular expressions with memory. We already saw how to do the languageLeq; the expres-

sion↓x.(ab)+[x6=] is equivalent to(ab)+6=. The expression↓x.(a[x6=])+ describing the language

of data paths in which all data values are different from the first one, requires checking a condi-

tion multiple times. We now show that this goes beyond the power of expressions with equality,

which are strictly weaker than expressions with memory.

Proposition 4.4.2. 1. For each regular expression with equality, there is an equivalent reg-

ular expression with memory.

2. For the regular expression with memory↓x.(a[x6=])+ there is no equivalent regular ex-

pression with equality.

Proof. For first item it is enough to observe that for expressions of the kinde= ande6=, wheree

is an ordinary regular expression, the expressions with memory ↓ x.e[x=] and↓ x.e[x6=] denote

the same language of data paths. From this it is straightforward to construct a translation of

arbitrary regular expression with equalitye to regular expression with memory by doing the

above mentioned construction bottom-up, starting from subexpressions ofe and using a new

variable for each subexpression of the forme′= or e′6=.

To prove the second claim we introduce a new kind of automata,called weak register

automata, show that they capture regular expressions with equality and that they can not express

the language↓ x.(a[x6=])+ of a-labeled data paths on which all data values are different from

the first one.

4.4. Regular queries with data tests (RQDs) 61

The main idea behind weak register automata is that they erase the data value that was

stored in the register once they make a comparison, thus rendering the register empty. We

denote this by putting a special symbol⊥ from D in the register. Since they have a finite

number of registers, they can keep track of only finitely manypositions in the future, so in the

case of our language, they can only check that a fixed finite number of data values is different

from the first one. We proceed with formal definitions.

The definition of weakk-register data path automaton is the same as in the Definition6.1.1.

The only explicit change we make is that we now assume thatCk contains a special symbolε,

that will allow us to simply skip the data value, without doing any comparisons (previously we

have been using a simple tautology such asx=1 ∨ x6=1 , or an additional register to emulate this).

Thus we simply addτ,d |= ε, for every valuationτ and data valued, to semantics ofCk. We

will also assume that the initial configuration is always empty.

Definition of configuration remains the same as before, but the way we move from one

configuration to another changes.

From a configurationc= (j,q,τ) we can move to a configurationc′ = (j +1,q′,τ′) if one

of the following holds:

• the jth symbol is a lettera, and there is a transition(q,a,q′) ∈ δw; or

• the current symbol is a data valued, and there is a transition(q,c, I ,q′) ∈ δd such that

d,τ |= c and τ′ coincides withτ except that every register mentioned inc is set to be

empty (i.e. to contain⊥) and theith component ofτ′ is set tod wheneveri ∈ I .

The second item simply tells us that if we used a condition likec= x=3 ∧x6=7 in our transition,

we would afterwards erase data values that were stored in registers 3 and 7. Note that we can

immediately rewrite these registers with the current data value.

The notion of acceptance and an accepting run is the same as before.

We now show that weak register automata can not recognize thelanguageL of all data

paths where first data value is different from all other data values, i.e. the language denoted by

the expression↓ x.(a[x6=])+.

Assume to the contrary, that there is some weakk−register data path automatonA recog-

nizing L. Since data pathwπ = d1ad2a. . .dkadk+1adk+2, wheredis are pairwise different and

do not appear in any condition inA , is in L, there is an accepting run ofA on wπ. The idea

behind the proof is thatA can check that only the firstk+1 positions have different data value

from the first.

First we note a few things. Since every data value in the pathwπ is different, no= com-

parisons can be used in conditions appearing in this run (otherwise the condition test would

fail and the automaton would not accept). This also must holdfor constants appearing in the

conditions, since nodis appear in them.

62 Chapter 4. Languages for data paths

Now note that since we have onlyk registers, and with every comparison we empty the

corresponding registers one of the following must occur:

• There is a data value 1< i < k+2 such that the condition used when processing this data

value isε. In this case we simply replacedi by d1 and get an accepting run on a word

that has the first data value repeated – a contradiction. Notethat we could storedi in that

transition, but since afterwards we only test for inequality this will not alter the rest of

the computation.

• There is a data value such that when the automaton reads it it does not use any register

with the first data value, i.e.d1, stored. Note that this must happen, because at best we

can store the first data value in all the registers at the beginning of our run, but after that

each time we read a data value and compare it to the first we losethe first data value in

this register. But then again we can simply replace this datavalue withd1 and get an

accepting run (just as before, if this data value gets storedin this transition and then used

later it can only be used in a6= comparison, which is also true ford1, so the run remains

accepting). Again we arrive at a contradiction.

This shows that no weak register automaton can recognize thelanguageL.

To complete the proof of Proposition 4.4.2 we still have to show the following:

Lemma 4.4.3. For every regular expression with equality e there exists a weak k-register au-

tomatonAe, recognizing the same language of data paths, where k is the number of times=, 6=

symbols appear in e.

The proof of the lemma is almost identical to the proof of Proposition 4.2.3. We can view

this as introducing a new variable for every=, 6= comparison ineand act as the subexpression

e′= reads↓ x.e′[x=] and analogously for6=. Note that in this case all variables come with their

scope, so we do not have to worry about transferring registerconfigurations from one side of

the construction to another (for example when we do concatenation). The underlying automata

remain the same.

Queries based on Regular expressions with equality

We now deal with the following queries.

Definition 4.4.4. A regular query with data testsis an expression Q= x
e
−→ y, where e is a

regular expression with equality.

Given a data graph G, the result of the query Q(G) consists of pairs of nodes(v,v′) such

that there is a data path w from v to v′ that belongs to L(e).

The class of these queries is denoted by RQD.

4.4. Regular queries with data tests (RQDs) 63

Example 4.4.5.Coming back to the database from Figure 2.3, we can now ask thefollowing

queries.

• The query asking for people with a finite Bacon number is againthe same as in Example

4.2.5.

• Query that checks if there is a movie in the database with at least two different actors is

defined by Q= x
e
−→ y, with e:= (stars_in ·cast)6=. Note that a nonempty answer to this

query merely signifies that such a movie exists. To actually retrieve the movie we would

need to use conjunctive queries with RQDs as atoms (Section 5.2).

Combining Propositions 4.2.3 and 4.4.2 we see that the powerof regular expressions with

equality is subsumed by register automata; hence combined with Theorem 4.1.6 we immedi-

ately obtain:

Corollary 4.4.6. Data complexity of RQD queries is inNL.

We now show that combined complexity forRQDqueries is tractable, i.e., is even better

than the combined complexity of conjunctive queries. Our outline of the polynomial-time

algorithm is as follows. We start with a data graphG = 〈V,E,ρ〉 whose data values form a

(finite) setD⊂D and a regular expression with equalitye.

1. We first show that we can efficiently generate a context-free grammarGe,D whose lan-

guage corresponds to the set of all data paths fromL(e) whose data values are inD. More

precisely, every word inL(Ge,D) will be of the formd1a1d2d2a2d3d3 . . .dn−1dn−1an−1dn,

wheredi ∈D andai ∈ Σ. We say that this word, in which each data value, except the first

and the last, appears twice, corresponds to the data pathd1a1d2a2d3 . . .an−1dn.

2. We then convertGe,D, in polynomial time, into an equivalent PDAA(Ge,D).

3. Given two nodesv,v′ in G, we construct an NFAAG,v,v′ . To do so we first define a graph

G′ = 〈V ′,E′〉 that will reflect the fact that all data values fromG have to be doubled if

they appear on a path as intermediate nodes. We defineG′ = 〈V ′,E′〉 as follows:

• V ′ = V ∪{ũ, û | u∈V}∪{s, t}

• E′ = {(v1,a, ṽ2) | (v1,a,v2) ∈ E}
⋃
{(ũ,ρ(u), û),(û,ρ(u),u) | u∈V}

Similarly as when dealing with register automata we triple each node and add an edge

between new nodes that will reflect the fact that every intermediate data value will have

to be doubled. This is illustrated below.

d1 d1 a d2 d2

a

ṽ1 v̂1 v1 ṽ2 v̂2 v2

v1 v2

d2d1

⇓

64 Chapter 4. Languages for data paths

In addition, we also add edges(s,ρ(v),v) and(ṽ′,ρ(v′), t) to E′. We now get the automa-

ton AG,v,v′ as the automaton obtained fromG′ by settings as the initial andt as the final

state. Note that the construction of the automatonAG,v,v′ is polynomial.

4. Finally, for Q = x
e
−→ y we have(v,v′) ∈ Q(G) iff the languageAG,v,v′ has nonempty

intersection with the language generated by the grammarGe,D. This follows by an argu-

ment similar to the proof of Proposition 4.1.5.

Since the intersection of a context-free language and a regular language is context-free

and can be obtained by the product construction of a PDA and anNFA, this means

that (v,v′) ∈ Q(G) iff the productA(Ge,D)×AG,v,v′ defines a nonempty language. This

product is a PDA, so we can check its nonemptiness in polynomial time, giving us a

polynomial algorithm for query evaluation.

Steps 2, 3, and 4 above use the standard constructions of converting CFGs into PDAs,

taking products, and checking PDAs for nonemptiness. So what is missing is the construction

of the CFGGe,D, which we show next.

Regular expressions with equality into CFGsAssume that we have a finite setD of data

values. We now inductively construct CFGsGe,D for all regular expressions with equality.

The terminal symbols of these CFGs will beΣ plus all elements ofD. All nonterminals in

Ge,D will be of the formAe′ andAdd′
e′ , wheree′ ranges over subexpressions ofe andd,d′ ∈ D.

Intuitively, words derived fromAdd′
e′ will correspond to (in a way previously described) data

paths inL(e′) with data values fromD that start withd and end withd′; words derived from

Ae′ will correspond to data paths inL(e′) with data values fromD. The start symbol for the

grammar corresponding to the expressionewill be Ae.

The productions of the grammarsGe,D are now defined inductively as follows.

• If e= ε, we have productionsAε→
∨

d∈D Add
ε andAdd

ε → d for eachd ∈ D.

• If e= a, for a ∈ Σ, we have productionsAe→
∨

d,d′∈D Add′
e and Add′

e → dad′ for all

d,d′ ∈ D.

• If e= e1 ·e2, we have productionsAe→
∨

d,d′∈D Add′
e andAdd′

e →
∨

d′′∈D Add′′
e1

Ad′′d′
e2

for all

d,d′ ∈ D together with all the productions of the grammarsGe1,D andGe2,D.

• If e= e1+e2, we have productionsAe→
∨

d,d′∈D Add′
e andAdd′

e →Add′
e1
|Add′

e2
for all d,d′ ∈

D together with all the productions of the grammarsGe1,D andGe2,D.

• If e= (e1)
+, we have productionsAe→

∨
d,d′∈D Add′

e andAdd′
e → Add′

e1
|
∨

d′′∈D Add′′
e1

Ad′′d′
e

for all d,d′ ∈ D together with all the productions of the grammarGe1,D.

• If e= e1[c], we have productionsAe→
∨

d,d′∈D,d′|=cAdd′
e andAdd′

e →Add′
e1

for all d,d′ ∈D

whered′ |= c, together with all the productions of the grammarGe1,D.

4.4. Regular queries with data tests (RQDs) 65

• If e= (e1)=, we have productionsAe→
∨

d∈D Add
e andAdd

e → Add
e1

for all d ∈ D together

with all the productions of the grammarGe1,D.

• If e= (e1)6=, we have productionsAe→
∨

d,d′∈D, d6=d′ A
dd′
e andAdd′

e → Add′
e1

for all d,d′ ∈

D with d 6= d′, together with all the productions of the grammarGe1,D.

It is clear from the construction that all words generated bythis grammar(with the sole ex-

ception of the empty word) have all of their intermediate data values (i.e. letters corresponding

to values inD) doubled, except the first and the last one.

Note that with these expressions we assume thatε can appear only when denoting the empty

word and will be removed otherwise. We require this, so that we would not get productions that

produce objects that are not data paths, such as e.g.ddd for the expressionε · ε · ε. Note that

this is not a problem, since all expressions can be rewrittento be of this form in DLOGSPACE.

The main result connecting these CFGs with languages of regular expressions with equality

is this. Recall that when we say that a word overΣ andD corresponds to a data path with values

in D, we mean that it equals the data path with all the data values,except the first and the last,

doubled.

Proposition 4.4.7.The language of words derived by each CFGGe,D corresponds to the set of

data paths in L(e) whose data values come from D. Furthermore, the set of words derived from

each nonterminal Add′
e corresponds to the set of data paths in L(e) which start with d, end with

d′, and whose data values come from D.

Moreover, the CFGGe,D can be constructed in polynomial time from e and D.

Proof. We prove the proposition by induction on the structure ofe. Note that it is enough to

show the second claim, i.e. we will show that the set of words derived from each nonterminal

Add′
e corresponds to the set of data paths inL(e) which start withd, end withd′, and whose data

values come fromD. This means that a wordd1a1d2d2a2d3d3 . . .an−1dn in which all values

but first and last are doubled is derived fromAdd′
e if and only if data pathd1a1d2a2d3 . . .an−1dn

is in L(e) and uses data values fromD. We prove this by induction on the structure of the

expression.

• If e= ε, or e= a, with a∈ Σ, the claim is immediate.

• If e= e1+ e2 thenAdd′
e → Add′

e1
|Add′

e2
. But then each word inAdd′

e is either inAdd′
e1

or in

Add′
e2

, so the claim follows from the induction hypothesis.

• If e= e1 · e2, we have a productionAdd′
e →

∨
d′′∈D Add′′

e1
Ad′′d′

e2
. To see the equivalence

assume first thatw is generated byAdd′
e . This means that there existsd′′ ∈ D such that

w is generated byAdd′′
e1

Ad′′d′
e2

. By definition this means thatw = w1 ·w2 such thatw1 is

generated byAdd′′
e1

andw2 is generated byAd′′d′
e1

. By the induction hypothesis this implies

that data pathw′1 corresponding tow1, is in the language ofe1, starts withd and ends

66 Chapter 4. Languages for data paths

with d′′. Likewisew′2, a data path corresponding tow2 starts withd′′, ends withd′ and

is in the language ofe2. Note that the induction hypothesis also implies that the splitting

of the word is correct. Sincew′1 ends withd′′ andw′2 begins with it we can concatenate

these two data paths to getw′, a data path corresponding tow, that is in the language of

e, begins withd and ends withd′ as required.

Conversely, suppose thatw′ ∈ L(e) is a data path that begins withd, ends withd′ and

takes only data values from the setD. By definition of concatenation there exists a

splitting w′ = w′1 ·w
′
2 such thatw′1 ∈ L(e1) andw′2 ∈ L(e2). Sincew′ takes data values

from D there is somed′′ such thatw′1 ends withd′′ andw′2 begins withd′′. But then

by the induction hypothesisw1, word obtained fromw′1 by doubling all intermediate

data values, will be generated byAdd′′
e1

, while w2, a word obtained fromw′2 by doubling

all intermediate data values, will be generated byAd′′d′
e2

. But then their concatenation

w = w1 ·w2 is precisely the word corresponding to data pathw′ and is generated by

Add′′
e1

Ad′′d′
e2

and thusAdd′
e .

• If e= (e1)
+, we have a productionAdd′

e →Add′
e1
|
∨

d′′∈D Add′′
e1

Ad′′d′
e . This implies that every

word is generated either byAdd′
e1

, in which case the claim follows immediately from the

induction hypothesis, or is generated by
∨

d′′∈D Add′′
e1

Ad′′d′
e , in which case the proof mimics

the proof for the concatenation case, taking into account that recursion will terminate

after finitely many steps and thus the final expression will bea multiple concatenation of

terms for which the induction hypothesis holds.

• If e= e1[c], we haveAdd′
e → Add′

e1
, whered′ |= c, which by the induction hypothesis

corresponds to all words inL(e) with data values fromD.

• If e= (e1)=, we haveAdd
e → Add

e1
, which by the induction hypothesis corresponds to all

words inL(e) with data values fromD.

• If e= (e1)6=, we haveAdd′
e → Add′

e1
, whered 6= d′, which by the induction hypothesis

corresponds to all words inL(e) with data values fromD.

To see that the grammar for an expressionecan be constructed in polynomial time observe

that there are at mostO(n2) subexpressions ofe, where the length ofe is n. Since the grammar

for e is constructed by starting from subexpressions and taking unions of already constructed

subgrammars and every new rule adds at mostO(|D|3) productions to our grammar we get a

grammar of the size at mostO(n2 · |D|3). Note that we reuse old subgrammars so we do not get

exponential blow-up.

This, together with the algorithm shown above, finally givesus tractability of combined

complexity.

Theorem 4.4.8.Combined complexity of RQD queries is inPTIME.

4.5. Variable automata 67

Proof. It is clear from the description that algorithm runs in polynomial time. It remains to

prove that it is correct, i.e. that forQ = x
e
−→ y we have(v,v′) ∈ Q(G) iff the language of

AG,v,v′ has nonempty intersection with the language generated byA(Ge,D).

To see this assume first that(v,v′)∈Q(G). This means that there is a data pathwπ form v to

v′ in G such thatwπ ∈ L(e). By Proposition 4.4.7 this implies that the corresponding word with

all intermediate data values doubled is in the language ofGe,D and thusA(Ge,D). Also, sincewπ

is a path inG it is of the formd1a1 . . .an−1dn, wheredi = ρ(vi), for i = 1, . . . ,n, for some nodes

v1, . . . ,vn in G such thatv1 = v andvn = v′. This implies that(vi ,ai ,vi+1) is an edge inE, for

i = 1, . . . ,n−1. This again implies thataidi+1di+1 enables us to change the state ofAG,v,v′ from

vi to vi+1 (by going through ˜vi+1 andv̂i+1), for i = 2, . . . ,n−1. Since(s,d1,v1) and(ṽn,dn,vn)

are also transitions inAG,v,v′ (as well as(vn−1,an−1, ṽn)) we see thatAG,v,v′ accepts the word

d1a1d2d2a2d3d3 . . .an−1dn, i.e. the word corresponding towπ. It follows that the intersection

of A(Ge,D) andAG,v,v′ is nonempty.

Conversely, assume that the productAG,v,v′ ×A(Ge,D) defines a nonempty language and

thatw′ = d1a1d2d2a2d3d3 . . .an−1dn is some word in that language. If we delete doubled data

values fromw′ (remember the discussion before the statement of Proposition 4.4.7 where we

show that all words inL(Ge,D) are of this form) we get a wordw. By Proposition 4.4.7,w will

be in the language ofe. On the other hand, sincew′ ∈ L(AG,v,v′) we know that there is a run

from s to t in AG,v,v′ that accepts this word. Then by the construction of this automaton there

exists a sequencev1, . . . ,vn of nodes fromG such thatdi = ρ(vi) are the appropriate data values,

(vi ,ai ,vi+1) ∈ E the corresponding edges andv= v1, while v′ = vn. It is clear thatw coincides

with data path defined by this path and is thus a data path inG starting inv and ending inv′.

We conclude that(v,v′) ∈Q(G).

We also note that a simpler dynamic programming algorithm that evaluatesRQDs bottom-

up can be applied to prove membership in PTIME. We will describe this algorithm in Section

7.1 where it will be used to evaluate queries from a more expressive language calledGXPath.

We have opted for the approach taken here to emphasise connection with formal languages.

4.5 Variable automata

We have seen in previous sections that query languages tend to have either polynomial or

PSPACE combined complexity when evaluated on graph databases. A natural question to ask

is if we can find a reasonable formalism whose combined complexity will be between these

two classes.

Here we do so by using variable automata introduced in [Grumberg et al., 2010a]. These

automata can be viewed as less procedural than register automata; in fact they can be seen as

NFAs with a guess of values to be assigned to variables, with the run of the automaton verifying

68 Chapter 4. Languages for data paths

correctness of the guess. Originally they were defined on words over infinite alphabets [Grum-

berg et al., 2010a], but it is straightforward to extend themto the setting of data graphs. In what

follows we define variable automata as a formalism for defining languages of data paths and

show how they can be used to post queries on graph databases. We will also give several exam-

ples of such queries and show that they can be evaluated in NP-time with respect to combined

complexity.

We begin by defining variable automata formally.

Definition 4.5.1. Let Σ be a finite alphabet andD an infinite domain of data values. We will

also assume that we have a countable set V of variables. Avariable finite automaton(or VFA

for short) overΣ is a a tupleA = (Q,q0,F,Γ,δ), where:

• Q=Qw∪Qd, where Qw and Qd are two finite disjoint sets of word states and data states;

• q0 ∈Qd is the initial state;

• F ⊆Qw is the set of final states;

• Γ =C∪X∪{⋆} such that:

– C⊆D is a finite set of data values calledconstants

– X ⊆V is a finite set ofbound variables, and

– ⋆ is a symbol for thefree variable.

• δ = (δw,δd) is a pair of transition relations:

– δw⊆Qw×Σ×Qd is the word transition relation;

– δd ⊆Qd×Γ×Qw is the data transition relation.

Next we define when a VFAA accepts a data pathw= d0a0d1a1 . . .dnandn+1.

Let v= v0b0v1b1 . . .vnbnvn+1 be a word wherev0, . . .vn+1 ∈ Γ andb0, . . .bn ∈ Σ. We will

say thatv is awitnessing patternfor w (or thatw is a legal instanceof v) if there is a sequence

q0,q′0,q1,q′1 . . .qn,q′n,qn+1,q′n+1 of states inA , with q′n+1 ∈ F such that the following holds:

1. for eachi we have(qi ,vi ,q′i) ∈ δd and(q′i ,bi ,qi+1) ∈ δw,

2. ai = bi and(q′i ,ai ,qi+1) ∈ δw, for i = 0, . . . ,n,

3. if vi = c∈C then(qi ,c,q′i) ∈ δd anddi = c,

4. if vi ,v j ∈ X thendi = d j iff vi = v j anddi ,d j /∈C,

5. if vi = ⋆ andv j 6= ⋆ thendi 6= d j .

Intuitively the definition states that in a legal instance constants and finite alphabet part

will remain unchanged (conditions 2 and 3), while every bound variable is assigned with the

4.5. Variable automata 69

sameuniquedata value fromD −C (condition 4) and every occurrence of the free variable⋆

is freely assigned any data value fromD−C that is not assigned to any of the bound variables

(condition 5). Note that the condition 5 is a lot stronger that saying that⋆ means any data value.

Intuitively, finding a witnessing pattern for a data path is the same as guessing an assign-

ment which maps each constant, bound, or free variable to an appropriate data value in the

path. This assignment is then checked against conditions above to make sure all data value

comparisons are as specified by the automaton. One importantproperty of condition 5 though,

is that unlike all the other ones, it is not dependant only on the current and next state of the

automaton, but allows it to reason along the whole run.

We now define thelanguage ofA , or simplyL(A) for short, as the set of all data pathsw

for which there exists a witnessing patternv.

Note that it is straightforward to define regular-like expressions for VFAs that will simply

inherit the associated semantics.

Example 4.5.2.Here we give a few examples of languages accepted by VFAs.

1. The language where the first data value is equal to the last and all other values are

different from them (but can be equal among themselves).

q0start q1 q2 q3
x

a

⋆

x

The witnessing patterns here has the form x(a · ⋆)∗ ·a · x, so condition 5 will imply that

the data values in the middle are different from the first and the last.

2. The language where the first data value is different from all other data values.

q0start q1 q2
x

a

⋆

This time the witnessing pattern takes the form x(a·⋆)∗, thus dictating that the first data

value is never repeated.

3. The language where the last data value differs from all other data values.

q0start q1

q2

⋆

a
x

70 Chapter 4. Languages for data paths

Finally in this example, the witnessing pattern has the form(⋆ ·a)∗x, so the last value

can never be replicated because of the condition 5.

Note that the last example is not expressible by register automata [Kaminski and Francez,

1994].

It was shown in [Grumberg et al., 2010b] that the languageL =

{d1ad1ad2ad2a. . .dkadkadk+1 | k≥ 1} is not expressible by VFAs. However, it is straightfor-

ward to show that this language is defined by the regular expression with equality((a)= ·a)+.

Thus, we obtain:

Proposition 4.5.3. VFAs are incomparable in terms of expressive power with register au-

tomata, regular expressions with binding and regular expressions with equality.

Regular queries with variables

Here we define a class of queries based on variable automata and examine the complexity of

their query evaluation problem.

Definition 4.5.4. A regular query with variablesis an expression Q= x
A
−→ y, whereA is a

variable automaton.

Given a data graph G, the result of the query Q(G) consists of pairs of nodes(v,v′) such

that there is a data path w from v to v′ that belongs to L(A).

The class of these queries is denoted by RQV.

Example 4.5.5.Coming back to the database in Figure 2.3, we can use the following variable

automatonA to specify a query returning all the actors who have a finite Bacon number:

q0start q1

q2 q3

q4 q5
⋆

stars_in

Kevin Bacon
⋆

⋆

cast

As before, we also return the node corresponding to Kevin Bacon due an inherent limitation

of path languages to define unary queries. Note that the automaton A does not allow Kevin

Bacon to appear more than once along a path due to condition 5 in Definition 4.5.1. This,

however, does not affect the intended semantics of our query.

As announced we can now prove that for queries posted by variable automata combined

complexity of query evaluation drops toNP. Moreover, we also show the matching lower

bound.

4.5. Variable automata 71

Theorem 4.5.6.Combined complexity of query evaluation problem for RQVs isNP-complete.

Proof. First we prove membership. Assume we are given a graphG, two nodess, t ∈G and a

RQV Qspecified by a VFAA . We show that ifπ is a path inG from s to t, such thatwπ ∈ L(A)

then there is also a pathπ′ in G from s to t of length at mostn := |G+1| · (2|A |+1)+1 such

thatwπ′ ∈ L(A), where|A | denotes the number of states inA .

Assume thatπ = n0, . . . ,nl+1 is a path of length greater thann such that n0 =

s,nl = t and the associated data pathwπ = d0a0 . . .dl al dl+1 belongs to the language

L(A). Let v = v0b0 . . .vl bl vl+1 be a witnessing pattern forwπ. Then there is a sequence

q0,q′0,q1,q′1, . . . ,ql+1,q′l+1 of states ofA that confirms this according to definition of accep-

tance by VFAs.

By the pigeon hole principle there existsi, j ≤ l such thatni = n j andqi = q j . Observe that

π′ = n0, . . . ,ni ,n j+1, . . . ,nl+1 is still a path inG from s to t with the associated data pathw′ =

d0a0 . . .ai−1d ja jd j+1 . . .dl al dl+1 and thatv′ = v0b0 . . .bi−1v jb jv j+1 . . .vl bl vl+1 is a witnessing

pattern forw′, as verified by the sequenceq0,q′0, . . .qi ,q′jq j+1, . . .q′l+1 of states.

By repeating this cutting procedure we get the desired result. Now for the NP-algorithm

we simply guess a path of length at mostn, which is polynomial in the size of the input, and

verify that it belongs to our language in PTIME. Note that in order to obtain anNP algorithm

we also guess an assignment of data values to variables in ourexpression at the same time as

guessing the path (thus effectively guessing the witnessing pattern). This is necessary since

membership for VFAs isNP-complete [Grumberg et al., 2010a].

To show NP-hardness we do a reduction fromk-CLIQUE. This problem asks, given a graph

G and a numberk, to determine ifG has a clique of size at leastk.

Suppose we are given an undirected graphG and a numberk. We will construct a graphG′

with |G|+2 nodes , select two nodess, t ∈ G′ and construct a VFAA of sizeO(k2) such that

G contains ak-clique if and only if there is a path froms to t in G′ whose associated data path

belongs toL(A).

TakeΣ = {a,b} and makeG directed by adding edges in both directions for every edge in

G. Assume that every vertexv is given an unique data valuedv. Label the edges(v,v′) ∈G′ by

a and add two more nodess andt, with unique valuesds anddt attached. Add an edge froms

to every other nodev excepts, t and label them withb. Also add an edge from every node in

G to t and label them byb. We call the resulting graphG′. (The idea is that every node has a

unique data value – its id.)

We define our VFA as a linear path with transitions:

• (q0,ds,q′0),(q
′
0,b,q1),(q1,x1,q′1),(q

′
1,a,q2),(q2,x2,q′2) (this collect the first two nodes

in the clique),

72 Chapter 4. Languages for data paths

• (q′i−1,a,qi),(qi ,xi ,q′i), (selecting nodei)

(q′i ,a,q
i
1),(q

i
1,x1,qi

1),(q
i
1,a, p

1
i),(p

1
i ,xi , p1

i), (checking it is connected with the first node

selected)

(p1
i ,a,q

i
2),(q

i
2,x2,qi

2),(q
i
2,a, p

2
i),(p

2
i ,xi ,qi

2), . . . , (checking it is connected with the sec-

ond node)

(pi−2
i ,a,qi

i−1),(q
i
i−1,xi−1,qi

i−1),

(qi
i−1,a,qi),(qi ,xi ,q′i) ((checking it is connected with the last node selected)), for 3≤ i ≤

k and

• (q′k,b,qk+1),(qk+1,dt ,q′k+1) (to get the target node).

Note that here we add a new state for each transition of the automaton.

Next we show that there is ak-clique inG iff there is a data path forms to t in G′ whose

label belongs toL(A).

Suppose first that there is ak-clique inG. Then we simply move froms to arbitrary point

in that clique using theb labelled edge and traverse the clique back and forth until wereach

thek-th element of the clique. Note that starting from the third element, whenever we select a

different node in the clique we have to move back and forth between this node and all previously

selected ones to match the transitions (we check that they are interconnected), but since we have

a clique this is possible. Finally, after selecting the lastnode and verifying that it is connected

to all the others we move tot using ab labelled edge.

Now suppose that there is a path froms to t in G′ whose label belongs toL(A).

This means that we will be able to selectk different nodesn1, . . . ,nk in G with data val-

ues stored inx1, . . . ,xk. Since all data values in the graph are different they also act

as ids. Now take any twonl ,nm with l < m ≤ k. Then we know thatnl and nm are

connected inG because after selectingnm we have to go through the transitions stating

(pl−1
m ,a,qm

l),(q
m
l ,xl ,qm

l),(q
m
l ,a, p

l
m),(p

l
m,xm, pl

m) and similarly for whenl ,m are at the begin-

ning or end of the transition chain. Since no two data values in G are the same this means that

we have an edge betweennl andnm. This completes the proof.

Furthermore, we can also show that data complexity remains in NL.

Proposition 4.5.7. Data complexity for RQV queries is NL-complete.

Proof. Assume that we have a fixed queryQ specified by a VFAA . We are givenG ands, t ∈G

as input. Using the same construction as in the proof of Theorem 4.1.6 we can transform the

graphG into a graphG′ with a number of nodes doubled. Note that thisG′ can be viewed

as a VFA that uses only constants and withss as initial andtt as the final state (these nodes

correspond tovs andvt in the aforementioned construction).

Using Theorem 1 in [Grumberg et al., 2010a] we build the product of our graphG′, viewed

as a VFA and our fixed VFAA . Theorem 2 in [Grumberg et al., 2010b] counts the number of

4.5. Variable automata 73

states in the product construction asO(n1 ·n2
(d1+d2+c1+c2)!

(c1+c2)!
) and the number of transitions as

O((d1+d2+c1+c2)!
(c1+c2)!

), whereni is the number of states,di the number of bounded variables andci

the number of constants fromD in each of our automatons.

Note now that sinceA is fixed n2,d2 andc2 are constants. LetM = n2 + d2 + c2. Also

notice that our graph, viewed as an automaton hasd1 = 0 andn1 and c1 are both bounded

by the size of the graph|G|. Thus the size of our product automaton isO(M · |G| (M+|G|)!
(c1+|G|)!

) ≤

O(M · |G| · (M+ |G|)M), that is polynomial in the size ofG and the same calculation applies to

the number of transitions.

Using standard on-the-fly technique we check the product automaton for nonemptiness in

NL. It is straightforward to see that(s, t) is in the answer to our queryQ on G if and only if

this product is nonempty. Thus we get the desired upper bound.

Lower bound follows from the same result for RPQs (without data values).

Note that the combined complexity dropped from PSPACE to NP, which is viewed as much

more acceptable for query evaluation, at least over large databases. This is the complexity of

relational conjunctive queries, for instance [Abiteboul et al., 1995], or conjunctive regular path

queries over graphs [Consens and Mendelzon, 1990].

74 Chapter 4. Languages for data paths

4.6 Summary of complexity results

We have seen in previous sections that even when the most expressive class of queries, those

based on register automata, are considered, the combined complexity matches that of usual

relational calculus queries [Abiteboul et al., 1995], or RPQs extended with rational relations

[Barceló et al., 2012b]. Data complexity, on the other hand,is the best possible in light of

the results for RPQs (which basically follow from the boundsfor graph reachability problem

[Jones, 1975]). These results extend to the class of RQMs andeven to RQBs, which restrict

automata and RQMs with proper scoping rules, making them slightly weaker, but closer in

syntax to usual programming languages. When expressions are further restricted we arrive at

the class of RQDs, whose combined complexity drops to PTIME. From this we can see that

there is somewhat of a split between path languages when combined complexity of the query

evaluation problem is considered. Namely it it is rather PSPACE or PTIME. In our search for

a formalism with intermediate complexity we showed that when queries are based on variable

automata one indeed gets an NP bound. All of these results aresummarised in Table 4.1.

Query evaluation RDPQ RQM RQB RQD RQV

combined complexity PSPACE-c PSPACE-c PSPACE-c PTIME NP-c

data complexity NL-c NL-c NL-c NL-c NL-c

Table 4.1: Complexity of the query evaluation problem

Chapter 5

Additional features

An important issue in query language design is enriching thebase theoretical languages with

features required from database practitioners. In the context of graph databases two of the most

important such features are the ability to traverse edges backwards and allowing conjunctive

queries to be formed from simple graph queries. Indeed, it has been argued before [Calvanese

et al., 2000,Calvanese et al., 2003] that the inverse operator is a required feature of any practical

graph language, while the usefulness of conjunctive queries has been well studied both on

relational databases [Abiteboul et al., 1995] and on graphs[Barceló et al., 2012b,Freydenberg

and Schweikardt, 2011,Bienvenu et al., 2013].

In this chapter we will first examine what happens when path languages from Chapter 4 are

enriched with the inverse operator. Here we will take the approach somewhat different from

the one in that chapter and define our queries to work directlyon graphs, instead of taking the

additional detour through language theory. This will allowus to obtain a uniform semantics for

all classes of queries and to define inverse operators in a simple way. We will also show that

the two semantics are equivalent and that enriching our languages with the ability to traverse

graph edges in both ways has no impact on the complexity of thequery evaluation problem.

Following that, we will study the impact of conjunction on languages from Chapter 4,

showing that in most cases no cost is incurred, except when lower bounds are already dictated

by weaker classes of queries. In particular we can obtain optimal query evaluation bounds, in

light of those for single queries.

Finally, we will also show that by merging two incomparable formalisms from the previous

chapter, that of register automata and variable automata, we can obtain a highly expressive

model with no incurred cost in evaluation complexity. However, as we argue at the end of the

chapter, such a model requires much care when designing queries and is thus highly unlikely

to be adopted as a querying standard for data graphs.

75

76 Chapter 5. Additional features

5.1 Languages with inverse

All of the languages considered in the previous chapter can be viewed as extensions of RPQs

which manage data values. However, as noted in [Calvanese etal., 2000], RPQs by themselves

lack a very natural construction for navigation through thestructure of graphs—namely, the

inverseoperator. Indeed, consider for example a genealogy graph over a singleparent label,

such as the one presented in the following figure.

Mary

v1

Ianv2

Paulv3

Paulv4

Jo

v5

Laura v6

Michael v7

parent

parent

parent

parent

parent

parent

parent

Figure 5.1: A genealogy database over theparent label.

We assume that nodes represent people and data values are their names. A natural query

over this graph, which does not deal with data values, would be to ask for all pairs of sib-

lings. This, however, is clearly not expressible as an RPQ. On the other hand, it can be written

as parent−parent, where ‘−’ is the inverse operator, which traverses edgesbackwards. This

query will retrieve e.g.(v2,v4) from the graph in Figure 5.1, since these nodes have a common

parentv1.

The class of queries enriching RPQs with inverse, called2-way RPQs, or 2RPQsfor short,

was introduced in [Calvanese et al., 2000], where it was shown that even with this extension

query evaluation remains the same as for RPQs (namely NLOGSPACE-complete). Moreover,

in [Calvanese et al., 2003] the authors also show that query containment is as efficient as for

plain RPQs (namely PSPACE-complete).

Here we will consider the extensions of queries defined in Chapter 4 with the inverse oper-

ator. As argued above such extensions are natural from a navigational point of view, but they

can also be used to ask interesting queries where data valuesare involved and should thus be

incorporated into formalisms for querying data graphs. Forexample, one query of interest in

our genealogy database might be to retrieve all pairs of (blood) relatives with the same name.

This can be easily done by the means of two-way RQD((parent−)+parent+)=, which checks

that two people have a common ancestor and ensures that they also have the same name. For

example the pair(v3,v4) is an answer to this query in our sample graph. Next we define this

class of queries formally.

5.1. Languages with inverse 77

Graph semantics

As mentioned in Section 2.5, semantics of regular path queries can be defined directly on

graphs, without taking a detour through language theory. Here we show that the same can be

done for the classes of queries based on expressions with memory, binding and equality. In this

respect we can identify e.g. regular expressions with memory and regular queries with memory

and say that an expressione is anRQMand vice versa (recall the discussion in Remark 2). As

demonstrated before, this approach will allow us to have a uniform relational semantics for all

the languages we consider, as well as allowing us to bypass a somewhat awkward approach

using semi-paths from [Calvanese et al., 2000] when definingthe inverse operator. Note that

here we will not consider register nor variable automata with inverses, as such model amounts

to more than simply adding the ability to traverse edges of a graph in both directions and has

some deeper language theoretic implications which would detract us from our goal to study

languages for querying graph databases.

Two-way regular queries with memory (2RQMs).

Here we will define the language of 2RQMs to work directly on graph databases, thus remov-

ing the distinction between (two way) regular expressions with memory and 2RQMs. In that

respect we will from now on identify the two and say that a two-way regular expression with

memorye is an 2RQMand vice versa. We will also show that this approach is equivalent to the

one taken in Section 4.2.

The syntax of 2RQMs is defined by extending Definition 4.2.1 with the inverse operator.

That is, for a finite alphabetΣ and a set{x1, . . . ,xk} of variables, they are expressions specified

by the following grammar:

e := ε | a | a− | e+e | e·e | e+ | e[c] | ↓x.e (5.1)

wherea ranges over alphabet letters,c over conditions inCk, andx over tuples of variables

from x1, . . . ,xk.

To define semantics of 2RQMs we will need some additional terminology. Given a data

graphG and a set of variablesX, astateis a pair consisting of a node ofG and an assignment

of variablesσ : X→D.

The semantics of 2RQMs over a data graphG= 〈V,E,ρ〉 can then be defined in terms of

function H G, which associates with each 2RQM a set of pairs of states. Theintuition of the

setH G(e), for some 2RQMe, is as follows. Given statess= (v,σ) ands′ = (v′,σ′), the pair

(s,s′) is in H G(e) if there exists a pathw from v to v′, such that the expressione can parsew

assuming that the variables are initialized according toσ, modified and compared as dictated

by e, and the resulting assignment after traversing the path isσ′.

78 Chapter 5. Additional features

Formally, given a data graphG= 〈V,E,ρ〉, the functionH G is constructed by the following

inductive definition.

H G(ε) = {(s,s) | s is a state},

H G(a) = {((v,σ),(v′,σ)) | (v,a,v′) ∈ E},

H G(a−) = {((v′,σ),(v,σ)) | (v,a,v′) ∈ E},

H G(e1∪e2) = H G(e1)∪H G(e2),

H G(e1 ·e2) = H G(e1)◦H G(e2),

H G(e+) = H G(e)∪H G(e·e)∪ . . . ,

H G(e[c]) = {((v,σ),(v′,σ′)) | ((v,σ),(v′,σ′)) ∈H G(e) andρ(v′),σ′ |= c},

H G(↓x.e) = {((v,σ),(v′,σ′)) | ((v,σ),(v′,σ′)) ∈H G(e) andσ(x) = ρ(v)}.

The symbol◦ above refers to the usual composition of binary relations:

H G(e1)◦H G(e2) = {(s1,s3) | ∃s2 s.t. (s1,s2) ∈H G(e1) and(s2,s3) ∈H G(e2)}.

Finally, theevaluationJeKG of an 2RQM eover a data graphG is the following set of pairs of

nodes inG:

{(v,v′) | ∃σ′ s.t. ((v,⊥),(v′,σ′)) ∈H G(e)},

where⊥ is the empty assignment.

To see that 2RQMs indeed extendRQMs from Section 4.2 we have to show that when the

language without the inverse operator is considered, the semantics given here matches the one

for regular queries with memory defined in Section 4.2.

Proposition 5.1.1. Let e be any regular expression with memory and Q= x
e
−→ y an RQM.

Then for any data graph G it holds that(v,v′) ∈ JeKG if and only if(v,v′) ∈Q(G).

Proof. Note first that any regular expression with memory is also a 2RQM (for this see Gram-

mar 5.2). Proof can now be carried out by a routine induction on the structure ofe.

It is important to note that two things can be inferred from this:

a) With graph semantics for 2RQMs we can avoid defining two-way queries using semi-

paths.

b) This also gives us graph semantics for RQMs, as the previous proposition illustrates.

Furthermore, we can also show that graph semantics forRQMs can be used to define data

path languages in a way that is equivalent to Definition 4.2.1. For that note first that every

data pathw = d1a1d2 . . .an−1dn can be easily transformed to a data graphGw, consisting of

n different nodes with data valuesd1, . . . , dn, respectively, consequently connected by edges

labelled witha1, . . . ,an−1, as illustrated in the following figure.

5.1. Languages with inverse 79

d1

v

d2 d3 dn

v′

a1 a2 a3 an−1

Figure 5.2: Data graph corresponding to the data path w

We could then say that a data pathw is accepted by regular expression with memorye if

and only if (v,v′) ∈ JeKGw. That this is equivalent to Definition 4.2.1 follows from thelemma

below.

Lemma 5.1.2. Take any regular expression with memory e and a data path w. Then for any

two assignmentsσ,σ′ it holds that

(e,w,σ) ⊢ σ′⇐⇒ ((v,σ),(v′,σ′)) ∈H Gw(e).

Proof. This can be easily shown by a straightforward induction on the structure of expression

e.

We could thus also define the language of data paths accepted by regular expressions with

memory using this graph semantics: a data pathw is acceptedby e iff (v,v′) ∈ JeKGw, wherev

andv′ are the first and the last node ofGw. This shows that the two definitions are indeed dual

when one-way languages are considered.

Next we show that even with this additional functionality the same complexity of query

evaluation applies to 2RQMs as does to their one-way variant.

Proposition 5.1.3. The problem of deciding whether a pair of nodes belongs toJeKG for a

2RQM e and a data graph G isPSPACE-complete. If we assume that e is fixed the problem

becomesNLOGSPACE-comlete.

Proof. Take any 2RQMe overΣ and a data graphG. Let Σ′ = Σ∪{a− : a∈ Σ} and letG′ =

〈V,E′,ρ〉, whereV andρ are as inG, while E′ = E∪{(v′,a−,v) : (v,a,v′) ∈ E}. Note that we

can vieweas an ordinary one-way regular expression with memory over this extended alphabet.

A straightforward induction on expressions shows that(v,v′) ∈ JeKG, wheree is viewed as an

two-way query overΣ, if and only if (v,v′) ∈ JeKG′, wheree is now a (one-way)query overΣ′.

The desired upper bounds then follow from query evaluation algorithm in Theorem 4.1.6,

since both the alphabet and the graph grow only linearly in size. Note that here we use Lemma

5.1.2 that allows us to switch between graph and path semantics.

Two-way regular queries with binding (2RQBs).

Let Σ be a finite alphabet and{x1, . . . ,xk} a set of variables. The class of two-way RQBs is

defined by the following grammar:

80 Chapter 5. Additional features

e := ε | a | a− | e+e | e·e | e+ | e[c] | ↓x.{e} (5.2)

wherea ranges over alphabet letters,c over conditions inCk, andx over tuples of variables

from x1, . . . ,xk.

Graph semantics of 2RQBs is defined with respect to a valuation ν of variables. Theevalu-

ation Je,νKG of an 2RQBe, with respect to a valuationν over a data graphG= 〈V,E,ρ〉 is the

set of all pairs(v,v′) of nodes inV defined recursively as follows:

Jε,νKG = {(v,v) | v∈V},

Ja,νKG = {(v,v′) | (v,a,v′) ∈ E},

Ja−,νKG = {(v,v′) | (v′,a,v) ∈ E},

Je1 ·e2,νKG = Je1,νKG◦ Je2,νKG,

Je1∪e2,νKG = Je1,νKG∪ Je2,νKG,

Je+,νKG is the transitive closure ofJe,νKG,

Je[c],νKG = {(v,v′) | (v,v′) ∈ Je,νKG,ρ(v′),ν |= c},

J↓x.{e}KG = {(v,v′) | (v,v′) ∈ Je,ν[x= ρ(v)]KG}.

Again, that for one-way languages the semantics for 2RQBs extends the one in Section 4.3

is easily shown by induction on the structure of expression.

Proposition 5.1.4. Let e be any closed regular expression with binding and Q= x
e
−→ y an

RQB. Then for any data graph G it holds that(v,v′) ∈ JeKG if and only if(v,v′) ∈Q(G).

Just as with 2RQMs and regular expressions with memory we canalso show that graph

semantics ofRQBs can be used to define data path languages in an equivalent wayas done for

regular expressions with binding in Section 4.3.

Lemma 5.1.5.For any regular expression with binding e, valuationν, and any data path w we

have that w∈ L(e,ν) if and only if(v,v′) ∈ Je,νKGw, with Gw as in Figure 5.2.

Algorithm for solving the query evaluation problem for 2RQBs is identical to the one for

2RQMs. Thus we obtain the following.

Proposition 5.1.6. Combined complexity of evaluating 2RQB queries isPSPACE-complete.

Data complexity ifNLOGSPACE-complete.

Two-way regular queries with data tests (2RQDs).

The class of two-way RQDs is defined by the following grammar:

e := ε | a | a− | e∪e | e·e | e+ | e= | e6= (5.3)

wherea ranges over labels from the alphabetΣ.

5.2. Conjunctive queries 81

Note that here we do not consider constant tests given by simplified conditions. It is how-

ever readily observed that these can be added without affecting any of the results below.

Graph semantics of 2RQDs is defined in a much simpler way than for RQMs. Theevalua-

tion JeKG of an 2RQDe over a data graphG= 〈V,E,ρ〉 is the set of all pairs(v1,v2) of nodes

in V defined recursively as follows:

JεKG = {(v,v) | v∈V},

JaKG = {(v,v′) | (v,a,v′) ∈ E},

Ja−KG = {(v,v′) | (v′,a,v) ∈ E},

Je1 ·e2K
G = Je1K

G◦ Je2K
G,

Je1∪e2K
G = Je1K

G∪ Je2K
G,

Je+KG is the transitive closure ofJeKG,

Je=KG = {(v,v′) | (v,v′) ∈ JeKG,ρ(v) = ρ(v′)},

Je6=KG = {(v,v′) | (v,v′) ∈ JeKG,ρ(v) 6= ρ(v′)}.

As before, one can check that using this semantics restricted to one-way queries yields the

same result as when applying semantics from Section 4.4. Namely we have the following.

Proposition 5.1.7. Let e be any regular expression with equality and Q= x
e
−→ y an RQD.

Then for any data graph G it holds that(v,v′) ∈ JeKG if and only if(v,v′) ∈Q(G).

Again, we can use graph semantics of RQDs to define languages of data paths accepted

by regular expression with equalitye by asserting that a pathw is accepted bye if and only if

(v,v′) ∈ JeKGw, with v,v′ andGw as in Figure 5.2. That this definition is equivalent to the one

from Section 4.4 follows from the next lemma, easily shown byinduction one.

Lemma 5.1.8. For any regular expression with equality e and any data path wwe have that

w∈ L(e) if and only if(v,v′) ∈ JeKGw, with Gw as in Figure 5.2.

Using the same trick of doubling the alphabet with inverse symbols and subsequently us-

ing the algorithm from Theorem 4.4.8 we can see that adding inverses has no impact on the

computational complexity of query evaluation.

Proposition 5.1.9.Combined complexity of evaluating 2RQD queries is inPTIME. Data com-

plexity isNLOGSPACE-complete.

5.2 Conjunctive queries

A standard extension of RPQs is that toconjunctive RPQs, or CRPQs [Calvanese et al.,

2000, Deutsch and Tannen, 2001, Florescu et al., 1998]. These add conjunctions of RPQs and

existential quantification over variables, in the same way as conjunctive queries extend atomic

formulae of relational calculus. We now look at similar extensions of RPQs with data.

82 Chapter 5. Additional features

Formally, they are defined as expression of the form

Ans(z) :=
∧

1≤i≤m

xi
Li−→ yi , (5.4)

wherem> 0, eachxi
Li−→ yi is a query in one of the formalisms from Chapter 4, andz is a tuple

of variables amongx andy. A query with the headAns() (i.e., no variables in the output) is

called aBooleanquery. To establish terminology we will talk about:

• Conjunctive regular data path queries (CRDPQs), when eachxi
Li−→ yi is a RDPQ,

• Conjunctive regular queries with memory (CRQMs), when eachxi
Li−→ yi is an RQM,

• Conjunctive regular queries with binding (CRQBs), when each xi
Li−→ yi is an RQB,

• Conjunctive regular queries with data tests (CRQDs), when eachxi
Li−→ yi is an RQD,

• Conjunctive regular queries with variables (CRQVs), when eachxi
Li−→ yi is an RQV.

We will also use the nameconjunctive data path query(CDPQ) for a query from any of

the five classes just defined.

These queries extend their base atoms with conjunction, as well as existential quantifica-

tion: variables that appear in the body but not in the head (i.e., variables inx andy but notz)

are assumed to be existentially quantified.

The semantics of a CDPQQ of the form (5.4) over a data graphG= 〈V,E,ρ〉 is defined as

follows. Given a valuationν :
⋃

1≤i≤m{xi ,yi} →V, we write(G,ν) |= Q if (ν(xi),ν(yi)) is in

the answer ofxi
Li−→ yi onG, for eachi = 1, . . . ,m. ThenQ(G) is defined as the set of all tuples

ν(z) such that(G,ν) |= Q. If Q is Boolean, we letQ(G) be true if(G,ν) |= Q for someν (that

is, as usual, the empty tuple models the Boolean constant true, and the empty set models the

Boolean constant false).

As before, we study data and combined complexity of the queryevaluation problem, i.e.

checking, for a CDPQQ, a data graphG and a tuple of nodesv, whetherv ∈ Q(G) (for data

complexity the queryQ is fixed).

First, we show that for all the formalisms studied in the previous chapter, no cost is incurred

by going from a single query to a conjunctive query as far as data complexity is concerned.

Theorem 5.2.1.Data complexity of conjunctive data path queries remainsNL-complete if they

are defined using RDPQs,RQMs, RQBs, RQDs, or RQVs.

Proof. Consider a query of the form (5.4) and letz′ be the tuple of variables fromx andy that is

not present inz. To check whetherv∈Q(G), we need to check whether there exists a valuation

v′ for z′ so that under that valuation each of the queries in the conjunction in (5.4) is true.

We know from the previous sections that checking whetherv
L
−→ v′ evaluates to true for

some nodesv,v′ can be done with NL data complexity for all the formalisms mentioned in the

5.3. Adding variables to register automata 83

theorem. Thus, given a data graphG= 〈V,E,ρ〉, we can enumerate all the tuples fromV |z
′|,

and for each of them check the truth of all the queries in conjunction (5.4). Since we deal with

data complexity,|z′| is fixed, and thus such an enumeration can be done in logarithmic space,

showing that query evaluation remains in NL. Note that the NLalgorithms can be composed

here since they are independent one of another.

For combined complexity, we have the same bounds for CRDPQs,CRQMs, CRQBs and

CRQVs. For CRQDs we get NP-completeness, which matches the combined complexity of

conjunctive queries and CRPQs.

Theorem 5.2.2. Combined complexity of conjunctive regular data path queries remains

PSPACE-complete if they are specified using RDPQs, RQMs and RQBs. Itis NP-complete

if they are specified using RQDs or RQVs.

Proof. PSPACE-hardness follows from the corresponding results forRQBs, and NP-hardness

follows from NP-hardness of relational conjunctive queries. Thus we show upper bounds. The

algorithm (using notations from the proof of Theorem 5.2.1)is the same in all the cases: guess

a tuplev′ of nodes forz′, and check whether all the queries in conjunction (5.4) are true. We

know that for RDPQs, RQMs and RQBs the latter can be done in PSPACE; since PSPACE is

closed under nondeterministic guesses we have the PSPACE upper bound for combined com-

plexity. For CRQDs, an NP upper bound for the algorithm follows from the PTIME bound

for combined complexity for RQDs. Finally, for CRQVs we willalso guess a path between

the nodes corresponding toxi ,yi (along with an associated witnessing pattern), which are by

Theorem 4.5.6 of polynomial size. We can then verify our guess in PTIME, thus obtaining the

desired bound.

All of the complexity bounds for languages considered in this section are summarized in

the following table.

Query answering CRDPQ CRQM CRQB CRQD CRQV

data complexity NL-complete NL-complete NL-complete NL-complete NL-complete

combined complexity PSPACE-complete PSPACE-complete PSPACE-complete NP-complete NP-complete

Table 5.1: Summary of complexity bounds for classes of conjunctive queries

5.3 Adding variables to register automata

In the previous chapter we proved that variable automata areincomparable in terms of ex-

pressive power with register automata and regular expressions with binding. In particular we

showed that they can express a property that all data values differ from the last, a feature know

84 Chapter 5. Additional features

not to be expressible by register automata. On the other hand, bound variables in variable au-

tomata behave like a limited version of registers that are capable of storing a data value only

once. As the result, variable automata are not able to express even some simple properties

definable by regular expressions with equality.

In this section we define a general model that will encompass both register and variable

automata and study its query evaluation problem over graphs. The model is essentially a vari-

able automaton that can use the full power of registers in a same way that an ordinary register

automaton would. Another way to look at it is as adding the free variable and constants to

register automata. It will subsume both models, but we shallsee that it does not increase the

complexity of query evaluation beyond PSPACE.

Definition 5.3.1. LetΣ be a finite alphabet, k a natural number and C a finite set of datavalues.

A k-register automaton with variables(or varRA for short) is a tupleA =(Q,q0,F,δ,τ0,{⋆},C),

where:

• Q=Qw∪Qd, where Qw and Qd are two finite disjoint sets of word states and data states;

• q0 ∈Qd is the initial state;

• F ⊆Qw is the set of final states;

• τ0 ∈Dk is the initial configuration of the registers;

• δ = (δw,δd) is a pair of transition relations:

– δw⊆Qw×Σ×Qd is the word transition relation;

– δw⊆Qd×Ck×2[k]×Qw
⋃

Qd×{C∪{⋆}}Qw is the data transition relation.

Note that the data transition relation has three different types of transitions. The first type

is of the form(q,c, I ,q′) and is the same as in Definition 6.1.1. The second type checks if a

given data value is a constants and is of the form(q,d,q′) with d ∈C. Finally, the last type is

of the form(q,⋆,q′) and we will refer to such transitions as⋆-transitions.

We now define the notion of acceptance. Ak-register automatonA with variables accepts

a data pathw= d0a0d1a1 . . .an−1dn if there is a sequenceq0,q′0,q1,q′1, . . . ,qn,q′n of states inQ

with q′n ∈ F, a sequencet0, t ′0, . . . tn−1, t ′n−1, tn of transitions and a sequenceτ1, . . .τn of register

assignments such that:

• For i = 1. . .n we havet ′i = (q′i ,a,qi+1) andai = a;

• For i = 0. . .n eachti is a data transition and precisely one of the following holds:

1. If ti = (qi ,c, I ,q′i), thenτi,di |= c andτi+1 is obtained by storingdi in registers from

I ;

2. If ti = (qi ,d,q′i), thendi = d;

5.3. Adding variables to register automata 85

3. If ti = (qi ,⋆,q′i), thendi = d j iff t j = (q j ,⋆,q′j).

Register automata with variables can use standard registerautomata transitions, as well as

check if some data value matches a constant. Additionally, by allowing ⋆-transitions, they can

state that some value will not be stored in the registers. Note that, unlike standard automata

transitions,⋆-transitions are global in character – that is, they do not refer only to the next and

the previous state in a run, but to the run as a whole.

It is apparent that register automata with variables extendboth register and variable au-

tomata in a natural way. Moreover, if we restrict the registers by allowing them to store values

only once and restrict conditions to single equality tests only, we get variable automata. On the

other hand if we disallow the usage of the free variable⋆ we get register automata.

In the previous Chapter we have seen several examples of properties expressible by regis-

ter automata and variable automata. Next we show that with varRA we can define data path

languages not expressible by either of them.

Example 5.3.2. The language of all data paths where both the first and the lastdata value

differ from all other data values is defined by the following varRA.

q0start q1 q2 q3
↓ x

a

x6=

⋆

Here the first three states make sure that first data value is not equal to any value before the

last. Finally the⋆-transition taking us to the final state makes sure that no other value is equal

to it. Note that this automaton depends on the fact that⋆-transitions can reason about complete

runs of an automaton and not just adjacent transitions.

We can now define a class of graph queries based on register automata with variables in

the same way as we did for other data path formalisms in Chapter 4. We will call such queries

register queries with variables.

Definition 5.3.3. A register query with variables (RQVar)is an expression Q= x
A
−→ y where

A is a register automaton with variables.

Given a data graph G, the result of the query Q(G) consists of pairs of nodes(v,v′) such

that there is a data path w from v to v′ that belongs to L(A).

Surprisingly, despite the increased expressive power, this model still retains the complexity

of register automata.

Theorem 5.3.4. • Combined complexity of RQVar queries isPSPACE-complete.

• Data complexity of RQVar queries isNL-complete.

86 Chapter 5. Additional features

Proof. To prove this we use a similar construction to the one used in the proof of Theorem

4.1.6. We start by showing that, given a finite set of data valuesD and ak-register automaton

with variablesA , we can produce a variable automatonAD that accepts precisely the same

words asA does when both use only data values fromD.

Let A = (Q,q0,F,δ,τ0,{⋆},C) be ak-register automaton with variables andD a finite set

of data values.

We define the desired VFAAD = (Q′,q′0,F
′,Γ,δ′) as follows:

• Γ = {C∪D}∪{⋆}

• Q′=Q×Dk
0, where⊥ is a new data value not inD andD0 =D∪{⊥}∪{τ0(i)|i = 1. . .k}

• q′0 = (q0,τ0)

• F ′ = F×Dk
0

• For the transitions:

– If (q,a,q′) ∈ δw we add

((q,τ),a,(q′ ,τ))

to δ′w, for every assignmentτ

– If (q,c, I ,q′) ∈ δd, we add

((q,τ),d,(q′,τ′))

to δ′d, for every data valued ∈ D and assignmentsτ,τ′ such thatτ,d |= c andτ′ is

obtained by storingd into registers fromI

– If (q,d,q′) ∈ δd, with d a constant inC we add

((q,τ),d,(q′,τ))

to δ′d, for every assignmentτ

– If (q,⋆,q′) ∈ δd we add

((q,τ),⋆,(q′ ,τ))

to δ′d, for every assignmentτ.

Note that our VFAAD uses no bound variables.

Next we prove that the variable automaton obtained in this construction indeed accepts the

same class of data paths overD as the original register automaton with variables does.

Claim 5.3.5. Let w be a data path whose data values come from D. Then w∈ L(AD) if and

only if w∈ L(A).

5.3. Adding variables to register automata 87

Proof. Assume first thatw= d0a0 . . .an−1dn, whered0, . . .dn are fromD, is accepted byAD.

Since AD is a VFA with constants and free variable only (and no bound vari-

ables), this means that there is a witnessing patternv = v0b0 . . .bn−1vn and a sequence

(q0,τ0),(q′0,τ′0), . . . ,(qn,τn),(q′n,τ′n) of states inAD, with (q′n,τ′n) ∈ F ′ such that:

1. for eachi we have(qi ,vi ,q′i) ∈ δd and(q′i ,bi ,qi+1) ∈ δw,

2. ai = bi and(q′i ,ai ,qi+1) ∈ δw, for i = 0, . . . ,n,

3. if vi = d ∈C then(qi ,d,q′i) ∈ δd anddi = d,

4. if vi = ⋆ andv j 6= ⋆ thendi 6= d j .

But then this sequence of states and transitions ofAD can be easily transformed into an

accepting run ofA on w (follows from the construction ofAD), thus implying thatw∈ L(A).

To see that the reverse is true we simply transform the accepting run of A on w into the

matching run ofAD. The witnessing pattern forw will be obtained by converting every data

value matched with⋆ in w by ⋆ itself. All the details easily follow from the definition of

acceptance and the construction ofAD.

To complete the proof of Theorem 5.3.4 we use the same technique as in the proof of

Theorem 4.5.7.

As input we are given a queryQ, specified by a register automaton with variablesA and

a data graphG, together with two nodess andt. Let D = D(G) be the set of all data values

appearing inG.

We again view our graph as a VFA (with the initial statess and final statett) and denote it

by AG. We can now build the product ofAG andAD. Testing his automaton for nonemptiness

is the same as answering our query evaluation problem.

Note that the numbern1 of states ofAD is O(|A | × |D|k), the number of bound variables

d1 = 0 and the number of constantsc1 at most|D|+ |A |.

For AG we haven2 = O(|G|), while d2 = 0 andc2 = |D|.

By the construction in [Grumberg et al., 2010b] we know that the size of the product is

O(n1 ·n2 ·
(c1+c2+d1+d2)!

(c1+c2)!
) = O(n1 ·n2).

Using the values above we get that the size isO(|A |× |D|k×|G|).

Since|D| = |G| this is polynomial in|G| if the automaton is fixed and exponential if it is

part of the input (as the number of registers gets into the exponent). Thus using the standard

on-the-fly method for testing nonemptiness we obtain the desired result.

Despite their high expressive power and acceptable evaluation bounds, it is highly unlikely

that regular queries with variables might be of interest to graph database practitioners due to

their added complexity. Indeed, to specify a query in this formalism requires a lot of care and

88 Chapter 5. Additional features

even simple queries are quite cumbersome to write. Thus, despite good algorithmic properties

and a wide variety of queries they can express, we will not tryto promote RQVs as a querying

standard for data graphs (as far as path queries are concerned), since a language suited for that

role should strike a fine balance between expressive power, efficiency and ease of use.

Chapter 6

The language theory gap

In Chapter 4 we developed several classes of queries for datagraphs. As we have seen all of

these classes were based on an underlying automaton model, or a class of expressions defining

data paths. Therefore formalisms used to define path querieshave an intrinsically language

theoretic flavour and there are many interesting questions about them that fall out of scope

when approached from a purely database theoretic point of view. Indeed, register automata, for

example, were originally introduced to describe languagesover infinite alphabets [Kaminski

and Francez, 1994], and later extended to operate over data words [Demri and Lazíc, 2009,

Segoufin, 2006], a setting that, as we have already discussedin Chapter 3, is very close to that

of data paths.

Such setting, where languages draw their letters not only from a finite alphabet, as is the

case with NFAs or context-free grammars, but also from an infinite set of data objects, has

received a lot of attention recently due to applications in program verification and XML. In

particular, data word languages are commonly used to model infinite state systems [Demri

and Lazíc, 2009, Segoufin, 2006, Bouajjani et al., 2003] and to reasonabout static properties

of XML documents [Figueira, 2010b, Segoufin, 2007, Neven et al., 2004]. In these scenar-

ios questions like nonemptiness and membership naturally come into play as they relate to

checking if a class of documents or programs respects some structural property. Furthermore,

another common language theoretic question, that of language containment and universality, is

naturally linked to program or query equivalence, an issue particularly important when doing

optimisation.

All of this warrants a language theoretic study of data path formalisms we introduced in

Chapter 4 and that is what we do in the present chapter. As justmentioned, here it is more

interesting to define our formalisms over data words, however, as already discussed, these two

approaches are equivalent. For this reason we will redefine all of the formalisms from Chapter

4 to specify data words instead of data paths, while still keeping the original terminology in

order to reduce proliferation of different names for same classes of expressions or automata.

89

90 Chapter 6. The language theory gap

Therefore we will still be working with e.g. regular expressions with memory, the only dif-

ference being that these will now specify data words and not data paths. In what follows we

will also remove constant tests from our expressions and automata, as these are seldom used

in language theory, although all of the results still hold ifthey are present. This is mainly done

for the ease of notation and to make our presentation more precise.

We begin with the study of register automata. Note that questions such as nonemptiness,

membership, universality and the important closure properties were already considered in e.g.

[Sakamoto and Ikeda, 2000, Neven et al., 2004, Kaminski and Francez, 1994]. However, it

was observed in [Demri and Lazić, 2009] that subtle changes to the model can lead to different

complexity bounds for some of these problems. For example, allowing the automata to have the

same data value stored in more then one register and allowingexplicit inequality comparisons

makes them more intuitive, but it also increases the complexity of nonemptiness [Demri and

Lazić, 2009]. The model of register automata used here is essentially equivalent to the one

in [Demri and Lazíc, 2009], however the notation is different, so in line with the previous

remarks about slight changes affecting some of the complexity bounds, we will reprove all of

the results to have a self contained study.

Following this, we will see how to modify the definition of thethree classes of expressions

introduced in Chapter 4 and study their closure properties and standard decision problems.

In the end we also expand the definition of variable automata from [Grumberg et al., 2010a],

where they were used to define words over an infinite alphabet,to the setting of data words,

showing that all of the results still hold here.

Basic definitions We will now shortly recall the definition of data words and formally define

standard decision problems and closure properties that we study in the following sections.

A data word is simply a finite string over the alphabetΣ×D, whereΣ is a finite set of

letters andD an infinite set of data values. That is, in each position a dataword carries a letter

from Σ and a data value fromD. We will denote data words by
(a1

d1

)
. . .
(an

dn

)
, whereai ∈ Σ and

di ∈D. An example of a data word over the alphabetΣ = {a,b,c} and the setN of integers as

data values is:
(

a
3

)(
a
7

)(
c
1

)(
b
3

)(
a
1

)

.

The set of all data words over the alphabetΣ and the set of data valuesD is denoted by

(Σ×D)∗. A data word language is simply a subsetL⊆ (Σ×D)∗.

Standard decision problems Some of the most important standard decision problems in for-

mal language theory are membership, nonemptiness, language containment and universality. In

this chapter we will examine all of these problems for each ofthe formalisms we introduce and

determine whether they are decidable, and if they are, what is their computational complexity.

91

Next we define the problems formally.

Let C be a class of automata, or expressions, defining languages ofdata words over some

fixed finite alphabetΣ. The nonemptiness problem asks, given an automaton, or an expression

over the alphabetΣ, are there any data words in the language of this expression or automaton.

Formally we have:

NONEMPTINESS(C)

Input: An expression, or an automatonA ∈ C .

Task: Decide whetherL(A) 6= /0.

When considering data word formalisms in this chapter we will also examine the com-

plexity of the membership problem, that is the problem of checking, for an expression (or

an automaton) and a data word, if this word belongs to the language of the automaton. The

membership problem is defined as follows.

MEMBERSHIP(C)

Input: An expressions, or an automatonA ∈ C and a data wordw∈ (Σ×D)∗.

Task: Decide whetherw∈ L(A).

Another problem we will consider when studying properties of formalisms defining data

word languages is language universality. Here we will ask, given an expression (or an automa-

ton) over some fixed finite alphabetΣ, whether it generates all the words from(Σ×D)∗. The

language universality problem is defined below.

UNIVERSALITY (C)

Input: An expression, or an automatonA ∈ C overΣ andD.

Task: Decide whetherL(A) = (Σ×D)∗.

An important generalisation of universality is the language containment problem. Here we

simply ask, given two expressions or automata, if every dataword in the language of the first

one is also contained in the language of the second one. Giventhe close connection of path

queries and language theoretic formalisms used to define them, it comes as a no surprise that

this problem is basically equivalent to query containment,an issue which we will address in

Chapter 10. Next we define language containment problem formally.

CONTAINMENT(C)

Input: Two expressions, or automataA1 andA2 in C .

Task: Decide whetherL(A1)⊆ L(A2).

92 Chapter 6. The language theory gap

Closure properties Another important class of questions regarding language defining for-

malisms are closure properties. Indeed, it is crucial to determine if a language defining formal-

ism is closed under certain properties to be able to build more complex languages starting from

simpler ones. Some of the most commonly studied closure properties are:

1. Union, which asks, given two languages definable by some formalism, if their union is

also definable.

2. Intersection, asking if the intersection of two languages is definable in some formalism

if the languages themselves are.

3. Complement, asking if one can define the set theoretic complement of a given language.

4. Concatenation, asking if concatenation of two definable languages is also definable.

5. Kleene star, determining if the language containing arbitrary long iterations of a word

from the starting language is definable.

In this chapter we will examine closure properties of each ofthe proposed formalisms for

defining data word languages. While all of these properties are important, exclusion of some

of them does not necessarily render a language unusable. Indeed, while the class of regular

languages is known to be closed under all of the above mentioned properties, context free

languages lack closure under intersection and complementation [Hopcroft and Ullman, 1979],

but are still heavily used in compiler design, programming languages and pattern matching.

Similar behaviour will be witnessed by the languages we study in this chapter. In particular,

none of the languages will be closed under complementation,as already discussed in Section

3.2, while some will be shown not to be closed under intersection either.

6.1 Register automata

Register automata are an analogue of NFAs for data words. They move from one state to

another by reading the appropriate letter from the finite alphabet and comparing the data value

to ones previously stored into the registers. Our version ofregister automata will use conditions

which are boolean combinations of atomic=, 6= comparisons of data values.

Conditions are defined in the same manner as in Section 4.1. For the sake of readability we

define them here again adding some additional syntactic sugar to ease the notation. To define

conditions formally, assume that, for eachk > 0, we have variablesx1, . . . ,xk. Then the set of

conditionsCk is given by the grammar:

c := tt | ff | x=i | x
6=
i | c∧c | c∨c | ¬c, 1≤ i ≤ k.

As before, the satisfaction is defined with respect to a data value d ∈ D and a tupleτ =

(d1, . . . ,dk) ∈Dk as follows:

6.1. Register automata 93

• d,τ |= tt andd,τ 6|= ff;

• d,τ |= x=i iff d = di ;

• d,τ |= x6=i iff d 6= di ;

• d,τ |= c1∧c2 iff d,τ |= c1 andd,τ |= c2 (and likewise forc1∨c2);

• d,τ |= ¬c iff d,τ 2 c.

In what follows,[k] is a shorthand for{1, . . . ,k}.

Definition 6.1.1 (Register data word automata). Let Σ be a finite alphabet and k a natural

number. A k-register data word automaton, or RA for short, is a tupleA = (Q,q0,F,T), where:

• Q is a finite set of states;

• q0 ∈Q is the initial state;

• F ⊆Q is the set of final states;

• T is a finite set of transitions of the form(q,a,c)→ (I ,q′), where q,q′ are states, a is a

label, I⊆ [k], and c is a condition inCk.

Intuitively the automaton traverses a data word from left toright, starting inq0, with all

registers empty. If it reads
(a

d

)
in stateq with register configurationτ, it may apply a transition

(q,a,c)→ (I ,q′) if d,τ |= c; it then enters stateq′ and changes contents of registersi, with i ∈ I ,

to d. We will represent register data word automata transitionsgraphically as follows:

q q′
a[x6=7] ↓ x3

A typical transition in a data word automaton.

Here we assume that the value is compared to the one stored in the register corresponding

to x7 and later on stored into the one corresponding tox3.

To define acceptance formally we first define a configuration ofa k-register data word

automatonA on data wordw=
(a1

d1

)
. . .
(an

dn

)
as a triple(q, j,τ), whereq is the current state of

A , j is the current position of the symbol inw that A reads andτ is the current state of the

registers. We use the symbol⊥ to indicate that a register is unassigned; that is,τ is ak-tuple

over D⊥ = D ∪{⊥}. The initial configuration is(q0,1,τ0), whereτ0 = (⊥, . . . ,⊥), and any

configuration(q, j,τ) with q∈ F is a final configuration.

From a configuration(q, j,τ) we can move to a configuration(q′, j +1,τ′) if:

• (q,a j ,c)→ (I ,q′) is a transition inA ,

• d j ,τ |= c and

• τ′ is obtained fromτ by replacing data values in registers fromI by d j .

94 Chapter 6. The language theory gap

We say thatA acceptsw if there is a sequence of configurations ofA on w that leadsA

from the initial to a final configuration while readingw.

RemarkGiven ak-register data word automatonA and a tupleτ ∈ Dk
⊥, we can turnA into

an automatonA(τ) defined just asA but starting withτ as the register configuration. Such

an extension does not affect the class of accepted languages, but will be useful in inductive

constructions when automata need not start with all registers unassigned.

Example 6.1.2.Next we present two examples of register automata and languages they define.

• The data word language where all data values are different from the first (and the label

is a∗) is defined by the following register automaton:

qstart q′
a ↓ x

a[x6=]

• The language of data words having two equal data values (and where the label is a∗) is

given by the following automaton:

qstart q′ q′′
a ↓ x

a a a

a[x=]

Language theoretic properties

In this section we recall the basic language theoretic properties of register data word automata.

Most of these results follow from [Kaminski and Francez, 1994], however, since some subtle

differences were introduced to the model we will reprove most of the results to make the presen-

tation self contained. Some changes introduced here will have an impact on the nonemptiness

problem, as already noted in [Sakamoto and Ikeda, 2000,Demri and Lazíc, 2009], however, all

of the other results remain intact. In order to prove complexity results about membership and

nonemptiness we will require some general properties of register automata that we examine

next. At the end we will also recall closure properties of theclass of languages defined by

register automata.

General properties of register automata A useful property of register automata that will be

needed in what follows is that, intuitively, such automata can only keep track of as many data

values as can be stored in their registers. Formally, we have:

6.1. Register automata 95

Lemma 6.1.3.LetA be a k-register data word automaton. IfA recognizes some word of length

n, then it recognizes a word of length n that uses at most k+1 different data values.

Proof. We first set some notation. We will say that twok-register assignmentsτ andτ are of

the same equality type if we haveτ(i) = τ(j) if and only if τ(i) = τ(j), for all i, j ≤ k. Note

that this also implies thatτ(i) 6= τ(j) if and only if τ(i) 6= τ(j).

We will prove a slightly more general claim, allowing our automata to start with an

nonempty assignment of the registers. LetA(τ0) = (Q,q0,F,T) be ak-register data word

automaton, starting with the initial assignmentτ0 in the registers andw=
(a1

d1

)
. . .
(an

dn

)
a word

that it accepts. This means that there is a sequence of statesq0,q1, . . . ,qn, with qn ∈ F and

a sequence of register assignmentsτ0,τ1, . . . ,τn such that(qi−1,ai ,ci) → (Ii ,qi) ∈ T, that

τi−1,di |= ci andτi is obtained fromτi−1by replacing all registers fromIi with di , for i = 1. . .n.

Now letS= {τ0(i) : 1≤ i ≤ k}−{⊥}. That isScontains all the data values from the initial

assignment, except the one denoting that the register is empty.

Let Sbe any set of data values such that|S|= k+1 andS⊆ S.

We prove by induction oni ≤ n that we can define a data wordwi, of length i, such that

wi =
(a1

di
1

)
. . .
(ai

di
i

)
, wherea1, . . .ai are fromw anddi

1, . . . ,d
i
i are fromS. We then show that for

this wi there is a sequence of assignmentsτ′0,τ′1, . . .τ′i such that eachτ′j is of the same equality

type asτ j , where j ≤ i and it holds thatτ j−1,d j |= c j , for all j ≤ i and eachτ′j is obtained from

τ′j−1 by replacing all the data values fromI j by d j . Note that this actually means thatA goes

through the same sequence of states while readingwi as it did while readingw. But thenwn is

the desired word from the statement of the lemma.

To prove this we first assume thati = 1. We setτ′0 = τ0 and selectd∈Ssuch thatτ0,d |= c1

(note that this is possible since we havek+ 1 values at disposal and test only for equality or

inequality with a fixed set ofk elements) and such thatτ1 andτ′1 are of the same equality type,

whereτ′1 is obtained fromτ′0 by replacing all data values fromI1 by d. Again, this is possible

since the originald1 (from w) could have either been different from all data values inτ0 or

equal to some of them, a choice we can simulate with elements from S. We now setw1 =
(a1

d

)
.

Assume now that the claim holds fori < n. We prove the claim fori +1. By the induction

hypothesis we know that there exists a data wordwi =
(a1

di
1

)
. . .
(ai

di
i

)
with data values fromSand

a sequence of assignments each one obtained from the previous by the condition dictated by the

original accepting run that allowA to go through the statesq0,q1, . . . ,qi . We now pickd ∈ S

such thatτ′i,d |= ci+1 andτ′i+1, obtained fromτ′i by replacing all data values fromIi+1 by d, has

the same equality type asτi+1. Note that this is possible sinceτi andτ′i have the same equality

type by the induction hypothesis and we have enough data values at our disposal (again, we

have to pickd so that it is in the same relation to data values fromτ′i asdi+1 from w was to data

values fromτi, but this is possible since each assignment can remember at mostk data values).

Now we simply definewi+1 = wi ·
(ai+1

d

)
. Note that thiswi+1 has all the desired properties and

96 Chapter 6. The language theory gap

can takeA from q0 to qi+1.

This concludes the proof of the lemma.

We now show that we can view register automata as NFAs when restricted only to a finite

set of data values. Note that this construction follows the same idea as when done for data

paths in Section 4.1. For the sake of completeness, and sincethe notation differs in the two

cases, we also include it here.

Let A = (Q,q0,F,T) be ak-register data word automaton,D a finite set of data values, and

D⊥ = D∪{⊥}. We transformA into an NFAAD = (Q′,q′0,F
′,δ) over the alphabetΣ×D as

follows:

• Q′ = Q×Dk
⊥;

• q′0 = (q0,⊥k);

• F ′ = F×Dk
⊥;

• Whenever we have a transition(q,a,c)→ (I ,q′) in T, we add the transition

((q,τ),
(

a
d

)

,(q′,τ′))

to T if d,τ |= c andτ′ is obtained fromτ by puttingd in positions from the setI .

It is straightforward to check thatA accepts a data word overΣ×D if and only if AD does.

That is we obtain the following.

Lemma 6.1.4. Let D be a finite set of data values andA a register automaton overΣ. Then

there exists a finite state automatonAD over the alphabetΣ×D such that w∈ L(AD) iff w ∈

L(A), for every w with data values from D. Moreover,AD is of size exponential in the size of

A and polynomial in the size of D.

Decision problems Membership, nonemptiness and universality are some of the most im-

portant decision problems related to formal languages. We now recall the exact complexity of

these problems for register automata. Since the model of register automata we use here differs

slightly from the one in previous work, we sketch how these results carry over to our model.

Recall that nonemptiness problem for an automatonA is checking whetherL(A) 6= /0.

Fact 6.1.5([Demri and Lazíc, 2009]). The nonemptiness problem for register data word au-

tomata isPSPACE-complete.

The lower bound will follow from Theorem 6.2.3 and Proposition 6.2.5. For the upper

bound we convert ourk-register automatonA into an NFAAD over the alphabetΣ×D (as in

the Lemma 6.1.4), whereD = {0, . . . ,k+1}. We know thatAD recognizes all data words from

6.1. Register automata 97

L(A) using only data values fromD. By Lemma 6.1.3 and invariance under automorphisms

(see Fact 6.1.9), we know that checkingA for nonemptiness is equivalent to checkingAD for

nonemptiness. Using on-the-fly construction we get the desired result (note thatAD can not be

created before checking it for nonemptiness).

Remark 5. It is important to note that subtle differences in the definition of the automaton

can lead to slightly better complexity bounds. Indeed, the model used in [Sakamoto and Ikeda,

2000] allows each value to be stored in only one register and imposes some further restrictions,

thus bringing the complexity of nonemptiness problem down to NP-complete. Here we have

opted for a more intuitive approach, that has now become commonly used [Demri and Lazić,

2009,Segoufin, 2006].

The membership problem asks, for an automatonA and a wordw, whetherw∈ L(A).

Fact 6.1.6([Sakamoto and Ikeda, 2000]). The membership problem for register data word

automata isNP-complete.

The lower bound will follow from Theorem 6.2.3 and Proposition 6.2.6. For the upper

bound it simply suffices to guess an accepting run of the automaton. Since every transition of

the automaton processes one symbol of our data word, we only need to guess|w| states of the

automaton, wherew is the input data word. It is straightforward to check that wecan simulate

the automaton in PTIME.

On the other hand, universality and containment problems are undecidable.

Fact 6.1.7([Kaminski and Francez, 1994]). Both universality and language containment prob-

lems for register data word automata are undecidable.

It turns out that when no inequality comparisons are allowedin the conditions the problem

becomes decidable.

Fact 6.1.8([Tal, 1999]). Containment and universality problems are decidable for register

automata that compare data values for equality only.

Closure properties Since register automata closely resemble classical finite state automata,

it is not surprising that some (although not all) constructions valid for NFAs can be carried

over to register automata. We now recall results about closure properties of register automata

[Kaminski and Francez, 1994]. Although our notion of automata is slightly different than the

one used there, all constructions from [Kaminski and Francez, 1994] can be easily modified to

work in the setting proposed here.

Fact 6.1.9([Kaminski and Francez, 1994]). 1. The set of languages recognized by register

automata is closed under union, intersection, concatenation and Kleene star.

98 Chapter 6. The language theory gap

2. Languages recognized by register automata are not closedunder complement.

3. Languages recognized by register automata are closed under automorphisms: that is, if

f : D → D is an automorphism and w is accepted byA , then the data word f(w) in

which every data value d is replaced by f(d) is also accepted byA .

Closure under union and Kleene star is apparent immediately. To see that the automata

are closed under intersection the product construction is used. The usual powerset construc-

tion, however, does not yield an automaton defining the complement of a given language as

demonstrated in [Kaminski and Francez, 1994].

6.2 Regular expressions with memory

In order to develop an expression analogue for register datapath automata in Section 4.2 we

introduced regular expressions with memory. These expression, based on the idea of storing

data values in variables were defined to work over data paths.Here we show that they can also

be used to specify data word languages. In fact, we will see that using the idea of storing data

values in variables (and comparing them using conditions) gives rise to a class of expressions

capturing register data word automata in the same way as the usual regular expressions cap-

ture regular languages. To do this notice that register automata can be pictured as finite state

automata whose transitions between states have labels of the form a[c]↓I , whereI is a set of

registers. Such an automaton can move from one state to another using an arrowa[c]↓I if the

letter it sees isa, and the data value (together with the current register assignment) satisfies the

conditionc. It then proceeds to the next state and updates the registersin I with the current

data value. This suggests that the basic building blocks forour expressions will be expressions

of the forma[c]↓I . Note that this is in a way analogous to how ordinary regular expressions are

defined based on the fact that NFA transitions have the labela, and move to the next state if this

letter can be matched in the word during a run. Similarly as inthe case of NFAs and regular

expressions, we will define regular expressions with memorystarting from register automata

edge labels and closing them under union, concatenation andKleene star.

Definition 6.2.1 (Expressions with memory). Let Σ be a finite alphabet and x1, . . . ,xk a finite

set of variables. Regular expressions with memory, or REM for short, overΣ[x1, . . . ,xk] are

defined inductively as follows:

• ε and /0 are expressions;

• a[c]↓I is an expression; here a∈ Σ, c is a condition inCk, and I⊆ {x1, . . . ,xk};

• If e,e1,e2 are expressions, then so are e1+e2, e1 ·e2, and e∗.

6.2. Regular expressions with memory 99

For convenience we will write justa if I = /0 and the conditionc= tt and similarly when

only one of them can be ignored. Also, ifI = {x}, we writea[c]↓x, or a↓x whenc= tt, instead

of a[c]↓I .

To define the semantics, we first define what it means for an expressioneoverΣ[x1, . . .xk],

a data wordw and a tupleσ ∈Dk
⊥ to infer another tupleσ′ ∈Dk

⊥, viewed as partial assignment

of values to variables. We do this inductively one.

• (ε,w,σ) ⊢ σ′ iff w= ε andσ′ = σ.

• (a[c]↓I ,w,σ) ⊢ σ′ iff w=
(a

d

)
andσ,d |= c andσ′ is obtained fromσ by assigningd to

eachxi ∈ I .

• (e1 ·e2,w,σ) ⊢ σ′ iff w= w1 ·w2 and there exists a valuationσ′′ such that(e1,w1,σ) ⊢ σ′′

and(e2,w2,σ′′) ⊢ σ′.

• (e1+e2,w,σ) ⊢ σ′ iff (e1,w,σ) ⊢ σ′ or (e2,w,σ) ⊢ σ′.

• (e∗,w,σ) ⊢ σ′ iff

1. w= ε andσ = σ′, or

2. w = w1 · w2 and there exists a valuationσ′′ such that (e,w1,σ) ⊢ σ′′ and

(e∗,w2,σ′′) ⊢ σ′.

We say that a regular expressione inducesa tupleσ∈Dk
⊥ on a data wordw if (e,w,⊥k) ⊢ σ.

We then defineL(e), the language ofe, as the set of all data words on whiche induces some

tupleσ. A regular expression with memorye is well-formedif every variable is bound before

being used in a condition. From now on we will assume that all our expressions are well-

formed.

Example 6.2.2. We now give a few examples of data word languages definable by regular

expressions with memory.

1. The expression(a↓x) ·(b[x6=])∗ defines the language of data words where word part reads

ab∗ and such that the first data value is different from all others. It binds while reading

the first a, and then it proceeds checking that the letter is b and condition x6= is satisfied,

which is expressed by b[x6=]; the expression is then put in the scope of∗ to indicate that

the number of such values is arbitrary.

2. The language of data words in which two data values are the same is given by the ex-

pressionΣ∗ · (Σ↓x) ·Σ∗ · (Σ[x=]) ·Σ∗, whereΣ is the shorthand for a1+ . . .+al , whenever

Σ = {a1, . . . ,al} and Σ↓x is a shorthand for a1↓x+ . . .+ al ↓x. It says: at some point,

bind x, and then check that after one or more letters, we have the same data value.

100 Chapter 6. The language theory gap

3. The language of data words in which the last two data valuesoccur elsewhere in the word

with label a is defined byΣ∗ · (a↓x) ·Σ∗ · (a↓y) ·Σ∗ · (Σ[x=]+Σ[y=]) · (Σ[x=]+Σ[y=]).

Equivalence with register automata

In this section we prove that every language recognized by register automata can also be de-

scribed by a regular expression with memory and vice versa. In fact, we show a tighter con-

nection, from which the equivalence will follow. LetL(e,σ,σ′) be the set of all data wordsw

such that(e,w,σ) ⊢ σ′, and letL(A ,σ,σ′) be the set of all data wordsw such thatw is accepted

by A(σ), and there exists an accepting run that ends with a register configurationσ′.

Theorem 6.2.3. 1. For every regular expression with memory e overΣ[x1, . . . ,xk] there ex-

ists (and can be constructed in logarithmic space) a k-register data word automatonAe

such that L(e,σ,σ′) = L(Ae,σ,σ′) for everyσ,σ′ ∈Dk
⊥.

2. For every k-register data word automatonA there exists (and can be constructed

in exponential time) a regular expression with memory eA over x1, . . . ,xk such that

L(eA ,σ,σ′) = L(A ,σ,σ′) for everyσ,σ′ ∈Dk
⊥.

The structure of the proof follows of course the standard NFA-regular expressions equiv-

alence, cf. [Sipser, 1997], with all the necessary adjustments to handle transitions induced by

a[c]↓I .

Proof. We prove the first item by induction on the structure ofe. In what follows we will

identify the vectorx of variables with the set of registers (i.e. positions) it corresponds to. For

example the vector(x3,x5) will correspond to the setI = {3,5} of registers.

As before, if(e,w,σ) ⊢ σ′, we will write w∈ L(e,σ,σ′) and similarly ifAe = (Q,q0,F,δ)

started withσ acceptsw with σ′ in the registers, we writew∈ L(Ae,σ,σ′).

• If e= /0, thenAe= (Q,q0,F,T), whereQ= {q0} is the set of states,q0 is the initial state,

F = /0 is the set of final states andT = /0.

• If e= ε, thenAe= (Q,q0,F,T), whereQ= {q0} is the set of states,q0 is the initial state,

F = {q0} the set of final states andT = /0.

• If e= a[c]↓I , thenAe = (Q,q0,F, ,T), whereQ= {q0,q1} is the set of states,q0 is the

initial state,F = {q1} the set of final states andT = {(q0,a,c)→ (I ,q1)}.

• If e = e1 + e2 then by the inductive hypothesis we already have automataAe1 =

(Q1,s1,F1,T1) andAe2 = (Q2,s2,F2,T2) with the desired property. The registers ofAe

will be the union of registers ofAe1 andAe2. To obtain the desired automaton we set

Ae = (Q,q0,F,T), where:

6.2. Regular expressions with memory 101

– Q= Q1∪Q2∪{q0}, whereq0 is a new state,

– F = F1∪F2,

– To T we add all transitions fromAe1 andAe2 and in addition, for every transition

(q,a,c)→ (I ,q′) ∈ T1∪T2, whereq= s1, or q= s2, we add a transition(q0,a,c)→

(I ,q′).

• If e = e1 · e2 then by the inductive hypothesis we already have automataAe1 =

(Q1,s1,F1,T1) and Ae2 = (Q2,s2,F2,T2) with the desired property. The registers of

Ae will be the union of registers ofAe1 and Ae2. To obtain the desired automaton

Ae = (Q,q0,F,T) we distinguish two cases:

1. If s1 /∈ F1 we set

– Q= Q1∪Q2,

– F = F2,

– q0 = s1

– To T we add all transitions fromAe1 andAe2 and in addition, for every transi-

tion (q,a,c)→ (I ,q′)∈T1, whereq′ ∈F1, we add a transition(q,a,c)→ (I ,s2).

2. If s1 ∈ F1 we set

– Q= Q1∪Q2,

– F =

{

F2 if s2 /∈ F2

F1∪F2 if s2 ∈ F2

,

– q0 = s1

– To T we add all transitions fromAe1 andAe2 and in addition, for every tran-

sition (s2,a,c)→ (I ,q′) ∈ T2, we add a transition(q,a,c)→ (I ,q′), for each

q∈ F1.

• If e = e∗1 then by the inductive hypothesis we already have the automaton Ae1 =

(Q1,s1,F1,T1) with the desired property. The registers ofAe will be equal to the reg-

isters ofAe1. To obtain the desired automaton we setAe = (Q,q0,F,T), where:

– Q= Q1∪{q0}, whereq0 is a new state,

– F = F1∪{q0},

– ToT we add all transitions fromAe1 and in addition, for every transition(s1,a,c)→

(I ,q′) ∈ T1, we add a transition(q0,a,c)→ (I ,q′) to T. Now for every transition

(q,a,c)→ (I ,q′) ∈ T (note that we now have transitions fromq0 as well), where

q′ ∈ F1, we add(q,a,c)→ (I ,q0) to T

In all cases it is straightforward to check that the constructed automaton has the desired

property. The DLOGSPACEbound follows immediately from the construction.

102 Chapter 6. The language theory gap

Next we move onto the second claim of the theorem.

To prove this we will have to introduce generalized registerautomata (GRA for short) over

data words. The difference from usual register automata will be that we allow arrows to be

labelled by arbitrary regular expressions over data words.I.e. our arrows are now not labelled

only by a[c]↓I , but by any regular expression over data words. The transition relation is again

calledδ and is defined asδ ⊆ Q×Σ[x1, . . . ,xk]×Q. In addition to that we also specify that

we have a single initial state with no incoming arrows and a single final state with no outgoing

arrows. Note that we also allowε-transitions.

The only difference is how we define acceptance.

A GRA A accepts data wordw if w= w1 ·w2 · . . . ·wk(where eachwi is a data word) and

there exists a sequencec0 = (q0,1,τ0), . . . ,ck = (qk,k+1,τk) of configurations ofA onw such

that:

1. c0 is initial,

2. ck is final,

3. for eachi we have(ei ,wi ,τi) ⊢ τi+1(i.e. wi ∈ L(ei ,τi ,τi+1)), for someei such that

(qi ,ei ,qi+1) is in the transition relation forA .

We can now prove the equivalence of register automata and regular expressions over data

words by mimicking the construction used to prove equivalence between ordinary finite state

automata and regular expressions (over strings). Since we use the same construction we will

get an exponential blow-up, just like for finite state automata.

Just as in the finite state case we first convertA into a GRA by adding a new initial state

(connected to the old initial state by anε-arrow) and a new final state (connected to the old end

states by incomingε-arrows). We also assume that this automaton has only a single arrow be-

tween every two states (we achieve this by replacing multiple arrows by union of expressions).

It is clear that this GRA recognizes the same language of datawords asA .

Next we show how to convert this automaton into an equivalentexpression. We will use

the following recursive procedure which rips out one state at a time from the automaton and

stops when we end with only two states (note that this procedure is taken from [Sipser, 1997]).

CONVERT(G)

1. Letn be the number of states ofG.

6.2. Regular expressions with memory 103

2. If n= 2 thenG contains only a start state and an end state with a single arrow connecting

them. This arrow has an expressionR written on it. ReturnR.

3. If n> 2 select any stateqrip , different fromqstart andqend and modifyG in the following

manner to obtainG′ with one less state. The new set of states isQ′ = Q−{qrip} and for

anyqi ∈Q′−{qaccept} and anyq j ∈Q′−{qstart} we defineδ′(qi ,q j) = (R1)(R2)
∗(R3)+

R4, whereR1 = δ(qi ,qrip),R2 = δ(qrip ,qrip),R3 = δ(qrip,q j) and R4 = δ(qi ,q j). The

initial and final state remain the same.

4. Return CONVERT(G’).

We now prove that CONVERT(G) andG recognize the same language of data words. We

do so by induction on the numbern of states of our GRAG. If n= 2 thenG has only a single

arrow from initial to final state and by definition of acceptance for GRA the expression on this

arrow recognizes the same language asG.

Assume now that the claim is true for all automatons withn− 1 states. LetG be an au-

tomaton withn states. We prove thatG is equivalent to automatonG′ obtained in the step 3 of

our CONVERT algorithm. Note that this completes the induction.

To see this assume first thatw ∈ L(G,σ,σ′), i.e. G with initial assignmentσ has an ac-

cepting run onw ending withσ′ in the registers. This means that there exists a sequence of

configurationsc0 = (q0,1,τ0), . . . ,ck = (qk,k,τk) such thatw= w1w2 . . .wk, where eachwi is a

data word (with possibly more than one symbol),τ0 = σ,τk = σ′ and(δ(qi−1,qi),wi ,τi−1) ⊢ τi,

for i = 1, . . . ,k. (Here we used the assumption that we only have a single arrowbetween any

two states).

If none of the states in this run areqrip, then it’s also an accepting run inG′, so w ∈

L(G,σ,σ′), since all the arrows present here are also inG′.

If qrip does appear we have the following in our run

ci = (qi , i,τi),crip = (qrip , i +1,τi+1), . . . ,crip = (qrip, j−1,τ j−1),c j = (q j , j,τ j).

If we show how to unfold this to a run inG′ we are done (if this appears more than once

we apply the same procedure).

Since this is the case we know (by the definition of accepting run) that

(R1,wi+1,τi) ⊢ τi+1,(R2,wi+2,τi+1) ⊢ τi+2,(R2,wi+3,τi+2) ⊢ τi+3, . . . ,(R2,w j−1,τ j−2) ⊢ τ j−1

and (R3,w j ,τ j−1) ⊢ τ j , whereR1 = δ(qi ,qrip),R2 = δ(qrip ,qrip),R3 = δ(qrip ,q j). Note that

this simply means that((R1)(R2)
∗(R3),wiwi+1 . . .w j ,σ) ⊢ σ′, so G′ can jump fromci to c j

using only one transition.

Conversely, suppose thatw ∈ L(G′,σ,σ′). This means that there is a computation ofG′

starting withσ and ending withσ′ as register assignments. We know that each arrow inG′

from qi to q j goes either directly (in which case it is already inG) or throughqrip (in which

104 Chapter 6. The language theory gap

case we use the definition of acceptance by regular expressions to unravel this word into part

recognized byG). In either case we get an accepting run ofG onw.

To see that this gives the desired result observe that we can always convert register automa-

ton into an equivalent GRA and use CONVERT to obtain a regularexpression with memory

recognizing the same language.

SinceL(e) =
⋃

σ L(e,⊥k,σ) andL(A) =
⋃

σ L(A ,⊥k,σ), we obtain:

Corollary 6.2.4. The classes of languages of data words definable by k-register data word

automata, and by regular expressions with memory overΣ[x1, . . . ,xk] are the same.

Properties of regular expressions with memory

Closure properties Since Corollary 6.2.4 states that regular expressions withmemory and

register automata are equivalent, using Fact 6.1.9 we immediately obtain that languages defined

by regular expressions with memory are closed under union, intersection, concatenation and

Kleene star, but arenot closed under complement.

Decision problems We start with the nonemptiness problem, i.e., checking whetherL(e) 6=

/0. Since going from expressions to automata is polynomial, weget a PSPACE upper bound (see

Fact 6.1.5). Here we also show a matching lower bound.

Proposition 6.2.5.The nonemptiness problem for regular expressions with memory is PSPACE-

complete.

Proof. We prove PSPACE-hardness by doing a reduction from regular automata nonuniver-

sality. This problem requires us to determine, given a finitestate automatonA , whether

L(A) 6= Σ∗.

Assume we are given a regular automatonA = (Q,Σ,δ,q1,F), whereQ= {q1, . . . ,qn} and

F = {qi1, . . . ,qik}.

Since we are trying to demonstrate nonuniversality of the automatonA we simulate reach-

ability checking in the powerset automaton forA . To do so we designate two distinct data

values,t and f , and code each state of the powerset automaton as ann-bit sequence oft/ f

values, where theith bit of the sequence is set tot if the stateqi is included in our state ofA .

Since we are checking reachability we will need only to remember the current and the next

state ofA . In what follows we will code those two states using variables s1, . . . ,sn andt1, . . . , tn

and refer to them as the current state tape and the next state tape. Our expressione will code

data words that describe successful runs ofA by demonstrating how one can move from one

state of this automaton to another (as witnessed by their codes in current state tape and next

state tape), starting with the initial and ending in a final state.

6.2. Regular expressions with memory 105

We will define several expressions and explain their role. Wewill use two sets of variables,

s1 throughsn andt1, . . . , tn to denote the current state tape and the next state tape. All of these

variables will only contain two values,t and f , which are bound in the beginning.

The first expression we need is:

init := (a↓t) · (a[t 6=]↓ f) · (a[t=]↓s1) · (a[f
=]↓s2) . . . (a[f

=]↓sn).

This expression codes two different values ast and f and initializes current state tape to

contain encoding of initial state (the one where only the initial state fromA can be reached).

That is, a data word is in the language of this expression if and only if it starts with two different

data values and continues withn data values that form a sequence in 10∗, where 1 represents

the value assigned tot and 0 the one assigned tof .

end := a[f=∧s=i1] ·a[f
=∧s=i2] · · ·a[f

=∧s=ik], whereF = {qi1, . . . ,qik}.

This expression is used to check that we have reached a state not containing any final state

from the original automaton. That is, a data word is inL(end) if and only if it consists ofk data

values, all equal tof and where value stored insi j also equalsf , for j = 1. . .k.

Next we define expressions that will reflect updating of the next state tape according to the

transition function ofA . Assume thatδ(qi ,b) = {q j1, . . . ,q jl }. We define

uδ(qi ,b) :=
(
(a[t=∧s=i]) · (a[t

=]↓t j1) . . . (a[t
=]↓t jl)

)
+a[f=∧s=i].

Also, if δ(qi ,b) = /0 we simply putuδ(qi ,b) := ε.

This expression will be used to update the next state tape by writing true to corresponding

variables if the stateqi is tagged witht on the current state tape (and thus contained in the

current state ofA). If it is false we skip the update.

Since we have to define update according to all transitions from all the states corresponding

to chosen letter we get:

update :=
∨

b∈Σ

∧

qi∈Q

uδ(qi ,b).

This simply states that we non deterministically pick the next symbol of the word we are

guessing and move to the next state accordingly.

We still have to ensure that the tapes are copied at the beginning and end of each step, so

we define:

step :=
(
(a[f=]↓t1) . . . (a[f

=]↓tn)
)
·update ·

(
(a[t=1]↓s1) . . . (a[t

=
n]↓sn)).

This simply initializes the next state tape at the beginningof each step, proceeds with the

update and copies the next state tape to the current state tape.

Finally we have

e := init · (step)∗ ·end.

106 Chapter 6. The language theory gap

We claim that forL(e) 6= /0 if and only if L(A) 6= Σ∗.

Assume first thatL(A) 6= Σ∗. This means that there is a path from the initial to the final state

in the powerset automaton forA . That is, there is a wordw from Σ∗ not in the language ofA .

This path can in turn be described by pairs of assignment of valuest/ f to the current state tape

and the next state tape, where each transition is witnessed by the corresponding letter of the

alphabet. But then the word that belongs toL(e) is the one that first initializes the stable tape

(i.e. the variabless1, . . . ,sn) to initial state of the powerset automaton, then runs the updates

of the tape according tow and finally ends in a state where all variable corresponding to end

states ofA are taggedf .

Conversely, each word froms to t in L(e) corresponds to a run of the powerset automaton

for A . That is, the part of word corresponding toinit sets the initial state. Then the part of

this word that corresponds tostep∗ corresponds to updating our tapes in a way that properly

codes one step of powerset automaton. Finally,end denotes that we have reached a state where

all end states ofA have been tagged byf , thus, an accepting state forA .

Next we move to the membership problem, i.e., checking whether w∈ L(e). Again, since

e can be translated efficiently into an equivalent automatonAe, Fact 6.1.6 gives an NP upper

bound. We can prove a matching lower bound as well:

Proposition 6.2.6. The membership problem for regular expressions with memoryis NP-

complete.

Proof. For the lower bound we do a reduction from 3-SAT.

Let ϕ = (a1∨b1∨ c1)∧ (a2∨b2∨ c2) . . .∧ (ak∨bk∨ ck), be an arbitrary 3-CNF formula.

We will construct a data wordw and a regular expression with memorye, both of length linear

in the length ofϕ, such thatϕ is satisfiable if and only ifw∈ L(e).

Let x1,x2, . . . ,xn be all the variables occurring inϕ. We definew as the following data

word:

w=
((a

0

)(
b
1

))n (
(

a1

da1

)(
b1

db1

)(
c1

dc1

))

. . .
((ak

dak

)(
bk

dbk

)(
ck

dck

))

,

wheredai = 1, if ai = x j , for somej ∈ {1, . . .n} and 0, ifai = x j and similarly fordbi ,dci (note

that everyai ,bi ,ci is of the formx j , or x j , so this is well defined).

Also note that we are usingai ,bi ,ci both for literals inϕ and for letters of our finite alphabet,

but this should not arise any confusion. The idea behind thisdata word is that with the first part

that corresponds to the variables, i.e. with(
(a

0

)(b
1

)
)n, we guess a satisfying assignment and the

next part corresponds to each conjunct inϕ and its data value is set such that if we stop at any

point for comparison we get a true literal in this conjunct.

6.3. Regular expressions with binding 107

We now defineeas the following regular expression with memory:

e= (a↓x1+ab↓x1) ·b
∗ · (a↓x2+ab↓x2) ·b

∗ · (a↓x3+ab↓x3) · · ·

b∗ · (a↓xn+ab↓xn) ·b
∗ ·clause1 ·clause2 . . .clausek,

where each clausei corresponds to thei-th conjunct ofϕ in the following manner.

If ith conjunct uses variablesx j1,x j2,x j3(possibly with repetitions), then

clausei = ai [x
=
j1] ·bi ·ci +ai ·bi [x

=
j2] ·ci +ai ·bi ·ci[x

=
j3].

We now prove thatϕ is satisfiable if and only ifw∈ L(e).

Assume first thatϕ is satisfiable. Then there’s a way to assign a value to eachxi such that

for every conjunct inϕ at least one literal is true. This means that we can traverse the first part

of w to chose the corresponding values for variables bounded ine. Now with this choice we

can make one of the literals in each conjunct true, so we can traverse every clausei using one

of the tree possibilities.

Assume now thatw ∈ L(e). This means that after choosing the data values for variables

(and thus a valuation forϕ, since all data values are either 0 or 1), we are able to traverse the

second part ofw using these values. This means that for every clausei there is a letter after

which the data value is the same as the one bounded to the corresponding variable. Since

data values in the second part ofw correspond to literal in the corresponding conjunct ofϕ to

evaluate to 1, we know that this valuation satisfies our formula ϕ.

Finally, using Theorem 6.2.3 and Fact 6.1.8 we also get the following result about univer-

sality and containment.

Corollary 6.2.7. Universality and containment problems are undecidable forregular expres-

sions with memory.

6.3 Regular expressions with binding

Here we redefine regular expressions with binding to work over data words instead of data

paths. As already mentioned in Section 4.3, expressions with binding were originally devel-

oped as a graph querying formalism that restricts the use of variables in regular expressions

with memory by imposing proper scoping rules. The idea here is to use variables to store data

values and then compare them using conditions. The storing of a value, however, will bind it

only to the scope of the variable used, unlike in regular expressions with memory.

Conditions are defined in the same manner as in Section 6.2. Next we define regular ex-

pressions with binding.

108 Chapter 6. The language theory gap

Definition 6.3.1. Let Σ be a finite alphabet and{x1, . . . ,xk} a finite set of variables.Regular

expressions with binding(REWB) overΣ[x1, . . . ,xk] are defined inductively as follows:

r := ε | a | a[c] | r + r | r · r | r∗ | a ↓xi .{r} (6.1)

where a∈ Σ and c is a condition inCk.

A variable xi is bound if it occurs in the scope of some↓xi operator and free otherwise.

More precisely, free variables of an expression are defined inductively: ε anda have no free

variables, ina[c] all variables occurring inc are free, inr1+ r2 andr1 · r2 the free variables are

those ofr1 andr2, the free variables ofr∗ are those ofr, and the free variables ofa ↓xi .{r} are

those ofr exceptxi . We will write r(x1, . . . ,xl) if x1, . . . ,xl are the free variables inr.

A valuation on the variablesx1, . . . ,xk is a partial functionν : {x1, . . . ,xk} 7→D. We denote

by F (x1, . . . ,xk) the set of all valuations onx1, . . . ,xk. For a valuationν, we writeν[xi ← d]

to denote the valuationν′ obtained by fixingν′(xi) = d andν′(x) = ν(x) for all otherx 6= xi .

Likewise, we writeν[x← d] for a simultaneous substitution of values fromd = (d1, . . . ,dl) for

variablesx= (x1, . . . ,xl). Also notationν(x) = d means thatν(xi) = di for all i ≤ l .

Semantics Let r(x) be an REWB overΣ[x1, . . . ,xk]. A valuationν ∈ F (x1, . . . ,xk) is com-

patible withr, if ν(x) is defined.

A regular expressionr(x) over Σ[x1, . . . ,xk] and a valuationν ∈ F (x1, . . . ,xk) compatible

with r define a languageL(r,ν) of data words as follows.

• If r = a anda∈ Σ, thenL(r,ν) = {
(a

d

)
| d ∈ N}.

• If r = a[c], thenL(r,ν) = {
(a

d

)
| d,ν |= c}.

• If r = r1+ r2, thenL(r,ν) = L(r1,ν)∪L(r2,ν).

• If r = r1 · r2, thenL(r,ν) = L(r1,ν) ·L(r2,ν).

• If r = r∗1, thenL(r,ν) = L(r1,ν)∗.

• If r = a ↓xi .{r1}, thenL(r,ν) =
⋃

d∈D

{(a
d

)}

·L(r1,ν[xi ← d]).

A REWB r defines a language of data words as follows.

L(r) =
⋃

ν compatible withr

L(r,ν).

In particular, if r is without free variables, thenL(r) = L(r, /0). We will call such REWBs

closed.

Example 6.3.2.We list several examples of languages expressible with our expressions. In all

cases below we have a singleton alphabetΣ = {a}.

6.3. Regular expressions with binding 109

• The language that consists of data words where the data valuein the first position is

different from the others is given by: a↓x .{(a[x6=])∗}.

• The language that consists of data words where the data values in the first and the last

position are the same is given by: a↓x .{a∗ ·a[x=]}.

• The language that consists of data words where there are two positions with the same

data value: a∗ ·a ↓x .{a∗ ·a[x=]} ·a∗.

Note that in REWBs in the above example the conditions are very simple: they are either

x= or x6=. We will call such expressionssimpleREWBs.

We shall also considerpositiveREWBs where negation and inequality are disallowed in

conditions. That is, all the conditionsc are constructed using the following syntax:c :=

tt | x=i | c∧c | c∨c,, where 1≤ i ≤ k.

Closure properties and connection with register automata

As mentioned before, regular expressions with memory have asimilar syntax but rather differ-

ent semantics than REWBs. They are built usinga ↓x, concatenation, union and Kleene star.

That is, no binding is introduced witha ↓x; rather it directly matches the operation of putting

a value in a register. In contrast, REWBs use proper bindingsof variables; expressiona ↓x ap-

pears only in the contexta ↓x .{r} where it bindsx inside the expressionr only. Theorem 6.2.3

states that expressions with memory and register automata are one and the same in terms of ex-

pressive power. Here we show that REWBs, on the other hand, are strictly weaker. Therefore,

proper binding of variables comes with a cost – albeit small –in terms of expressiveness.

Theorem 6.3.3.The class of languages defined by REWBs is strictly containedin the class of

languages accepted by register automata.

That the class of languages defined by REWBs is contained in the class of languages de-

fined by register automata can be proved by using a similar inductive construction as in Theo-

rem 6.2.3.

To show that the containment is strict we need to examine closure properties of REWB

languages.

Closure properties It follows from the definition that regular expressions withbinding are

closed under union, concatenation and Kleene star. Next we show they are not closed under

complement.

Proposition 6.3.4.The class of languages definable by regular expressions withbinding is not

closed under complement.

110 Chapter 6. The language theory gap

Proof. To see that they are not closed under complement, recall fromExample 6.3.2 that the

expressiona∗ ·a↓x .{a∗ ·a[x=]}·a∗ defines the set of all data words with two positions with the

same data value. The complement of this language, where all data values are different is well

known not to be definable by register automata [Kaminski and Francez, 1994].

We also show that REWB languages are not closed under intersection. The proof of this

fact will also imply Theorem 6.3.3.

Theorem 6.3.5.REWB languages are not closed under intersection.

To prove this we define two languages,L1 andL2, both easily definable by a regular ex-

pression with binding, but such that their intersection is not REWB definable.

Let L1 be the language consists of data words of the form:

(
a
d1

)(
a
d2

)(
a
d3

)(
a
d4

)(
a
d5

)(
a
d6

)(
a
d7

)(
a
d8

)

· · · · · · · · ·

(
a

d4n

)

whered2 = d5,d6 = d9, . . . ,d4n−6 = d4n−3.

Let L2 be the language as above, butd4 = d7,d8 = d11, . . . ,d4n−4 = d4n−1.

In particular,L1∩L2 is the language consisting of data words of the form:

(a
d1

)(a
d2

)(a
e1

)(a
e2

)(a
d2

)(a
d3

)(a
e2

)(a
e3

)
· · · · · · · · ·

(a
dm−2

)(a
dm−1

)(a
em−2

)(a
em−1

)(a
dm−1

)(a
dm

)(a
em−1

)(a
em

)

BothL1 andL2 are REWB languages. We are now going to show the following.

Lemma 6.3.6. L1∩L2 is not a REWB language.

Note that for simplicity we prove the theorem for the case of simple REWBs. It is straight-

forward to see that the same proof works in the case of REWBs that use multiple comparisons

in one condition.

The proof is rather technical and will require a few auxiliary notions. Letr be an REWB

overΣ[x1, . . . ,xk]. A derivation tree twith respect tor is a tree whose internal nodes are labeled

with (r ′,ν) wherer ′ is an subexpression ofr andν ∈ F (x1, . . . ,xk) constructed as follows. The

root node is labeled with(e, /0). The other nodes are labeled as follows. For a nodeu labeled

with (r ′,ν), its children are labeled as follows.

• If r ′ = a, thenu has only one child: a leaf node labeled with
(a

d

)
for somed ∈D.

• If r ′ = a[ϕ], thenu has only one child: a leaf node labeled with
(a

d

)
such thatd,ν |= ϕ.

• If r ′ = r1+ r2, thenu has only one child: a leaf node labeled with either(r1,ν) or (r2,ν).

• If r ′ = r1 · r2, thenu has only two children: the left child is labeled with(r1,ν) and the

right child is labeled with(r2,ν).

6.3. Regular expressions with binding 111

• If r ′ = r∗1, thenu has either only one child: a leaf node labeled withε; or at least one

child labeled with(r1,ν).

• If r ′ = a ↓x .{r1}, thenu has only two children: the left child is labeled with
(a

d

)
and the

right child is labeled with(r1,ν[x← d]), for some data valued ∈D.

A derivation treet defines a data wordw(t) as the word read on the leaf nodes oft from left to

right.

Proposition 6.3.7.For every REWB r, the following holds. A data word w∈ L(r, /0) if and only

if there exists a derivation tree t w.r.t. r such that w= w(t).

Proof. We start with the “only if” direction. Suppose thatw ∈ L(r, /0). By induction on the

length ofe, we can construct the derivation treet such thatw= w(t). It is a rather straightfor-

ward induction, where the induction step is based on the recursive definition of REWB, where

r is eithera, a[x=], a[x6=], r1+ r2, r1 · r2, r∗1 or a ↓x .{r1}.

Now we prove the “if” direction.

For a nodeu in a derivation treet, the word induced by the nodeu is the subword made up

of the leaf nodes in the subtree rooted atu. We denote such subword bywu(t).

We are going to show that for every nodeu in t, if u is labeled with(r ′,ν), thenwu(t) ∈

L(r ′,ν). This can be proved by induction on theheight of the nodeu, which is defined as

follows.

• The height of a leaf node is 0.

• The height of a nodeu is the maximum between the heights of its children nodes plus

one.

It is a rather straightforward induction, where the base case is the nodes with zero height and

the induction step is carried on nodes of heighth with the induction hypothesis assumed to hold

on nodes of height< h.

Supposew(t) = w1wu(t)w2, the index pairof the nodeu is the pair of integers(i, j) such

that i = length(w1)+1 and j = length(w1wu(t)).

A derivation treet induces a binary relationRt as follows.

Rt = {(i, j) | (i, j) is the index pair of a nodeu in t labeled witha ↓xl .{r
′} }.

Note thatRt is a partial function from the set{1, . . . , length(w(t))} to itself, where ifRt(i) is

defined, theni < Rt(i).

For a pair(i, j) ∈ Rt , we say that the variablex is associated with(i, j), if (i, j) is the index

pair of a nodeu in t labeled with a label of the forma ↓x .{r ′}. Two binary tuples(i, j) and

(i′, j ′), wherei < j andi′ < j ′, cross each otherif either i < i′ < j < j ′ or i′ < i < j ′ < j.

112 Chapter 6. The language theory gap

Proposition 6.3.8. For any derivation tree t, the binary relation Rt induced by it does not

contain any two pairs(i, j) and(i′, j ′) that cross each other.

Proof. Suppose(i, j),(i′, j ′) ∈ Rt . Then letu andu′ be the nodes whose index pairs are(i, j)

and(i′, j ′), respectively. There are two cases.

• The nodesu andu′ are descendants of each other.

Supposeu is a descendant ofu′. Then, we havei′ < i < j < j ′.

• The nodesu andu′ are not descendants of each other.

Suppose the nodeu′ is on the right side ofu, that is,wu′(t) is on the right side ofwu(t)

in w. Then we havei < j < i′ < j ′.

In either case(i, j) and(i′, j ′) do not cross each other. This completes the proof of our claim.

Now we are ready to show thatL1∩L2 is not defined by any REWB. Suppose to the contrary

that there is an REWBr overΣ[x1, . . . ,xk] such thatL(r) = L1∩L2, whereΣ = {a}. Consider

the following wordw, wherem= k+2:

w :=
(a

d0

)(a
d1

)(a
e0

)(a
e1

)(a
d1

)(a
d2

)(a
e1

)(a
e2

)
· · · · · · · · ·

(a
dm−2

)(a
dm−1

)(a
em−2

)(a
em−1

)(a
dm−1

)(a
dm

)(a
em−1

)(a
em

)

whered0,d1, . . . ,dm,e0,e1, . . . ,em are pairwise different.

Let t be the derivation tree ofw. Consider the binary relationRt and the following setsA

andB.

A = {2,6,10, . . . ,4m−6}

B = {4,8,12, . . . ,4m−4}

That is, the setA contains the first positions of the data valuesd1, . . . ,dm−1s, and the setB the

first positions of the data valuese1, . . . ,em−1s.

Claim 6.3.9. The relation Rt is a function on A∪B. That is, for every h∈ A∪B, there is h′

such that(h,h′) ∈ Rt .

Proof. Suppose there existsh∈ A∪B such thatRt(h) is not defined. Assume thath∈ A andl

be such thath= 4l −2. If Rt(h) is not defined, then for any valuationν found in the nodes in

t, dl /∈ Image(ν). So, the word

w′′ =
(a

d0

)(a
d1

)(a
e0

)(a
e1

)
· · · · · ·

(a
dl−1

)(a
f

)(a
el−1

)(a
el

)(a
dl

)(a
dl+1

)
· · · · · ·

is also inL(r), where f is a new data value. That is, the wordw′′ is obtained by replacing the

first appearance ofdl with f . Now w′′ /∈ L1∩L2, hence, contradicts the fact thatL(r) = L1∩L2.

The same reasoning goes for the case ifh∈ B. This completes the proof of our claim.

6.3. Regular expressions with binding 113

Remark 6. Without loss of generality, we can assume that each variablein the REWB r is

introduced only once. Otherwise, we can rename the variable.

Claim 6.3.10. There exist(h1,h2),(h′1,h
′
2)∈Rt such that h1 < h2 < h′1 < h′2 and h1,h′1 ∈ A and

both(h1,h2),(h′1,h
′
2) have the same associated variable.

Proof. The cardinality |A| = k + 1. So there exists a variablex ∈ {x1, . . . ,xk} and

(h1,h2),(h′1,h
′
2) ∈ Rt such that(h1,h2),(h′1,h

′
2) are associated with the variablex. By Re-

mark 6, no variable is written twice ine, so the nodesu,u′ associated with(h1,h2),(h′1,h
′
2)

are not descendants of each other, so we haveh1 < h2 < h′1 < h′2, or h′1 < h′2 < h1 < h2. This

completes the proof of our claim.

Claim 6.3.11 below immediately implies that Lemma 6.3.6.

Claim 6.3.11. There exists a word w′′ /∈ L1∩L2, but w′′ ∈ L(r).

Proof. The word w′′ is constructed from the wordw. By Claim 6.3.10, there exist

(h1,h2),(h′1,h
′
2) ∈ Rt such thath1 < h2 < h′1 < h′2 andh1,h′1 ∈ A and bothh1,h′1 have the same

associated variable.

By definition of the languageL1∩ L2, betweenh1 and h′1, there exists an indexl ∈ B

such thath1 < l < h′1. (Recall that the setA contains the first positions of the data values

d1, . . . ,dm−1s, and the setB the first positions of the data valuese1, . . . ,em−1s.)

Let h be the maximum of such indices. The indexh is not the index of the laste, hence

Rt(h) exists andRt(h)< h2, by Proposition 6.3.8. Now the data value inRt(h) is different from

the data value in positionh. To getw′′, we change the data value in the positionh with a new

data valuef , and it will not change the acceptance of the wordw′′ by the REWBr.

However, the wordw′′

w′′ =

(
a
d0

)(
a
d1

)(
a
e0

)(
a
e1

)

· · · · · ·

(
a

el−1

)(
a
f

)

· · ·

(
a
el

)(
a

el+1

)

· · · · · ·

is not inL1∩L2, by definition. Thus, this completes the proof of our claim.

This completes our proof of Lemma 6.3.6.

Since bothL1 andL2 are easily definable by a REWB using only one variable, this com-

pletes the proof of Theorem 6.3.5.

As a corollary of this we also get the proof of Theorem 6.3.3. We note that the separating

example is rather intricate, and certainly not a natural language one would think of. In fact, all

natural languages definable with register automata that we used here as examples – and many

more, especially those suitable for graph querying – are definable by REWBs.

114 Chapter 6. The language theory gap

Decision problems

Nonemptiness and membership Recall that for register automata, the nonemptiness prob-

lem is PSPACE-complete (and the same bound applied to regular expressions with memory).

By introducing proper binding we lose some expressiveness and yet can lower the complexity

of the problem to NP.

Note that standard nonemptiness checks if the language of aclosedREWB is empty. More

generally, one can ask ifL(r,ν) 6= /0 for a REWBr and a compatible valuationν.

Theorem 6.3.12.The nonemptiness problem for REWBs is NP-complete.

Proof. In order to prove the NP-upper bound from the theorem we will first show that if there

is a word accepted by a REWB, then there is also a word acceptedthat is no longer than the

REWB itself.

Proposition 6.3.13. For every REWB r overΣ[x1, . . . ,xk] and every valuationν compatible

with r, if L(r,ν) 6= /0, then there exists a data word w∈ L(r,ν) of lengthO(|r|).

Proof. The proof is by induction on the length ofr. The basis is when the length ofr is 1.

There are two cases:a[c] anda; and it is trivial that our proposition holds.

Let r be an REWB andν a valuation compatible withr. For the induction hypothesis, we

assume that our proposition holds for all REWBs of shorter length thanr. For the induction

step, we prove our proposition forr. There are four cases.

• Case 1:r = r1+ r2.

If L(r,ν) 6= /0, then by the induction hypothesis, eitherL(r1,ν) or L(r2,ν) are not empty.

So, either

– there existsw1 ∈ L(r1,ν) such that|w1|= O(|r1|); or

– there existsw2 ∈ L(r2,ν) such that|w2|= O(|r2|).

Thus, by definition, there existsw∈ L(r,ν) such that|w|= O(|r|).

• Case 2:r = r1 · r2.

If L(r,ν) 6= /0, then by the definition,L(r1,ν) and L(r2,ν) are not empty. So by the

induction hypothesis

– there existsw1 ∈ L(r1,ν) such that|w1|= O(|r1|); and

– there existsw2 ∈ L(r2,ν) such that|w2|= O(|r2|).

Thus, by definition,w1 ·w2 ∈ L(r,ν) and|w1 ·w2|= O(|r|).

• Case 3:r = (r1)
∗.

This case is trivial sinceε ∈ L(r,ν).

6.3. Regular expressions with binding 115

• Case 4:r = a ↓xi .{r1}.

If L(r,ν) 6= /0, then by the definition,L(r1,ν[xi← d]) is not empty, for some data valued.

By the induction hypothesis, there existsw1 ∈ L(r1,ν[xi ← d]) such that|w1|= O(|r1|).

By definition,
(a

d

)
w1 ∈ L(r,ν).

This completes the proof of Proposition 6.3.13.

The NP membership now follows from Proposition 6.3.13, where given a REWBr, we

simply guess a data wordw∈ L(r) of lengthO(|r|). The verification thatw∈ L(r) can also be

done inNP (Proposition 6.3.15).

Note that the data values here can be made small as well. This follows from the fact that

in a word accepted by a register automaton one can replace thedata values with the ones from

the set 1, . . .k+ 1, wherek is the number of registers (see Lemma 6.1.3), while retaining the

acceptance condition. Thus we can always assume that the values appearing in our word are

not bigger than the number of variables in our expression plus one.

We proveNPhardness via a reduction from 3-SAT.

Assume thatϕ = (ℓ1,1∨ ℓ1,2∨ ℓ1,3)∧ ·· · ∧ (ℓn,1∨ ℓn,2∨ ℓn,3) is the given 3-CNF formula,

where eachℓi, j is a literal. Letx1, . . .xk denote the variables occurring inϕ. We say that the

literal ℓi, j is negative, if it is a negation of a variable. Otherwise, we call it a positive literal.

We will define a REWBr overΣ[y1,z1,y2,z2, . . . ,yk,zk] of lengthO(n) such thatϕ is satis-

fiable if and only ifL(r) 6= /0.

Let r be the following REWB.

r := a ↓y1 .{a ↓z1 .{a ↓y2 .{a ↓z2 .{· · · {a ↓yk .{a ↓zk .{

(r1,1+ r1,2+ r1,3) · · · (rn,1+ rn,2+ rn,3)}} . . .},

r i, j :=







b[y=k ∧z=k] if ℓi, j = xk

b[y=k ∧z6=k]+b[z=k ∧y6=k] if ℓi, j = ¬xk

Obviously,|r|= O(n). We are going to prove thatϕ is satisfiable if and only ifL(r) 6= /0.

Assume first thatϕ is satisfiable. Then there is an assignmentf : {x1, . . . ,xk} 7→ {0,1}

makingϕ true. We define the evaluationν : {y1,z1, . . .yn,zn} 7→ {0,1} as follows.

• If f (xi) = 1, thenν(yi) = ν(zi) = 1.

• If f (xi) = 0, thenν(yi) = 0 andν(zi) = 1.

We define the following data word.

w :=

(
a

ν(y1)

)(
a

ν(z1)

)

· · ·

(
a

ν(yk)

)(
a

ν(zk)

)(
b
1

)

· · ·

(
b
1

)

︸ ︷︷ ︸

n times

116 Chapter 6. The language theory gap

To see thatw∈ L(r), we observe that the first 2k labels are parsed to bind valuesy1,z1, . . .yk,zk

to corresponding values determined byν. To parse the remaining
(b

1

)
· · ·
(b

1

)
, we observe that

for eachi ∈ {1, . . . ,n}, ℓi,1 ∨ ℓi,2∨ ℓi,3 is true according to the assignmentf if and only if
(b

1

)
∈ L(r i,1+ r i,2+ r i,3,ν).

Conversely, assume thatL(r) 6= /0. Let

w=

(
a

dy1

)(
a

dz1

)

· · ·

(
a

dyk

)(
a

dzk

)(
b
d1

)

· · ·

(
b
dn

)

∈ L(r).

We define the following assignmentf : {x1, . . . ,xk} 7→ {0,1}.

f (xi) =

{

1 if dyi = dzi

0 if dyi 6= dzi

We are going to show thatf is a satisfying assignment forϕ. Now sincew∈ L(r), we have

(
b
d1

)

· · ·

(
b
dn

)

∈ L((r1,1+ r1,2+ r1,3) · · · (rn,1+ rn,2+ rn,3),ν),

whereν(yi) = dyi andν(zi) = dzi . In particular, we have for everyj = 1, . . . ,n,

(
b
d j

)

∈ L(r j,1+ r j,2+ r j,3,ν).

W.l.o.g, assume that
(b

dj

)
∈ L(r j,1). There are two cases.

• If r j,1 = b[y=i ∧z=i], then by definition,ℓ j,1 = xi , hence the clauseℓ j,1∨ ℓ j,2∨ ℓ j,3 is true

under the assignmentf .

• If r j,1 = b[y=i ∧ z6=i] + b[z=i ∧ y6=i], then by definition,ℓ j,1 = ¬xi, hence the clauseℓ j,1∨

ℓ j,2∨ ℓ j,3 is true under the assignmentf .

Thus, the assignmentf is a satisfying assignment for the formulaϕ. This completes the proof

of Theorem 6.3.12.

Note that for simple and positive REWBs the problem trivializes.

Proposition 6.3.14. • For every simple REWB r overΣ[x1, . . . ,xk], and for every valuation

ν compatible with r, we have L(r,ν) 6= /0.

• For every positive REWB r overΣ[x1, . . . ,xk], there is a valuationν such that L(r,ν) 6= /0.

For membership we only have the upper bound.

Proposition 6.3.15.Membership problem for REWBs is inNP.

This immediately follows from Theorem 6.3.3 and the bound for register automata.

6.3. Regular expressions with binding 117

Containment and universality Next we examine the containment and universality problems

for REWBs. It turns out that both are undecidable. In fact, wecan show an even stronger state-

ment, thatuniversalityof simple REWBs that use just a single variable is already undecidable.

Theorem 6.3.16.Universality for one-variable REWBs is undecidable. In particular general

universality and containment are also undecidable.

Proof. We are first going to prove that given an REWBr overΣ[x1, . . . ,xk], checking whether

L(e) = (Σ×D)∗ is undecidable. This immediately implies that givenr1, r2, checking whether

L(r1)⊆ L(r2) is undecidable, hence, the second item of our theorem.

The proof is similar to the proof of the universality of register automata in [Neven et al.,

2004]. The reduction is via Post Correspondence Problem (PCP), which is defined as follows.

An instance of PCP is a set of pairs of strings

I = {(u1,v1), . . . ,(un,vn)},

whereui ,vi ∈ Σ∗. A solution of the instanceI is a sequencel1, . . . , lm such thatul1 · · ·ulm =

vl1 · · ·vlm.

Let $,# be two special symbols not inΣ. Now a solutionl1, . . . , lm of the PCP instanceI

can be encoded into data wordw1
(#

h

)
w2 overΣ∪{$,#}, where

w1 =
($

e1

)(a1
d1

)
· · ·
(aℓ1

dℓ1

)($
e2

)(aℓ1+1

dℓ1+1

)
· · ·
(aℓ1+ℓ2

dℓ1+ℓ2

)($
e3

)
· · · · · ·

($
em

)(aℓ1+···+ℓm−1
dℓ1+···+ℓm−1

)
· · ·
(aℓ

dℓ

)

w2 =
($

g1

)(b1
f1

)
· · ·
(bℓ1

fℓ1

)($
g2

)(bℓ1+1

fℓ1+1

)
· · ·
(bℓ1+ℓ2

fℓ1+ℓ2

)($
g3

)
· · · · · ·

($
gm

)(bℓ1+···+ℓm−1
fℓ1+···+ℓm−1

)
· · ·
(bℓ

fℓ

)

whereℓ= ℓ1+ ℓ2+ · · ·+ ℓm, and

(C1) The symbol # appears only once.

(C2) ProjΣ(w1) ∈ ($·u1+ · · ·+$·un)
∗.

(C3) ProjΣ(w2) ∈ ($·v1+ · · ·+$·vn)
∗.

(C4) The data valuesei ’s anddi ’s are pairwise different.

(C5) The data valuesgi ’s and fi ’s are pairwise different.

(C6) e1 = g1 andem = gm.

(C7) d1 = f1 anddℓm = fℓm.

(C8) For alli ∈ {1, . . . ,m−1}, there existsj ∈ {1, . . . ,m−1} such thatei = g j andei+1 = g j+1.

(C9) For all i ∈ {1, . . . , ℓm−1}, there existsj ∈ {1, . . . , ℓm−1} such thatdi = f j anddi+1 =

f j+1.

(C10) For alli, j ∈ {1, . . . , ℓm}, if di = f j , thenai = b j .

(C11) For alli, j ∈ {1, . . . ,m}, if ei = g j , then(aℓi−1+1 · · ·aℓi ,bℓ j−1+1 · · ·bℓ j) ∈ I .

118 Chapter 6. The language theory gap

Now it is straightforward to show that there exists a solution to the PCP instanceI if and only

if there exists a data word overΣ∪{$,#} that satisfies Conditions (C1)–(C11) above.

We now construct an REWBeoverΣ1[x1, . . . ,xk] whereΣ1 = Σ∪{$,#} that accepts a data

wordw that does not satisfies at least one of the Conditions (C1) to (C11) above. Such REWBe

can be constructed by taking the union of the negation of eachof Conditions (C1) to (C11), and

it is a rather straightforward observation that the negation of each of them can be stated as an

REWB. Hence, we have that the PCP instanceI has no solution if and only ifL(r) = (Σ1×D)∗.

This concludes our proof in the case of multiple variables.

We now prove that we get undecidability even when using expressions with only one vari-

able. The proof is a slight modification of the proof in multi-variable case and for completeness

we present it here.

Let r be an REWB overΣ[x].

Let $,# be two special symbols not inΣ. Let Γ = Σ∪{$,#}. Now a solutionl1, . . . , lm of

the PCP instanceI can be encoded into data wordw1
(#

h

)
REV(w2) overΣ∪{$,#}, wherew1,w2

are defined as above and REV(w2) is the reversal ofw2.

We then construct an REWBr overΓ[x1, . . . ,xk] that accepts a data wordw=w1#REV(w2)

such thatw1#w2 does not satisfies at least one of the Conditions (C1) to (C11)above. The

REWB r is obtained by taking the union of the following.

• The negations of each (C1), (C2), (C3) which can be written ina standard regular ex-

pression without variables.

• The negation of (C4) which can be written as:

(

Γ∗$ ↓x .{Γ∗$[x=]} + Γ∗
⋃

a∈Σ

(
a ↓x .{Γ∗a[x=]}

))

#Γ∗

The negation of (C5) can be written in a similar manner.

• The negation of (C6) which can be written as:

$ ↓x .{Γ∗ ·$[x6=]} + Γ∗$ ↓x .{#·Σ∗$[x6=]}Γ∗.

The negation of (C7) can be written in a similar manner.

• The negation of (C8) which can be written as:

Γ∗$ ↓x .

{

Γ∗#($[x6=]Σ)∗+Σ∗$ ↓x .{Γ∗#Γ∗$[x6=]}Σ∗$[x=]

}

.

Note that here we use the fact that (C8) can be paraphrased as follows:

1. For alli ∈ {1, . . . ,m−1} exists j ∈ {1, . . . ,m−1} such thatei = g j

2. For alli ∈ {1, . . . ,m−1} and for all j ∈ {1, . . . ,m−1} if ei = g j thenei+1 = g j+1.

6.4. Regular expressions with equality 119

(Recall that by (C6) we have thate1 = g1.)

The negation of (C9) can be written in a similar manner.

• The negation of (C10) and the negation of (C11), which can be written in a straightfor-

ward manner using only one variable.

It is straightforward to see that the PCP instanceI has no solution if and only ifL(r) = (Σ1×

D)∗. This concludes our proof of Theorem 6.3.16.

While restriction to simple REWBs does not make the problem decidable, the restriction to

positive REWBs does: as is often the case, static analysis tasks become easier without negation.

Theorem 6.3.17.The containment problem for positive REWBs is decidable.

Proof. It is rather straightforward to show that any positive REWB can be converted into a reg-

ister automaton without inequality [Kaminski and Tan, 2006]. The decidability of the language

containment follows from the fact that the containment problem for register automata without

inequality is decidable (Fact 6.1.8).

6.4 Regular expressions with equality

Regular expressions with equality were introduced in Section 4.4 as a mechanism for defin-

ing path queries with much better complexity bounds for the query evaluation problem than

register automata. Here we will redefine them in the context of data words and show that the

complexity of membership and nonemptiness is much easier than in the case or register au-

tomata. Surprisingly, the universality problem is still undecidable, thus witnessing that, even

strictly weaker, regular expressions with equality still retain much of the expressive power of

register automata and expressions with memory or binding. Recall that the main idea of these

expressions is to allow checking for (in)equality of data values at the beginning and at the end

of subwords conforming to subexpressions. Next we define them formally.

Definition 6.4.1 (Expressions with equality). Let Σ be a finite alphabet. Thenregular expres-

sions with equality (REWE)are defined by the grammar:

e := /0 | ε | a | e+e | e·e | e+ | e= | e6= (6.2)

where a ranges over alphabet letters. The language L(e) of data words denoted by a regular

expression with equality e is defined as follows.

• L(/0) = /0.

• L(ε) = {ε}.

120 Chapter 6. The language theory gap

• L(a) = {
(a

d

)
| d ∈D}.

• L(e·e′) = L(e) ·L(e′).

• L(e+e′) = L(e)∪L(e′).

• L(e+) = {w1 · · ·wk | k≥ 1 and each wi ∈ L(e)}.

• L(e=) = {
(a1

d1

)
. . .
(an

dn

)
∈ L(e) | d1 = dn}.

• L(e6=) = {
(a1

d1

)
. . .
(an

dn

)
∈ L(e) | d1 6= dn}.

Without any syntactic restrictions, there may be “pathological” expressions that, while for-

mally defining the empty language, should nonetheless be excluded as really not making sense.

For example,ε= is formally an expression, and so isa6=, although it is clear they cannot denote

any data word. We exclude them by defining well-formed expressions as follows. We say that

the usual regular expressione reduces toε (respectively, to singletons) ifL(e) is ε or /0 (or

|w| ≤ 1 for all w∈ L(e)). Then we say that regular expression with equality iswell-formedif it

contains no subexpressions of the forme= or e6=, wheree reduces toε, or to singletons. From

now on we will assume that all our expressions are well formed.

Note that we use+ instead of∗ for iteration. This is done for technical purposes (the ease

of translation) and does not reduce expressiveness, since we can always usee∗ as shorthand for

e++ ε.

We now provide two examples. The expressionΣ∗ · (Σ ·Σ+)= ·Σ∗ denotes the language of

data words that contain two different positions with the same data value. The language of data

words in which the first and the last data value are different is given by(Σ ·Σ+)6=.

Properties of regular expressions with equality

Connection with other languages We have already shown that, when considered over data

paths, regular expressions with equality are strictly weaker than register automata. It is there-

fore straightforward to see that this transfers to the context of data words.

Proposition 6.4.2. Regular expressions with equality are strictly weaker thanregular expres-

sions with memory or regular expressions with binding.

As mentioned above, we proved this result in the case of data paths in Proposition 4.4.2. It

is straightforward to adapt this proof to work for data wordsas well. In particular, the trans-

lation of regular expressions with memory into register automata is done by an easy inductive

construction. On the other hand, to show that REWEs are strictly weaker, we can prove that

they can not define the language of(a ↓ x) · (a[x6=])∗ in the same way as in the proof of Propo-

sition 4.4.2. The only adjustment that has to be made is to redefine weak register automata

over data words, much in the same manner as we have done when defining register data word

automata in Section 6.1.

6.4. Regular expressions with equality 121

Closure properties As immediately follows from their definition, languages denoted by reg-

ular expressions with equality are closed under union, concatenation, and Kleene star. Also, it

is straightforward to see that they are closed under automorphisms. However:

Proposition 6.4.3. Languages recognized by regular expressions with equalityare not closed

under intersection and complement.

Proof. Observe first that the expressionΣ∗ · (Σ · Σ+)= · Σ∗ defines a language of data words

containing two positions with the same data value. The complement of this language is the

set of all data words where all data values are different, which is not recognizable by regis-

ter automata [Kaminski and Francez, 1994]. By Proposition 6.4.2 this implies that regular

expressions with memory are not closed under complement.

To see that they are not closed under intersection we first show that the language

L =

{(
a
d1

)(
a
d2

)(
a
d3

) ∣
∣
∣
∣

d1 6= d2,d1 6= d3 andd2 6= d3

}

is not recognizable by any regular expression with equality. To prove this we simply try out

all possible combinations of expressions that use at most three concatenated occurrences ofa.

Note that we can eliminate any expression with more that three as, or one that uses∗ (since

this results in arbitrary long words), or union (since everymember of the union would have

to define words from this language and since we do not use constants we cannot just split the

language into two or more parts). Also, no= can occur in our expression (for subexpressions

of length at least 2). This reduces the number of potential expressions to denote the language

to finitely many possibilities, and we simply try them all.

Now observe that the expressione1 = ((a·a)6= ·a)6= defines the language

L1 =

{(
a
d1

)(
a
d2

)(
a
d3

) ∣
∣
∣
∣

d1 6= d2 andd1 6= d3

}

.

Similarly e2 = a· (a·a)6= defines

L2 =

{(
a
d1

)(
a
d2

)(
a
d3

) ∣
∣
∣
∣

d2 6= d3

}

.

Note thatL = L1∩ L2, so if regular expressions with equality were closed under intersection

they would also have been able to define the languageL.

Nonemptiness and membership To obtain fast membership and nonemptiness testing algo-

rithms for expressions with equality, we first show how to reduce them to pushdown automata

when only finite alphabets are involved.

Assume that we have a finite setD of data values. We now inductively construct PDAsPe,D

for all regular expressions with equalitye. The words recognized by these automata will be

precisely the words fromL(e) whose data values come fromD.

122 Chapter 6. The language theory gap

We construct these PDAs so that they accept by final state and furthermore have the prop-

erty that only transitions of the kind(q0,
(a

d

)
,X,α,q) leave the initial state (that is any transition

leaving the initial state will consume a letter) and every transition entering a final state will con-

sume a letter. We will maintain these properties throughoutthe inductive construction.

It is quite clear how to construct the automata fore= ε,e= /0 ande= a. Fore1+e2,e1 ·e2

and e+1 we use standard constructions, while fore= (e1)=, or e= (e1)6= we push the first

data value on the stack, mark it by a new stack symbol and then proceed with the run of the

automaton fore1 which exists by the induction hypothesis. Every time we enter a final state of

that automaton we simply empty the stack until we reach the first data value (here we use the

new stack symbol) and compare it for equality or inequality with the last data value of the input

word. The additional assumptions are here to assure that theconstruction works correctly.

Lemma 6.4.4. The language of words accepted by each PDA Pe,D is equal to the set of data

words in L(e) whose data values come from D. Moreover, the PDA Pe,D has at most O(|e|)

states and O(|e|× (|D|2+ |e|)) transitions, and can be constructed in polynomial time.

Proof. We will assume that we do not use expressionse= ε ande= /0 to avoid some technical

problems. Note that this is not a problem since we can always detect the presence of these

expressions in the language in linear time and code them intoour automata by hand.

Assume now that we are given a well-formed regular expression with equalitye (with no

subexpressions of the formε and /0) over the alphabetΣ and a finite set of data valuesD. We

construct, by induction one, a PDAPe,D over the alphabetΣ×D such that:

• w=
(a1

d1

)
. . .
(an

dn

)
is accepted byPe,D if and only if w∈ L(e) andd1, . . . ,dn ∈D.

• There are noε-transitions leaving the initial state (that is every transition from the initial

state will consume a symbol).

• There is noε-transition entering a final state.

We note that our PDAs will accept by final state and use start stack symbol.

• If e= a, with a∈ Σ we definePe,D = (Q,q0,Σ′,Γ,Z0,F,δ), where:

– Q= {q0,q1},

– F = {q1},

– Σ′ = Σ×D,

– Γ = D∪{Z0}, and

– δ(q0,
(a

d

)
,Z0) = {(q1,ε)}, for everyd ∈D.

It is straightforward to check thatPe,D has the desired properties.

6.4. Regular expressions with equality 123

• Casese= e1+ e2 ande= e1 ·e2 ande= e+1 are straightforward and are executed in a

standard way using the inductive assumption to avoidε-transitions from initial state and

to final states.

• If e= (e1)= then letPe1,D = {Q,q0,Σ′,Γ,Z0,F,δ} be the PDA fore1 andD which exists

by the inductive hypothesis.

We definePe,D = (Q′,q0,Σ′,Γ′,Z′0,F ′,δ′), where:

– Q′ = Q∪{q′,q′′,qf ,q′f ,q
′′
f },

– F ′ = {qf },

– Γ′ = Γ∪{X0}, whereX0 is a new stack symbol and

– To δ′ we add all the transition fromδ, plus

1. For every(q0,
(a

d

)
,Z0)→ (q1,α) in δ we add the transitions:

(a) (q0,
(a

d

)
,Z′0)→ (q′,dZ′0),

(b) (q′,ε,d)→ (q′′,X0d),

(c) (q′′,ε,X0)→ (q′′,Z0X0), and

(d) (q′′,ε,Z0)→ (q1,α) to δ′.

2. For every(q′j ,
(a

d

)
,X)→ (q j ,α) in δ, with q j ∈ F we add:

(a) (q′j ,ε,X)→ (q′f ,α),

(b) (q′f ,ε,Y)→ (q′f ,ε), for everyY ∈ Γ,

(c) (q′f ,ε,X0)→ (q′′f ,ε), and

(d) (q′′f ,
(a

d

)
,d)→ (qf ,ε) to δ′.

Note first thatq1 in the first item of transitions added toδ′ will never be a final state and

that q′j in the second item will never be the initial state. This simply follows from the

assumption that our expressions are well-formed. Furthermore it is easy to see that no

ε-transitions leave the initial state or enter a final state inour automaton.

Next we show that the constructed automaton recognizes the languageL(e) restricted to

data values inD. To see this note that the first block of newly added transitions simply

pushes the first data value onto the stack, covers it with the new stack symbolX0, and

then proceeds asPe1,D would right until the point whenPe1,D enters a final state. At this

point Pe,D starts to empty the stack until it sees the new symbolX0. After popping this

symbol we know that the first data value is written below it, sowe compare it with the

current data value for equality. If they are equal we proceedto the final state and accept

(provided we have reached the end of the word).

124 Chapter 6. The language theory gap

Note that this proves that every word accepted byPe,D is a word accepted byPe1,D that

has equal first and last data value and is thus inL(e) by the inductive hypothesis. The

converse follows easily from this same observation and the induction hypothesis.

Note also that we can not accept any word that does not use the first transition that stores

the first data value onto the stack simply because we will not have it on the stack (below

X0) when we want to proceed to the final state.

• If e= (e1)6= then letPe,D will be the same as for(e1)=, except that 2(d) changes to

(q′′f ,
(a

d

)
,d′)→ (qf ,ε), for all d′ 6= d in D. The proof that this is correct is identical as in

that case.

Note that the size of the stack alphabet is at most|D|+ 2|e|, since we have to add a new

stack symbol for every=, 6= that appears ine (as well as the new initial stack symbol).

To see that the automaton is linear in the length of expression note that we only add new

states when constructing automaton for(e1)=,(e1)6= ande1 +e2. In each case we add only a

fixed number of states (five in the first two cases and one in the last).

To count the number of transitions observe that we add at most|D|2+ |D|+ |e| transitions

between any two states when we construct the automaton for(e1)6= (all other cases have|D|, or

|e| transitions or less). Thus we have at mostO(|e|× (|D|2+ |e|)) transitions in our automaton.

From this and Lemma 6.1.3 it is easy to obtain the following.

Theorem 6.4.5.The nonemptiness problem for regular expressions with equality is in PTIME.

To see this, take an arbitrary expression with equalitye and convert it to an-register data

word automatonA that recognizes the same language. From the translation, weknow thatn

will be at most the number of times= and 6= appear ine. Now do the construction from Lemma

6.4.4 foreandD = {0,1, . . . ,n+1} to obtain a PDAPe,D. Proposition 6.4.2 and Lemma 6.1.3

now imply that checking ifL(e) 6= /0 is equivalent to checkingPe,D for nonemptiness. Since this

automaton is of polynomial size, we can check it for nonemptiness in PTIME thus obtaining

the desired result.

Proposition 6.4.6.The membership problem for regular expressions with equality is inPTIME.

As in the proof of Theorem 6.4.5, we construct a PDAPe,D for e andD = {0,1, . . . ,n},

wheren is the length of the input wordw. By invariance under automorphisms we can assume

that data values inw come from the setD. Next we simply check that the word is accepted

by Pe,D and since this can be done in PTIME we get the desired result. The correctness of this

algorithm follows from Lemma 6.4.4.

6.4. Regular expressions with equality 125

PDAs vs NFAs It is natural to ask whether NFAs could not have been used instead of push-

down automata. The answer is that they can be used to capture languages of data words de-

scribed by regular expressions with equality over a finite set of data values, but the cost is

necessarily exponential, and hence we cannot possible use them to derive Theorem 6.4.5. That

is, we can first show:

Proposition 6.4.7. For every regular expression with equality e over the alphabet Σ and a

finite set D of data values there exists an NFAAe,D, of the size exponential in|e|, recognizing

precisely those data words from L(e) that use data values from D.

Proof. We prove this by structural induction on regular expressions with equality. All of the

standard cases are carried out as usual. Thus we only have to describe the construction for

subexpressions of the forme= ande6=. In both cases by the induction hypothesis we know

that there is an NFAAe,D recognizing words inL(e) with data values fromD. The automaton

for Ae6=,D (and likewise forAe=,D) will consist of |D| disjoint copies ofAe,D, each designated

to remember the first data value read when processing the input. According to this, whenever

our automaton would enter a final state we test that the current data value is different (or the

same) to the one corresponding to this copy of the original automaton. This is done in a manner

analogous to the one used in the proof of Proposition 6.4.4.

However, the exponential lower bound is the best we can do in the general case. To see this,

we define a sequence of regular expressions with memory{en}n∈N, over the alphabetΣ = {a},

and each of length linear inn. We then show that forD = {0,1} every regular expression over

the alphabetΣ×D recognizing precisely those data words fromL(en) with data values inD

has length exponential in|en|.

To prove this we will use the following theorem for proving lower bounds of NFAs [Glaister

and Shallit, 1996]. LetL⊆ Σ∗ be a regular language and suppose there exists a setP= {(xi ,yi) :

1≤ i ≤ n} of pairs such that:

1. xi ·yi ∈ L, for everyi = 1, . . .n, and

2. xi ·y j /∈ L, for 1≤ i, j ≤ n andi 6= j.

Then any NFA acceptingL has at leastn states.

Thus to prove our claim it suffices to find such a set of size exponential in the length ofen.

Next we define the expressionsen inductively as follows:

• e1 = (a·a)=,

• en+1 = (a·en ·a)=.

126 Chapter 6. The language theory gap

It is easy to check thatL(en) = {w·w−1 : w∈ (Σ×{0,1})n}, wherew−1 denotes the reverse

of w.

Now letw1, . . .w2n be a list of all the elements in(Σ×{0,1})n in arbitrary order. We define

the pairs inP as follows:

• xi = wi,

• yi = (wi)
−1.

Since these pairs satisfy the above assumptions 1) and 2), weconclude, using the result

of [Glaister and Shallit, 1996], that any NFA recognizingL(en) has at leastO(2|en|) states, so

no regular expression describing it can be of length polynomial in |en|.

Containment and universality Surprisingly one can show that even this relatively weak class

of expressions still retains enough power to code PCP when its universality problem is consid-

ered. Form this also follows that language containment is undecidable.

Proposition 6.4.8.Universality and containment are undecidable for regular expressions with

equality.

Proof. The proof is basically identical to the proof of Theorem 6.3.16. One only has to notice

that each of the REWBs expressing negation of conditions (C1) to (C11) in that proof can

easily be replaced by an equivalent expression with equality.

For example, the negation of (C4) can be written as:

(

Γ∗$(Γ∗$)= + Γ∗
⋃

a∈Σ

(
a(Γ∗a)=

))

#Γ∗

Similarly, the negation of (C6) is expressed by:

$(Γ∗ ·$)6= + Γ∗$(#·Σ∗$)6=Γ∗.

The negation of other expressions can be expressed in an analogous manner. When exam-

ining the query containment problem for RQDs in Chapter 10 wewill present the proof in full

detail.

6.5 Variable automata

Final data word defining mechanism we will consider is the oneof Variable automata. Recall

that we already studied variable automata over data paths inSection 4.5. Here we will show

that they can also be defined over data words, thus eliminating the need to have a separate set

of word states and data states, as one does when working with data paths.

6.5. Variable automata 127

Although most of the results presented in this section will easily follow from [Grumberg

et al., 2010a], where variable automata were first introduced as a means to define languages

over an infinite alphabet, we include them here to have a complete picture of currently available

data word formalisms.

We begin by defining variable automata over data words.

Definition 6.5.1. Let Σ be a finite alphabet andD an infinite domain of data values. We will

also assume that we have a countable set V of variables. Avariable finite automaton(or VFA

for short) overΣ×D is a pair A = (Γ,A), where A is an NFA over the alphabetΣ×Γ, and

Γ =C∪X∪{⋆} such that:

• C⊆D is a finite set of data values calledconstants

• X ⊆V is a finite set ofbound variables, and

• ⋆ is a symbol for thefree variable.

Next we define when a VFA accepts a data wordw = w1w2 . . .wn ∈ (Σ×D)∗. For each

letteru=
(a

d

)
in Σ×D, we letλ(u) = a (label projection) andδ(u) = d (data projection).

Let v= v1v2 . . .vn ∈ (Σ×Γ)∗ be a word accepted byA. We will say thatv is awitnessing

patternfor w (or thatw is a legal instanceof v) if the following holds:

1. λ(vi) = λ(wi), for i = 1, . . . ,n,

2. δ(vi) = δ(wi) wheneverδ(vi) ∈C,

3. if δ(vi),δ(v j) ∈ X, thenδ(wi),δ(w j) /∈C andδ(wi) = δ(w j) iff δ(vi) = δ(v j),

4. if δ(vi) = ⋆ andδ(v j) 6= ⋆, thenδ(wi) 6= δ(w j).

Intuitively the definition states that in a legal instance constants and finite alphabet part

will remain unchanged (conditions 1 and 2), while every bound variable is assigned with the

sameuniquedata value fromD −C (condition 3) and every occurrence of the free variable⋆

is freely assigned any data value fromD−C that is not assigned to any of the bound variables

(condition 4). Note that the condition 4 is a lot stronger that saying that⋆ is just a wild card.

We now define thelanguage ofA , or simplyL(A) for short, as the set of all data wordsw

for which there exists a witnessing patternv∈ L(A). That is a word is accepted byA if there is

a witnessing pattern for it that is accepted by the underlying NFA A.

Note that it is straightforward to define regular expressions for VFAs that will simply inherit

the associated semantics.

128 Chapter 6. The language theory gap

Remark 7. Note that VFAs when defined over data words differ slightly from the ones defined

over data paths. The reason for this is that over data words there is no asymmetry when defin-

ing concatenation, as in the case for data paths. Therefore,we no longer need two separate

sets of states, so the automaton itself can be represented bythe runs of a single NFA A as in

the definition above. However, the idea of guessing values inadvance is identical in both ap-

proaches and it is not difficult to see how one can go from one setting to the other, much like in

Section 3.1.

Example 6.5.2.Here we give a few examples of languages accepted by VFAs.

1. The language where the first data value is equal to the last and all other values are

different from them (but can be equal among themselves).

qastart qb qc

(a
x

)

(a
⋆

)

(a
x

)

2. The language where the first data value is different from all other data values.

qastart qb

(a
x

)

(a
⋆

)

3. The language where the last data value differs from all other data values.

qastart qb

(a
x

)

(a
⋆

)

Note that the last example is not expressible by register automata [Kaminski and Francez,

1994].

It was shown in [Grumberg et al., 2010b] that the languageL =

{
(a

d1

)(a
d1

)(a
d2

)(a
d2

)
. . .
(a

dk

)(a
dk

)
| k ≥ 1} is not expressible by VFAs. (Note that there VFA

were disregarding finite labels, but this already implies our claim.) However, it is straightfor-

ward to show that it is expressible by a regular expression with equality((aa)=)+. Thus, we

obtain:

Proposition 6.5.3. VFAs are incomparable in terms of expressive power with register au-

tomata, regular expressions with memory, regular expressions with binding and regular ex-

pressions with equality.

6.5. Variable automata 129

Closure and decision problems for VFAs

As already mentioned, most of the results below readily follow from [Grumberg et al., 2010a,

Grumberg et al., 2010b]. For the sake of completeness we alsoinclude them here.

Closure properties When it comes to closure properties VFAs behave in a similar manner

to register automata and regular expressions with memory. Namely we have the following.

Fact 6.5.4([Grumberg et al., 2010a,Grumberg et al., 2010b]). 1. The set of languages

recognized by variable automata is closed under union, intersection, concatenation and

Kleene star.

2. Languages recognized by variable automata are not closedunder complement.

Although the proofs presented in [Grumberg et al., 2010b] donot consider data words it is

straightforward to see that an analogous construction can be carried out in this setting.

Decision problems The somewhat unnatural behaviour of VFAs is exhibited in terms of de-

cision problems. In particular, one can show that nonemptiness amounts to no more than check-

ing nonemptiness of the underlying NFA, thus bringing the complexity down to NLOGSPACE-

complete , unlike in the case of e.g. register automata. On the other hand, membership is

significantly harder and the complexity here jumps to NP-complete, since one can easily code

hamiltonicity using variables (see Theorem 5 in [Grumberg et al., 2010b]). Therefore we can

conclude that the use of variables leads to unusual behaviour, as one usually exprects the mem-

bership problem to be easier that nonemptiness.

Fact 6.5.5([Grumberg et al., 2010a,Grumberg et al., 2010b]). 1. The nonemptiness prob-

lem for VFAs isNLOGSPACE-complete.

2. The membership problem for VFAs isNP-complete.

Unsurprisingly, one can show that containment and universality are also undecidable by

modifying the proof in [Neven et al., 2004] to the context of VFAs.

Fact 6.5.6([Grumberg et al., 2010b]). Both containment and universality problems are unde-

cidable for VFAs.

To get a decidable subcase of the language containment problem (and thus also universal-

ity), we turn to restriction based ondeterministic variable automata – DVFAs.These are the

VFAs with the property that for every word in their language there is only one run accepting

it. Note that these are not the same as the ones whose underlying NFA is deterministic. It can

then be shown that:

130 Chapter 6. The language theory gap

Fact 6.5.7([Grumberg et al., 2010b]). The containment problem fordeterministicVFAs is in

CONP.

Although testing if a VFA is deterministic can be done in NL, problem of determinizing

VFAs is undecidable [Grumberg et al., 2010b]. There is however a nice class of determinizable

VFAs – the ones with no free variable mentioned in the underlying NFA. It is easy to see that

this fragments corresponds to regular expressions with backreferencing [Aho, 1990], which

are, in essence, grep specifications from the Unix systems.

6.6 Summary of language theoretic properties

When main computational tasks are concerned we see that complexity of the nonemptiness

problem basically matches the bounds on combined complexity of query evaluation, apart from

the case of variable automata and expressions with binding.This fact, in conjunction with the

query evaluation algorithms presented in Chapter 4 which rely on checking NFA nonemptiness,

might lead to a conclusion that the two problems are closely related. However, it is important

to note that this is not the case. Indeed, the mentioned evaluation algorithms simply use the

fact that all possible paths in a graph, together with the query, can be coded by an exponential

size NFA. This further exemplifies the two degrees of separation in path queries, where paths

are selected beforehand, and then their labels are checked for membership in the language

theoretic formalism defining them. The nonemptiness problem on the other hand, reasons

about the query itself, not taking a particular graph into the account. It can, for example,

be the case that language of an expression with memory is nonempty, while the answer to

the corresponding RQM produces no output on some particulargraph. Indeed, there are graphs

where no path query will have a nonempty answer. The difference becomes even more apparent

when REWBs are considered, since here the nonemptiness problem enjoys lower complexity

that that for evaluation of the associated class of graph queries.

We also studied membership, complexity of which ranges fromPTIME to NP, as well as

universality and query containment. The latter two were shown to be undecidable for all of

the formalisms studied in this chapter, however we did isolate several decidable fragments. We

will return to this question later on in Chapter 10 where finding decidable fragments becomes

crucial for the static analysis aspects of graph query languages.

The summary of the complexity bounds for nonemptiness, membership and contain-

ment/universality is presented in Table 6.1.

6.6. Summary of language theoretic properties 131

RA REM REWB REWE VFA

nonemptiness PSPACE-c PSPACE-c NP-c PTIME NLOGSPACE-c

membership NP-c NP-c in NP PTIME NP-c

containment undecidable undecidable undecidable undecidable undecidable

universality undecidable undecidable undecidable undecidable undecidable

Table 6.1: Complexity of main decision problems

As is common in language theory, we also studied basic closure properties of our languages.

A summary of the results is given in Table 6.2. We can see that while all of the formalisms are

closed under union, concatenation and Kleene star, none is closed under complementation. The

main reason for this lies in the fact that closure under complement (together with the ability

to define one of the most basic languages where two data valuesare equal) would yield a high

query evaluation bound (see Theorem 3.2.1), making the formalism unsuitable for querying

graphs. We also studied closure under intersection, and while most languages do enjoy this

property (due to a fact that one can carry out the standard NFAproduct construction), for the

case of REWBs and REWEs we can show that this is no longer true.

RA REM REWB REWE VFA

union + + + + +

intersection + + − − +

concatenation + + + + +

Kleene star + + + + +

complement − − − − −

Table 6.2: Closure properties of data word defining formalisms

Lastly, we also studied how the five classes of languages compare one to another. While

regular expressions with memory were originally introduced as an expression analogue of reg-

ister automata, here we also showed that they subsume expressions with binding as well as

expressions with equality. Moreover, it is readily checkedthat the language shown not ex-

pressible by regular expressions with equality in Proposition 6.4.2 is captured by REWBs,

giving us another proper inclusion. VFAs, on the other hand,are orthogonal to all the other

formalisms studied in this chapter, as they can express properties out of the reach of register

automata, while failing to capture even REWEs. We thus obtain:

132 Chapter 6. The language theory gap

Theorem 6.6.1.The following relations hold, where(denotes that every language defined by

formalism on the left is definable by the formalism on the right, but not vice versa.

• REWEs(REWBs(REMs= register automata.

• VFAs are incomparable in terms of expressive power with REWEs, REWBs, REMs and

register automata.

Part II

Graph languages and beyond

133

Chapter 7

Graph XPath

In Chapter 4 we have seen several languages for describing properties of paths in data graphs,

but for some applications paths alone are no longer sufficient. Consider again the database

from Figure 2.3. Here one might redefine the notion of Bacon number in such a way that each

collaboration witnessing it has to go through movies; documentaries will not suffice any more.

Such a query lies outside of reach of any path language, sinceat each point of the path one

has to check if the actors co-starred in a movie. Note that even conjunctive path queries can

not express this property, since the test has to be carried out for an arbitrary number of steps.

Therefore, in order to define such queries one needs languages that allow for patterns that are

no longer only paths, but allow testing if every point along apath has some property. Another

issue with path languages is that they are inherently binary. But for instance, if we want to find

people with a finite Bacon number, we are asking a unary query.Then why not allow languages

to return only the source of a path or a pattern that conforms to the query?

Note that the well studied XML languageXPath has the ability to do both of these two

things. It is also important to observe that the goal ofXPath seems very similar to the goal

of many queries in graph databases: it describes propertiesof paths and patterns, taking into

account both their purely navigational aspects as well as the data that is found in XML docu-

ments. The popularity ofXPath is largely due to several factors:

• it defines many properties of paths and patterns that are relevant for navigational queries;

• it achieves expressiveness that relates naturally to yardstick languages for databases

(such as first-order logic, its fragments, or extensions with some form of recursion);

and

• it has good computational properties over XML, notably tractable combined complexity

for many fragments and even linear-time complexity for someof them.

A natural question then is to see if main ingredients that made XPath successful in the

context of XML can be applied on graphs. In what follows we will address this issue and show

135

136 Chapter 7. Graph XPath

that when applied to graphsXPath-like languages define an efficient and highly expressive class

of queries.

There appear to be two ways to useXPath as a graph database language. The first possibility

is to essentially stick to the idea of RPQs and useXPath to describe paths between nodes,

thus making it a path language. WhileXPath on words with data is well understood by now

[Bojanczyk and Lasota, 2010, Figueira, 2010b], this idea has several drawback. First of all,

XPath is intrinsically a graph (originally tree) language, and even when it is used to reason

about data words the semantics relies on defining patterns (see e.g. [Figueira and Segoufin,

2009], or Part I in [Figueira, 2010b]) in the same way as on trees. Indeed, when used over data

wordsXPath simply treats them as trees and is thus not a true path language. Another reason

not to studyXPath as a path language is that even the more general graph approach already

yields very efficient query evaluation algorithms (combined complexity is always PTIME and

for some fragments even linear). It therefore makes little sense to sacrifice expressive power for

no palpable gain in efficiency while at the same time making the language somewhat artificial.

A different approach is to applyXPath queries to the entire graph database, rather than use

them to define sets of allowed paths. This is the approach we pursue. To a limited extent it

was tried before. On the practical side,XPath-like languages have been used to query graph

data (e.g., [Cassidy, 2003, Gremlin, 2013]), without any analysis of their expressiveness and

complexity, however. On the theoretical side, several papers investigatedXPath-like languages

from the modal perspective, dropping the assumption that they are evaluated on trees [Alechina

et al., 2003, Marx, 2003], but most notably in [Fletcher et al., 2011] the authors consider an

algebra of binary relations which is the basis of our navigational language. It is important to

note that none of these approaches considered data values, thus making them suited only to

ask queries about topology of the graph and not about the interplay this topology has with the

stored data.

Thus, our goal is to investigate howXPath-languages can be used to query graph databases.

In particular, we want to understand both the navigational querying power of such languages,

and their ability to handle navigation and data together in graph databases. In this investiga-

tion, we can take advantage of the vast existing XML literature on algorithmic and language-

theoretic aspects ofXPath.

We use several versions ofXPath-like languages for graph databases, all of them collec-

tively namedGXPath. The core language is denoted byGXPathcore and is basically an adapta-

tion of CoreXPath 2.0 [ten Cate and Marx, 2007, Xpath 2.0, 2010] for graphs. Theanalogue

of regularXPath, allowing arbitrary transitive closure, is calledGXPathreg. Like XPath (or

closely related logics such as PDL and CTL∗), all versions ofGXPath have node tests and path

formulae, and as the basic axes they use letters from the alphabet labelling graph edges. For

instance,a∗ · (b−)∗ finds pairs of nodes connected by a path that starts witha-edges in the

7.1. The language and its many variants 137

forward direction, followed byb-edges in the backward direction. Formulae may also include

node tests: for instance,a∗[c] · (b−)∗ modifies the above expression by requiring that the node

where thea-labels switch tob-labels also has an outgoingc-edge. And crucially, node tests

can refer to data values and haveXPath-like conditions over them. For instance, the expression

a∗[=5] · (b−)∗ checks if the data value in that intermediate node is 5, anda∗[〈a = b〉] · (b−)∗

checks if that node has two outgoing edges, labelleda andb, to nodes that store the same data

value.

We first study the complexity of various fragments ofGXPath. As it turns out,all GXPath

fragments inherit nice properties fromXPath on trees due to the ‘modal’ nature of the lan-

guage: the combined complexity is always polynomial. Even more, it is always a low-degree

polynomial. In fact, the query complexity is linear for all the fragments we consider. The data

complexity is not worse than cubic for navigationalGXPathreg and linear for its positive frag-

ments. With data comparisons added, data complexity becomes cubic again. We also show that

adding numerical formulas that specify length of a path connecting two nodes, although mak-

ing the language exponentially more succinct [Losemann andMartens, 2012], has no effect on

the complexity of query evaluation.

Following this we analyse the expressive power of the language, using the usual database

yardstick of first-order logic as our reference point. It turns out thatGXPathcore captures pre-

cisely FO3, first-order logic with 3 variables, like its analog (core XPath 2.0) on trees. The

difference, though, is that on graphs FO6= FO3, but on trees the two are the same. Note that

on trees there is another way of capturing FO, by means ofconditionalXPath [Marx, 2005],

which adds the until-operator. We show that on graphs the analog of conditional XPath goes

beyond FO. We also show howGXPathreg can be captured by a parameter-free fragment of

transitive closure logic FO∗.

Since these comparisons were done without taking data values into account, we next con-

sider FO that has the capability of comparing data values, denoted FO(∼). Although we show

that using standardXPath data tests falls short of capturing FO(∼), when same tests as inRQDs

are used, the result again follows.

Finally, we establish the full hierarchy of variousGXPath fragments and variants and show

how they can be extended with conjunction, allowing us even more expressive power with

optimal efficiency.

7.1 The language and its many variants

We follow the standard way of defining XPath fragments [Bojanczyk and Parys, 2011, Cal-

vanese et al., 2009,Figueira, 2010b,Gottlob et al., 2005,Marx, 2005, ten Cate and Marx, 2007]

and introduce some variants ofgraph XPath, or GXPath, to be interpreted over graph databases.

138 Chapter 7. Graph XPath

As usual, XPath formulae are divided intopath formulae, producing sets of pairs of nodes, and

node tests, producing sets of nodes. Path formulae will be denoted by letters from the begin-

ning of the Greek alphabet (α,β, . . .) and node formulae by letters from the end of the Greek

alphabet (ϕ,ψ, . . .).

Since we deal with data values, we need to definedata testspermitted in our formulas.

There will be three kinds of them.

1. Constant tests: For each data valuec∈D, we have two tests=c and 6=c. The intended

meaning is to test whether the data value in the current node equals to, or differs from,

constantc.

The fragment ofGXPath that uses constant tests will be denoted byGXPath(c).

2. Equality/inequality tests: These are typical XPath (in)equality tests of the form〈α = β〉

and〈α 6= β〉, whereα andβ are path expressions. The intended meaning is to check for

the existence of two paths, one satisfyingα and the other satisfyingβ, which end with

equal (resp., different) data values.

The appropriate fragment will be denoted byGXPath(eq). If we have both constant tests

and equality tests, we denote resulting fragments byGXPath(c,eq).

3. Subexpression tests: These are used to test if a path or a subpath starts and ends with the

same or different data value.

The fragment in question is obtained by addingα= andα6= to path expressions of our

language. These tests will be needed to provide a logical kernel for GXPath.

The corresponding fragment is denotedGXPath(∼).

Next we define expressions ofGXPath. As already mentioned, we look atcore and reg-

ular versions of XPath. They both have node and path expressions.Node expressions in all

fragments are given by the grammar:

ϕ,ψ :=⊤ | ¬ϕ | ϕ∧ψ | ϕ∨ψ | 〈α〉

whereα is a path expression.

The path formulae of the two flavours ofGXPath are given below. In both casesa ranges

overΣ.

Path expressions ofRegular graphXPath, denoted byGXPathreg, are given by:

α,β := ε | _ | a | a− | [ϕ] | α ·β | α∪β | α | α∗

Path expressions ofCore graphXPath denoted byGXPathcore are given by:

α,β := ε | _ | a | a− | a∗ | a−
∗
| [ϕ] | α ·β | α∪β | α

7.1. The language and its many variants 139

We call this fragment “Core graphXPath”, since it is natural to view edge labels (and their

reverse) in data graphs as the single-step axes of the usual XPath on trees. For instance,a

anda− could be similar to “child” and “parent”. Thus, in our core fragment, we only allow

transitive closure over navigational single-step axes, asis done in Core XPath on trees. Note

that we did not explicitly define the counterpart of node label tests inGXPath node expressions

to avoid notational clutter, but all the results remain trueif we add them.

Finally, we consider another feature that was recently proposed in the context of naviga-

tional languages on graphs (such as in SPARQL 1.1 [Harris andSeaborne, 2013]), namely

counters. The idea is to extend all grammars defining path formulae with new path expressions

αn,m

for n,m∈ N andn < m. Informally, this means that we have a path that consists of somek

chunks, each satisfyingα, with n≤ k≤m.

When counting is present in the language, we denote it by#GXPath, e.g.,#GXPathcore.

Given these path and node formulae, we can combineGXPathcore andGXPathreg with dif-

ferent flavours of data tests or counting, starting with purely navigational fragments (neitherc,

eq, nor∼ tests are allowed) and up to fragments allowing any combination of such tests. For

example,#GXPathreg(c,eq) is defined by mutual recursion as follows:

α,β := ε | _ | a | a− | [ϕ] | α ·β | α∪β | α | α∗ | αn,m

ϕ,ψ := ¬ϕ | ϕ∧ψ | 〈α〉 | =c | 6=c | 〈α = β〉 | 〈α 6= β〉

with c ranging over constants, whileGXPathreg(∼) is given by:

α,β := ε | _ | a | a− | [ϕ] | α ·β | α∪β | α | α∗ | α= | α6=
ϕ,ψ :=⊤ | ¬ϕ | ϕ∧ψ | ϕ∨ψ | 〈α〉

We define the semantics with respect to a data graphG= 〈V,E,ρ〉. The semanticsJαKG of

a path expressionα is a set of pairs of vertices and the semantics of a node test,JϕKG, is a set

of vertices. The definitions are given in Figure 7.1. In that definition, byRk we mean thek-fold

composition of a binary relationR, i.e.,R◦R◦ . . .◦R, with Roccurringk times.

Remark.Note that each path expressionα can be transformed into a node test by the means

of 〈α〉 operator. In particular, we can test if a node has ab-successor by writing, for instance,

〈b〉. To reduce the clutter when using such tests in path expressions, we shall often omit the〈〉

braces and write e.g.a[b] instead ofa[〈b〉].

Basic expressiveness results Some expressions are readily definable with those we have.

For instance, Boolean operationsα∩ β and α− β with the natural semantics are definable.

Indeed,α−β is definable asα∪β, and intersection is definable with union and complement.

So when necessary, we shall use intersection and set difference in path expressions.

140 Chapter 7. Graph XPath

Path expressions

JεKG = {(v,v) | v∈V}

J_KG = {(v,v′) | (v,a,v′) ∈ E for somea}

JaKG = {(v,v′) | (v,a,v′) ∈ E}

Ja−KG = {(v,v′) | (v′,a,v) ∈ E}

Jα∗KG = the reflexive transitive closure ofJαKG

Jα ·βKG = JαKG◦ JβKG

Jα∪βKG = JαKG∪ JβKG

JαKG = V×V− JαKG

J[ϕ]KG = {(v,v) ∈G | v∈ JϕKG}

Jαn,mKG =
⋃m

k= n(JαKG)k

Jα=KG = {(v,v′) ∈ JαKG | ρ(v) = ρ(v′)}

Jα6=KG = {(v,v′) ∈ JαKG | ρ(v) 6= ρ(v′)}

Node tests

J〈α〉KG = π1(JαKG) = {v | ∃v′ (v,v′) ∈ JαKG}

J⊤KG = V

J¬ϕKG = V− JϕKG

Jϕ∧ψKG = JϕKG∩ JψKG

Jϕ∨ψKG = JϕKG∪ JψKG

J=cKG = {v∈V | ρ(v) = c}

J 6=cKG = {v∈V | ρ(v) 6= c}

J〈α = β〉KG = {v∈V | ∃v′,v′′ (v,v′) ∈ JαKG, (v,v′′) ∈ JβKG,ρ(v′) = ρ(v′′)}

J〈α 6= β〉KG = {v∈V | ∃v′,v′′ (v,v′) ∈ JαKG, (v,v′′) ∈ JβKG,ρ(v′) 6= ρ(v′′)}

Figure 7.1: Semantics of Graph XPath expressions with respect to G= 〈V,E,ρ〉

7.1. The language and its many variants 141

Counting expressionsαn,m are definable too: they abbreviateα · · ·α · (α∪ ε) · · · (α∪ ε),

where we have a concatenation ofn timesα andm−n times(α∪ε). Thus, adding counters does

not influence expressivity of any of the fragments, since we always allow concatenation and

union. However, counting expressions can be exponentiallymore succinct than their smallest

equivalent regular expressions (independent of whethern andm are represented in binary or

in unary) [Losemann and Martens, 2012]. We will exhibit a query evaluation algorithm with

polynomial-time complexity even for such expressions withcounters represented in binary.

As another observation on the expressiveness of the language, note that we can define a

test〈α = c〉, with the semantics{v | ∃v′ (v,v′) ∈ JαKG andρ(v′) = c}, by using the expression

〈α[=c]〉.

Another thing worth noting is that node expressions can be defined in terms of path op-

erators. For exampleϕ∧ψ is defined by the expression〈[ϕ] · [ψ]〉, while ¬ϕ is defined by

〈[ϕ]∩ ε〉.

Example 7.1.1.We next give a few examples ofGXPath expressions to illustrate what sort of

queries one can ask using these languages.

1. The expression(a[b])∗ will simply give us all pairs(x,y) of nodes that are connected by

a path of the following form:

x y
a a

b b b
. . .

That is, x and y are connected by an a∗ labelled path such that each node on the path

also has an outgoing b-labelled edge. (Nodes that are different in the picture do not have

to be different in the graph.)

2. The expression〈aa∗ 6= bc−〉 will give us all nodes x such that there are nodes y and z,

reachable by aa∗ and bc− respectively, with different data values. For example in the

graph given in the following image the nodes x1 and x2 will be selected by our query,

while x3 will not.

1

x1

2x2

1

2

3

1

x3
a b

a
a

b b

a
c

3. The expression〈(a[=5] · (a[=5])∗)∩ ε〉 will extract all the nodes x such that there is a

cycle starting at x in which each edge is labelled by a and eachnode has the data value

142 Chapter 7. Graph XPath

5. In particular the node x will have data value 5. Note that this example illustrates how

we can define loops usingGXPath.

To illustrate some more involved queries we come back to our introductory example of a

movie database presented in Figure 2.3.

Example 7.1.2. 1. To find people with a finite Bacon number we simply use the query

e1 = 〈(cast− · cast)∗[= Kevin Bacon]〉.

Similarly as in the example with path languages, the query traversescast edges checking

for collaborations and in the end makes sure that the actor reached is Kevin Bacon. Note

that this is a unary query, so we no longer have to return additional information, such as

the node corresponding to Kevin Bacon, as we did when dealingwith path queries.

2. Using path negation we can also find actors who do not have a finite Bacon number.

Such a query is of interest when we want to see if every actor inthe database does have

a Bacon number – we simply ask the query and check if the answeris nonempty. The

query is given by

e2 = 〈(cast− · cast)∗[= Kevin Bacon]〉.

3. As mentioned in the introduction movie databases often allow searching through a spe-

cific genre, so for example we might want to find actors who havea finite Bacon number,

but such that the collaboration is always established by co-starring in movies and not

documentaries. This query is as follow:

e3 = 〈(cast−[type[= Movie]] · cast)∗[= Kevin Bacon]〉.

This expression works in a similar way as the one for finding the Bacon number, but

using the nesting capabilities ofGXPath it also checks that the actors appear in a movie.

4. One might also be interested to find out if there are actors who have a finite Bacon

number and the same age as Kevin Bacon. They can be retrieved using the following

query:

e4 = 〈(age−(cast− · cast)∗[= Kevin Bacon])=〉.

5. As a last example we might want to check if a movie or a documentary has at least two

actors starring in it. Such a query is defined by:

e5 = 〈cast 6= cast〉.

Here we simply check if there are twocast edges leading from the movie such that the

actors names are different.

7.2. Query evaluation 143

Complement and positive fragments In standardXPath dialects on trees, complementation

operator is not included and one usually shows that languages are closed under negation. This

is no longer true for arbitrary graphs, due to the following.

Proposition 7.1.3. Path complementationα is not definable inGXPathreg without complement

on path expressions.

The proof is an immediate consequence of the following observation. Given a data graph

G, let V1, . . . ,Vm be sets of nodes of its (maximal) connected components (withrespect to

the edge relation
⋃

a∈Σ Ea). Then a simple induction on the structure of the expressions of

GXPathreg without complement on path expressions shows that for each expressionα, we have

JαKG⊆
⋃

i≤mVi ×Vi. However, path complementationα clearly violates this property.

In what follows, we consider fragments of our languages thatrestrict complementation and

negation. There are two kinds of them, the first corresponding to the well-studied notion of

positive XPath.

• Thepositive fragmentsare obtained by removing¬ϕ andα from the definitions of node

and path formulae. We use the superscriptpos to denote them, i.e., we writeGXPathpos
core

andGXPathpos
reg.

• The path-positive fragmentsare obtained by removingα from the definitions of path

formulae, but keeping¬ϕ in the definitions of node formulae. We use the superscript

path-pos to denote them, i.e., we writeGXPathpath-pos
core andGXPathpath-pos

reg .

7.2 Query evaluation

In this section we investigate the complexity of querying graph databases using variants of

GXPath. We consider two problems. One is QUERY EVALUATION , which is essentially model

checking: we have a graph database, a query (i.e., a path expression), and a pair of nodes, and

we want to check if the pair of nodes is in the query result. That is, we deal with the following

decision problem.

PROBLEM: QUERY EVALUATION

INPUT: A graphG= (V,E),

a path expressionα, nodesv,v′ ∈V.

QUESTION: Is (v,v′) ∈ JαKG?

The second problem we consider is QUERY COMPUTATION, which actually computes the

result of a query and outputs it. Normally, when one deals with path expressions, one fixes a

144 Chapter 7. Graph XPath

so-calledcontext node vand looks for all nodesv′ such that(v,v′) satisfies the expression. We

deal with a slightly more general version here, where there can be a set of context nodes instead

of just a single one.

PROBLEM: QUERY COMPUTATION

INPUT: A graphG= (V,E), a path expressionα,

and a set of nodesS⊆V.

OUTPUT: All v′ ∈V such that there exists av∈ S

with (v,v′) ∈ JαKG.

Note that in both problems we deal withcombined complexity, as the query is a part of the

input.

For measuring complexity, we let|G| denote the size of the graph,|V| the number of nodes

in G, and|α| (resp.,|ϕ|) denote the size of the path expressionα (resp., node expressionϕ).

Note that when considering fragments with counting the sizeof the counter if defined as the

number of bits representing it.

The main result of this section is that the combined complexity remains in polynomial time

for all fragments we defined in Section 7.1. Not only that, butthe exponents are low, ranging

from linear to cubic. Notice that for navigational fragments, the low (and even linear) com-

plexity should not come as a surprise. We noticed thatGXPathpath-pos
reg is essentially PDL, for

which global model checking is known to have linear-time complexity [Alechina and Immer-

man, 2000,Cleaveland and Steffen, 1993]. Also, polynomial-time combined complexity results

are known for pure navigationalGXPathreg from the PDL perspective as well [Lange, 2006].

Our main contribution is thus to establish the low combined complexity bounds for frag-

ments that handle two new features we added on top of navigational languages:data value

comparisonsandcounters. The former does increase expressiveness; the latter, as already re-

marked, does not, but it can make expressions exponentiallymore succinct. Thus, some work

is needed to keep combined complexity polynomial when counters are added.

We first present a general upper bound that shows that combined complexity of both prob-

lems is polynomial for the most expressive language we have:regular graph XPath with count-

ing, constant tests, and equality tests.

Theorem 7.2.1. Both QUERY EVALUATION and QUERY COMPUTATION problems for

#GXPathreg(c,eq,∼) can be solved in polynomial time, specifically, i.e., O(|α| · |V|3).

Proof. Both problems can be solved in the required time by a dynamic programming algorithm

that processes the parse tree ofα in bottom-up fashion and computes, for every path subexpres-

sionβ of α, the binary relationJβKG. Similarly, we compute, for every node subexpressionϕ

7.2. Query evaluation 145

of α, the setJϕKG. Clearly, if each such relation can be computed within timeO(|V|3) (using

previously computed relations), both problems can be solved within the required time. We

make one exception: we allowO(|V|3 logm) time for computingJβn,mKG from JβKG. This is

not problematic, since the size ofβn,m is O(|β|+ | logm|).

We discuss how to obtain the desired time bound. The algorithm is similar to an algorithm

used for evaluation regular expressions with counters on graphs (Theorem 3.4 in [Losemann

and Martens, 2012]).

The base cases for path expressions, that is, computingJβKG whereβ is one ofε, _, a, or

a−, are trivial. Similarly, the base cases for node expressions, that is, computingJϕKG whereϕ

is either⊤, =c, or 6=c are trivial as well.

For the induction step we need to consider path expressions of the form[ϕ], β1 ·β2, β1∪β2,

β, β∗, βn,m, β=, andβ 6=. Also, we need to consider node expressions of the form¬ϕ, ϕ∧ψ,

〈β〉, 〈β1 = β2〉, and〈β1 6= β2〉.

In the case of path expressions, the cases[ϕ], β1∪β2, β=, andβ 6= are trivial becauseJϕKG

contains at most|V| elements andJβKG at most|V|2 pairs. For example, forβ= we can iterate

throughJβKG, testing each of its pairs(u,v) and putting it inJβ=KG if and only if ρ(u) = ρ(v).

ComputingJβ∗KG amounts to computing the reflexive-transitive closure ofJβKG which can

be done in time|V|3 by Warhsall’s algorithm. ComputingJβn,mK within timeO(|V|3 logm) can

be done by fast squaring, as was done in Theorem 3.4 in [Losemann and Martens, 2012].1 The

caseJβKG can be solved by first sorting the pairs fromJβKG and then performing a single pass

over the sorted relation, which costsO(|V|2 log|V|) time.

In the case of node expressions the most interesting cases are 〈β1 = β2〉 and 〈β1 6= β2〉.

However, computingJ〈β1 = β2〉KG andJ〈β1 6= β2〉KG from Jβ1K
G andJβ2K

G in time O(|V|3)

can be done as follows. For〈β1 = β2〉 we need to search if there exist(v1,v) ∈ Jβ1K
G and

(v,v2)∈ Jβ2K
G such thatρ(v1) = ρ(v2). This can be tested in timeO(|V|3) similarly to how one

performs a sort-merge join. First, sort relationβ1 andβ2 on the left attribute, which costs time

O(|V|2 log|V|). Then, for each of the|V| possible valuesv of the join attribute (in increasing

order), we can compute in timeO(|V|) the setsDv,1 = {ρ(v1) | (v,v1) ∈ Jβ1K
G} and Dv,2 =

{ρ(v2) | (v,v2) ∈ Jβ2K
G. Since bothDv,1 andDv,2 have at most|V| elements, it can be tested in

time O(|V|2) if they have a common data value. The resultJ〈β1 = β2〉KG contains allv such

that Dv,1∩Dv,2 6= /0 and can therefore be computed in timeO(|V|3). The case〈β1 6= β2〉 is

similar.

The algorithm for Theorem 7.2.1 uses cubic time in|V| because it computes the relations

JβKG for larger and larger subexpressionsβ of the given input expression. Therefore, the algo-

rithm uses steps that are at least as difficult as multiplication of |V|×|V|matrices or computing

1ComputingJβ2KG, givenJβKG, takes timeO(|V|3) and, with fast squaring, it costsO(logn) such operations to
computeJβnKG. Extending this toJβn,mKG is straightforward.

146 Chapter 7. Graph XPath

the transitive-reflexive closure of a graph with|V| nodes.

However, if one can avoid computing the relationsJβKG for subexpressionsβ, the time

bound can be improved.

For the remainder of the section, we assume that there is an ordering on labels of edges and

that graphs are represented as adjacency lists such that we can obtain, for a given nodev, the

outgoing edges or the incoming edges, sorted in increasing order of labels, in constant time.

(We note that the linear-time algorithm from [Alechina and Immerman, 2000] for PDL model

checking also assumes that adjacency lists are sorted.) Thefollowing result is immediate from

PDL model checking techniques:

Fact 7.2.2. Both QUERY EVALUATION and QUERY COMPUTATION problems for

GXPathpath-pos
reg can be solved in linear time, i.e., O(|α| · |G|).

Proof. Since global model checking for PDL is in linear time [Alechina and Immerman, 2000,

Cleaveland and Steffen, 1993], it is immediate that QUERY EVALUATION is in timeO(|α| · |G|).

From this, the same bound for QUERY COMPUTATION can also be derived. Given a queryα

and a setS, we can mark the nodes inSwith a special predicate that occurs nowhere inα. We

can then modify queryα and use the algorithm for global model checking for PDL to obtain

the required output of QUERY COMPUTATION.

It is straightforward to extend the algorithm of Fact 7.2.2 to c tests, since these can be

treated similarly as edge labels.

Corollary 7.2.3. Both QUERY EVALUATION and QUERY COMPUTATION problems for

GXPathpath-pos
reg (c) can be solved in linear time, i.e., O(|α| · |G|).

7.3 Expressive power

When gauging the expressive power of query languages the most common yardstick is that

of FO [Abiteboul et al., 1995]. Indeed, first-order logic is well established as the core of all

relational database queries and it is often one of the query language design goals to achieve

some sort of completeness with respect to a fragment of FO. For example one of the governing

principles when refining the syntax of the XML query languageXPath [ten Cate and Marx,

2007,Kay, 2004] was to make it equivalent to FO over trees, asthis provides a well established

base for adding new features, while keeping the language compact and easy to understand.

To this end, we will study the expressive power ofGXPath and its many dialects when

compared to first-order logic. We begin by showing that the core fragmentGXPathcore with

no data value comparisons captures FO3, similarly like its analogue (core XPath 2.0) does on

trees. The main difference here is that over trees FO3 equals full FO, while over graphs this is

not the case. After that we also show that for the regular fragment an equivalent statement holds

7.3. Expressive power 147

for FO3 enriched with binary transitive closure. Following that wemove onto data fragments

and show that although standardXPath-like data tests fall short of the full power of FO with

data value comparisons, the equivalence can be obtained by allowing tests of the kind used in

RQDs.

It is important to note that here we compareGXPath only to FO in order to pinpoint the

fragments which can be used as a logical kernel of a graph querying language. We will compare

GXPath with other graph languages in Chapter 9.

7.3.1 Expressiveness of navigational languages

Here we provide a detailed analysis of expressiveness for navigational features of dialects of

GXPath. To understand the expressive power of navigationalGXPath we will do two types of

comparisons:

• We compare them with FO, fragments and extensions. The core language will capture

FO3. This is similar to a capture result for trees [Marx, 2005]; the main difference is that

on graphs, unlike on trees, this falls short of full FO. We also provide a counterpart of

this result forGXPathreg, adding the transitive closure operator.

• We look at the analog of conditional XPath [Marx, 2005] whichcaptures FO over trees

and show that, in contrast, over graph databases, it can express queries that are not FO-

definable.

Comparisons with FO and relatives To compare expressiveness ofGXPath fragments with

first-order logic, we need to explain how to represent graph databases as FO structures. Since

all the formalisms can express reachability queries (at least with respect to a single label), we

view graphs as FO structures

G= 〈V,(Ea,Ea∗)a∈Σ〉

whereEa = {(v,v′) | (v,a,v′) ∈ E} andEa∗ is its reflexive-transitive closure.

Recall that FOk stands for thek-variable fragment of FO, i.e., the set of all FO formulae

that use variables from a fixed setx1, . . . ,xk. As we mentioned, on trees, the core fragment

of XPath 2.0 was shown to capture FO3. We now prove that the same remains true without

restriction to trees.

Theorem 7.3.1.GXPathcore= FO3 with respect to both path queries and node tests.

Proof. To prove this we use a result of Tarski and Givant from [Tarskiand Givant, 1987] stating

that relation algebra with the basisA of binary relations has the same expressive power as first

order logic with three variables over the signatureA of binary relations and equality.

148 Chapter 7. Graph XPath

As we will be using a slight modification of the result found in[Tarski and Givant, 1987] we

give precise formulation here. The proof of this version of the result can be found in [Andréka

et al., 2001] (see Theorem 1.9 and Theorem 1.10).

First we formalize relation algebras. LetA= {R1, . . . ,Rn} be a set of binary relation sym-

bols. The syntax of relation algebra overA is defined as all expressions built from base relations

in A using the operators∪,(·),◦,(·)−, denoting union, complement, composition of relations

and reverse relation. We are also allowed to use an atomic symbol Id denoting identity.

Our algebra is then interpreted over a structureM = (V,RM
1 , . . . ,RM

n) where allRM
i are

binary relations overV2. Interpretations of symbols∪,(·),◦,(·)− andId is the standard union,

complement (with respect toV2), composition and reverse of binary relations.Id is simply the

set of all(v,v) wherev∈V. We will write (a,b) ∈ RM, or aRMb, when the pair(a,b) belongs

to relationR defined overV with relationsRi interpreted asRM
i .

Theorem 7.3.2([Andréka et al., 2001]). Let A= {R1, . . . ,Rn} be a set of binary relation

symbols.

• For every expression R in relation algebra(A,∪,(·),◦,(·)−, Id) there is an FO3 formula

in two free variablesϕR(x,y), such that for every structure M= (V,RM
1 , . . . ,RM

n) we have

{(a,b) : aRMb}= {(a,b) : M |= ϕR[x/a,y/b]}.

• Conversely, for every FO3 formula ϕ(x,y), in two free variables, there exists a relation

algebra expression Rϕ such that for any structure M= (V,RM
1 , . . . ,RM

n) we have

{(a,b) : M |= ϕ[x/a,y/b]} = {(a,b) : aRM
ϕ b}.

Note that we view a graph databaseG= (V,E) as a structure over the alphabet of binary

relationsEa,Ea∗ , wherea∈ Σ. Then a graph database is interpreted as a model

M = (V,(EM
a ,EM

a∗) : a∈ Σ), where

Ea = {(v,v
′) : (v,a,v′) ∈ E}

andEa∗ is its reflexive transitive closure. Note that the Tarski-Givant result states something

stronger, namely that the equivalence will hold over any structure, no matter ifa∗ is interpreted

as the transitive closure ofa or not. This means that it will in particular hold on all the structures

where it is, and those are our graph databases.

First we give a translation fromGXPathcore into FO3. That is, for every path expression

e, we provide a formulaFe(x,y) in two free variables such that for, any graph databaseG =

(V,E), we haveJeKG = {(v,v′) ∈G : M |= Fe[x/v,y/v′]}, whereM = (V,(EM
a ,EM

a∗) : a∈ Σ) and

Ea = {(v,v′) : (v,a,v′) ∈ E} andEa∗ its reflexive transitive closure. Similarly, for every node

expressionϕ, we define a formulaFϕ(x) in one free variable. The definition is by simultaneous

induction on the structure ofGXPathcore expressions.

7.3. Expressive power 149

Base cases:

• e= a thenFe(x,y) ≡ Ea(x,y)

• e= a∗ thenFe(x,y) ≡ Ea∗(x,y)

• e= a− thenFe(x,y) ≡ Ea(y,x)

• e= (a−)∗ thenFe(x,y) ≡ Ea∗(y,x)

• ϕ =⊤ thenFe(x)≡ x= x.

Inductive cases:

• e= [ϕ] theFe(x,y) ≡ (x= y)∧Fϕ(x)

• e= α ·β thenFe(x,y) ≡ ∃z(Fα(x,z)∧∃x(x= z∧Fβ(x,y)))

• e= α∪β thenFe(x,y) ≡ Fα(x,y)∨Fβ(x,y)

• ϕ = ¬ψ thenFϕ(x)≡ ¬Fψ(x)

• ϕ = ψ∧ψ′ thenFϕ(x)≡ Fψ(x)∧Fψ′(x)

• ϕ = 〈α〉 thenFϕ(x)≡ ∃yFα(x,y)

• e= α thenFe(x,y) ≡ ¬Fα(x,y).

The claim easily follows. Note that we have shown that our expressions can be converted

into FO3 over a fixed interpretation of relation symbols appearing inour alphabet (that is when

Ea∗ = (Ea)
∗). The result by Tarski and Givant is stronger, since it holdsfor any interpreta-

tion. Note that this does not invalidate our result, since weare interested only in this fixed

interpretation of graph predicates.

To prove the equivalence ofGXPathcore with FO3 we now show that every relation algebra

expression has an equivalentGXPathcore path expression.

First we show how to convert every relation algebra query into an equivalentGXPathcore

expression over graph databases. To be more precise, we showthat for any relation algebra

expressionR over the signature(Ea,Ea∗)a∈Σ there is a path expressioneR of GXPathcoresuch

that for any graph databaseG= (V,E) it holds thatJeRKG = {(a,b) ∈RM}. HereM is obtained

from G as before. In particular we assume thatEa∗ is the reflexive transitive closure ofEa. We

do this inductively on the structure of RA expressionsR.

Base cases:

• If R= Ea theneR = a.

150 Chapter 7. Graph XPath

• If R= Ea∗ theneR = a∗.

• If R= Id theneR = ε.

Inductive cases:

• If R= R1∪R2 theneR = eR1 ∪eR2.

• If R= R1◦R2 theneR = eR1 ·eR2.

• If R= S− theneR = (eS)
−.

• If R= S theneR = eS.

To show the equivalence betweenR= S− andeR = (eS)
− we need the following claim.

Claim 7.3.3. For everyGXPathcore path expression e there is aGXPathcore expression e− such

that Je−KG = {(v,v′) : (v′,v) ∈ JeKG}, for every graph G.

The proof of this is just an easy induction on expressions. Wesimply push the reverse

onto atomic statements. Note that this is the reason why we can not simply drop the converse

operators from our syntax.

All the other equivalences follow from the definition and theinductive hypothesis.

Now let ϕ(x,y) be an arbitraryFO3 formula. By Theorem 7.3.2 we know that there is a

relation algebra expressionRϕ equivalent toϕ over all structures that interpret{Ea,Ea∗ : a∈ Σ}.

In particular it is true over all the structures whereEa∗ = (Ea)
∗. By the previous paragraph we

know that there is aGXPathcore expressioneRϕ equivalent toRϕ.

In particular this means that for every graph databaseG= (V,E) it holds that for the model

M = (V,(Ea,Ea∗) : a∈ Σ), derived fromG, we have the following:

{(a,b) : M |= ϕ[x/a,y/b]} = {(a,b) : (a,b) ∈ RM
ϕ }.

On the other hand, we also have:

JeRϕK
G = {(a,b) : (a,b) ∈ RM

ϕ }.

Thus we conclude that

{(a,b) : M |= ϕ[x/a,y/b]} = JeRϕK
M.

The previous part shows equivalence between path expressions and formulas with two free

variables. To deal with formulas with a single free variableF(x) we do the following. Define

F ′(x,y) = x= y∧F(x). Note thatF ′ selects all pairs(v,v) such thatF(v) holds. Now find an

equivalent path expressionα (we know we can do this by going through relation algebra) and

let e= 〈α〉.

7.3. Expressive power 151

Not all results about the expressiveness ofXPath on trees extend to graphs. For instance,

on trees, the regular fragment with no negation on paths (i.e., the path-positive fragment) can

express all of FO [Marx, 2005]. This fails over graphs:GXPathreg fails to express even all

of FO2 when restricted to its path-positive fragment (i.e, the fragment that still permits unary

negation).

Proposition 7.3.4. There exists a binaryFO2 query that is not definable inGXPathpath-pos
reg .

Proof. The idea is to observe that path-positive fragments ofGXPath cannot define the univer-

sal binary relation on an input graph. The query not definablein GXPathpath-pos
reg is then the one

saying that there are at least two nodes in a given graph.

Formally, letψ(x,y) ≡ ∃x∃y(¬x= y). It is easy to see thatJψKG = {(x,y) : (x,y) ∈V2} if

G= 〈V,E〉 has at least two nodes andJψKG = /0 otherwise. (Notice that the variablesx,y in ψ

are immediately “overwritten” by the existential quantification.)

Consider the graphsG1 = 〈{v,v′}, /0〉 and G2 = 〈{v}, /0〉. That is, we have no edges. It

follows that JψKG1 = {(v,v′),(v′,v)} and JψKG2 = /0. It can be shown by induction on the

structure of pathGXPathpath-pos
reg expressions that we either have thatJαKG1 = {(v,v),(v′,v′)}

andJαKG2 = {(v,v)}, or JαKG1 = /0 andJαKG2 = /0. Similarly for node expressions it can be

shown that eitherJϕKG1 = G1 andJϕKG2 = G2, or JϕKG1 = /0 andJϕKG2 = /0.

We now move toGXPathreg and relate it to a fragment of FO∗, the parameter-free fragment

of the transitive-closure logic. The language of FO∗ extends the one of FO with a transitive

closure operator that can be applied to formulas with precisely two free variables. That is, for

any FO formulaF(x,y), the formulaF∗(x,y) is also an FO∗ formula. The semantics is the

reflexive-transitive closure of the semantics ofF . That is,G |= F∗(a,b) iff a= b or there is a

sequence of nodesa= v0,v1, . . . ,vn = b for n> 0 such thatG |= F(vi ,vi+1) whenever 0≤ i < n.

By (FO∗)k we mean thek-variable fragment of FO∗. Note that when we deal with FO∗

and(FO∗)k, we can view graphs as structures of the vocabulary(Ea)a∈Σ, since all theEa∗s are

definable, and there is no reason to include them in the language explicitly.

Over trees, regular XPath is known to be equal to(FO∗)3 [ten Cate, 2006]. The next

theorem shows that over graphs, these logics coincide as well.

Theorem 7.3.5.GXPathreg = (FO∗)3.

Proof. The containment ofGXPathreg in (FO∗)3 is done by a routine translation.

To show the converse, we use techniques similar to those in the proof of Theorem 7.3.1: we

extend(FO∗)3 and relation algebra equivalence to state that relation algebra with the transitive

closure operator has equal expressive power to(FO∗)3 over the class of all labeled graphs. For

this one can simply check that the inductive proof from [Andréka et al., 2001] can be extended

by adding two extra inductive clauses. Namely, when going from relation algebra to FO3 we

152 Chapter 7. Graph XPath

simply state that expressions of the formR∗ are equivalent toF∗R(x,y), whereFR is the formula

equivalent toR. In the other direction we simply state thatF∗(x,y) is equivalent to(RF(x,y))∗.

Here byRF(x,y) we denote the expression equivalent toF(x,y), when the variables are used in

that particular order. After that one verifies that the correctness proof of [Andréka et al., 2001]

applies.

What about the relative expressive power ofGXPathcore andGXPathreg? For positive frag-

ments, known results on trees (see [ten Cate and Marx, 2007])imply the following.

Corollary 7.3.6. GXPathpos
core(GXPathpos

reg.

We shall now see that the strict separation applies to full languages. This is not completely

straightforward even thoughGXPathcore is equivalent to a fragment of FO, since the latter uses

the vocabulary with transitive closures. This makes it harder to apply standard techniques,

such as locality, directly. We shall see how to establish separation by taking a detour through

conditional XPath.

Conditional GXPath It was shown in [Marx, 2005] that to capture FO over XML trees,one

can useconditional XPath, which essentially adds the temporaluntil operator. That is, it

expands the core-XPath’sa∗ with (a[ϕ])∗, which checks that the test[ϕ] is true on ana-labeled

path. Formally, its path formulae are given by:

α,β := ε | _ | a | a− | a∗ | a−∗ | (a[ϕ])∗ | (a−[ϕ])∗ | [ϕ] | α ·β | α∪β | α
We refer to this language asGXPathcond. We now show that the FO capture result fails

rather dramatically over graphs: there are even positiveGXPathcond queries not expressible in

FO.

Theorem 7.3.7.There is aGXPathpos
cond query not expressible inFO.

Note that the standard inexpressibility tools for FO, such as locality, cannot be applied

straightforwardly since the vocabulary of graphs already contains all the transitive closuresEa∗;

in fact this means that inGXPathpos
cond the query asking for transitive closures of base relations

is trivially definable, even though it is not definable in FO over theEas. So the way around

this is to combine locality with the composition method: we use locality to establish a winning

strategy for the duplicator in a game that does not involve transitive closures, and then use

composition to extend the winning strategy to handle transitive closures.

Proof. To prove this we will need several auxiliary results.

Let Σ = {a,b,σ,τ} be an alphabet of labels. We define a classC of Σ-labeled graphs as

follows.

Take any graphG= (V,E) over the singleton alphabet{a} of labels. Fix two nodessandt

in G. Let GC (s, t) be the graph obtained fromG as follows. First, it contains all the nodes and

7.3. Expressive power 153

edges ofG. For every nodev 6= s, t in G we add a new nodevb and an edge(v,b,vb) to GC (s, t).

We also add two new nodes,s0 andt0, together with edges(s0,σ,s) and(t,τ, t0), coming intos

and leavingt. These nodes and edges are added to distinguishsandt in our graph. Finally, we

add one extra node calledA, and for every other node inGC (s, t) we add two edges, one going

into A and the other returning fromA to the same node, both labeleda. Now add thisGC (s, t)

to C . The modifications are illustrated in the following image.

s0 s

t

t0

A

v

vb

v′

v′b

w

wb

σ τ
a

b b

b

a

a

Also defineC− to be the class of graphs that are obtained from the graphs inC by removing

the nodeA and all the associated edges.

Now let the propertyP stand for

• t is reachable fromsvia a path labeled with(a[b])∗.

That is,t is reachable fromsby a path that proceeds forwards bya-labeled edges, but also has

to have ab labeled edge leaving every internal node on the path.

To obtain the desired result we will first prove the followingclaim.

Claim 7.3.8. The property P is not expressible inFO in vocabulary

{Ea,Eb,Eσ,Eτ,Ea∗ ,Eb∗ ,Eσ∗ ,Eτ∗} over the classC . Here, as before, we assume that Eℓ∗

is the reflexive transitive closure of Eℓ, for ℓ ∈ {a,b,σ,τ}.

To prove this claim we will use Hanf-locality and composition of games. For the proof we

use three lemmas.

In the first one, we use the standard notion of aneighborhoodof an element in a structure,

and the notion of Hanf-locality. For details, see [Libkin, 2004]. Specifically, for two graphs

G1,G2, we writeG1
⇆d G2 if there is a bijectionf between nodes ofG1 and nodes ofG2 (in

particular, the sets of nodes must have the same cardinality) such that the radius-d neighbor-

hoods of each nodev in G1 and f (v) in G2 are isomorphic. The radius-d neighborhood around

v is the substructure generated by all nodes reachable fromv by a path (using all types of edges)

of length at mostd.

Locality is meaningless over structures inC , since every two nodes are connected by a path

of length 2, so⇆2 is isomorphism. This is why we get the result in several steps.

154 Chapter 7. Graph XPath

Lemma 7.3.9. For every d≥ 0 there exist two graphs G1d and G2
d, as structures of the vocabu-

lary {Ea,Eb,Eσ,Eτ}, in C− such that G1
d ⇆d G2

d and G1
d satisfies P, while G2d does not.

Proof. To see this take arbitraryd and let the graphsG1
d andG2

d be as in the following two

images. All the labels on the circles area, the incoming edges froms0s to thess are labeled

σ, the outgoing edges from thets to t0s are labeledτ, and the edges from thevs to thevbs are

labeledb.

s v1

v2d+1

v2d+2

u1

u2d+2t

v′2d+2

v′1

u′2d+2

u′2d+1

u′1

s0 vb
1

vb
2d+1

vb
2d+2

ub
1

ub
2d+2t0

v′b2d+2

v′b1

u′b2d+2

u′b2d+1

u′b1

Graph G1
d

s
v1v′2d+2

v2d+2v′1

s0

vb
1v′b2d+2

vb
2d+2v′b1

Graph G2
d

t u2d+2

u′1

u1u′2d+2

t0
ub

2d+2u′b1

ub
1u′b2d+2

Now let f : G1
d→G2

d be the bijection defined by the node labels in the natural way:each node

gets mapped to the one with the same name in the other graph. That is we setf (s) := s, f (vi) :=

vi , then f (vb
i) := vb

i and similarly forv′i ,ui , etc.

To see thatG1
d ⇆d G2

d we have to checkN
G1

d
d (c) ∼= N

G2
d

d (f (c)) for everyc. But this is now

easily established, since thed neighborhood of anyc and f (c) will simply be extended chains

of lengthd aroundc and f (c). In particular, it is possible that they intersect thed neighborhood

7.3. Expressive power 155

of eithers or t, but never both. We thus conclude that they will always be isomorphic, giving

us the desired result.

Now from Lemma 7.3.9 and Corollary 4.21 in [Libkin, 2004], which shows that Hanf-

locality with a sufficiently large radius implies the winning strategy for the duplicator in an

Ehrenfeucht-Fraïssé game, we obtain the following.

Lemma 7.3.10.For every m≥ 0 there exists d≥ 0 so that G1
d ≡m G2

d.

As usual, by≡m we denote the fact that duplicator has a winning strategy in an m-round

Ehrenfeucht-Fraïssé game. This game is still played on structures in the vocabulary that does

not use transitive closures.

Now let G1
d and G2

d be obtained fromG1
d and G2

d by adding, as in the picture above, a

nodeA with a-edges to and from every other node. We view these graphs as structures of the

vocabulary that has all the relationsEℓ andEℓ∗ for each of the four labelsℓ we have. Next, we

show

Lemma 7.3.11. If G1
d ≡m G2

d, thenG1
d ≡m G2

d.

The strategy is very simple: the duplicator plays by copyingthe moves from the game

G1
d ≡m G2

d as long as the spoiler does not play theA-node. If the spoiler plays theA-node in

one structure, the duplicator responds with theA-node in the other. We now need to show that

this preserves all the relations. Clearly this strategy preserves all the relationsEℓ among nodes

other than theA-node, simply by assumption. Moreover, sinceEℓ∗ = Eℓ for ℓ 6= a, we have

preservation of the transitive closures other than that ofEa as well. So we need to prove that

the strategy preservesEa∗ , but this is immediate since in both graphsEa∗ is interpreted as the

total relation. This proves the lemma.

The claim now follows from the lemmas: assume thatP is expressible in FO, over the

full vocabulary, by a formula of quantifier rankm. Pick sufficiently larged to ensure that

G1
d ≡m G2

d. ThenG1
d andG2

d must agree onP, but they clearly do not, since the extra paths

introduced in these graphs compared toG1
d andG2

d go via theA-node, which does not have a

b-successor.

Now to prove Theorem 7.3.7 consider a conditional graph XPath expressionσ(a[b])∗[τ].

Over graphs as considered here it defines precisely the property P, which, as just shown, is not

FO-expressible in the full vocabulary.

We can now fulfill our promise and establish separation betweenGXPathcoreandGXPathreg.

SinceGXPathcore⊆ FO and we just saw a conditional (and thus regular)GXPath query not

expressible in FO, we have:

Corollary 7.3.12. GXPathcore(GXPathreg.

156 Chapter 7. Graph XPath

7.3.2 Expressiveness of data languages

We saw that for navigational features, core graph XPath captures FO3. The question is whether

this continues to be so in the presence of data tests. First, we need to explain how to describe

data graphs as FO-structures to talk about FO with data tests.

Following the standard approach for data words and data trees [Segoufin, 2007], we do so

by adding a binary predicate for testing if two nodes hold thesame data value. That is, a data

graph is then viewed as a structureG= 〈V,(Ea,Ea∗)a∈Σ,∼〉 wherev∼ v′ iff ρ(v) = ρ(v′). To be

clear that we deal with FO over that vocabulary, we shall write FO(∼). If we want to talk about

constant data tests (i.e.,=c), we make the language two-sorted, adding another domain for data

values and using a separate set of constant symbols. In that case we shall refer to FO(c,∼).

It turns out that the equivalence with FO3 breaks when we consider XPath style data tests.

Theorem 7.3.13. • GXPathcore(eq)(FO3(∼);

• GXPathcore(c,eq)(FO3(c,∼).

Proof sketch. The first containment uses the translation into FO3 shown in the proof of

Theorem 7.3.1. For the new data operators, we use the following. If e= 〈α = β〉 then

Fe(x)≡ ∃y,z(y∼ z∧Fα(x,y)∧∃y(z= y∧Fβ(x,y)))

and likewise for the inequality comparison.

Translation of constants is self-evident.

To prove strictness we show that the FO3 query F(x,y) ≡ x ∼ y is not definable in

GXPathreg(c,eq). Note thatF defines the set of all pairs of nodes carrying the same data

value. The proof of this is implicit in the proof of Proposition 7.3.14. 2

Thus, the standard XPath data tests are insufficient for capturing FO3 over data graphs.

This naturally leads to a question: what can be added to data tests to capture the full power of

FO3? The answer, as it turns out, is quite simple: we need to use the same sort of data value

tests as in RQDs.

Recall that these are defined by adding two expressions to thegrammar forα: one isα=,

the other isα6=. Semantics, over data graphs, is

Jα=KG = {(v,v′) ∈ JαKG | ρ(v) = ρ(v′)}

Jα6=KG = {(v,v′) ∈ JαKG | ρ(v) 6= ρ(v′)}

In other words, we test whether data values at the beginning and at the end of a path are the

same, or different. As mentioned before, such an extension is denoted by∼, i.e. we talk about

languagesGXPath(∼) (with the usual sub- and superscripts).

The first observation is that these tests indeed add to the expressiveness of the languages.

Proposition 7.3.14.The path query a=, for a∈ Σ, is not definable inGXPathreg(c,eq).

7.3. Expressive power 157

Note that this query,a=, is definable on trees by theGXPathcore(eq) query[〈ε= a〉] ·a· [〈ε =

a−〉]. This is because the parent of a given node is unique. However, on graphs this is not always

the case, and thus new equality tests add power.

Proof. Here we prove that even thoughGXPathreg(c,eq) can test if a node has ana-successor

with the same data value by the means of expression〈ε = a〉, which will return the set{v ∈

V | ∃v′ ∈V and(v,v′) ∈ Ja=KG}, it has no means of retrieving that specific successor.

We will first prove the result without constant tests.

To prove thata= is not expressible inGXPathreg(eq) over graphs we will give two graphsG1

andG2, such thatJa=KG1 6= Ja=KG2, but for everyGXPathreg(eq) queryewe haveJeKG1 = JeKG2.

BothG1 andG2 will be the graphsK6, that is the complete graphs with six vertices and with

data values 2,2,2,3,3,3 and 2,2,3,3,3,3, respectively, attached to the nodes. All the edges in

bothG1 andG2 are labelleda. The graphsG1 andG2 are pictured in the following image.

3 v4

3

v5

3

v6

2v1

2
v2

2
v3G1

3 v4

3

v5

3

v6

2v1

2
v2

3
v3G2

It follows from the definitions that(v2,v3) ∈ Ja=KG1, while (v2,v3) /∈ Ja=KG2. We conclude

thatJa=KG1 6= Ja=KG2.

We now show that for anyGXPathreg(eq) querye we haveJeKG1 = JeKG2. In particular we

show the following:

• For any path queryα one of the following holds:

– JαKG1 = JαKG2 = /0, or

– JαKG1 = JαKG2 = Id(G1), or

– JαKG1 = JαKG2 = G1
2, or

– JαKG1 = JαKG2 = G1
2− Id(G1).

• For any node queryϕ one of the following holds:

– JϕKG1 = JϕKG2 = /0, or

– JϕKG1 = JϕKG2 = G1.

158 Chapter 7. Graph XPath

As beforeId(G1) stands for the set{(x,x) : x∈G1}. Note that since the sets of nodes ofG1

andG2 are the same (and the graphs are not isomorphic because of thedifferent data values),

we can writeJϕKG2 = G1 and other claims.

We prove this claim by induction on the structure of ourGXPathreg(eq) expressione.

The base cases trivially follow. For the induction step assume that our claim is true for the

expressions of lower complexity. We proceed by cases.

• If α = [ϕ] then by the inductive hypothesis we have two cases.

– EitherJϕKG1 = JϕKG2 = /0, in which caseJαKG1 = JαKG2 = /0,

– Or JϕKG1 = JϕKG2 = G1, in which caseJαKG1 = JαKG2 = Id(G1).

• If α = α′∪β′ then the claim follows from the induction hypothesis and thefact that the

set{ /0,G1
2,G1

2− Id(G1), Id(G1)} is closed under taking unions.

• If α = α′ ·β′ we proceed as follows.

Note first thatJαKG1 = /0 iff Jα′KG1 = /0 or Jβ′KG1 = /0 (this follows from the inductive

hypothesis about the structure of the answers, since for anyother case the sets have

nonempty composition). This is now equivalent to the same being true inG2 and thus to

JαKG2 = /0.

If JαKG1 6= /0 then we know that bothJα′KG1 and Jβ′KG1 belong to {G1
2,G1

2 −

Id(G1), Id(G1)}. The claim now simply follows from the inductive hypothesisand the

fact that the set{G1
2,G1

2− Id(G1), Id(G1)} is closed under composition of relations.

• If α = α′ we have four cases.

– In case thatJα′KG1 = Jα′KG2 = /0 we haveJαKG1 = JαKG2 = G1
2.

– In case thatJα′KG1 = Jα′KG2 = G1
2 we haveJαKG1 = JαKG2 = /0.

– In case thatJα′KG1 = Jα′KG2 = G1
2− Id(G1) we haveJαKG1 = JαKG2 = Id(G1).

– In case thatJα′KG1 = Jα′KG2 = Id(G1) we haveJαKG1 = JαKG2 = G1
2− Id(G1).

• If α = α′∗ we have the same situation as in the previous case. In particular we know that

transitive closures in each case will be the same.

• If ϕ = ¬ϕ we have the following.

– In case thatJϕ′KG1 = Jϕ′KG2 = G1 we haveJϕKG1 = JϕKG2 = /0.

– In case thatJϕ′KG1 = Jϕ′KG2 = /0 we haveJϕKG1 = JϕKG2 = G1.

• If ϕ = ϕ′∧ψ′ the claim easily follows.

• If ϕ = 〈α〉 we consider the value ofJαKG1.

7.3. Expressive power 159

– In case thatJαKG1 = JαKG2 = /0 we getJϕKG1 = JϕKG2 = /0.

– In case thatJαKG1 = JαKG2 =G1
2, Id(G1), orG1

2− Id(G1) we getJϕKG1 = JϕKG2 =

G1.

• If ϕ = 〈α = β〉 we proceed by cases, depending of the value ofJαKG1 andJβKG1.

Note that if either equals/0 we get thatJϕKG1 = JϕKG2 = /0. There are now nine possible

cases remaining.

1. JαKG1 = JαKG2 = Id(G1) andJβKG1 = JβKG2 = Id(G1) implies thatJϕKG1 = JϕKG2 =

G1.

2. JαKG1 = JαKG2 = Id(G1) andJβKG1 = JβKG2 = G1
2 implies thatJϕKG1 = JϕKG2 =

G1.

3. JαKG1 = JαKG2 = Id(G1) andJβKG1 = JβKG2 = G1
2− Id(G1) implies thatJϕKG1 =

JϕKG2 = G1.

4. All the remaining cases have the same result.

• If ϕ = 〈α 6= β〉 we proceed by cases, depending of the value ofJαKG1 andJβKG1.

Note that if either equals/0 we get thatJϕKG1 = JϕKG2 = /0. Just as for〈α = β〉 we

have nine cases. It is easily verified that we haveJϕKG1 = JϕKG2 = G1 for each case,

except whenJαKG1 = JαKG2 = Id(G1) andJβKG1 = JβKG2 = Id(G1). In this case we get

JϕKG1 = JϕKG2 = /0.

To extend the induction to work for constants, we assume the contrary. Let thee be an

expression defininga=. We exchange the data values 2 and 3 in our graphsG1 andG2 by any

two data values that do not appear as constants ine. The proof is now the same as in the case

without constants.

This completes the proof.

With the extra power given to us by the equality tests, we can capture FO3 over data graphs.

Theorem 7.3.15.GXPathcore(∼) = FO3(∼).

Proof. We follow the technique of the proof of Theorem 7.3.1. All of the translations used

there still apply. The proof that relation algebra is contained in the languageGXPathcore(∼)

is the same as without data values. We only have to add conversion of the new symbol∼: if

R=∼, thene= ε∪ (ε)=.

For the other direction we have to show how to translate new path expressionsα= andα6=
into FO3(∼). This is done as follows: ife= α= thenFe(x,y) ≡ Fα(x,y)∧ x∼ y and likewise

for inequality. The equivalences easily follow. Now the theorem follows from the equivalence

of relation algebra and FO3 [Tarski and Givant, 1987].

160 Chapter 7. Graph XPath

By adopting the technique used in Theorem 7.3.5 it is straightforward to see that the previ-

ous result extends toGXPathreg(∼).

Theorem 7.3.16.GXPathreg(∼) = (FO∗)3(∼).

As mentioned before, one could also allow constant tests in the language. It is then easy to

see that the equivalence extends to FO with constants.

Corollary 7.3.17. • GXPathcore(c,∼) = FO3(c,∼).

• GXPathreg(c,∼) = (FO∗)3(c,∼).

7.4 Hierarchy of the fragments

By coupling the basic navigational languages –GXPathcore and GXPathreg – with various

possibilities of data tests, such as no data tests, constanttests, XPath-style equality tests,

RQD equality tests, or all of them, we obtain sixteen languages, ranging fromGXPathcore

to GXPathreg(c,eq,∼). Recall that adding counting does not affect expressiveness, only the

complexity of query evaluation.

The question is then, how do these fragments compare to each other?

First thing we note is that some of the fragments collapse. Namely, from Theorem 7.3.15

we know that everyGXPathcore(eq) query can be expressed inGXPathcore(∼), and the same

holds for regular fragments using Theorem 7.3.16.

To perform such a transformation explicitly we simply need to show how to convert every

test of the form〈α = β〉 to one using only= comparisons fromGXPathcore(∼) and that the

same can be done for inequality. It is not difficult to see thatevery node expression of the form

〈α = β〉 is equivalent toGXPathcore(∼) expression〈α · (α− ·β)= ·β−∩ ε〉, and similarly for6=.

Therefore we can conclude that any fragment where botheq and∼ data tests are present

collapses to the one with only∼. For exampleGXPathcore(eq,∼) is the same asGXPathcore(∼)

and so on, bringing the number of possible fragments to twelve.

Next we establish the full hierarchy of the remaining fragments.

Theorem 7.4.1.The relative expressive power of graph XPath languages withdata compar-

isons is as shown below:

7.4. Hierarchy of the fragments 161

GXPathcore

GXPathcore(c)

GXPathcore(eq)

GXPathreg

GXPathcore(c,eq)

GXPathcore(∼)

GXPathreg(eq)

GXPathreg(c)

GXPathreg(c,eq)

GXPathreg(c,∼)

GXPathcore(c,∼) GXPathreg(∼)

Here a line upwards means that the lower fragment is strictlycontained in the upper other,

while the lack of the line means that the fragments are incomparable.

Proof. The result follows from Corollary 7.3.12 (for navigational fragments), the fact that

∼ comparisons subsume usualXPath-style tests, and the following two observations which

show thatc tests andeq or ∼ tests are not mutually definable. Namely, take an alphabetΣ

containing lettera. Let c be a fixed data value. Then:

• There is noGXPathreg(∼) expression equivalent to theGXPathcore(c) queryqc := (= c).

• There is noGXPathreg(c) expression equivalent to theGXPathcore(eq) queryqeq := 〈a 6=

a〉.

For the first item, simply take two single-node data graphsG1 andG2, with G1’s single

node holding valuec, andG2 holding a different valuec′. Hence,JqcK
G1 selects the only node

of G1, while JqcK
G2 = /0. However, a straightforward induction on the structure of expressions

shows that for everyGXPathreg(∼) queryewe haveJeKG1 = JeKG2.

For the second item assume that there is anGXPathreg(c) expressionexequivalent toqeq.

Take any three pairwise distinct data valuesx,y,z that are different from all the constants ap-

pearing inexand letG1 andG2 be as below:

x

v1

y z

x

v1

y y
v2 v3v2 v3

a a a a

G1 G2

One can show by straightforward induction onGXPathreg(c) expressionse that use only con-

stants appearing inexthatJeKG1 = JeKG2. Thus,qeq cannot be aGXPathreg(c) expression, since

JqeqK
G1 6= JqeqK

G2.

162 Chapter 7. Graph XPath

Note that this also shows thatGXPathcore (GXPathcore(c) and GXPathcore (

GXPathcore(eq). 2

As shown in Proposition 7.1.3, the path positive and the positive fragments are strictly

contained in the full language. When comparing various graph languages later in Chapter 9 we

will also show that the positive fragment can not express node negation (see Theorem 9.2.3).

Furthermore, when considering query containment problem in Chapter 10 it will be important

to distinguish between fragments that use explicit inequality comparisons from the ones that

compare data values for equality only. A subfragment of a∼ fragment using only equalities

(that is subexpressions of the formα6= are not permitted) will be denoted by∼=, while the

corresponding subfragment of aeq fragment will be denoted byeq=. The following theorem

establishes the hierarchy of such fragments. It is important to note here that in the absence of

path negation one can no longer simulateeq tests using the∼ tests. Note that in order to avoid

notational clutter we disregards constants in this comparison.

Theorem 7.4.2. The relative expressive power ofGXPathcore fragments based on restricting

negation in navigational features or data comparisons is given below.

GXPathcore(eq) GXPathcore(∼)

GXPathpath-pos
core (eq) GXPathcore(eq=) GXPathcore(∼=) GXPathpath-pos

core (∼)

GXPathpos
core(eq) GXPathpath-pos

core (eq=) GXPathpath-pos
core (∼=) GXPathpos

core(∼)

GXPathpos
core(eq=) GXPathpos

core(∼=)

Here a line from one fragment to another signifies that the source fragment is contained in the

target one. An analogous set of results holds forGXPathreg.

Proof. As just discussed, the positive fragments are strictly contained in the path-positive ones.

Furthermore, by Proposition 7.1.3 we know that the path-positive fragments are strictly con-

tained in the full language allowing negation over paths.

From Theorems 7.3.15 and 7.3.13 we also get that when path negation is present∼ frag-

ments subsume the ones witheq tests.

To show thateq= fragment is contained in theeq we simply need to take a graphG1 with

two nodes holding the same data value, connected by ana-labelled edge in both directions

and a graphG2, this time with two nodes holding different data values, again connected by

7.5. Conjunctive Graph XPath queries 163

a-labelled edges. Both graphs also have self loops labelleda for each node. A straightforward

induction onGXPathcore(eq=) expressions shows that the result of any expression is the same

on both graphs. However, the〈a 6= ε〉 differentiates the two. The proof for∼= and∼ is similar.

To see that with the presence of path negation the∼= fragment can definea6= observe that

α6= is equivalent toα=∩α.

Also, Proposition 7.3.14 and the discussion before Theorem7.4.1 implies that

GXPathcore(eq=) is strictly contained inGXPathcore(∼=).

Note that some of the inclusions in Theorem 7.4.2 are not proved to be strict. We do

however conjecture that all of the unmarked inclusions are indeed strict.

7.5 Conjunctive Graph XPath queries

In order to obtain a more practical language one often definesa class of conjunctive queries

based on a well selected set of primitives [Abiteboul et al.,1995]. Here we define the class of

conjunctiveGXPath queries and analyse query evaluation bounds induced by thisextension. In

particular we show that the complexity is the best possible in light of CRPQs.

ConjunctiveGXPath queries are defined as expression of the form:

Ans(z) :=
∧

1≤i≤m

αi(xi ,yi)∧
∧

1≤ j≤m′
ψ j(x j), (7.1)

wherem,m′ > 0, eachαi is a path expression, eachψ j a node expression, andz is a tuple of

variables amongx andy. A query with the headAns() (i.e., no variables in the output) is called

aBooleanquery.

These queries extend their base atoms with conjunction, as well as existential quantifica-

tion: variables that appear in the body but not in the head (i.e., variables inx andy but notz)

are assumed to be existentially quantified.

The semantics of a conjunctiveGXPath queryQ of the form (7.1) over a data graphG=

〈V,E,ρ〉 is defined as follows. Given a valuationν :
⋃

1≤i≤m{xi ,yi}∪
⋃

1≤ j≤m′{x j} → V, we

write (G,ν) |= Q if (ν(xi),ν(yi)) is in JαiK
G, for eachi = 1, . . . ,m and ν(x j) ∈ Jψ jK

G, for

j = 1, . . . ,m′. ThenQ(G) is defined as the set of all tuplesν(z) such that(G,ν) |= Q. If Q is

Boolean, we letQ(G) be true if(G,ν) |=Q for someν (that is, as usual, the empty tuple models

the Boolean constant true, and the empty set models the Boolean constant false).

Example 7.5.1. Coming back to the example with actors and movies or documentaries they

appear in (Figure 2.3), we can now ask for people who have collaborated both with Kevin

Bacon and Paul Erdős. This query is defined by:

Q(x) = (x,(cast− · cast)∗[= Kevin Bacon],y)∧ (x,(cast− · cast)∗[= Paul Erdős],z).

164 Chapter 7. Graph XPath

Note that this query is expressible byGXPath with no conjunction (by using intersection),

however, the syntax used by conjunctive queries is more intuitive, especially when one needs

conjunction of three or more conditions. As we show in Section 9.2, conjunction of four condi-

tions is no longer expressible in the base language.

If the database is further extended to include people who have co-written papers, we could

also express query returning people with a finite Erdős-Bacon number. For this the second

conjunct in the query Q would simply change to(x,(author− · author)∗[= Erdős],z), where an

author edge connects each paper with one of its authors.

As before, we study data and combined complexity of the queryevaluation problem, i.e.

checking, for a queryQ, a data graphG and a tuple of nodesv, whetherv ∈ Q(G) (for data

complexity the queryQ is fixed).

Theorem 7.5.2. • Data complexity for conjunctiveGXPath queries is inPTIME.

• Combined complexity isNP-complete.

The data complexity bound easily follows from query evaluation bounds forGXPath

queries. For combined complexity we do the standard guess and check algorithms, using again

the fact that the language can be evaluated in PTIME. The NP lower bound follows from the

result for CRPQs [Barceló et al., 2012b].

7.6 Summary

As we have seen in this chapter there are many flavours and variants ofGXPath, defined by the

set of navigational properties or data value tests they use.Studying them leads to a conclusion

that all of them posses several desirable properties. Namely, query evaluation is always in

PTIME, and several linear-time fragments can be isolated. Furthermore adding conjunction

does not increase the complexity above that for CRPQs – the simplest class of conjunctive

queries over graphs. Another desirable property is the simplicity of use. Indeed, we have seen

through several examples that many interesting queries canbe expressed in a clear and succinct

manner, avoiding cumbersome constructions such as the onesused in register automata or the

related classes of regular-like expressions. In the end we have also identified several subclasses

capturing natural FO fragments. From all of this we can conclude thatGXPath forms a good

basis for graph query languages and in particular, some fragments should be considerer as the

logical core for any such language. To be more precise, we believe that the following two

fragments should be considered as basic primitives when designing a graph language:

• GXPathpath-pos
reg (c) – This language was shown to have linear time evaluation and still

retains a reasonable amount of expressive power. One of the negative sides is the inability

7.6. Summary 165

to capture negation, thus making it strictly weaker than FO3, however, the navigational

part is essentially PDL and therefore firmly rooted in logic.

• GXPathreg(c,eq,∼) – While the complexity of evaluation here jumps to cubic, we can

restore the connection with FO enriched with data tests and binary transitive closure.

Therefore, we strongly believe that this language, or some of its variants, should be

considered as the logical kernel of any query language for graphs.

Chapter 8

Beyond graphs – TriAL

The Semantic Web and its underlying data model, RDF, are usually cited as one of the key

applications of graph databases, but there is some mismatchbetween them. Recall that the

standard model of graph databases [Angles and Gutierrez, 2008, Wood, 2012] that dates back

to [Consens and Mendelzon, 1990, Cruz et al., 1987], is that of directed edge-labelled graphs,

i.e., pairsG = (V,E), whereV is a set of vertices (objects), andE is a set of labelled edges.

Each labelled edge is of the form(v,a,v′), wherev,v′ are nodes inV, anda is a label from some

finite labelling alphabetΣ. As such, they are the same as labelled transition systems used as

a basic model in both hardware and software verification. Graph databases, as we have seen

previously, can also store data associated with their nodes(e.g., information about each person

in a social network).

The model of RDF data is very similar, yet slightly different. The basic concept is atriple

(s, p,o), that consists of the subjects, the predicatep, and the objecto, drawn from a domain

of uniform resource identifiers (URI’s). Thus, the middle element need not come from a finite

alphabet, and may in addition play the role of a subject or an object in another triple. For in-

stance,{(s, p,o),(p,s,o′)} is a valid set of RDF triples, but in graph databases, it is impossible

to have two such edges.

To understand why this mismatch is a problem, consider querying graph data. Since graph

databases and RDF are represented as relations, relationalqueries can be applied to them. But

crucially, we may also query thetopologyof a graph. For instance, many graph query languages

have, as their basic building block,regular path queries, or RPQs [Cruz et al., 1987], that find

nodes reachable by a path whose label belongs to a regular language.

We take the notion of reachability for granted in graph databases, but what is the corre-

sponding notion for triples, where the middle element can serve as the source and the target of

an edge? Then there are multiple possibilities, two of whichare illustrated below.

167

168 Chapter 8. Beyond graphs – TriAL

QueryReach→ looks for pairs(x,z) connected by paths of the following shape:

x z
· · ·

andReach1 looks for the following connection pattern:

· · ·

x

z

But can such patterns be defined by existing RDF query languages? Or can they be defined by

existing graph query languages under some graph encoding ofRDF?

To answer these questions, we need to understand which navigational facilities are avail-

able for RDF data. A recent survey of graph database systems [Angles, 2012] shows that, by

and large, they either offer support for triples, or they do graphs and then can express proper

reachability queries. An attempt to add navigation to RDF languages was made in [Pérez

et al., 2010], where a language called nSPARQL was defined by taking SPARQL [Harris and

Seaborne, 2013,Pérez et al., 2009], the standard query language for RDF, and extending it with

a navigational mechanism provided bynested regular expressions. The evaluation of those

queries uses essentially a graph encoding of RDF. As the starting point of our investigation, we

show that there are natural reachability patterns for triples, similar to those shown above, that

cannotbe defined in graph encodings of RDF [Arenas and Pérez, 2011] using nested regular

expressions, nor in nSPARQL itself.

Thus, navigational patterns over triples are beyond reach of both RDF languages and graph

query languages that work on encodings of RDF. The solution is then to design languages that

work directly on RDF triples, and have both relational and navigational querying facilities,

just like graph query languages. Our goal, therefore, is to adapt graph database techniques for

direct RDF querying.

A crucial property of a query language isclosure: queries should return objects of the same

kind as their input. Closed languages, therefore, are compositional: their operators can be ap-

plied to results of queries. Using graph languages for RDF suffers from non-compositionality:

for instance, RPQs return graphs rather than triples. So we start by defining a closed language

for triples. To understand its basic operations, we first look at a language that has essentially

first-order expressivity, and then add navigational features.

We take relational algebra as the basic language. Clearly projection violates closure so

we throw it away. Selection and set operations, on the other hand, are fine. The problematic

operation is Cartesian product: ifT,T ′ are sets of triples, thenT×T ′ is not a set of triples but

rather a set of 6-tuples. What do we do then? We shall need reachability in the language, and

for graphs, reachability is computed by iteratingcompositionof relations. The composition

8.1. Graph databases and RDF 169

operation for binary relations preserves closure: a pair(x,y) is in the compositionR◦R′ of R

andR′ iff (x,z) ∈ R and(z,y) ∈ R′ for somez. So this is a join ofR andR′ and it seems that

what we need is it analogue for triples.

But queriesReach→ andReach1 demonstrate that there is no such thing asthe reachability

for triples. In fact, we shall see that there is not even a niceanalogue of composition for triples.

So instead, we addall possible joins that keep the algebra closed. The resulting language is

calledTriple Algebra, denoted byTriAL. We then add an iteration mechanism to it, to enable

it to express reachability queries based on different joins, and obtainRecursive Triple Algebra

TriAL∗.

The algebraTriAL∗ can express both reachability patterns above, as well as queries we prove

to be inexpressible in nSPARQL. It has a declarative language associated with it, a fragment of

Datalog. It has good query evaluation bounds: combined complexity is (low-degree) polyno-

mial. Moreover, we exhibit a fragment with complexity of theorderO(|e| · |O| · |T|), wheree is

the query,O is the set of objects in the database, andT is the set of triples. This is a very natural

fragment, as it restricts arbitrary recursive definitions to those essentially defining reachability

properties.

The model we use is slightly more general than just triples ofobjects and amounts to

combining triplestores as in, e.g., [Jena, 2012] with the representation of objects used in the

Neo4j database [Cudré-Mauroux and Elnikety, 2011, Neo4j, 2013]. Each object participating

in a triple comes associated with a set of attributes. Attribute values are naturally drawn from

an infinite alphabet, thus following the usual approach of graphs with data. Of course this can

be modelled via more triples, but the model we use is conceptually cleaner and leads to a more

natural comparison with standard relational languages. Inparticular, we show thatTriAL lives

between FO3 and FO6 (recall that FOk refers to the fragment of First-Order Logic using onlyk

variables). In fact it contains FO3, is contained in FO6, and is incomparable with FO4 and FO5.

A similar result holds forTriAL∗ and transitive closure logic.

It is also worthwhile mentioning that adding data values to RDF triplestores leads to a more

natural representation of data, allowing us to describe a certain resource by its set of attributes.

This property also makes it easy to represent data graphs as RDF documents, allowing for data

values in either nodes or edges (or both). We will return to this when comparingTriAL∗ to graph

languages in Chapter 9.

8.1 Graph databases and RDF

RDF databases RDF databases contain triples in which, unlike in graph databases, the mid-

dle component need not come from a fixed set of labels. Formally, if U is a countably infinite

domain of uniform resource identifiers (URI’s), then an RDF triple is (s, p,o) ∈ U×U×U,

170 Chapter 8. Beyond graphs – TriAL

St. Andrews Edinburgh London Brussels

Bus Op 1 Train Op 1

NatExpress EastCoast

Train Op 2

Eurostar

part_ofpart_of

part_of

part_of

Figure 8.1: RDF graph storing information about cities and transport services between them

wheres is referred to as the subject,p as the predicate, ando as the object. An RDF graph is

just a collection of RDF triples. Here we deal withgroundRDF documents [Pérez et al., 2010],

i.e., we do not consider blank nodes or literals in RDF documents (otherwise we need to deal

with disjoint domains, which complicates the presentation).

Example 8.1.1.The RDF databaseD in Figure 8.1 contains information about cities, modes

of transportation between them, and operators of those services. Each triple is represented

by an arrow from the subject to the object, with the arrow itself labeled with the predicate.

Examples of triples inD are (Edinburgh, Train Op 1, London) and (Train Op 1, part_of,

EastCoast). For simplicity, we assume from now on that we can determineimplicitly whether

an object is a city or an operator. This can of course be modeled by adding an additional

outgoing edge labeledcity from each city andoperator from each service operator.

Graph Queries for RDF Navigational properties (e.g., reachability patterns) are among the

most important functionalities of RDF query languages. However, typical RDF query lan-

guages, such as SPARQL, are in spirit relational languages.To extend them with navigation,

as in [Pérez et al., 2010, Anyanwu and Sheth, 2003, Losemann and Martens, 2012], one typi-

cally uses features inspired by graph query languages. Nonetheless, such approaches have their

inherent limitations, as we explain here.

Looking again at the databaseD in Figure 8.1, we see the main difference between graphs

and RDF: the majority of the edge labels inD are also used as subjects or objects (i.e., nodes)

of other triples ofD. For instance, one can travel from Edinburgh to London by using a train

service Train Op 1, but in this case the label itself is viewedas a node when we express the fact

that this operator is actually a part of EastCoast trains.

For RDF, one normally uses a model oftriplestoresthat is different from graph databases.

According to it, the database from Figure 8.1 is viewed as a ternary relation:

8.1. Graph databases and RDF 171

London Brussels

Train Op 2

Eurostar

RDF graphD

part_of

next

edge node

n
ex

t

ed
ge

no
de

London Brussels

Train Op 2

part_of

Eurostar

Transformed graphσ(D)

transforming

D to σ(D)

Figure 8.2: Transforming part of the RDF database from Figure 8.1 into a graph database

St. Andrews Bus Op 1 Edinburgh

Edinburgh Train Op 1 London

London Train Op 2 Brussels

Bus Op 1 part_of NatExpress

Train Op 1 part_of EastCoast

Train Op 2 part_of Eurostar

EastCoast part_of NatExpress

Suppose one wants to answer the following query:

Find pairs of cities(x,y) such that one can

Q : travel fromx to y using services operated by

the same company.

A query like this is likely to be relevant, for instance, whenintegrating numerous trans-

port services into a single ticketing interface. In our example, the pair(Edinburgh,London)

belongs toQ(D), and one can also check that(St. Andrews,London) is in Q(D), since recur-

sively both operators are part of NatExpress (using the transitivity of part_of). However, the

pair (St. Andrews,Brussels) does not belong toQ(D), since we can only travel that route if

we change companies, from NatExpress to Eurostar.

To enhance SPARQL with navigational properties, [Pérez et al., 2010] added nested reg-

ular expressions to it, resulting in a language called nSPARQL. The idea was to combine the

usual reachability patterns of graph query languages with the XPath mechanism of node tests.

However, nested regular expressions, which we saw earlier,are defined for graphs, and not for

databases storing triples. Thus, they cannot be used directly over RDF databases; instead, one

needs to transform an RDF databaseD into a graph first. An example of such transformation

D→ σ(D) was given in [Arenas and Pérez, 2011]; it is illustrated in Figure 8.2.

Formally, given an RDF documentD, the graphσ(D) = (V,E) is a graph database over

alphabetΣ = {next,node,edge}, whereV contains all resources fromD, and for each triple

172 Chapter 8. Beyond graphs – TriAL

(s, p,o) in D, the edge relationE contains edges(s,edge, p), (p,node,o) and(s,next,o). This

transformation scheme is important in practical RDF applications (it was shown to be crucial

for addressing the problem of interpreting RDFS features within SPARQL [Pérez et al., 2010]).

At the same time, it is not sufficient for expressing simple reachability patterns like those in

queryQ:

Proposition 8.1.2.The query Q is not expressible by NREs over graph transformationsσ(·) of

ternary relations.

Proof. Consider the RDF documentsD1 andD2 consisting of the following triples:

GraphD1: GraphD2:

St Andrews Bus Operator 1 Edinburgh

Edinburgh Train Op 1 London

Edinburgh Train Op 3 London

Edinburgh Train Op 1 Manchester

Newcastle Train Op 1 London

London Train Op 2 Brussels

Bus Operator 1 part of NatExpress

Train Op 1 part of EastCoast

Train Op 2 part of Eurostar

EastCoast part of NatExpress

St Andrews Bus Operator 1 Edinburgh

Edinburgh Train Op 3 London

Edinburgh Train Op 1 Manchester

Newcastle Train Op 1 London

London Train Op 2 Brussels

Bus Operator 1 part of NatExpress

Train Op 1 part of EastCoast

Train Op 2 part of Eurostar

EastCoast part of NatExpress

Essentially, graphD1 is an extension of the RDF documentD in Figure 8.1, while graphD2

is the same asD1 except that it does not contain the triple(Edinburgh, Train Op 1 , London).

The relevant parts of our databases are illustrated in the following image.

Edinburgh London

Train Op 1

Train Op 3

NewcastleManchester

EastCoast

Part of RDF graphD1

part_of

Edinburgh London

Train Op 1

Train Op 3

NewcastleManchester

EastCoast

Part of RDF graphD2

part_of

The absence of this triple has severe implications with respect to the queryQ of the state-

ment of the Proposition, since in particular the pair(St Andrews, London) belongs to the

evaluation ofQ overD1, but it does not belong to the evaluation ofQ overD2.

However, it is not difficult to check that the graph translations ofD1 andD2 are exactly the

same graph database:σ(D1) = σ(D2). We have included the relevant part of transformations

8.1. Graph databases and RDF 173

next

edge node

edge node

n
ex

t

ed
ge

no
de

node

next

next

edge

Edinburgh London

TrainOp1

TrainOp3

part_o f

EastCoast

Manchester

Newcastle

Figure 8.3: Transforming part of the RDF databasesD1 andD2

σ(D1) andσ(D2) in Figure 8.3. It follows thatQ is not expressible in nested regular expres-

sions, since obviously the answer of all nested regular expressions is the same overσ(D1) and

σ(D2) (they are the same graph).

Thus, the most common RDF navigational mechanism cannot express a very natural prop-

erty, essentially due to the need to do so via a graph transformation.

One might argue that this result is due to the shortcomings ofa specific transformation

(however relevant to practical tasks it might be). So we ask what happens in the native RDF

scenario. In particular, we would like to see what happens with the language nSPARQL [Pérez

et al., 2010], which is a proper RDF query language extendingSPARQL with navigation based

on nested regular expressions. But this language falls short too, as it fails to express the simple

reachability queryQ.

Theorem 8.1.3.The query Q above cannot be expressed in nSPARQL.

Proof. The semantics of the nested regular expressions in the RDF context (in [Pérez et al.,

2010]) is given as follows, assuming a triple representation of RDF documents. For next, it

is the set{(v,v′) | ∃zE(v,z,v′)}, the semantics of edge is{(v,v′) | ∃zE(v,v′,z)} and node is

{(v,v′) | ∃zE(z,v,v′)}; for the rest of the operators it is the same as in the graph database case.

Thus, even though stated in an RDF context, this semantics isessentially given according to the

translationσ(·), in the sense that the semantics of an NREe is the same for all RDF documents

D andD′ such thatσ(D) = σ(D′) 1. Hence the proof follows directly from Proposition 8.1.2

and the easy fact thatQ cannot be expressed in SPARQL.

1The NREs defined in [Pérez et al., 2010] had additional primitives, such as next :: sp. These were added for
the purpose of allowing RDFS inference with NREs, but play norole in the general expressivity of nSPARQL in
our setting since we are dealing with arbitrary objects, whereas the constructs in [Pérez et al., 2010] are limited to
RDFS predicates. Here we assume that primitives such as next:: [e], with e an arbitrary NRE, are not allowed. For
a discussion on how the proof extends in the case when they arepresent see [Pérez et al., 2010]

174 Chapter 8. Beyond graphs – TriAL

The key reason for these limitations is that the navigation mechanisms used in RDF lan-

guages are graph-based, when one really needs them to be triple-based.

Triplestore Databases To introduce proper triple-based navigational languages,we first de-

fine a simple model of triplestores. LetO be a countably infinite set of objects, andD be a

countably infinite set of data values.

Definition 8.1.4. A triplestore database, or just triplestore over D is a tuple T =

(O,E1, . . . ,En,ρ), where:

• O⊂ O is a finite set of objects,

• each Ei ⊆O×O×O is a set of triples, and

• ρ : O→D is a function that assigns a data value to each object.

Often we have just a single ternary relationE in a triplestore database (e.g., in the previ-

ously seen examples of representing RDF databases), but allthe languages and results we state

here apply to multiple relations. The functionρ could also mapO to tuples overD, and all

results remain true (one just usesDk as the range ofρ, as in the example below). We use the

functionρ : O→D just to simplify notations.

Triplestores easily model RDF, and we will see later that they model data graphs. To further

illustrate the usefulness of adding data values to triples,we now show how they can be used

to model social networks. Consider a scenario where each user has a set of attributes attached

to her/his entity (in our example, name, email, and age). Values of attributes come from an

infinite domain of data values, while each user is uniquely described by the id value describing

one object in the model. Users form connections, also labelled with data (e.g., creation date

and type of the connection). Note that such social networks could simply be viewed as graph

databases with multiple attributes and values attached both to edges and to the nodes (see

Section 2.1). A part of this network is presented in Figure 8.4.

In the triplestore representation of this network,O is the set of all user and connection ids,

while the data value function assigns to each object inOa quintuple(name,email,dob,type,time)

of values, each with the natural domain. We use quintuples torepresent data values and assume

that each user entity will have null values for the last two attributes, while a connection entity

will have nulls in the first three. Another way to go around this would be to have two different

data value assignments to the object attributes, one for user objects and another for connection

objects. To keep our language one sorted and compact we opt for the option presented here.

The triples thus are

o175 c163 o122

o175 c137 o7521

o7521 c177 o122

8.2. An Algebra for RDF 175

name: Mario

email: m@nes.com

age: 23

name: Luigi

email: l@nes.com

age: 27

name: Donkey Kong

email: d@nes.com

age: 117

type:

brother

created:

11-11-83

type:

coworker

created:

12-07-89

type: rival

created:

12-07-89

o7521

o175 o122

c163

c137 c177

Figure 8.4: A social network graph

and the data values assignments functionρ is:

ρ(o175) = (Mario,m@nes.com,23,⊥,⊥)

ρ(o122) = (Donkey Kong,d@nes.com,117,⊥,⊥)

ρ(o7521) = (Luigi,l@nes.com,27,⊥,⊥)

ρ(c137) = (⊥,⊥,⊥,brother,11–11–83)

ρ(c177) = (⊥,⊥,⊥,coworker,12–07–89)

ρ(c163) = (⊥,⊥,⊥,rival,12–07–89)
Thus, triplestores describe a simple data model that is applicable in a wide range of scenar-

ios, including RDF, graph databases and social networks.

8.2 An Algebra for RDF

We saw that problems encountered while adapting graph languages to RDF are related to the

inherent limitations of the graph data model for representing RDF data. Thus, one should work

directly with triples. But existing languages are either based on binary relations and fall short

of the power necessary for RDF querying, or are general relational languages which are not

closed when it comes to querying RDF triples. Hence, we need alanguage that works directly

on triples, is closed, and has good query evaluation properties.

We now present such a language, based on relational algebra for triples. We start with a

plain version and then add recursive primitives that provide the crucial functionality for han-

dling reachability properties.

176 Chapter 8. Beyond graphs – TriAL

The operations of the usual relational algebra are selection, projection, union, difference,

and cartesian product. Our language must remainclosed, i.e., the result of each operation ought

to be a valid triplestore. This clearly rules out projection. Selection and Boolean operations are

fine. Cartesian product, however, would create a relation ofarity six, but instead we usejoins

that only keep three positions in the result.

Triple joins To see what kind of joins we need, let us first look at thecompositionof two

relations. For binary relationsS and S′, their compositionS◦S′ has all pairs(x,y) so that

(x,z) ∈ S and (z,y) ∈ S′ for somez. Reachability with relationS is defined by recursively

applying composition:S∪ S◦S∪ S◦S◦S∪ So we need an analog of composition for

triples. To understand how it may look, we can viewS◦S′ as thejoin of S and S′ on the

condition that the 2nd component ofS equals the first ofS′, and the output consist of the

remaining components. We can write it as

S
1,2′

1
2=1′

S′

Here we refer to the positions inSas 1 and 2, and to the positions inS′ as 1′ and 2′, so the join

condition is 2= 1′ (written below the join symbol), and the output has positions 1 and 2′. This

suggests that our join operations on triples should be of theform R1
i, j,k
condR′, whereR andR′

are tertiary relations,i, j,k∈ {1,2,3,1′ ,2′,3′}, and cond is a condition (to be defined precisely

later).

But what is the most natural analog of relational composition? Note that to keep three

indexes among{1,2,3,1′,2′,3′}, we ought to project away three, meaning that two of them

will come from one argument, and one from the other. Any such join operation on triples is

bound to beasymmetric, and thus cannot be viewed as a full analog of relational composition.

So what do we do? Our solution is to addall such join operations. Formally, given two

tertiary relationsRandR′, join operations are of the form

R
i, j,k

1
θ,η

R′,

where

• i, j,k∈ {1,1′,2,2′,3,3′},

• θ is a set of equalities and inequalities between elements in{1,1′,2,2′,3,3′}∪O,

• η is a set of equalities and inequalities between elements in

{ρ(1),ρ(1′),ρ(2),ρ(2′),ρ(3),ρ(3′)}∪D.

The semantics is defined as follows:(oi ,o j ,ok) is in the result of the join iff there are triples

(o1,o2,o3) ∈ Rand(o1′ ,o2′ ,o3′) ∈R′ such that

8.2. An Algebra for RDF 177

• each condition fromθ holds; that is, ifl = m is in θ, thenol = om, and if l = o, whereo

is an object, is inθ, thenol = o, and likewise for inequalities;

• each condition fromη holds; that is, ifρ(l) = ρ(m) is in η, thenρ(ol) = ρ(om), and if

ρ(l) = d, whered is a data value, is inη, thenρ(ol) = d, and likewise for inequalities.

Triple Algebra We now define the expressions of theTriple Algebra, or TriAL for short. It is

a restriction of relational algebra that guarantees closure, i.e., the result of each expression is a

triplestore.

• Every relation name in a triplestore is aTriAL expression.

• If e is aTriAL expression,θ a set of equalities and inequalities over{1,2,3}∪O, andη

is a set of equalities and inequalities over{ρ(1),ρ(2),ρ(3)}∪D, thenσθ,η(e) is aTriAL

expression.

• If e1,e2 areTriAL expressions, then the following areTriAL expressions:

– e1∪e2;

– e1−e2;

– e11
i, j,k
θ,η e2, wherei, j,k,θ,η as in the definition of the join above.

The semantics of the join operation has already been defined.The semantics of the Boolean

operations is the usual one. The semantics of the selection is defined in the same way as the

semantics of the join (in fact, the operator itself can be defined in terms of joins): one just

chooses triples(o1,o2,o3) satisfying bothθ andη.

Given a triplestore databaseT, we writee(T) for the result of expressioneon T.

Note thate(T) is again a triplestore, and thusTriAL defines closed operations on triplestores.

This is important, for instance, when we require RDF queriesto produce RDF graphs as their

result (instead of arbitrary tuples of objects), as it is done in SPARQL via theCONSTRUCT

operator [Harris and Seaborne, 2013].

Example 8.2.1. To get some intuition about the Triple Algebra consider the following TriAL

expression:

e= E
1,3′,3

1
2=1′

E

Indexes(1,2,3) refer to positions of the first triple, and indexes(1′,2′,3′) to positions of

the second triple in the join. Thus, for two triples(x1,x2,x3) and (x1′ ,x2′ ,x3′), such that

x2 = x1′ , expressione outputs the triple(x1,x3′ ,x3). E.g., in the triplestore of Fig. 8.1,

(London, Train Op 2, Brussels) is joined with(Train Op 2, part_of, Eurostar), pro-

ducing(London, Eurostar, Brussels); the full result is

178 Chapter 8. Beyond graphs – TriAL

St. Andrews NatExpress Edinburgh

Edinburgh EastCoast London

London Eurostar Brussels

Thus,e computes travel information for pairs of European cities together with companies one

can use. It fails to take into account thatEastCoast is a part ofNatExpress. To add such

information to query results (and produce triples such as(Edinburgh, NatExpress, London)),

we usee′ = e∪ (e1
1,3′,3
2=1′ E).

Definable operations: intersection and complement. As usual, the intersection operation

can be defined ase1∩e2 = e11
1,2,3
1=1′,2=2′,3=3′ e2. Note that using join and union, we can define

the setU of all triples (o1,o2,o3) so that eachoi occurs in our triplestore databaseT. For

instance, to collect all such triples so thato1 occurs in the first position ofR, ando2,o3 occur in

the 2nd and 3rd position ofR′ respectively, we would use the expression(R11,2′,3 R′)11,2,3′ R′.

Taking the union of all such expressions, gives us the relationU .

Using suchU , we can defineec, the complement ofe with respect to the active domain, as

U −e. In what follows, we regularly use intersection and complement in our examples.

Adding Recursion One problem with Example 8.2.1 above is that it does not include triples

(city1,service,city2) so that relationRcontains a triple (city1,service0,city2), and there

is a chain, of some length, indicating thatservice0 is a part ofservice. The second ex-

pression in Example 8.2.1 only accounted for such paths of length 1. To deal with paths of

arbitrary length, we need reachability, which relational algebra is well known to be incapable

of expressing. Thus, we need to add recursion to our language.

To do so, we expandTriAL with right andleft Kleene closureof any triple join 1
i, j,k
θ,η over

an expressione, denoted as(e 1
i, j,k
θ,η)∗ for right, and(1i, j,k

θ,η e)∗ for left. These are defined as

(e1)∗ = /0 ∪ e ∪ e1 e ∪ (e1 e) 1 e ∪ . . . ,

(1 e)∗ = /0 ∪ e ∪ e1 e ∪ e1 (e1 e) ∪ . . .

We refer to the resulting algebra asTriple Algebra with Recursionand denote it byTriAL∗.

When dealing with binary relations we do not have to distinguish between left and right

Kleene closures, since the composition operation for binary relations is associative. However,

as the following example shows, joins over triples are not necessarily associative, which ex-

plains the need to make this distinction.

Example 8.2.2. Consider a triplestore databaseT = (O,E), with E =

{(a,b,c),(c,d,e),(d,e, f)}. The functionρ is not relevant for this example. The expression

e1 = (E
1,2,2′

1
3=1′

)∗

8.2. An Algebra for RDF 179

computese1(T) = E∪{(a,b,d),(a,b,e)}, while

e2 = (
1,2,2′

1
3=1′

E)∗

computese2(T) = E∪{(a,b,d)}.

Now we present several examples of queries one can ask using the Triple Algebra.

Example 8.2.3.We refer now to reachability queriesReach→ andReach1 from the introduc-

tion to Chapter 8. It can easily be checked that these are defined by

(E
1,2,3′

1
3=1′

)∗ and (
1′,2′,3

1
1=2′

E)∗

respectively.

Next consider the query from Theorem 8.1.2. Graphically, itcan be represented as follows:
· ·
· · · ·· ·
·

x

y

z
· · ·

That is, we are looking for pairs of cities such that one can travel from one to the other

using services operated by the same company. This query is expressed by

((E
1,3′,3

1
2=1′

)∗
1,2,3′

1
3=1′,2=2′

)∗.

Note that the interior join(E
1,3′,3
1

2=1′
)∗ computes all triples(x,y,z), such thatE(x,w,z) holds for

somew, andy is reachable fromw using someE-path. The outer join now simply computes

the transitive closure of this relation, taking into account that the service that witnesses the

connection between the cities is the same.

Another useful application of such a nested query can be found in workflows tracking

provenance of some document. Indeed, there we might be interested to find all versions of a

document that contain an error, but originate from an error-free version. We might also ask if

there is a path connecting those two documents where each of the versions referred to some

particular document – the likely culprit for the mistake. Inthe image abovez would represent

version with an error,x a valid version it originates from, andy the document all of the versions

that lead to the one with an error refer to.

180 Chapter 8. Beyond graphs – TriAL

Remark 8. Here we give some remarks about notation and implicit assumptions in the remain-

der of this chapter.

• We will often denote conditionsθ and η as conjunction of equalities or inequalities

instead of sets. For example we will writeθ= (1 6= 3′)∧(2= 2′) for θ= {1 6= 3′,2= 2′}.

• In the proofs we will usually handle only the case of the rightKleene closure(R1)∗.

The proofs for the left closure are completely symmetric.

• As usual in database theory, we only consider queries that are domain-independent, and

therefore we loose no generality in assuming active domain semantics for FO formulas

and other similar formalisms.

8.3 A Declarative Language

Triple Algebra and its recursive versions areprocedurallanguages. In databases, we are used

to dealing with declarative languages. The most common one for expressing queries that need

recursion is Datalog. It is one of the most studied database query languages, and it has reap-

peared recently in numerous applications. One instance of this is its well documented success

in Web information extraction [Gottlob and Koch, 2004] and there are numerous others. So it

seems natural to look for Datalog fragments to captureTriAL and its recursive version.

Since Datalog works over relational vocabularies, we need to explain how to represent

triplestoresT. The schema of these representations consists of a ternary relation symbol

E(·, ·, ·) for each triplestore name inT, plus a binary relation symbol∼(·, ·). Each triplestore

databaseT can be represented as an instanceIT of this schema in the standard way: the inter-

pretation of each relation nameE in this instance corresponds to the triples in the triplestore E

in T, and the interpretation of∼ contains all pairs(x,y) of objects such thatρ(x) = ρ(y), i.e. x

andy have the same data value. If the values ofρ are tuples, we just use∼i relations testing that

the ith components of tuples are the same, for eachi; this does not affect the results presented

below.

We start with a Datalog fragment capturingTriAL. A TripleDatalog rule is of the form

S(x) ← S1(x1),S2(x2),∼(y1,z1), . . . ,∼(yn,zn),u1 = v1, . . . ,um = vm (8.1)

where

1. S, S1 andS2 are (not necessarily distinct) predicate symbols of arity at most 3;

2. all variables inx and each ofyi , zi andu j , v j are contained inx1 or x2.

A TripleDatalog¬ rule is like the rule (8.1) but all equalities and predicates, except the head

predicateS, can appear negated. ATripleDatalog¬ programΠ is a finite set ofTripleDatalog¬

8.3. A Declarative Language 181

rules. Such a programΠ is non-recursiveif there is an orderingr1, . . . , rk of the rules ofΠ so

that the relation in the head ofr i does not occur in the body of any of the rulesr j , with j ≤ i.

As is common with non-recursive programs, the semantics of nonrecursiveTripleDatalog¬

programs is given by evaluating each of the rules ofΠ, according to the orderr1, . . . , rk of its

rules, and taking unions whenever two rules have the same relation in their head (see [Abiteboul

et al., 1995] for the precise definition). We are now ready to present the first capturing result.

Proposition 8.3.1. TriAL is equivalent to nonrecursiveTripleDatalog¬ programs.

Proof. Let us first show the containment ofTriAL in non-recursiveTripleDatalog¬. We show

that for every expressioneone can construct a non-recursiveTripleDatalog¬ programΠe such

that,e(T) = Πe(IT), for all triplestore databasesT.

We define the translation by the following inductive construction, assumingAns, Ans1 and

Ans2 are special symbols that define the output of non-recursiveTripleDatalog¬ programs.

• If e is just a triplestore nameE, thenΠe consists of the single ruleAns(x,y,z)←E(x,y,z).

• If e is e1∪ e2, thenΠe consists of the union of the rules of the programsΠe1 andΠe2,

together with the rulesAns(x)← Ans1(x) andAns(x)← Ans2(x), where we assume that

Ans1 andAns2 are the predicates that define the output ofΠe1 andΠe2, respectively.

• If e is e1− e2, thenΠe consists of the union of the rules of the programsΠe1 andΠe2,

together with the ruleAns(x)←Ans1(x),¬Ans2(x), where we assume thatAns1 andAns2

are the predicates that define the output ofΠe1 andΠe2, respectively.

• If e is e11
i, j,k
θ,η e2, assume thatθ consists ofmconditions, andη consists ofn conditions.

ThenΠe consists of the union of the rules of the programsΠe1 andΠe2, together with

the rule

Ans(xi ,x j ,xk)← Ans1(x1,x2,x3),Ans2(x4,x5,x6),V(y1,z1), . . . ,V(yn,zn),

u1(=) 6= v1, . . . ,um(=) 6= vm, (8.2)

where for eachp-th condition inθ of form a = b or a 6= b, we have thatup = xa and

vp = xb (or up = o if a is an objecto in O, and likewise forb), and for eachp-th condition

in θ of form ρ(a) = ρ(b) or ρ(a) 6= ρ(b), we have thatyp = xa andzp = xb, andV is

either∼ or ¬∼; and where we assume thatAns1 andAns2 are the predicates that define

the output ofΠe1 andΠe2, respectively.

• The case of selection goes along the same lines as the join case.

Clearly, this program is nonrecursive. Moreover, it is trivial to prove that this transition

satisfies our desired property.

182 Chapter 8. Beyond graphs – TriAL

Next we show the containment of non-recursiveTripleDatalog¬ in TriAL. We show that for

every non-recursiveTripleDatalog¬ programΠ one can construct an expressioneΠ such that,

eΠ(T) = Π(IT), for all triplestore databasesT.

We assume thatΠ contains a single predicateAnsthat represents the answer of the query.

Also, without loss of generality we can assume that no rule uses predicateE, for some triple-

store nameE, other than a rule of formP(x,y,z)←E(x,y,z), for a predicateP in the predicates

of Π that does not appear in the head of any other rule inΠ.

We need some notation. The dependence graph ofΠ is a directed graph whose nodes are

the predicates ofπ, and the edges capture the dependence relation of the predicates ofΠ, i.e.,

there is an edge from predicateR to predicateS if there is a rule inΠ with R in its head andS

in its body. SinceΠ is non-recursive, its dependency graph is acyclic. We now define theTriAL

expression in a recursive fashion, following its dependency graph:

• Assume that all the rules inΠ that have predicateS in the head are of form

S(xaj ,xbj ,xcj) ← Sj
1(x

j
1,x

j
2,x

j
3),S

j
2(x

j
4,x

j
5,x

j
6),(¬)∼(y

j
1,z

j
1), . . . ,(¬)∼(y

j
n,z

j
n),

u j
1(6=) = v j

1, . . . ,u
j
m(6=) = v j

m (8.3)

for 1≤ j ≤m, and whereSj
1 andSj

2 are (not necessarily distinct) predicate symbols of

arity at most 3 and all variables inxaj ,xbj ,xcj and each ofy j
i , zj

i andu j
k, v j

k are contained

in {x j
1,x

j
2,x

j
3,x

j
4,x

j
5,x

j
6}.

Then theTriAL expressioneS is

⋃

1≤ j≤m

eSj
1
1

aj ,bj ,cj

θ j ,η j eSj
2
,

whereθ contains an (in)equalitya= b for each (in)equalityxa = xb in the rule, andη j

contains an (in)equalityρ(a) = ρ(b) for each predicate∼(a,b) (or its negation) in the

rule. If either ofSj
1 or Sj

2 appear negated in the rule, then just replaceeSj
1

for (eSj
1
)c or

(eSj
2
)c.

• TheTriAL expressioneP (for predicateP in rule P(x,y,z)← E(x,y,z)) is justE; if these

variables appear in different order in the rule, we permute them via the selection operator

σ.

It is now straightforward to verify that for every non-recursive TripleDatalog¬ program

Π whose answer predicate isAns the expressioneAns is such that,eAns(T) = Π(IT), for all

triplestore databasesT.

We next turn to the expressive power of recursive Triple Algebra TriAL∗. To capture it,

we of course add recursion to Datalog rules, and impose a restriction that was previously used

8.3. A Declarative Language 183

in [Consens and Mendelzon, 1990]. AReachTripleDatalog¬ program is a TripleDatalog¬

program in which each recursive predicateS is the head of exactly two rules of the form:

S(x) ← R(x)

S(x) ← S(x̄1),R(x̄2),V(y1,z1), . . . ,V(yk,zk)
(8.4)

where eachV(yi ,zi) is one of the following:yi = zi , or yi 6= zi , or∼(yi ,zi), or ¬∼(yi ,zi), and

R is a nonrecursive predicate of arity at most 3, or a recursivepredicate defined by a rule of

the form 8.4 that appears beforeS. These rules essentially mimic the standard reachability

rules (for binary relation) in Datalog, and in addition one can impose equality and inequality

constraints, as well as data equality and inequality constraints, along the paths.

Note that the negation inReachTripleDatalog¬ programs isstratified. The semantics of

these programs is the standard least-fixpoint semantics [Abiteboul et al., 1995]. A similarly

defined syntactic class, but over graph databases, rather than triplestores, was shown to cap-

ture the expressive power of FO with the transitive closure operator [Consens and Mendelzon,

1990]. In our case, we have a capturing result forTriAL∗.

Theorem 8.3.2. The expressive power ofTriAL∗ and ReachTripleDatalog¬ programs is the

same.

Proof. Let us first show the containment ofTriAL∗ in ReachTripleDatalog¬. The proof goes

along the same lines as the proof of containment ofTriAL in TripleDatalog¬. We have to

show that for everyTriAL∗ expressione there is aReachTripleDatalog¬ programΠe such that

e(T) = Πe(IT), for all triplestoresT.

The only difference from the construction in the proof ofTriAL in TripleDatalog¬ is the

treatment of the constructse= (e11
i, j,k
θ,η)∗ ande= (1

i, j,k
θ,η e1)

∗. For the former construct (the

other one is symmetrical), assume thatθ = (
∧

1≤i≤m pi(6=) = qi) andη = (
∧

1≤ j≤nρ(u j)(6=) =

ρ(v j)). We letΠe be the union of all rules ofΠe1, plus rules

Ans(x,y,z) ← Ans1(x,y,z)

Ans(xi ,x j ,xk) ← Ans(x1,x2,x3),Ans1(x4,x5,x6),

(¬)∼(xp1,xq1), . . . ,(¬)∼(xun,xvn),xp1(6=) = xq1, . . . ,xpm(6=) = xqm,

whereAns1 is the answer predicate ofΠe1. Notice that we have assumed for simplicity there

are no comparison with constants; these can be included in our translation the straightforward

way. The proof thate(T) = Πe(IT), for all triplestoresT now follows easily.

The proof of containment ofReachTripleDatalog¬ in TriAL∗ also goes along the same lines

as the proof thatTripleDatalog¬ is contained inTriAL. The only difference is when creating

expressioneS, for some recursive predicateS. From the properties ofReachTripleDatalog¬

184 Chapter 8. Beyond graphs – TriAL

programs, we knowS is the head of exactly two rules of form

S(x) ← R(x)

S(xa,xb,xc) ← S(x1,x2,x3),R(x4,x5,x6),V(y1,z1), . . . ,V(yn,zn),

u1(6=) = v1, . . . ,um(6=) = vm,

1. R is a nonrecursive predicate of arity at most 3,

2. variablesxa,xb,xc and each ofyi , zi andu j , v j are contained in{x1, . . . ,x6}, and

3. eachV(yi ,zi) is either∼(yi ,zi) or ¬∼(yi ,zi)

We then leteS be(eR1
a,b,c
θ,η)∗, whereθ contains the inequalityp(6=) = q for each predicate

xp(6=) = xq in the rule above, or the respective comparison with constant if p or q belong to

O, andη contains the (in)equalityρ(p)(6=) = ρ(q) for each predicate∼(xp,xq) (respectively,

¬∼(xp,xq)).

Once again, it is straightforward to verify thateAns is such that,eAns(T) = Π(IT), for all

triplestoresT.

We now give an example of a simple datalog program computing the query from Theorem

8.1.3.

Example 8.3.3. The followingReachTripleDatalog¬ program is equivalent to queryQ from

Theorem 8.1.3. Note that the answer is computed in the predicate Ans.

S(x1,x2,x3) ← E(x1,x2,x3)

S(x1,x
′
3,x3) ← S(x1,x2,x3),E(x2,x

′
2,x
′
3)

Ans(x1,x2,x3) ← S(x1,x2,x3)

Ans(x1,x2,x
′
3) ← Ans(x1,x2,x3),S(x3,x2,x

′
3)

Recall that this query can be written inTriAL∗ asQ= ((E1
1,3′,3
2=1′)

∗1
1,2,3′

3=1′,2=2′)
∗. The predi-

cateS in the program computes the inner Kleene closure of the query, while the predicate Ans

computes the outer closure.

8.4 Query Evaluation

In this section we analyze two versions of the query evaluation problems related to Triple

Algebra. We start with query evaluation, redefined here forTriAL∗ queries.

Problem: QUERYEVALUATION

Input: A TriAL∗ expressione, a triplestoreT

and a tuple(x1,x2,x3) of objects.

Question: Is(x1,x2,x3) ∈ e(T)?

8.4. Query Evaluation 185

Many graph query languages (e.g., RPQs,GXPath) have PTIME upper bounds for this

problem, and the data complexity (i.e., whene is assumed to be fixed) is generally in NL

(which cannot be improved, since the simplest reachabilityproblem over graphs is already

NL-hard). We now show that the same upper bounds hold for our algebra, even with recursion.

Proposition 8.4.1. The problemQUERYEVALUATION is PTIME-complete, and inNL if the

algebra expression e is fixed.

Proof. The PTIME upper bound follows immediately from Theorem 8.4.2 below. PTIME-

hardness follows from the fact that everyFO3 query can be expressed inTriAL (see Section 8.6)

and the known result that evaluating FOk queries is PTIME-hard already whenk = 3 [Vardi,

1995].

For the NL upper bound, the idea is to divide the expressione into all its subexpression,

corresponding to subtrees of the parsing tree ofϕ. Starting from the leaves until the root of the

parse tree ofe, one can guess the relevant triples that will be witnessing the presence of the

query triple in the answer sete(T).

Note that for this we only need to rememberO(|e|) triples – a number of fixed length. After

we have guessed a triple for each node in the parse tree forewe simply check that they belong

to the result of applying the subexpression defined by that node of the tree to our triplestore

T. Thus to check that the desired complexity bound holds we need to show that each of the

operations can be performed in NL, given any of the triples. This follows by an easy inductive

argument.

For example, ife= Ei is one of the initial relations inT, we simply check that the guessed

triple is present in its table. Note that this can be done in NL.

This is done in an analogous way for the expressions of the form e= e1∪e2 ande= e1−e2.

To see that the claim also holds for joins, note that one only has to check that join conditions

can be verified in NL. But this is a straightforward consequence of the observation that for

conditions we use only comparisons of objects and their datavalues.

Finally, to see that the star operator(R1
i, j,k
θ,η)∗ can be implemented in NL we simply do a

standard reachability argument for graphs. That is, since we are trying to verify that a specific

triple (a,b,c) is in the answer to the star-join operator, we guess the sequence that verifies this.

We begin by a single triple inR (and we can check that it is there in NL by the induction

hypothesis) and guess each new triple inR, joining it with the previous one, until we have

performed at most|T| steps.

Tractable evaluation (even with respect to combined complexity) is practically a must when

dealing with very large and dynamic semi-structured databases. However, in order to make a

case for the practical applicability of our algebra, we needto give more precise bounds for

query evaluation, rather than describe complexity classesthe problem belongs to. We now

186 Chapter 8. Beyond graphs – TriAL

show thatTriAL∗ expressions can be evaluated in what is essentially cubic time with respect to

the data. Thus, in the rest of the section we focus on the problem of actually computing the

whole relatione(T):

Problem: QUERYCOMPUTATION

Input: A TriAL∗ expressioneand

a triplestore databaseT.

Output: The relatione(T)

We now analyze the complexity of QUERYCOMPUTATION. Following an assumption fre-

quently made in papers on graph database query evaluation (in particular, graph pattern match-

ing algorithms) as well as bounded variable relational languages (cf. [Fan et al., 2011, Fan

et al., 2010a, Gottlob et al., 2002]), we consider anarray representationfor triplestores. That

is, when representing a triplestoreT = (O,E1, . . . ,Em,ρ) with O= {o1, . . . ,on}, we assume that

each relationEl is given by a three-dimensionaln×n×n matrix, so that thei jkth entry is set

to 1 iff (oi ,o j ,ok) is in El . Alternatively we can have a single matrix, where entries include sets

of indexes of relationsEl that triples belong to. Furthermore we have a one-dimensional array

of size n whoseith entry containsρ(oi). Using this representation we obtain the following

bounds.

Theorem 8.4.2.The problemQUERYCOMPUTATION can be solved in time

• O(|e| · |T|2) for TriAL expressions,

• O(|e| · |T|3) for TriAL∗ expressions.

Proof. The basic outline of the algorithm is as follows:

1. Build the parse tree for our expression.

2. Evaluate the subexpressions bottom-up.

Now to see that the algorithm meets the desired time bounds wesimply have to show that

each step of evaluating a subexpression can be performed in time O(|T|2).

We prove this inductively on the structure of subexpressione.

As stated previously, we assume that the objects are sorted and that the triplestore is given

by its adjacency matrixT with the property thatT[i, j,k] = 1 if and only if (oi ,o j ,ok) ∈ T. If

we are dealing with a triplestore that has more than one relation we will assume that we have

access to each of then×n×n matrices representingEi. In addition, to store data values we will

use another arrayDV of size|O| havingDV[i] = ρ(oi), for i = 1. . .n. In the end, our algorithm

computes, given an expressione and a triplestoreT the matrixRe such that(oi ,o j ,ok) ∈ e(T)

iff Re[i, j,k] = 1.

8.4. Query Evaluation 187

If e= Ei , the name of one of the initial triplestore matrices, we already have our answer, so

no computation is needed.

If e=R1∪R2 and we are given the matrix representation ofR1 andR2 (that is the adjacency

matrix of the answer ofRi on our triplestoreT) we simply computeRe as the union of these

two matrices. Note that this takes timeO(|T|).

If e= R1∩R2 we computeRe as the intersection of these two matrices. That is, for each

triple (i, j,k) we check ifR1[i, j,k] = R2[i, j,k] = 1. Note that this takes timeO(|T|).

If e=R1−R2 we computeRe as the difference of the two matrices. That is for each(i, j,k)

we setRe[i, j,k] = 1 if and only ifR1[i, j,k] = 1 andR2[i, j,k] = 0. The time required isO(|T|).

If e= σϕR1 and we are given the matrix forR1 we can computeRe in time O(|e||T|)

by traversing each triple(i, j,k), checking thatR1[i, j,k] = 1 and that the objectsoi ,o j and

ok satisfy the conditions specified byϕ. Notice that each of these checks can be done in|e|

time usingT andDV, since the number of comparisons inϕ has a fixed upper bound, modulo

comparison with constants. The comparison with constants can be done in time|e| because we

have to check (in)equality only with the constants that actually appear ine.

Finally, in the case thate= R11
i′, j ′,k′

θ,η R2 we can computeRe using the following algorithm:

Procedure 1Computing joins

Input: Matrix representation ofR1,R2

Output: Matrix Re representinge

1: Let θ′ andη′ be the conditions obtained fromθ,η by removing comparisons with constants

2: Let α,β be the conditions inθ,η using constants

3: Filter R1 andR2 according toα,β

4: for i = 1→ n do

5: for j = 1→ n do

6: for k= 1→ n do

7: if R1[i, j,k] = 1 then

8: for l = 1→ n do

9: for m= 1→ n do

10: for n= 1→ n do

11: if R2[l ,m,n] = 1 then

12: if (oi ,o j ,ok) and (ol ,om,on) satisfy the conditions inθ′,η′

then Re[i′, j ′,k′] = 1

13: elseRe[i′, j ′,k′] = 0

Note that lines 1–3 correspond to computing selections operator and can therefore be per-

formed using the timeO(|e||T|) and reusing the matricesR1 andR2. It is straightforward to see

188 Chapter 8. Beyond graphs – TriAL

that the remaining of the algorithm works as intended by joining the desirable triples. This is

performed inO(|T|2). Thus the whole join computation can be done in timeO(|T|2).

This concludes the first part of our theorem and we thus conclude thatTriAL query compu-

tation problem can be solved in timeO(|e||T|2).

For the second part of the theorem we only have to show that each star operation can be

computed in timeO(|T|3). To see this we consider the following algorithm, computingthe

answer set fore= (R11
i′, j ′,k′

θ,η)∗

Procedure 2Computing stars

Input: Matrix representation ofR1

Output: Matrix Re representinge

1: Initialize Re := R1

2: for i = 1→ n3 do

3: ComputeRe := Re∪Re1
i′, j ′,k′

θ,η R1

First we note that the algorithm does indeed compute the correct answer set. This follows

because the joining in our star process has to became saturated aftern3 steps, since this is the

maximum possible number of triples in a model withn elements. Note now that each join in

step 3 can be computed in timeO(|T|2), thus giving us the total running time ofO(n3 · |T|2) =

O(|T|3).

Finally, note that left-joins can be computed in an analogous way.

Note that this immediately gives the PTIME upper bound for Proposition 8.4.1.

One can examine the proofs of Proposition 8.3.1 and Theorem 8.3.2 and see that transla-

tions from Datalog into algebra are linear-time. Thus, we have the same bound for the query

computation problem, when we evaluate a Datalog programΠ in place of an algebra expres-

sion.

Corollary 8.4.3. The problemQUERYCOMPUTATION for Datalog programsΠ can be solved

in time

• O(|Π| · |T|2) for TripleDatalog¬ programs,

• O(|Π| · |T|3) for ReachTripleDatalog¬ programs.

8.5 Low-complexity fragments

Even though we have acceptable combined complexity of querycomputation, if the size ofT

is very large, one may prefer to lower it even further. We now look at fragments ofTriAL∗ for

which this is possible.

8.5. Low-complexity fragments 189

Relational fragments of TriAL In algorithms from Theorem 8.4.2, the main difficulty arises

from the presence of inequalities in join conditions. A natural restriction then is to look at a

fragmentTriAL= of TriAL in which all conditionsθ andη used in joins can only use equalities.

This fragment allows us to lower the|T|2 complexity, by replacing one of the|T| factors by

|O|, the number of distinct objects.

Proposition 8.5.1. TheQUERYCOMPUTATION problem forTriAL= expressions can be solved

in time O(|e| · |O| · |T|).

Proof. To prove this we will use the close connection of positive fragment ofTriAL= with FO4.

We establish this as follows. To each triplestoreT = (O,E1, . . . ,En,ρ) we associate anFO

structureMT = (O,E1, . . . ,En,∼), whereO is the set of objects appearing inT, E1, . . . ,En are

just the representation of the triplestores, and∼(o1,o2) holds iff ρ(o1) = ρ(o2) (they have the

same data value). In Lemma 8.5.2 we will then show that for each TriAL= expressione one

can compute, in timeO(|e|), an equivalent FO formulaϕe true precisely for the triples inMT

which satisfyeoverT.

Note that we can computeMT from T in linear time. To finish the proof we show in

Lemma 8.5.3 that eachFO4 formula ϕ using relations that are at most ternary (in fact this

holds for relations of arity four as well, but is not relevantfor our analysis) can be evaluated in

timeO(|ϕ| · |O|4).

The result of Proposition 8.5.1 now follows, since we can take our expressione, transform

it into a formulaϕe of FO4 and evaluate it in timeO(|ϕe| · |O|4) = O(|e| · |O| · |T|), since

|T|= |O|3 and|ϕe|= O(|e|).

The proof of the two lemmas follows below.

First we show that over triplestoresTriAL= is contained in FO4.

Lemma 8.5.2. For everyTriAL= expression e one can construct an FO4 formula ϕe such that

a triple (a,b,c) belongs to e(T) if and only ifMT |= ϕe(a,b,c).

Proof. The proof is done by induction. The base case whene= Ei for some 1≤ i ≤ n is trivial,

and so are the cases whene= e1∪e2, e= e1−e2 ande= σθ,ηe1. The only interesting case is

whene= e11
i, j,k
θ,η e2.

As usual, we assume thate is e11
i, j,k
θ,η e2, whereθ is a conjunction of equalities between

elements in{1,1′,2,2′,3,3′} ∪O and η is a conjunction of equalities between elements in

{ρ(1),ρ(1′).ρ(2),ρ(2′),ρ(3),ρ(3′)}. We need some terminology.

Let θ = θℓ∧θr ∧θ1∧θc
ℓ ∧θc

r , where

• θℓ andθr contain only equalities between indexes in{1,2,3} and{1′,2′,3′}, respectively.

• θc
ℓ andθc

r contain only equalities where one element is inO and the other is in{1,2,3}

and{1′,2′,3′}, respectively.

190 Chapter 8. Beyond graphs – TriAL

• θ1 contains all the remaining equalities, i.e. those equalities in which one index is in

{1,2,3} and the other in{1′,2′,3′}.

We also divideη = ηℓ∧ηr ∧η1 in the same fashion (recall that for the sake of readability we

assume no comparison between data values and constants, twoavoid two sorted structures).

Notice that any two equalities of formi = j ′ andi = k′, for i ∈ {1,2,3} and j ′,k′ ∈ {1′,2′,3′}

can be replaced withi = j ′ and j ′ = k′, and likewise we can replacei = k′ and j = k′ with

i = j and j = k′. For this reason we assume thatθ1 (andη1) contain at most 3 equalities, and

no two equalities in them can mention the same element. Furthermore, ifθ1 has two or more

equalities, then the join can be straightforwardly expressed in FO4, since now instead of the

six possible positions we only care about four -or three-of them. For this reason we only show

how to construct the formula whenθ1 has one or no equalities.

Finally, for a conjunctionθ of equalities between element in{1,1′,2,2′,3,3′}, we

let α(θ) be the formula
∧

i= j∈θ xi = x j , for a conjunctionη of equalities of elements in

{ρ(1),ρ(1′).ρ(2),ρ(2′),ρ(3),ρ(3′)}, let β(η) be the formula
∧

ρ(i)=ρ(j)∈η∼(xi ,x j), and for a

conjunctionθc of equalities between an object inO and an element in{1,1′,2,2′,3,3′} we let

α(θc) =
∧

o=i∈θc o= xi .

In order to construct formulaϕe, we distinguish 2 types of joins:

• Joins of forme= e11
i, j,k
θ,η e2 where all ofi, j,k belong to either{1,2,3} or {1′,2′,3′}.

Assume thati, j,k belong to{1,2,3} (the other case is of course symmetrical). We first

consider the case in whichθ1 has no equalities, whileη1 has three equalities. Moreover,

assume for the sake of readability thatη1 = (ρ(1) = ρ(1′))∧ (ρ(2) = ρ(2′))∧ (ρ(3) =

ρ(3′)). We then let

ϕe(xi ,x j ,xk) = ϕe1(x1,x2,x3)∧α(θℓ)∧α(θc
ℓ)∧β(ηℓ)∧

∃w

(

∼(x1,w)∧∃x1
(
∼(x2,x1) ∧∃x2(∼(x3,x2)ϕe2(w,x1,x2)∧

α(θr)[x1′ ,x2′ ,x3′ → w,x1,x2]∧α(θc
r)[x1′ ,x2′ ,x3′ → w,x1,x2]∧

β(ηr)[x1′ ,x2′ ,x3′ → w,x1,x2])
)
)

Where a formulaψ[x,y,z→ x′,y′,z′] is just the formulaψ in which we replace each

occurrence of variablesx,y,z for x′,y′,z′, respectively. For the case whenθ1 is nonempty,

notice here than any equality inθ1 only makes our life easier, since it eliminates one

of the existential guesses we need in the above formula. Furthermore, ifη1 has less

equalities, then we just remove the corresponding∼ predicates. This cover all other

possible cases ofθ1 andη1.

Let us illustrate this construction with an example.

8.5. Low-complexity fragments 191

Consider the expressione= e11
1,2,3
1=2∧ρ(2)=ρ(2′)∧ρ(2′)=ρ(3′)e2. Thenθℓ is 1= 2, η1 is

ρ(2) = ρ(2′) andηr = ρ(2′) = ρ(3′), all of the remaining formulas being empty. Then

we have:

ϕe(x1,x2,x3) = ϕe1(x1,x2,x3)∧x1 = x2∧∃w

(

∃x1
(
∼(x1,x2)∧

∃x2(ϕe2(w,x1,x2)∧∼(x1,x2))
)
)

• Joins of forme= e11
i, j,k
θ,η e2 where not all ofi, j,k belong to either{1,2,3} or {1′,2′,3′}.

Assume for the sake of readability thati = 1, j = 2 andk = 3′ (all of other cases are

completely symmetrical). We have again two possibilities.

(-) There are no equalities inθ1. Assume thatη1 = (ρ(1) = ρ(1′))∧ (ρ(2) = ρ(2′))∧

(ρ(3) = ρ(3′)) (we have already proved that there are at most 3 equalities inη′), cases

with less equalities are treated along the same lines. We then let

ϕe(x1,x2,x3′) =

(
∃x3(ϕe1(x1,x2,x3)∧α(θℓ)∧α(θc

ℓ)∧β(ηℓ))∧ ∼(x3,x3′)
)
∧ ∃x3

(

∼(x1,x3)∧∃x1
(

∼(x2,x1)∧ϕe2(x3,x1,x3′)∧α(θr)[x1′ ,x2′ → x3,x1]∧α(θc
r)[x1′ ,x2′ → x3,x1]∧

β(ηr)[x1′ ,x2′ → x3,x1]
)
)

(-) There is a single equality inθ1. Assume for the sake of readability thati = 1, j = 2

and k = 3′ (all of other cases are completely symmetrical). Notice that if θ1 has the

equality 3= 3′, then this is equivalent to the previous case with one equality in θ1, but

with k = 3. Moreover, equalities inθ1 involving 1 or 2 just make our life easier, so we

will also not take them into account here. We are thus left with the assumption thatθ1

contains the equality 3= 1′ (the case where it contains instead 3= 2′ is symmetrical)

Moreover, assume as well thatη1 = (ρ(1) = ρ(1′))∧ (ρ(2) = ρ(2′))∧ (ρ(3) = ρ(3′))

(we have already proved that there are at most 3 equalities inη1, and from the form of

the formula it is clear that all other cases are treated alongthe same lines).

We then let

ϕe(x1,x2,x3′) =

∃x1′

(

ϕe1(x1,x2,x1′)∧α(θℓ)[x3→ x1′]∧α(θc
ℓ)[x3→ x1′]∧β(ηℓ)[x3→ x1′]∧ ∼(x1,x1′) ∧

∃x1
(
∼(x1,x2)∧ϕe2(x1′ ,x1,x3′)∧x1′ = x3′ ∧α(θr)[x2′ → x1]∧α(θc

r)[x2′ → x1]∧

β(ηr)[x2′ → x1]
)
)

192 Chapter 8. Beyond graphs – TriAL

Having established how to constructϕe, it is now straightforward to show that it satisfies the

property of Lemma 8.5.2. It is also readily observed that thesize of formulaϕe corresponding

to e is O(|e|).

To finish the proof of Proposition 8.5.1 we show that FO4 formulas can be evaluated effi-

ciently.

Lemma 8.5.3. Let ϕ be an arbitrary formula using at most four variables. Then the set of

all tuples that makeϕ true in M , with M as above (we omit the subscript T for the sake of

readability, since it is now clear), can be computed in time O(|F| · |O|4).

Proof. To see that this holds note that we can assume that our formulas only use the connectives

¬,∨ and the quantifier∃. Indeed, we can assume this since any formula using other quantifiers

can be rewritten using the ones above with a constant blow-upin the size of formula. In par-

ticular, our formulas in Lemma 8.5.2 use only∧ in addition to these three logical connectives,

and∧ can be rewritten in terms of∨ and¬.

The desired algorithm works as follows.

1. Build a parse tree for the formulaϕ.

2. Compute the output relation(s) bottom-up using the tree.

To see that the algorithm works with the desired time bound weonly have to make sure

that each of the computation steps in 2 can be performed in timeO(|O|4). We have three cases

to consider, based on whether we are using negation, disjunction, or existential quantification.

Here we assume that we compute a matrixψ(M), for each subformulaψ of ϕ. Note that, since

we use formulas with at most four free variables each matrix can be of size at most|O|4 (i.e. we

are working with a four dimensional matrix). If the (sub)formula has only two free variables

the resulting matrix will, of course, be two dimensional.

First we consider the case of negation. That is, assume that we have a matrixψ(M) and

we are evaluating a formulaϕ = ¬ψ. Then we simply build a matrix for theϕ(M) by flipping

each bit in the matrix forψ(M). This can clearly be done in timeO(|O|4) by traversing the

entire matrix.

Next, consider the case whenϕ = ∃xψ(x,y,z,w) and assume that we have the matrix for

ψ(x,y,z,w). The existing matrix is now reduced to a three dimensional matrix with the value 1

in position i, j,k if and only if there is anl such thatψ(M)[l , i, j,k] = 1. Note that computing

this amounts to scanning the entire matrix forψ. In the case whenψ case only three free

variables we will need onlyO(|O|3) time to computeϕ(M).

Finally, let ϕ = ψ1(x,y,w) ∨ψ2(x,y,z,w). The cases whenψ1 and ψ2 have a different

number of free variables follows by symmetry. What we do firstis to compute a 4-D matrix

8.5. Low-complexity fragments 193

ψ′1(M) by settingψ′1(M)[i, j,k, l] = 1 iff ψ1(M)[i, j, l] = 1. Note that this matrix can be

computed in timeO(|O|4). Next we compute the output matrix by putting 1 in each cell where

eitherψ′1(M) or ψ2(M) have 1. All the other cases can be performed symmetrically byusing

the appropriate matrices and their projections.

This completes the proof of Lemma 8.5.3.

Navigational fragments To pose navigational queries, one needs the recursive algebra, so the

question is whether similar bounds can be obtained for meaningful fragments ofTriAL∗. Using

the ideas from the proof of Theorem 8.4.2 we immediately get an O(|e| · |O| · |T |2) upper bound

for TriAL= with recursion. However, we can improve this result for the fragmentreachTA= that

extendsTriAL= with essentiallyreachabilityproperties, such as those used in RPQs and similar

query languages for graph databases.

To define it, we restrict the star operator to mimic the following graph database reachability

queries:

• the query “reachable by an arbitrary path”, expressed by(R1
1,2,3′

3=1′)
∗; and

• the query “reachable by a path labeled with the same element”, expressed by

(R1
1,2,3′

3=1′,2=2′)
∗.

These are the only applications of the Kleene star permittedin reachTA=. For this fragment,

we have the same lower complexity bound.

Proposition 8.5.4. The problemQUERYCOMPUTATION for reachTA= can be solved in time

O(|e| · |O| · |T|).

Proof. To show this we will use the algorithm presented in Proposition 8.5.1. All of the op-

erations except the evaluation of Kleene star will be preformed in a same way as there. Note

that we can assume this since the algorithm in Lemma 8.5.3 computes the subexpressions bot-

tom up using the matrices representing the output. Thus we can use it to compute answers to

subformulas, compose it with the method presented here to evaluate Kleene stars and proceed

with the algorithm from Lemma 8.5.3. To obtain the desired complexity bound we only have

to show how to compute navigational operations in timeO(|O| · |T|).

That is, we show how to, given a matrix representation for a relation Rwe compute matrix

representation for(R1
1,2,3′

3=1′)
∗ and(R1

1,2,3′

3=1′,2=2′)
∗, respectively.

Let O= {o1, . . . ,on} be the set of object appearing in our triplestoreT. (The assumption

that they are ordered is standard when considering matrix representations). As input, we are

given a three dimensional matrixR representing the output of relationR when evaluated over

T. That is we have(oi ,o j ,ok)∈R(T) if and only if R[i, j,k] = 1. (Here we useRboth to denote

the relationRand its matrix representation).

194 Chapter 8. Beyond graphs – TriAL

First we give a procedure that computes the matrixMe for the expression

e= (R1
1,2,3′

3=1′)
∗.

Procedure 3Computinge= (R1
1,2,3′

3=1′)
∗

Input: Matrix representation ofR

Output: Matrix Me representinge

1: Precomputing the reachability matrixRreach:

2: for i = 1→ n do

3: for j = 1→ n do

4: for k= 1→ n do

5: if R[i,k, j] = 1 then

6: Rreach[i, j] = 1

7: Compute the transitive closureR∗reach

8: Compute the output matrixMe:

9: for i = 1→ n do

10: for j = 1→ n do

11: for k= 1→ n do

12: if R[i,k, j] = 1 then

13: for l = 1→ n do

14: if R∗reach[j, l] = 1 then

15: Me[i,k, l] = 1

To show that the algorithm works correctly notice that steps1 to 6 precompute the matrix

Rreach such thatRreach[i, j] = 1 if and only if oi has and out edge ending ino j (or equivalently

(oi ,o,ok) ∈ T for someo). After this in step 7 we compute the transitive closureR∗reach thus

obtaining all pairs of nodes reachable one from another using path of arbitrary label in the

graph representingT. Next in steps 8 to 15 we simply compute all the triples in the output

matrix Me. To do so we observe that a pair(oi ,ok) will belong to some triple(oi ,ok,ol) of the

output, if there isj such that(oi ,ok,o j) ∈ T (line 12) andol is reachable fromo j (line 14).

To determine the complexity of the algorithm notice that steps 1 to 6 take timeO(|O|3) =

O(|T|), while computing the transitive closure in step 7 can be doneusing Warshall’s algorithm

(see T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, The

MIT Press, 2003.) in timeO(|O|3) = O(|T|). Finally steps 8 to 15 take timeO(|O| · |T|), thus

giving us the desired time bound.

Next we show how to compute joins of the form(R1
1,2,3′

3=1′,2=2′)
∗ using a slight modification

of the algorithm above.

8.6. Expressive power 195

Procedure 4Computinge= (R1
1,2,3′

3=1′,2=2′)
∗

Input: Matrix representation ofR

Output: Matrix Me representinge

1: for k= 1→ n do

2: Precomputing the reachability matrixRk
reach:

3: for i = 1→ n do

4: for j = 1→ n do

5: if R[i,k, j] = 1 then

6: Rreach[i, j] = 1

7: Compute the transitive closureRk
reach

∗

8: compute the output matrixMe:

9: for i = 1→ n do

10: for j = 1→ n do

11: if R[i,k, j] = 1 then

12: for l = 1→ n do

13: if Rk
reach

∗
[j, l] = 1 then

14: Me[i,k, l] = 1

It is straightforward to see that the algorithm uses the sametime to compute the output as

the algorithm in Procedure 3.

To show that it works correctly observe that we precompute matrix Rk
reach for eachk, thus

checking reachability only for triples whose second node isok. Since the rest of the algorithm

works in the same way as the one in Procedure 3, we conclude that the computed answerMe

representsecorrectly.

8.6 Expressive power

In this section we compare the expressive power ofTriAL with that of classical relational lan-

guages. As already mentioned, FO is one of the most common database yardsticks when it

comes to relational querying and close connections with it are often one of the priorities in

query language design.

Here we will show that power ofTriAL and its recursive variantTriAL∗ is precisely bounded

by well studied fragments of FO and transitive closure logicTrCl [Grädel, 1991,Libkin, 2004].

In particular, we show thatTriAL lives between FO3 and FO6, while being uncomparable to

FO4 and FO5, the inclusions here being strict. The intuitive reason forthis is that while triple

joins can be simulated using six variables, at the same time they carrying more information in

their conditions than fits into five variables. An analogous result holds forTriAL∗, but this time

196 Chapter 8. Beyond graphs – TriAL

with TrCl3 throughTrCl6. We will also show that the fragment that allows no inequalities, that

is TriAL=, lies strictly between FO3 and FO4.

As usual, we say that a languageL1 is contained in a languageL2 if for every query inL1

there is an equivalent query inL2. If in addition L2 has a query not expressible inL1, thenL1

is strictly contained inL2. The languages are equivalent if each is contained in the other. They

are incomparable if none is contained in the other.

To compareTriAL with relational languages, we use exactly the same relational represen-

tation of triplestores as we did when we found Datalog fragments capturingTriAL andTriAL∗.

That is, we compare the expressive power ofTriAL with that of First–Order Logic (FO) over

vocabulary〈E1, . . . ,En,∼〉.

SinceTriAL is a restriction of relational algebra, of course it is contained in FO. We do

a more detailed analysis based on the number of variables. Recall that FOk stands for FO

restricted tok variables only. To give an intuition why such restrictions are relevant for us,

consider, for instance, the join operatione= E1
1,3′,3
2=2′ E. It can be expressed by the following

FO6 formula: ϕ(x1,x3′ ,x3) = ∃x2∃x1′∃x2′
(
E(x1,x2,x3)∧E(x1′ ,x2′ ,x3′)∧ x2 = x2′

)
. This sug-

gests that we can simulate joins using only six variables, and this extends rather easily to the

whole algebra. One can furthermore show that the containment is proper in this case.

What about fragments of FO using fewer variables? Clearly wecannot go below three

variables. It is not difficult to show thatTriAL simulates FO3, but the relationship with the 4

and 5 variable formalisms appears much more intricate, and its study requires more involved

techniques. We can show the following.

Theorem 8.6.1.

• TriAL is strictly contained inFO6.

• FO3 is strictly contained inTriAL.

• TriAL is incomparable withFO4 andFO5.

The containment of FO3 in TriAL is proved by induction, and we use pebble games to show

that such containment is proper. For the last, more involvedpart of the theorem, we first show

thatTriAL is not contained in FO5. Notice that the expressionegiven by

U
1,2,3

1
θ

U, with θ = {i 6= j | i, j ∈ {1,1′,2,2′,3,3′}, i 6= j},

is such thate(T) is not empty if and only ifT has six different objects (recall thatU is the set

of all triples(o1,o2,o3) so that eachoi occurs in a triple inT). It then follows thatTriAL is not

contained in FO5 (nor FO4), cf. [Libkin, 2004]. To show that FO4 is not contained inTriAL, we

devise a game that characterizes expressibility ofTriAL, and use this game to show thatTriAL

cannot express the following FO4 queryϕ(x,y,z):

∃w
(
ψ(x,y,w)∧ψ(x,w,z)∧ψ(w,y,z)∧ψ(x,y,z)

)
,

8.6. Expressive power 197

where

ψ(x,y,z) = ∃w
(
E(x,w,y)∧E(y,w,z)∧E(z,w,x)

)
.

The above result also shows thatTriAL cannot express all conjunctive queries, since in particular

the queryϕ(x,y,z) is a conjunctive query. This is of course expected; the intuition is thatTriAL

queries have limited memory and thus cannot express queriessuch as the existence of ak-

clique, for large values ofk.

Next we give the full proof.

Proof of Theorem 8.6.1.We split the proof into three parts, each corresponding to one of

the claims of the theorem.

Part 1 Let ebe aTriAL expression. We construct an FO6 formulaϕe such thate(T) = ϕe(IT),

for each triplestoreT. The proof is by induction.

• For the base case, ifecorresponds to a triplestore nameE, thenϕe is E(x,y,z).

• If e= e1∪ e2, thenϕe(x,y,z) = ϕe1(x,y,z) ∨ϕe2(x,y,z), which clearly is in FO6 since

existential variables withinϕe1 andϕe2 can be renamed and reused.

• If e= e1−e2, thenϕe(x,y,z) = ϕe1(x,y,z)∧¬ϕe2(x,y,z)

• If e= e11
i, j,k
θ,η e2, thenϕe(xi ,x j ,xk) = ∃xu∃xv∃xwϕe1(x1,x2,x3)∧ϕe2(x1′ ,x2′ ,x3′)∧α(θ)∧

β(η), where u,v,w are the remaining elements that together withi, j,k complete

{1,1′,2,2′,3,3′}, α(θ) contains the equalityxp = xq or xp = o for each equalityp= q or

p= o in θ, for o∈ O andp,q∈ {1,1′,2,2′,3,3′}, and likewise for inequalities, andβ(η)

contains atom∼(xp,xq) for each equalityρ(p) = ρ(q) in η, and likewise for inequalities

using atom¬∼.

• Similarly, if e= σθ,ηe1 thenϕe(x,y,z) = ϕe1(x,y,z)∧α(θ)∧β(η), whereα(θ) andβ(η)

are defined as in the previous bullet.

It is now straightforward to check the desired properties for eandϕe.

That the containment is strict follows from Part 3 of the proof.

Part 2 To show that FO3 is contained inTriAL, one needs to show how to construct, for every

FO3 formulaϕ, an equivalentTriAL expressioneϕ such thateϕ(T) = ϕ(IT), for all triplestores

T.

The construction is done by induction on the formula.

Recall here that U is just a shorthand for the relation that containsO3.

• For the base case, ifϕ = E(x1,x2,x3) for some triplestore name theneϕ is justE. How-

ever, in the general case whenϕ = E(xi,x j ,xk), for each ofi, j,k in {1,2,3}, we let

eϕ = E1i, j,k E. For the other base case, ifϕ is x1 = x2, theneϕ = σ1=2U .

198 Chapter 8. Beyond graphs – TriAL

• If ϕ = ¬ϕ1, theneϕ = U − eϕ1 (recall that we assume active domain semantics for FO

formula).

• If ϕ = ∃xϕ1(ȳ), theneϕ = eϕ1 1
d̄U , whered̄ depends on the size of ¯y: if |ȳ| = 3 then

d̄ = i, j,k′, if ȳ= 2 thend̄ = i, j ′,k′, and if ȳ= 1 thend̄ = i′, j ′,k′.

• If ϕ = ϕ1(x̄, ȳ)∨ϕ2(x̄, z̄), theneϕ = eϕ1 ∪eϕ2. Notice here that we assume that variables

in x̄, ȳ, z̄ appear in the same order in bothϕ1 andϕ2. If this is not the case then one can

only permute the variables by doing a join, as in the base case.

We leave the proof thatϕ andeϕ satisfy our desired properties, since it is easy to check.

The key idea is that we do not need projection in our algebra tosimulate FO3 queries, since we

know that they will have 3 free variables at the end, in the induction step we can just ignore

some of the positions in the triples.

To show that the containment is proper, consider the following property over triplestore

databases:

A triplestore databaseT has four different objects.

It is not difficult to construct aTriAL expressione such thate(T) is nonempty if and only

if T has four different objects. For example, one can use the expressione=U 1
1,2,3
θ U , where

θ = (1 6= 2)∧ (1 6= 3)∧ (1 6= 1′)∧ (2 6= 3)∧ (2 6= 1′)∧ (3 6= 1′).

On the other hand, letT3 = (O3,E3,ρ) be the triplestore in whichO3 = {a,b,c} andE3 =

O3×O3×O3, andT4 = (O4,E4,ρ′) be the triplestore in whichO4 = {a,b,c,d} and E4 =

O4×O4×O4. In addition we setρ(a) = ρ(b) = ρ(c) = 1 andρ′ = ρ∪{(d,1)}. It is trivial

to show that these structures cannot be distinguished by anyformula in the infinitary logic

L3
∞ω [Libkin, 2004], since the duplicator always has a strategy to ensure that the 3-pebble game

can be played forever in these structures (see e.g. [Libkin,2004]). Note that the standard game

will work here, since all the data values are the same, so theydo not influence the winning

strategy of the duplicator. It follows that the expressione cannot be expressed in FO3 (in fact,

not even inL3
∞ω).

Part 3 For Part 3, we show thatTriAL is incomparable with FO4 and FO5.

We begin by showing that the followingTriAL query:

e6 :=U
1,2,3

1
θ

U, with θ =
∧

i, j∈{1,2,3,1′ ,2′,3′},i 6= j

i 6= j,

cannot be expressed in FO5 (and thus not in FO4).

Note that this is a modification of the query from part 1 of thisproof that simply states

that our triplestore has at least six objects. Now takeT5 = (O5,E5,ρ) with O5 = {a,b,c,d,e},

8.6. Expressive power 199

andE5 = O5×O5×O5, whereρ assigns the same data value to all elements ofO5 and define

O6 in an analogous way, but with six elements. It is a well known fact [Libkin, 2004] that the

duplicator has a winning strategy in a 5-pebble game on thesetwo structures, so they can not be

distinguished by an FO5 formula. On the other hand our expressione6 does distinguish them

and is thus not expressible in FO5.

Next we show that there is an FO4 expression that cannot be expressed by anyTriAL query

(and thusTriAL cannot express neither full FO5 nor FO6). In order to do that, we first need to

show that triple algebra expressions can be expressed with aparticular extension of FO3, that

we call here FO3-join.

Formally, we construct FO3-join formulas from FO3 formulas, the usual operators of dis-

junction, conjunction, negation, existential and universal quantification, and the following join

operator: ifϕ1 and ϕ2 are formulas in FO3-join that use variablesx1,x2,x3 and x1′ ,x2′ ,x3′

respectively,θ is a conjunction of equalities between indexes in{1,1′,2,2′,3,3′} andη is a

conjunction of equalities between indexes inρ(1), . . . ,ρ(3′), then the formulaϕ(xi ,x j ,xk) =

ϕ1(x1,x2,x3)1
i, j,k
θ,η ϕ2(x1′ ,x2′ ,x3′) is a formula in FO3-join that only uses variablesxi ,x j ,xk.

Furthermore, the number of variables in FO3-join formulas is restricted to 3, but note that for

the sake of counting variables the constructϕ(xi ,x j ,xk) = ϕ1(x1,x2,x3)1
i, j,k
θ,η ϕ2(x1′ ,x2′ ,x3′) is

assumed to use only variablesxi , x j andxk.

The semantics of the join construct is defined in the same way as for Triple Algebra, and

the rest of the operators are defined in the same way as in FO. Itis now not difficult to show

the following:

Lemma 8.6.2. Triple Algebra is contained inFO3-join.

In fact, one can actually show that both languages have the same expressive power, but for

the sake of this proof we will not bother. Continuing with theproof, we now define a game that

characterizes expressibility in FO3-join.

Let J be the set of all the join symbols that we allow inTriAL. A recipe pfor FO3-join is

a tree of rank 2 (i.e., every node can have at most two children) labeled with symbols from

alphabet{∃,∀}∪ J , such that the following holds: If a noden of p has two children, then it is

labeled with a symbol in J, and if a noden of p has one child, then it is labeled with∃ or ∀.

For every such recipep, define thequantifier class L(p) inductively as follows:

• L(ε) contains quantifier and join free formulae.

• If the root of p is labeled withQ∈ {∃,∀}, thenL(p) is the closure under conjunctions

and disjunctions of the classL(p′)∪ {Qxϕ | ϕ ∈ L(p′)}, where p′ is the subtree ofp

whose root is the only child ofp.

200 Chapter 8. Beyond graphs – TriAL

• If the root of p is labeled with a symbol1 in J, let p1 andp2 be the subtrees ofp whose

roots are the first and the second child ofp, respectively. ThenL(p) is the closure under

conjunctions and disjunctions of the class of all formulaeϕ 1 ψ, whereϕ ∈ L(p1) and

ψ ∈ L(p2).

We now define the join game between two structures. This game proceeds as in a typical 3-

pebble game (see [Libkin, 2004] for a precise explanation),except the following sets of moves

are available to the spoiler:

The join 1
i, j,k
θ,η move:

The spoiler picks a structure, and then splits the 3 pebbles in that structure into two sets of 3

pebbles, set 1 and set 2, with the condition that the splitsatisfiesthe join: If before the move

the first, second and third pebbles where in elementsa, b andc, then the first, second and third

elements of each of the set of pebbles must be placed in elements a1,b1,c1 anda2,b2,c2 such

that(a,b,c) = (a1,b1,c1)1
i, j,k
θ,η (a2,b2,c2).

Duplicator must then split the pebbles in the other structure into two sets of pebbles, in the

same fashion as the spoiler, with the split also satisfying the conditions of the join, Spoiler then

picks either set 1 or set 2, and remove the other set of pebblesfrom both structures.

A join gameon a pair of structures(A ,B), is played as the regular 3 pebble game, except

now the spoiler can use any number of1 moves, for1 in J. The winning conditions for both

players are the same as in the 3-pebble game. For every recipep of FO3-join we also define

theL(p)-join game. This contains all join games in which the sequence of moves performed

by the spoiler are described by a path from the root ofp to one of its leaves.

Let L be a class of FO3-join formulae and A and B structures of vocabulary〈E,∼〉. We

write A �L B if A |= ϕ impliesB |= ϕ, for every sentenceϕ ∈ L.

Lemma 8.6.3. The following are equivalent:

• The duplicator has a winning strategy on all L(p) join games.

• A �L(p) B

Before we prove this Lemma, we make the following crucial observation: If, in a join game

a pebble has already been placed on elementa ∈ A , then the remainder of the game can be

considered as a game with two pebbles on(A ,a), until the first pebble is replaced somewhere

else, or a join move are performed. We call these gamestruncated.

Proof. We prove the contrary: If there is a sentenceϕ of classL(p) such thatA |= ϕ butB 6|=ϕ,

then the spoiler has a winning strategy for theL(p)-join game.

We prove this by induction on the height ofp.

The case whenp is empty is trivial.

8.6. Expressive power 201

Assume that Lemma holds for all recipes of heightk, and letp be a recipe of heightk+1.

Furthermore, assume that there is a sentenceϕ such thatA |= ϕ, butB 6|= ϕ. We will construct

a winning strategy for the spoiler. Ifϕ is a boolean combinations of formulas, then the two

structures are distinguished by at least one of them. We are thus left with the following cases:

• ϕ is of form∃ψ(x̄), where ¯x is a tuple of at most two variables, andψ has depth at most

k−1 and belongs toL(q), whereq is the subtree whose root is the single child ofp. Then

the spoiler can win as follows. In his first move he places one pebble in elementa such

that(A ,a) |= ψ. No matter in which elementb∈ B the duplicator places its pebble, we

know that(B ,b) 6|= ψ, and thus the spoiler has a winning strategy for the remainder of

the truncated game.

• ϕ is of form∀ψ(x̄), in which case the strategy is analogous to the previous one

• ϕ(a,b,c) is of form ϕ1 1 ϕ2, for some1 in J (note thata,b,c are interpreted as constants

of A and B). Thenp has two childrenp1 and p2, both of height≤ k, andϕ1 ∈ L(p1),

ϕ2 ∈ L(p2). SinceA |= ϕ(a,b,c), yet B 6|= ϕ(a,b,c), spoiler can win by first placing

pebbles on elementsa,b,c, and splitting pebbles placing them into sets(a1,b1,c1) and

(a2,b2,c2) of elements in A such that(a1,b1,c1) 1 (a2,b2,c2) = (a,b,c). Given that

B 6|= ϕ(a,b,c), then for every pair(d1,e1, f1) and(d2,e2, f2) of elements in B such that

(d1,e1, f1) 1 (d2,e2, f2) = (a,b,c), it must be the case that either(B 6|= ϕ1(d1,e1, f1) or

(B 6|= ϕ(d2,e2, f2). Depending on the move of the duplicator, spoiler chooses the set

accordingly, and continues to win the truncated game on(A ,ai ,bi ,ci) and(B ,di ,ei , fi),

for i = 1 or i = 2.

We now continue with the proof of the Theorem. Due to Lemma 8.6.3, all that is left to do

is to show structures A and B such that the duplicator can win any join game, and yet they are

distinguished by an FO4 formula.

The structures are as follows:

Consider objectsa,b,c plus objectsd1, . . . ,d9 ande1, . . . ,e12.

• Structure A contain edges(a,ei ,b),(b,ei ,a),(a,ei ,c),(c,ei ,a),(b,ei ,c),(c,ei ,b), for

each 1≤ i ≤ 12, plus edges(a,ei ,d j),(d j ,ei ,a),(b,ei ,d j),(d j ,ei ,b),(c,ei ,d j),(d j ,ei ,c)

for each 1≤ i ≤ 4 and 1≤ j ≤ 12.

• Structure B also has edges(a,ei ,b),(b,ei ,a),(a,ei ,c),(c,ei ,a),(b,ei ,c),(c,ei ,b), for

each 1≤ i ≤ 3, plus edges(a,ei ,b),(b,ei ,a),(b,ei ,d j),(d j ,ei ,b) and(a,ei ,d j),(d j ,ei ,a)

for each 1≤ j ≤ 3 and for each 4≤ i ≤ 6; (a,ei ,c),(c,ei ,a),(d j ,ei ,c),(c,ei ,d j)

202 Chapter 8. Beyond graphs – TriAL

and (a,ei ,d j),(d j ,ei ,a) for each 4≤ j ≤ 6 and for each 7≤ i ≤ 9; and

(b,ei ,c),(c,ei ,b),(b,ei ,d j),(d j ,ei ,b) plus(c,ei ,d j),(d j ,ei ,c) for each 7≤ j ≤ 9 and for

each 10≤ i ≤ 12.

a b

c

d j

ei

ei ei

ei

ei ei

i = 1. . .12, j = 1. . .4
Structure A

a b

c

ei

ei ei

i = 1. . .3
a

c

d j

ei

ei

ei

ei

i = 4. . .6, j = 1. . .3

b

c

d j

ei

ei

ei

i = 7. . .9, j = 4. . .6
a b

d j

ei

ei ei

i = 10. . .12, j = 7. . .9

Structure B

It is not difficult to see that the duplicator has a winning strategy for the standard 3-pebble

games on this structure. If the three pebbles placed by the spoiler do not correspond with an

edge of the structure, the the duplicator just mimics the same moves, the partial isomorphism

trivially holds. If the third pebble correspond to some edgeof form (u,ei ,v), for u andv in

{a,b,c,d1, . . . ,d9} and 1≤ i ≤ 12 in A that is not in B, assume the pebble was last placed

in u (other two cases are symmetrical). Then the duplicator needs to find a permutationτ

of the objects in A, such thatτ(ei) = ei , τ(v) = v, τ(A) is isomorphic toA and the edge

(τ(u),τ(ei),τ(v)) is in B, and place pebbles in(τ(u),τ(ei),τ(v)), so that the partial isomorphism

still holds. For the remainder of the game, duplicator acts as if dealing withτ(A) instead of A.

Next, for thei, j,k-join move, assume that pebbles in structuresA andB are in elements

ai ,a j ,ak andbi ,b j ,bk, respectively. If spoiler divides first structure B duplicator just responds

with the same edges in A. Now if spoiler divides structure A into pebbles(a1,a2,a3) and

(a1′ ,a2′ ,a3′) satisfying the join condition, we have three cases:

• If none of(a1,a2,a3) and(a1′ ,a2′ ,a3′) are edges in A then duplicator mimics the pebble

placement.

• If, say, only(a1,a2,a3) is an edge in A, then the duplicator proceeds like in the above

paragraph.

• Otherwise, if both(a1,a2,a3) and(a1′ ,a2′ ,a3′) are edges in A, duplicator needs to find a

permutationτ of the objects in A such thatτ(A) is isomorphic to A;τ(ai) = ai , τ(a j) =

a j , andτ(ak) = ak; and edges(τ(a1),τ(a2),τ(a3)) and(τ(a4),τ(a5),τ(a6)) belong to B,

and respond with those pebbles. The partial isomorphisms trivially holds.

8.6. Expressive power 203

All that is left to show that this is a winning strategy for theduplicator is to show that

there are always such permutations, no matter where are the pebbles placed. This can be easily

shown with a lengthy and straightforward case by case analysis.

From Lemma 8.6.3 we obtain that A and B agree on all FO3-join formulas. However, it is

not difficult to see that they do not agree to the following FO4 formula (which is only true in

A):

ϕ(x,y,z) = ∃x∃y∃z∃w
(
ψ(x,y,w)∧ψ(x,w,z)∧ψ(w,y,z)∧ψ(x,y,z)∧

x 6= y∧x 6= z∧x 6= w∧y 6= z∧y 6= w∧z 6= w
)
,

where

ψ(x,y,z) = ∃w
(
E(x,w,y)∧E(y,w,x)∧E(y,w,z)∧E(x,w,y)∧E(x,w,z)∧E(z,w,x)∧

x 6= z∧x 6= y∧y 6= z
)
.

This shows that FO4 is not contained inTriAL, which completes the proof of Part 3. 2

Expressivity of TriAL= TheTriAL queries we used to separate it from FO5 or FO4 make use of

inequalities in the join conditions. Thus, it is natural to ask what happens when we restrict our

attention toTriAL=, the fragment that disallows inequalities in selections and joins. We saw in

Section 8.4 that this fragment appears to be more manageablein terms of query answering. This

suggests that fewer variables may be enough, as the number ofvariables is often indicative of

the complexity of query evaluation [Immerman and Kozen, 1989, Vardi, 1995]. This is indeed

the case.

Theorem 8.6.4.

• FO3 is strictly contained inTriAL=.

• TriAL= is strictly contained inFO4.

Proof. The containment ofTriAL= in FO4 was shown in the proof of Proposition 8.5.1, and

thatTriAL= contains FO3 was already showed in the second part of the proof of Theorem 8.6.1,

since the translation used there does not make use of inequalities in joins.

That the containments are strict follows from the proof of Theorem 8.6.1.

Expressivity of the recursive algebra Next, we turn to the expressive power ofTriAL∗. Since

the Kleene star essentially defines the transitive closure of join operators, it seems natural for

our study to compareTriAL∗ with Transitive Closure Logic, orTrCl.

Formally,TrCl is defined as an extension of FO with the following operator. If ϕ(x̄, ȳ, z̄)

is a formula, where|x̄| = |ȳ| = n, and ū, v̄ are tuples of variables of the same lengthn, then

[trcl x̄,ȳϕ(x̄, ȳ, z̄)](ū, v̄) is a formula whose free variables are those in ¯z, ū andv̄. The semantics

204 Chapter 8. Beyond graphs – TriAL

is as follows. For an instanceI and an assignment ¯c for variables ¯z, construct a graphG whose

nodes are elements ofIn and edges contain pairs(ū1, ū2) so thatϕ(ū1, ū2, c̄) holds inI . Then

I |= [trcl x̄,ȳϕ(x̄, ȳ, c̄)](ā, b̄) iff (ā, b̄) is in the transitive closure of this graphG.

It is fairly easy to show thatTriAL∗ is contained inTrCl; the question is whether one

can find analogs of Theorem 8.6.1 for fragments ofTrCl using a limited number of vari-

ables. We denote byTrClk the restriction ofTrCl to k variables. Note that constructs of form

[trcl x̄,ȳϕ(x̄, ȳ, z̄)](t̄1, t̄2) can be defined using|t̄1|+ |t̄2|+ |z̄| variables, by reusinḡt1 andt̄2 in ϕ.

Then we can show that the relationship betweenTriAL∗ andTrCl mimics the results of

Theorem 8.6.1 for the case ofTriAL and FO.

Theorem 8.6.5.

• TriAL∗ is strictly contained inTrCl6.

• TrCl3 is strictly contained inTriAL∗.

• TriAL∗ is incomparable withTrCl4 andTrCl5.

Proof. We split the proof into three parts, one for each of the claims.

Part 1 We begin by proving thatTriAL∗ is strictly contained inTrCl6. To see thatTriAL∗ is

contained inTrCl6 we use induction on the structure ofTriAL∗ expressions. Note that all the

cases, except for the Kleene closure of various joins we use,are precisely the same translation

as in the proof of Theorem 8.6.1. What remains to prove is thatexpressions of the form

e′ := (e
i, j,k

1
θ,η

)∗

can be translated intoTrCl6 expressions (the other join being completely symmetrical).

To see this, letψe(x,y,z) be aTrCl6 formula equivalent toe. That is we have that

IT |= ψe(a,b,c) if and only if (a,b,c) ∈ R(T), for any triplestoreT, with IT the FO-structure

representingT. We define the following formulaψe′(x′,y′,z′) in TrCl6:

ψe(x
′,y′,z′)∨∃x,y,z

(
ψe(x,y,z)∧ [trcl x,y,z,x′ ,y′,z′ϕ(x,y,z,x′,y′,z′)](x,y,z,x′ ,y′,z′)

)

Whereϕ(x,y,z,x′,y′,z′) is a formula such thatϕ(a,b,c,a′,b′,c′) holds inIT iff there exists a

triple (a′′,b′′,c′′) such thatψe(a′′,b′′,c′′) holds and the join of(a,b,c) and(a′′,b′′,c′′) produces

triple (a′,b′,c′). The definition of this formula inTrCl6 is rather cumbersome, since it depends

on the positionsi, j,k of the join in question. We just give two examples, the rest are treated in

the same way: For the expressione′ = (e11,2,3′)∗, we have thatϕ(x,y,z,x′,y′,z′) is x= x′∧y=

y′ ∧∃x′∃y′
(
ψe(x,y,z)∧ψe(x′,y′,z′)

)
. As another example, ife′ = (e11′,2′,3′)∗, thenϕ is just

ψe(x,y,z)∧ψe(x′,y′,z′).

8.6. Expressive power 205

Next we prove thatψe′ is equivalent to expressione′ over all triplestores. For one direction,

let T be a triplestore database using a setO of objects, and assume that triple(a,b,c) belong

to e′(T). Then from the semantics of the recursive operator, there are sequencest1, . . . , tm of

triples inO3 andp1, . . . , pm of triples ine(T) such thatt1 ∈ e(T), andtm+1 = tm
i, j,k
1
θ,η

pm. If m= 1

this follows from the first part ofψe′ . If m> 1, notice that, by definition,IT |= ϕ(t j , t j+1) for

each 1≤ j < m. It follows thatIT |= ψe′ . The other direction is analogous.

The fact that the containment is strict follows from Part 3 ofthe proof.

Part 2 Next we prove thatTrCl3 is contained inTriAL∗. We do this by induction onTrCl3

formulas. Note that all the cases, except for the case of transitive closure operator, are exactly

the same as in the proof of Theorem 8.6.1. Next we show how to translate formulas of the form

ψ(x,y,z) := [trcl x,yϕ(x,y,z)](u1,u2).

By the induction hypothesis there exists aTriAL∗ expressionRϕ such that for any triplestore

T we haveIT |= ϕ(a,b,c) iff (a,b,c) ∈ Rϕ(T).

Consider now the following expressionRψ:

R := (Rϕ
1,2′,3

1
3=3′∧2=1′

)∗.

Observe now that a triple(a,b,c) will be contained inR(T) iff there is a sequence of triples

(a,b1,c),(b1,b2,c),(b2,b3,c), . . . (bk,b,c) with the property that they all belong toRϕ(T). But

this then means that the pair(a,b) belongs to the transitive closure of the relation defined by

ϕ(x,y,c). That is we have that(a,b,c)∈R(T) iff b is reachable froma using only edges defined

by ϕ(x,y,c).

We now proceed case by case, depending on the structure of terms u1 andu2. Since our

terms are only variables we have a total of nine cases.

• If u1 = x andu2 = y we defineRψ := R. It is straightforward to see that(a,b,c) ∈Rψ(T)

iff IT |= ψ(a,b,c).

• If u1 = y andu2 = x we defineRψ := R.

• If u1 = x andu2 = z we defineRψ := σ2=3R.

• If u1 = zandu2 = x we defineRψ := σ1=3R.

• If u1 = x andu2 = x we defineRψ := σ1=2R.

• All of the other cases are symmetric.

206 Chapter 8. Beyond graphs – TriAL

This concludes the proof in the case whenϕ above usesx,y,z as variables. All of the

other cases are similar, e.g. when we have the formula[trcl x,yϕ(x,y,x)](x,y) the expression

(σ1=3Rϕ 1
1,2′,3
2=1′)

∗ in place ofRwill suffice (note that now we have only two free variables).

That the containment is strict follows from the comments at the beginning of the proof of

Part 3 below.

Part 3 We begin by showing thatTriAL∗ is not contained inTrCl4 or TrCl5. In the proof of

Theorem 8.6.1 we show thatTriAL, and thusTriAL∗ contain an expressione such thate(T) is

nonempty if and only ifT has 6 different objects. The proof then follows by two classical

results in finite model theory [Libkin, 2004]: (1)e cannot be expressed by neitherL4
∞ω not

L5
∞ω, the infinitary logic restricted to 4 and 5 variables, respectively, and (2)TrClk is contained

in Lk
∞ω

To see thatTrCl4 is not contained inTriAL (and thus that neitherTrCl5 notTrCl6 are con-

tained inTriAL), we define an analog of the logic FO3-join used in the proof of Theorem 8.6.1.

The logic FO3
∞-join extends FO3-join with countably infinite disjunctions and conjunctions of

formulas in FO3-join (of course the restriction on the variables still holds). Formally, every

FO3-join formula is in FO3
∞-join, and if all ϕi are formulas in FO3∞-join using the same set of

at most 3 variables, fori ∈ S, whereS is not necessarily finite, then
∧

i∈Sϕi and
∨

i∈Sϕi are

formulas in FO3
∞-join.

Notice that, by using these disjunctions, it is trivial to express the recursive star operator of

TriAL∗ with FO3
∞-join. Thus, if two structuresA andB are indistinguishable by FO3∞-join, then

so are they byTriAL∗.

On the other hand, using the techniques in [Libkin, 2004] it is not difficult to see that, if two

structuresA andB are indistinguishable by FO3∞-join iff they are indistinguishable by FO3-join

(if the spoiler can win the join game onA andB , then it can win the infinitary join game that

characterizes FO3∞-join).

It follows from the above observations, and the proof of Theorem 8.6.1, thatTriAL∗ cannot

express the query

ϕ(x,y,z) = ∃x∃y∃z∃w
(
ψ(x,y,w)∧ψ(x,w,z)∧ψ(w,y,z)∧ψ(x,y,z)∧

x 6= y∧x 6= z∧x 6= w∧y 6= z∧y 6= w∧z 6= w
)
,

where

ψ(x,y,z) = ∃w
(
E(x,w,y)∧E(y,w,x)∧E(y,w,z)∧E(x,w,y)∧E(x,w,z)∧E(z,w,x)∧

x 6= z∧x 6= y∧y 6= z
)
.

used in the proof of Theorem 8.6.1.

8.7. Summary 207

8.7 Summary

In this chapter we have seen that although graph query languages form a good basis for nav-

igational querying of RDF documents, certain properties ofthe model require a more general

approach. Indeed, nested queries such as the one from Proposition 8.1.2 are often required in

applications such as data integration, provenance tracking, or clustering, and the inherent in-

ability of graph languages to deal with them becomes somewhat of an issue. Coding triples as

graphs can be seen as one solution to this problem, however, this will not always work (without

incurring a significant computational cost) and more organic languages, tailored specifically

for RDF are required. To that end it is advantageous to recognize that reachability over graphs

– binary in its essence – differs significantly from reachability over triples, where more general

form of navigation is needed.

To overcome this issue we have proposedTriAL andTriAL∗, languages designed to operate

specifically over triples. Like relational algebra, takingrelations as input and producing rela-

tions as output, we designed our language to be closed. Therefore aTriAL query will always

produce a valid triplestore, not taking us outside of the studied model. Furthermore, the lan-

guage was shown to be efficient, highly expressive and able tohandle generalized reachability

queries that fall out of scope of graph languages or SPARQL. The language also has a tidy

declarative counterpart – a fragment of datalog calledTripleDatalog¬, and is strongly rooted

in logic. All of this seems to point to high potential applicability of the language, particularly

taking into consideration that most of the features, namelyjoins, which form the crux of the

language, have been implemented and optimized on all of the currently available RDBMSs.

Of course, it remains to see if such systems can scalably implement the type of recursion we

require, and to test how such an implementation stacks against currently used RDF systems.

Part III

Analysing the languages: Comparison

and Containment

209

Chapter 9

Comparing the languages

In this chapter we compare previously introduced query languages in terms of expressive

power. In particular we will present the complete picture ofhow the classes are related to

each other and also examine purely navigational power of graph languages introduced in Part

II. Note that navigational fragments of path queries from Part I collapse to RPQs and their

relative expressiveness is well understood [Barceló, 2013].

As before, we will say that a languageL1 is contained in a languageL2 if for every query

in L1 there is an equivalent query inL2. If in addition L2 has a query not expressible inL1,

thenL1 is strictly contained inL2. The languages are equivalent if each is contained in the

other. They are incomparable if none is contained in the other.

We begin by comparing path languages to each other and show a strict hierarchy starting

with RQDs and ending with RDPQs, with the exception of RQVs, which are, as established

earlier, orthogonal to all of those. We then move ontoGXPath and show that while the language

is more expressive thanRQDs, its inability to store data into variables makes it incomparable

to other path languages. Note that here it also makes sense tostudy the expressive power of

purely navigational language and compare it to that ofNREs and CRPQs, sinceGXPath does

allow some, albeit limited, amount of conjunction. Finally, we demonstrate howTriAL∗ can be

used as a graph query language and show that, although it subsumesGXPath, it still has the

same weakness of not being able to use variables, thus makingit incomparable to RDPQs and

other path formalisms that do have this functionality.

9.1 Path queries

From semantics of path queries in Chapter 4 it readily follows that a class of queriesL1 is

subsumed byL2 if and only if the class of automata of expressions used to define queries in

L2 are more expressive than the ones definingL1. To that end it suffices to compare language

theoretic formalisms defining path queries to gauge their relative expressive power. It is also

211

212 Chapter 9. Comparing the languages

easy to see that whether we consider languages over data words or over data paths has no

impact on the final result (see Section 3.1).

Taking this into consideration, applying Theorem 6.6.1 immediately implies the following

set of results.

Theorem 9.1.1. The following relations hold, where(denotes that language on the left is

subsumed by the language on the right, but not vice versa.

• RQDs(RQBs(RQMs= RDPQs.

• RQVs are incomparable in terms of expressive power with RQDs, RQBs , RQMs and

RDPQs.

9.2 Moving up the food chain

Here we compareGXPath to path languages introduced in Chapter 4 as well as to traditional

navigational languages such as RPQs, CRPQs andNREs. Note thatGXPath enriches RPQs

with new navigational abilities and it is therefore worthwhile examining how navigational part

of the language fares when compared to other extensions of RPQs.

GXPath and path languages When comparingGXPath with path languages we will consider

the regular fragment with∼ type data tests, since they subsume classicalXPath-style tests.

While it is apparent from the definition ofGXPathreg(c,∼) that it containsRQDs, we can also

show that the containment is strict.

Proposition 9.2.1. The class of RQD queries is strictly contained inGXPathreg(c,∼).

Proof. To see that the containment is strict consider the followingGXPath query:

q= (a[b])∗.

Note that this is also anNRE. To obtain a contradiction assume that there is someRQD Qq

equivalent toq. Now consider the following graphG.

a

b

v1 v2

v3

Data values are not important here so we do not list them explicitly. It is easily checked that

(v1,v2)∈ JqKG. By our assumption we also have that(v1,v2)∈Qq(G). But sinceQq is anRQD

this means that there is some regular expression with equality eq such thatQq = x
eq
−→ y and:

9.2. Moving up the food chain 213

• There is a pathπ starting withv1 and ending withv2, and

• λ(π) belongs toL(eq).

However, the only path inG connectingv1 andv2 is π = v1av2. Consider now the graphG′

obtained fromG by removing the edge(v2,b,v3). We now have(v1,v2) /∈ JqKG′ , butπ = v1av2

is still a path inG′ with λ(π) ∈ L(eq). This then implies that(v1,v2)∈Qq(G′), a contradiction.

ComparingGXPath to more expressive path languages we can see that the abilityto use

variables makes them capable of expressing queries outsidethe reach ofGXPath. We also

show that the converse is true, as new navigational featuresallow GXPath to define patterns not

captured by paths.

Proposition 9.2.2. GXPathreg(c,∼) is incomparable in terms of expressive power with RQMs,

RQBs,RDPQs and RQVs.

Proof. It is easily seen that the example from Proposition 9.2.1 canbe used to give aGXPath

query not expressible by any of the path languages.

To prove the reverse we show thatGXPathreg(c,∼) is contained in three variable infinitary

logic L3
∞ω (with constants and data value comparisons). It is well knowthat this logic can

not define models that have at least four different elements [Libkin, 2004]. However, one can

readily check that such a query is expressible by any of the path formalisms mentioned in this

theorem. We will give a full proof of this fact for a slightly stronger class of queries in Theorem

9.3.8. This, together with Proposition 9.3.6, implies the desired result.

Relative expressiveness of navigational fragments Our next goal is to compare the ex-

pressiveness of navigationalGXPath fragments with that of traditional graph languages. We

start with nested regular expressions, and after that look at path languages such as RPQs,

CRPQs, and relatives.

As expected,GXPathreg is strictly more expressive thanNREs. However, we show that

NREs do capture the positive fragment ofGXPathreg.

Theorem 9.2.3.GXPathpos
reg = NRE (GXPathpath-pos

reg .

Proof. First we show thatNRE (GXPathreg.

Using a straightforward inductive construction one can show how to convert a nested reg-

ular expression into an equivalent path expression ofGXPathreg. Note that all the operations

can be written down verbatim, minus the[n] expression whoseGXPathreg equivalent is[〈en〉],

whereen is an expression equivalent ton.

Next we show thatGXPathcore queryq= a[¬〈b〉] is not expressible by anyNRE.

Consider the following data graphG.

214 Chapter 9. Comparing the languages

b

b

v v′

a

a

It is easy to see thatJqKG= /0. We now show thatJnKG 6= /0, for any nested regular expression

n. Thus we conclude that no equivalentNRE exists.

In fact we show that for everyNRE n there exist nodesx1,x2,y1,y2 ∈ {v,v′} such that

(v,x1),(v′,x2),(y1,v),(y2,v′) ∈ JnKG.

This can be shown by an easy induction on the structure ofn.

We now show thatGXPathpath-pos
reg = NRE.

We already know that nested regular expressions can be expressed asGXPath queries. Ex-

amining the proof shows us that no negation is needed for this.

To complete the proof we now show how to convert anyGXPathpos
reg expression into an

equivalent nested regular expression. More precisely, we show that for any path expressionα

of our fragment there exists a nested regular expressionnα such that for any graphG we have

(x,y) ∈ JαKG iff (x,y) ∈ JnαKG. Moreover, for any node expressionϕ we define a nested regular

expressionnϕ such thatx∈ JϕKG iff (x,x) ∈ JnϕKG. We do this by induction on the structure of

our GXPathpos
reg expressions.

Basis:

• e= a thenne = a

• e= a− thenne = a−

• e= ε thenne = ε

• e=⊤ thenne = ε

Inductive step:

• e= [ϕ] thenne = [nϕ]

• e= α ·β thenne = nα ·nβ

• e= α∪β thenne = nα +nβ

• e= ϕ∧ψ thenne = ε[nϕ] · ε[nψ]

• e= ϕ∨ψ thenne = ε[nϕ +nψ]

• e= 〈α〉 thenne = ε[nα].

It is easy to see the equivalence between defined expressions.

9.2. Moving up the food chain 215

We will now show that XPath-like formalisms are incomparable with CRPQs and similar

queries in terms of their navigational expressiveness. Thesimple restriction,GXPathpos
reg, is not

subsumed byCRPQs. In fact it is not even subsumed by unions of two-wayCRPQs (which

allow navigation in both ways). On the other hand,CRPQs are not subsumed by the strongest

of our navigational languages,GXPathreg.

Theorem 9.2.4.CRPQs andGXPath fragments are incomparable:

• GXPathpos
reg 6⊆ CRPQ (even stronger, there areGXPathpos

reg queries not definable by

U2CRPQs);

• CRPQ 6⊆ GXPathreg.

Proof. Note that the first item follows from Theorem 9.2.3 and Theorem 1 in [Barceló et al.,

2012c].

To see that the second item holds we first show that for everyGXPathreg expressione there

exists anL3
∞ω formulaFe equivalent to it. After that we give an example of a CRPQ that is not

expressible in this logic using a standard multi-pebble games argument.

To be more precise we will be working withL3
∞ω formulas over the alphabet{Ea : a∈ Σ}

(and with the equality symbol). All the relations are binaryand simply represent a la-

beled edge between two nodes. We will denote data graphs as structures for this logic by

G= 〈V,(Ea)a∈A,=〉.

Now for every path expressionα we will define a formulaFα(x,y) such that(v,v′) ∈ JαKG

iff G |= Fα[x/v,y/v′]. Likewise for a node expressionϕ we define a formulaFϕ(x) such that

v∈ JϕKG iff G |= Fϕ[x/v].

We do this by induction onGXPathreg expressions.

Basis:

• α = a thenFα(x,y) ≡ Ea(x,y)

• α = a− thenFα(x,y) ≡ Ea(y,x)

• α = ε thenFα(x,y) ≡ x= y

• ϕ =⊤ thenFα(x) ≡ x= x

Inductive step:

• α′ = [ϕ] thenFα′(x,y) ≡ x= y∧Fϕ(x)

• α′ = α ·β thenFα′(x,y) ≡ ∃z(∃y (y= z∧Fα(x,y))∧∃x (x= z∧Fβ(x,y)))

• α′ = α∪β thenFα′(x,y) ≡ Fα(x,y)∨Fβ(x,y)

• α′ = α∗ then define

– ϕ1
α(x,y) ≡ Fα(x,y),

216 Chapter 9. Comparing the languages

– ϕn+1
α (x,y) ≡ ∃z (∃y (y= z∧Fα(x,y))∧∃x (x= z∧ϕn

α(x,y)))

– Finally, setFα′(x,y) ≡
∨

n∈ω ϕn
α(x,y)

• α′ = α thenFα′(x,y) ≡ ¬Fα(x,y)

• ϕ′ = ¬ϕ thenFϕ′(x)≡ ¬Fϕ(x)

• ϕ′ = ϕ∧ϕ thenFϕ′(x)≡ Fϕ(x)∧Fψ(x)

• ϕ′ = 〈α〉 thenFϕ′(x)≡ ∃yFα(x,y).

It is straightforward to show that the translation has the desired property.

Next we define a binary CRPQϕ(x,y) that has noGXPathreg equivalent.

ϕ(x,y) := (x,a,y)∧ (x,a,z)∧ (x,a,w)∧

(y,a,x)∧ (z,a,x)∧ (w,a,x)∧

(y,a,z)∧ (y,a,w)∧

(z,a,y)∧ (w,a,y)∧

(z,a,w)∧ (w,a,z).

Note thatϕ is stating that our graph has a complete subgraph of size four.

Next we take two graphsG1 andG2 as in the following figure.

a

a a

a

a

aa
a a

G1 G2

Note thatG1 is a complete graph of three vertices with all the edges labeleda andG2 is the

same, but with four vertices. It is straightforward to see that ϕ(G1) = /0, while ϕ(G2) 6= /0.

It is well known that noL3
∞ω sentenceF can distinguish the two models (see, e.g., [Libkin,

2004]). This is due to the fact that that duplicator has a winning strategy in an infinite 3-pebble

game on these graphs, simply by preserving equality of pebbled elements. That is for anyF

we haveG1 |= F iff G2 |= F. Note that our result follows, since the aboveCRPQ selects the

entire graph onG2 and the empty graph onG1. This completes our proof.

On the other hand, the positive fragment ofGXPathcore can be captured by unions of two-

way CRPQs.

Proposition 9.2.5. GXPathpos
core(U2CRPQ.

9.3. Triple algebra and graph languages 217

Proof. From the previous theorem we know that there is aCRPQ not expressible inGXPathreg.

On the other hand, for anyGXPathpos
core expressione we can construct an equivalent

U2CRPQ. That is, for any path expressionα we define aU2CRPQ, namedψα(x,y), in two

free variables,x andy, such that for any graph databaseG we haveJαKG = ψα(G). Similarly

for any node expressionϕ we define aU2CRPQ ψϕ(x). We do so by induction on the structure

of GXPathpos
core expressions.

Basis:

• For α = ε we haveψα(x,y) := (x,ε,y).

• For α = _ we haveψα(x,y) :=
∨

a∈Σ(x,a,y).

• For α = a we haveψα(x,y) := (x,a,y).

• For α = a− we haveψα(x,y) := (x,a−,y).

• For α = a∗ we haveψα(x,y) := (x,a∗,y).

• For α = a−∗ we haveψα(x,y) := (x,a−∗,y).

• For ϕ =⊤ we haveψϕ(x) := ∃y(x,ε,y).

Inductive step:

• For α = [ϕ] we haveψα(x,y) := (x,ε,y)∧ψϕ(y).

• For α = α′ ·β′ we haveψα(x,y) := ∃zψα′(x,z)∧ψβ′(z,y).

• For α = α′∪β′ we haveψα(x,y) := ψα′(x,y)∨ψβ′(x,y).

• For ϕ = ϕ1∧ϕ2 we haveψϕ(x) := ψϕ1(x)∧ψϕ2(x).

• For ϕ = ϕ1∨ϕ2 we haveψϕ(x) := ψϕ1(x)∨ψϕ2(x).

• For ϕ = 〈α〉 we haveψϕ(x) := ∃yψα(x,y).

It is straightforward to show that the defined expressions are equivalent.

9.3 Triple algebra and graph languages

Although introduced as a querying mechanism for RDF Triplestores,TriAL∗ can also be used to

query graph databases. The goal of this section is to demonstrate how this can be achieved, both

when considering graphs with or without data values and to show thatTriAL∗ can be viewed as

a natural extension ofGXPath, allowing more involved types of queries and data tests. Since

the language has not been studied in the graph context before, we will start by comparing it to

traditional navigational languages and purely navigational fragments ofGXPath before moving

onto languages that handle data values.

218 Chapter 9. Comparing the languages

Navigational graph query languages and TriAL∗ Here we compareTriAL∗ with a number

of established formalisms for graph databases such as NREs,RPQs andconjunctiveregular

path queries (CRPQs). As our yardstick language for comparison we useGXPathreg which is

essentially PDL [Harel et al., 2000]. Note that all of the navigational languages we consider

here are designed to query the topology of a graph database and specify various reachability

patterns between nodes. As such, they are naturally equipped with the star operator and to

make our comparison fair we will compare them withTriAL∗ and not withTriAL.

SinceTriAL∗ is designed to query triplestores, we need to explain how to compare its power

with that of graph query languages. Given a graph databaseG= (V,E) over the alphabetΣ, we

define a triplestoreTG = (O,E), with O=V ∪Σ. Note that for now we deal with navigation;

later we shall also look at data values.

To compareTriAL∗ with binary graph queries in a graph query languageL , we turnTriAL∗

ternary queriesQ into binary by applying theπ1,3(Q), i.e., keeping(s,o) from every triple

(s, p,o) returned byQ. Under these conventions, we say that a graph query languageL is

contained inTriAL∗ if for every binary queryα ∈ L there is aTriAL∗ expressioneα so that

π1,3(eα) andα are equivalent, and likewise,TriAL∗ is contained in a graph query languageL if

for every expressione in TriAL∗ there is a binary queryαe∈ L that is equivalent toπ1,3(e). The

notions of being strictly contained and incomparable extend in the same way.

Alternatively, one can do comparisons using triplestores represented as graph databases,

as in Proposition 8.1.2. Since here we study the ability ofTriAL∗ to serve as a graph query

language, the comparison explained above looks more natural, but in fact all the results remain

true even if we do the comparison over triplestores represented as graph databases, as described

in Section 8.1.

We now show that allGXPathreg queries can be defined inTriAL∗, but that there are certain

properties thatTriAL∗ can define that lie beyond the reach ofGXPathreg.

Theorem 9.3.1.GXPathreg is strictly contained inTriAL∗.

Proof. Assume thatGXPathreg uses a finite alphabetΣ of labels. We show thatGXPathreg is

contained inTriAL∗ by simultaneous induction on the structure ofGXPathreg expressions. If

we are dealing with a path expressionα we will denote theTriAL∗ expression equivalent toα

by Eα. Similarly when dealing with node expressionϕ, the correspondingTriAL∗ expression

will be denotedEϕ. Note that for the node expressionϕ of GXPathreg we consider theTriAL∗

expressionEϕ to be its equivalent if the answer set ofϕ is the same as the answer ofπ1(Eϕ)

over all graph databases and their triplestore representations, respectively.

Through the proof we will make use of the universal relationU containing all possible

combinations of elements present in the model. We will also make use of the diagonal relation

D =U 1
1,1,1
1=1 U selecting all the triples(a,a,a) with a∈V.

9.3. Triple algebra and graph languages 219

Basis:

• α = a thenEα = E1
1,2,3
2=a E

• α = a− thenEα = E1
3,2,1
2=a E

• α = ε thenEα =U 1
1,1,1
1=1 U

• ϕ =⊤ thenEϕ =U 1
1,1,1
1=1 U

Inductive step:

• α′ = [ϕ] thenEα′ = Eϕ 1
1,1,1
1=1 Eϕ

• α′ = α ·β thenEα′ = Eα 1
1,2,3′

3=1′ Eβ

• α′ = α∪β thenEα′(x,y) = Eα∪Eβ

• α′ = α∗ thenEα′ = (Eα 1
1,2,3′

3=1′)
∗

• α′ = α thenEα′ = Ec
α

• ϕ′ = ¬ϕ thenEϕ′ = Ec
ϕ∩D

• ϕ′ = ϕ∧ϕ thenEϕ′ = Eϕ∩Eψ

• ϕ′ = 〈α〉 thenEϕ′ = Eα 1
1,1,1
1=1 Eα.

It is straightforward to check that this translation works as intended. For illustration, con-

sider the case whenα′ = α ·β. Our induction hypothesis is that we have two expressions,Eα

andEβ such that(a,b) is in the answer toα onG iff (a,c,b) ∈ Eα(TG), for somec and similarly

for β. Assume now that(a,b) is in the answer toα′ on G. Then there isc such that(a,c) is in

the answer toα and(c,b) in the answer toβ. But then(a,c′,c)∈Eα(TG) and(c,b′,b)∈Eβ(TG)

for somec′,b′. By the definition of join, we conclude that(a,c′,b) ∈ Eα′(TG). Note that all the

implications above were in fact equivalences, so we get the opposite direction as well. All of

the other cases follow similarly.

To show that the containment is strict recall that in Theorem9.2.4 we proved thatGXPathreg

is contained inL3
∞,ω. Consider now the followingTriAL expression:

U
1,2,3

1
ϕ

U,

whereϕ = (1 6= 2)∧ (1 6= 3)∧ (1 6= 1′)∧ (2 6= 3)∧ (2 6= 1′)∧ (3 6= 1′)∧
∧

a∈Σ,1≤i≤3 i 6= a∧
∧

a∈Σ,1′≤i≤3′ i 6= a andU is the universal relation. It follows easily that this expression has an

nonempty answer set if and only if the original graph database had at least four different nodes.

It is well known that this query is not expressible inL3
∞,ω, thus implying that the containment

is indeed strict.

Recall from Theorem 9.2.3 thatGXPathreg subsumesNREs. Thus:

220 Chapter 9. Comparing the languages

Corollary 9.3.2.

• NREs are strictly contained inTriAL∗.

• RPQs are strictly contained inTriAL∗.

Next we move to comparison with conjunctive queries. Here, instead of usual CRPQs

we will consider slightly more expressive conjunctiveNREs (CNREs) [Barceló et al., 2013a].

Formally, these are expressions of the formϕ(x) = ∃y
∧n

i=1(xi
ei−→ yi), where all variables

xi ,yi come from ¯x, ȳ and eachei is a NRE. The semantics extends that ofNREs, with each

xi
ei−→ yi interpreted as the existence of a pattern between them that is denoted byei . We

compareTriAL∗ with these queries, and also withunionsof CNREs that use bounded number

of variables.

In order to do these comparisons we will rely on the fact thatTriAL∗ is subsumed by infini-

tary logic with six variables.

Lemma 9.3.3. TriAL∗ is contained in the infinitary logicL6
∞,ω.

Proof. What we mean by this is along the lines of the proof of Theorem 8.6.1 (Part 1), where

we compareTriAL with first-order logic over the vocabulary(E1, . . . ,El ,∼).

That is to prove the lemma, we only have to show that the∗ operator can be simulated in

this logic. To see this consider an arbitrary star-join of the form

R= (F
i′, j ′,k′

1
θ,η

)∗.

Assume that we have anL6
∞,ω formulaF(x1,x2,x3) such thatT |= F(a,b,c) if and only if

(a,b,c) ∈ F(T). We first define the following formulasα, β. Consider the formulaθ. We then

let α be the conjunctions of formulasxi = x j , wheneveri = j is a conjunct inθ andxi 6= x j ,

wheneveri 6= j is a conjunct inθ. Similarly for ρ(i) = ρ(j) in η we addxi ∼ x j as a conjunct

in β and analogously forρ(i) 6= ρ(j).

We now define the following formulas:

• R1(x1,x2,x3) := F(x1,x2,x3).

• Rn+1(x1,x2,x3) := ∃x4,x5,x6(Rn(x1,x2,x3)∧α∧β∧∃x1,x2,x3(x4 = x1∧ x5 = x2∧ x6 =

x3∧F(x1,x2,x3)))

Finally setR(x1,x2,x3) :=
∨

n∈ω Rn(x1,x2,x3).

It is straightforward to check that this formula defines the desired relation overT. A similar

formula can be defined for left-joins.

Note that we could have included constants to our comparisons with FO, but to keep the

language one-sorted we omit them from our presentation. It is a straightforward exercise to

9.3. Triple algebra and graph languages 221

check that all of the results would still hold true is they were allowed. For example constant

comparisons of the form 2= a would be handled by adding the clausex2 = a as a conjunct to

the formulaα above.

When comparingTriAL∗ with CNREs we obtain the following.

Theorem 9.3.4.

• CNREs andTriAL∗ are incomparable in terms of expressive power.

• Unions of CNREs that use only three variables are strictly contained inTriAL∗.

Proof. We begin by proving that full CNREs andTriAL∗ are incomparable in terms of expres-

sive power.

The existence of a CNRE query not expressible byTriAL∗ simply follows from the fact that

TriAL∗ is contained inL6
∞,ω. The reason for this is that CNREs can ask for a 7-clique, a property

not expressible inL6
∞,ω.

To see the reverse we will use a well know fact that CNREs are a monotonic class of

queries. That is for any two graph databasesG andG′ such thatG⊆ G′ (that isG′ contains

all the nodes and edges ofG) and any CNREq we have that(u,v) is in the answer toq on G

implies that(u,v) is in the answer toq on G′ as well.

Next considerTriAL expression

e := (E
1,2,3

1
2=a

U)c
1,2,3

1
ϕ

U,

with ϕ =
∧

b∈Σ 1 6= b,3 6= b. When interpreted over (a translation into a triplestore of) a graph

databaseG, this expression returns all pairs of nodes that arenot connected by ana-labeled

edge. (Formally we will return all the triplesu,v,w such thatu andw are not connected by an

a-labeled edge. The extra join just handles the specifics of our translation of a graph database

into a triplestore). Suppose now that there is a CNREq defining the aforementioned query.

Consider the following two graphs.

b
v v′

G

a

b
v v′

G′

The nodes(v,v′) will be in the answer to our query over the graphG. Using the mono-

tonicity of CNREs and the fact thatG is contained inG′ we conclude that(v,v′) is also in the

answer to our query overG′. Note that this is a contradiction since we assumed thatq extracts

all pairs of nodes not connected by ana-labeled path.

This concludes the proof of part one of our Theorem.

222 Chapter 9. Comparing the languages

Next we show that UCNREs using only three distinct variablesare contained inTriAL∗.

Observe first that for any NREe there is aTriAL∗ expressionEe equivalent toe over all data

graphs (Corollary 9.3.2). We will now show that any CNRE thatuses precisely three variables

is definable usingTriAL. To see this, consider the following example. LetQ be the following

CNRE:

Q(x,y,z) := (x,e1,y)∧ (z,e2,y)∧ (y,e3,y)∧ (y,e4,x).

It is easy to check that the followingTriAL expression:

(((Te1

1,2,3

1
1=1

U)
1,2,3

1
2=2′

(Te2

1,3,2

1
1=1

U))
1,2,3

1
2=2′

(Te3

2,1,2

1
1=3

U))
1,2,3

1
2=2′,1=1′

(Te3

3,1,2

1
1=1

U),

whereTei is theTriAL equivalent ofei , is equivalent toQ over all graph databases.

Notice that here we have to output all the triples(x,y,z) satisfying the condition of our

conjunctive query. For this we first join eachTei with the universal relation and arrange the

nodes potentially appearing in the answer in the right order. For example, when dealing with

(x,e1,y) we defineTe1 1
1,2,3
1=1 U , where we put the nodes appearing inTe1 in the correct order. At

the end we simply join all the resulting relation in a way thatpreserves the designated objects.

Here we have to take care that we force equality only on the objects used in the conjunctions

involved up to now.

It is straightforward to extend this construction to the most general case of an arbitrary

number of conjuncts with various arrangement of variables.

Finally, sinceTriAL expressions are closed under union we get that UCNREs with only

three variables are contained inTriAL∗. That the containment is proper follows from the first

part of the proof.

By observing that the expressions separating CNREs fromTriAL∗ are CRPQs, and that

CNREs are more expressive than CRPQs and C2RPQS [Barceló et al., 2012c] we obtain:

Corollary 9.3.5.

• CRPQs andTriAL∗ are incomparable in terms of expressive power.

• Unions of C2RPQs and CRPQs that use only three variables are strictly contained in

TriAL∗.

Data values in TriAL∗ Until now we have compared our algebra with purely navigational

formalisms. Triple stores do have data values, however, andcan thus model any graph database.

That is, for any graph databaseG = (V,E,ρ) we can define a triplestoreTG = (O,E,ρ) with

O=V ∪Σ. Note that nodes corresponding to labels have no data valuesassigned in our model.

This is not an obstacle and can in fact be used to model graph databases that have data values

on both the nodes and the edges.

9.3. Triple algebra and graph languages 223

To compareGXPathreg(c,∼) with TriAL∗, we use the same convention as for navigational

languages.

Proposition 9.3.6. GXPathreg(c,∼) is strictly contained inTriAL∗.

Proof. The proof here follows the same lines as the one of Theorem 9.3.1. Because of this we

only have to show how to define an equivalentTriAL∗ expression for any of the newly added

data operators inGXPathreg(c,∼).

• For ϕ = 〈α = β〉 we defineEϕ = Eα 1
1,1,1
1=1′,ρ(3)=ρ(3′)Eβ

• For ϕ = 〈α 6= β〉 we defineEϕ = Eα 1
1,1,1
1=1′,ρ(3) 6=ρ(3′)Eβ

• For α′ = α= we defineEα′ = Eα 1
1,2,3
ρ(1)=ρ(3) Eα

• For α′ = α6= we defineEα′ = Eα 1
1,2,3
ρ(1) 6=ρ(3) Eα

• Forϕ = (= c), with c a constant, we putEϕ =U 1
1,1,1
1=1′,ρ(1)=cU , whereU is the universal

relation introduced previously.

It is again straightforward to see that the described translations works as desired.

To show that the containment is strict we use a similar approach as when proving Theorem

9.3.1. We first notice that the proof of Theorem 9.2.4 can easily be extended to show that

GXPathreg(c,∼) is subsumed byL3
∞,ω(∼), the infinitary three variable logic with data value

tests. Here the only addition to the logic is the ability to use formulas of the formx∼ y that are

true if and only ifx andy have the same data value.

More formally, we will represent a data graphG= (V,E,ρ) as aFO structureG= (V,(Ea :

a∈ Σ),∼) with Ea = {(v,v′) : (v,a,v′) ∈ E}. It is straightforward to see that with this interpre-

tation we haveGXPathreg(∼)⊆ L3
∞,ω(∼). Constants can be added in a straightforward way.

It is also easy to see that the 3-pebble game [Libkin, 2004] for L3
∞,ω(∼) follows the intended

semantics when interpreted over data graphs. (Note that thegame works over any class of

structures, but over data graphs only relations are edge relations and the data value comparison.)

We can now play the 3-pebble game over the 3-clique graph and the 4-clique graph [Libkin,

2004] where all data values are the same. The same winning strategy for the duplicator as in

the game with no data values will still work, so we conclude that L3
∞,ω(∼) can not distinguish

the two models.

Consider now the followingTriAL expression:

U
1,2,3

1
ϕ

U,

whereϕ = (1 6= 2)∧ (1 6= 3)∧ (1 6= 1′)∧ (2 6= 3)∧ (2 6= 1′)∧ (3 6= 1′)∧
∧

a∈Σ,1≤i≤3 i 6= a∧
∧

a∈Σ,1′≤i≤3′ i 6= a andU is the universal relation. It follows easily that this expression has

different answer on the two models (since it asks for four different nodes in the original graph

database). This finishes our proof.

224 Chapter 9. Comparing the languages

This also implies thatTriAL∗ subsumesRQDs.

Corollary 9.3.7. The class of RQD queries is strictly contained inTriAL∗.

Finally, we compareTriAL∗ with path languages that use variables to store data.

Proposition 9.3.8. TriAL∗ is incomparable in terms of expressive power withRDPQs, RQMs,

RQBs and RQVs.

Proof. We begin by showing thatRQMs are not contained inTriAL∗. To see this recall from

Lemma 9.3.3 thatTriAL∗ is subsumed by infinitary logicL6
∞,ω.

Next we observe that for anyn RQMs can define a property not expressible inLn
∞,ω. For

this consider the following regular expression with memory:

e2 :=↓ x1a[x6=1] ↓ x2

en+1 := en ·a[x
6=
1 ∧x6=2 ∧ ·· ·∧x6=n] ↓ xn+1.

Since no node can have more than one data value attached it follows that the answer to the

query posted by the expressionen is nonempty if and only if the graph database has at leastn

different elements.

It is well known [Libkin, 2004] thatLn
∞,ω can not define a query stating that the model has

at leastn+ 1 element. SinceTriAL∗ is contained inL6
∞,ω the desired result follows from the

fact thate7 is nonempty only on the graphs with at least 7 elements. Observe now that the

expressions used here are in fact regular expressions with binding and it is easily checked that

the same language can be defined by variable automata.

To show that there areTriAL∗ queries outside of reach of path languages from Chapter

4, recall thatTriAL∗ subsumesGXPathreg(c,∼) (Theorem 9.3.1) and the later already has the

required property (Proposition 9.2.2).

9.4 The complete picture

Having compared data graph languages we can see that different data manipulation abilities

not only make the complexity of query evaluation significantly different, but also have a big

impact on the type of queries they are capable of expressing.For example the ability to use

variables allows path languages to express queries outsideof the scope of navigationally richer

languages likeGXPath and TriAL∗, which do come with the ability to manipulate objects as

e.g. logic does, but only using a fixed amount of variables. Onthe other hand the ability of

graph languages to express various navigational patterns places them outside of reach of any

path language, since these languages can not go beyond RPQs in their ability to specify how

nodes in the graph are connected. Furthermore, we can establish a strict hierarchy amongst

path languages, starting withRQDs and ending with RDPQs and their expression equivalent

RQMs, with the exception ofRQVs. In fact, we saw that the somewhat unnatural capability of

9.4. The complete picture 225

variable automata to reason about paths non-locally makes the class ofRQVqueries orthogonal

to all other languages introduced in previous chapters. Summary of all of the results is given

in Figure 9.1.

RQDs RQBs RQMs RDPQs

GXPathreg(c,eq,∼)

TriAL∗

RQVs

((=

(
(

Figure 9.1: Comparison of data graph languages. Lack of a ((+ =)∗ labelled path between

two languages signifies that they are incomparable.

Chapter 10

Query containment

The goal of this chapter is to initiate the study of static analysis aspects of graph query lan-

guages. In what follows we will concentrate on the query containment problem, which is the

problem of deciding, given two queries in some graph language, whether the answer set of the

first query is contained in the answer set of the second one. Deciding query containment is a

fundamental problem in database theory, and is relevant to several complex database tasks such

as data integration [Lenzerini, 2002], query optimisation[Abiteboul et al., 1995], view defini-

tion and maintenance [Gupta and Mumick, 1995], and query answering using views [Calvanese

et al., 2001].

The importance of this problem has motivated sustained research for relational query lan-

guages (see e.g. [Abiteboul et al., 1995]), XML query languages (see e.g. [Schwentick, 2004])

and even extensions of RPQs and other graph query languages [Barceló et al., 2012b, Barceló

et al., 2011,Calvanese et al., 2000,Florescu et al., 1998].The overall conclusion is that contain-

ment is generally undecidable for first order logic and othersimilar formalisms (see e.g. [Abite-

boul et al., 1995]), but becomes decidable if we restrict to queries with little or no negation.

For example, containment of conjunctive queries is NP-complete, while containment of RPQs,

2-way RPQs and nested regular expressions is PSPACE-complete. For CRPQs it jumps to

EXPSPACE-complete.

While much is known about the containment of above mentionedclasses of queries,

containment for languages with data value comparisons has only been looked at recently

in [Kostylev et al., 2014]. Here we extend that work to include all of the query classes in-

troduced in the previous sections. In what follows we primarily concentrate on containment,

but the techniques used can easily be adapted to deal with other similar problems, such as

satisfiability or equivalence of queries.

We start by considering path languages introduced in Chapter 4. Here all of the languages

can be shown to have undecidable containment if the full language is considered, however we

do isolate several decidable fragments. These are generally obtained by only allowing queries

227

228 Chapter 10. Query containment

to test if two data values are equal and not if they are different. Subclasses defined by such a

restriction will be shown to have decidable query containment, with complexity of the problem

ranging from PSPACE for RQDs to EXPSPACE for RQMs and register automata.

Next we investigate the impact of the inverse operator on containment of queries. Re-

markably, while adding this operator carries no extra computational cost with respect to query

evaluation, it does make a big difference for containment, as now even the subclass that allows

only positive data comparisons has undecidable query containment problem.

Having studied path languages we now turn our attention to graph languages. Namely, we

considerGXPath and its various dialects. Even though the language was shownto have good

computational properties and close connections with logic, when containment is considered the

story is quite different: here even the navigational fragment that uses no data value comparisons

has undecidable containment problem.

The reason for the undecidability ofGXPath is the presence of a powerful negation operator

that allows complementation of binary relations. We show, that if one excludes such negation

from the language, then containment becomes decidable (EXPTIME-complete). As mentioned

before, this language is close to propositional dynamic logic (PDL), whose containment is also

known to be EXPTIME-complete [Harel et al., 2000].

Note that so far we only discussed navigationalGXPath fragments. In fact, we will mostly

concentrate on fragments ofGXPathreg. When data fragments are considered there are still

many questions opened and we only present some undecidability results that follow from re-

sults about navigational fragments or some of the classes from Chapter 4. The picture is fur-

ther complicated if we consider core fragments, where most automata theoretic techniques

fail [Martens, 2006] and new approaches have to be developed. The situation here is in fact

quite similar to the well studied case of XML static analysiswhere even after several years

some of the problems remain unanswered [Benedikt and Koch, 2008, Benedikt et al., 2008],

and the ones that have been solved usually require very intricate techniques that cannot be

applied in the graph scenario (see e.g. [David et al., 2013,Miklau and Suciu, 2004]).

Overall, we see that when containment is considered, the situation is quite different for

languages handling both topology and data than it is for traditional languages allowing only

navigational queries. While for the latter containment is generally decidable, we show that for

the languages considered here the problem resembles behaviour of relational algebra, where

containment is undecidable for the full language, but various restrictions on the use of nega-

tion lead to decidable fragments. Hence, the existence of real-world relational systems which

deal with similar problems, demonstrates that undecidability or high complexity should not be

viewed as an insurmountable obstacle for practical use of the languages studied here, but as a

foundation for further research.

To establish the notation we now define the query containmentproblem formally.

10.1. Containment of path queries 229

Query containment A queryq1 is containedin a queryq2 (written q1 ⊆ q2) if for each data

graphG overΣ andD we have that every tuple in the answer ofq1 is also in the answer toq2.

The queriesq1 andq2 areequivalent(writtenq1≡ q2) iff they produce the same answer set for

every data graphG.

The containment and equivalence are at the core of many static analysis tasks, such as

query optimisation. All the classes of queries considered here are closed under union, so these

two problems are easily interreducible:q1 ≡ q2 iff q1 andq2 contains each other, andq1 ⊆ q2

iff q1∪q2 ≡ q2. That is why here we concentrate just on the first and considerthe following

decision problem parametrized by a class of queriesQ .

CONTAINMENT (Q)

Input: Queriesq1 andq2 from Q .

Question: Is q1 contained inq2?

Recall that for RPQs query conatinment is equivalent to language containment [Calvanese

et al., 2003]. In particular, if we have two RPQsq1 = x
e1−→ y andq2 = x

e2−→ y, with e1,e2

regular expressions, thenq1 is contained inq2 if and only if the language ofe1 is contained in

the language ofe2. From this fact we obtain that containment of RPQs is PSPACE-complete,

following the classic result that containment of regular expressions is PSPACE-complete. Since

all of the classes of queries studied here are extensions of RPQs, this establishes a lower bound

for containment of any of these classes.

Note that for NRQs andNREs defining them, the above claim no longer holds, since they

do not define languages, but graph patterns. We will see that path languages and graph lan-

guages introduced in Part I and Part II, respectively, exhibit the same behaviour, thus further

exemplifying the fundamental differences between them. Note that although we could infer

that query containment for graph queries is the same as pattern containment, the containment

of patterns is not a standard language theoretic problem, sohere we study it in isolation.

Remark 9. When studying static analysis of a query language that dealswith data values

it is usual to disregard constants [Segoufin, 2007, Figueira, 2010b] as they often make the

presentation more notation heavy. Therefore in the languages considered in this Chapter we

will assume that data values are only compared to each other for (in)equality and not compared

to constants.

10.1 Containment of path queries

We begin our study of the query containment by examining the problem for classes of path lan-

guages introduced in Part I. Note that throughout this section use graph semantics introduced

in Section 5.1, as opposed to the usual path semantics from Chapter 4. This will make some

230 Chapter 10. Query containment

of the notation less cumbersome, particularly when considering two-way queries. It will also

allow us to have a uniform treatment of both one-way and two-way queries, as well as path and

graph queries.

It is important to remark that, as discussed in Section 5.1, when using graph semantics we

will often abuse the notation and identify the expression defining the query with the query itself.

Therefore we will often use e.g. regular expressione to denote both the queryQ= x
e
−→ y and

the expression itself. This, however, should cause no confusion as it will always be clear from

the context if we are using the query, or the expression defining it.

10.1.1 Containment of RQMs

We start by examining the containment problem for RQM queries. As mentioned in the intro-

duction to this chapter, for path languages query containment is equivalent to language con-

tainment. It is readily checked that this holds for RQMs as well.

Lemma 10.1.1.Given two RQMs q1 = x
e1−→ y and q2 = x

e2−→ y, where e1 and e2 are regular

expressions with memory, it holds that q1⊆ q2 iff L(e1)⊆ L(e2).

Note that in the proposition aboveq1 ⊆ q2 is defined on data graphs, butL(e1) andL(e2)

are sets of data paths.

We now turn to the containment problem for RQMs. Unfortunately, as the following theo-

rem shows, the power that RQMs gain through their data manipulation mechanism comes with

a high price for static analysis tasks.

Theorem 10.1.2.The problemCONTAINMENT (RQMs) is undecidable.

This fact follows from Proposition 10.1.1 and the undecidability of the containment prob-

lem for regular expressions with memory (Corollary 6.2.7).

The theorem above naturally leads to question of finding decidable subclasses. It is known

that testing containment of an expression using at most one register in an expression using at

most two registers is decidable [Neven et al., 2004]. This approach appears to be too restrictive,

and thus we concentrate instead onpositive RQMs, i.e. those RQMs, that use only atoms of the

form x= in the conditions. In [Tal, 1999] it was shown that the containment of positive RQMs

is decidable, but no complexity bounds were given. The following theorem fills this gap.

Theorem 10.1.3.The problemCONTAINMENT (positive RQMs) is EXPSPACE-complete.

Proof. To prove the upper bound we will rely on the equivalence of RQMs and register au-

tomata. For hardness we do a reduction from acceptance problem of a Turing machine that

works in EXPSPACE. We start with the upper bound.

10.1. Containment of path queries 231

Upper bound. To prove this we will need some auxiliary definitions and claims.

It will be more convenient to show the upper bound for register automata over data paths.

Recall that these were defined in Section 4.1.

It was shown in Proposition 4.2.3 that for every RQMe one can construct in polynomial

time a register data path automatonA such thatL(e) = L(A). Let thene1 ande2 be RQMs.

To show thate1 ⊆ e2 we can, by Lemma 10.1.1, show instead thatL(e1) ⊆ L(e2). Moreover,

by the aforementioned equivalence with automata, it suffices to show thatL(A1)⊆ L(A2) for

the automataA1 andA2 equivalent toe1 ande2.

The reminder of the proof is devoted to showing that such decision problem belongs to

EXPSPACE, assuming bothA1 andA2 use only equalities in the conditions.

Let A1 andA2 be two register automata that only use equalities in the conditions, such that

L(A1) 6⊆ L(A2). Then there is a data pathw= d1a1d2a2 · · ·andn+1 that belongs toL(A1) but

it does not belong toL(A2). Further, there is an accepting runτ that associates to each data

valuedi in w a change of configuration, going from a configuration of the form (2i−1,q,λ) to

one of the form(2i,q′,λ′).

Setw1 = w andτ1 = τ. Starting fromi = 2 up to i = n+ 1, we repeatedly perform the

following operations onwi, increasingi.

Let wi−1 andτi−1 be the resulting data path and accepting run after performing thei−1-th

operation, and assume thatτi−1 changes from a configuration(2i−1,q,λ) to (2i,q′,λ′). If all

data values in the image ofλ are also in the image ofλ′, then letwi = wi−1 and τi = τi−1.

Otherwise, assume thatd1, . . . ,dℓ are in the image ofλ but not ofλ′. Then letp1, . . . , pℓ be

fresh, new data values. Constructwi as follows. For eachj = 1, . . . , ℓ, replace all appearances

of d j in wi−1, only after position 2i−2 of wi−1, with the data valuep j . Moreover, construct

τi by replacing as welld1, . . . ,dℓ with p1, . . . , pℓ in all the register values of the remaining

configurations, from position 2i−1 onwards.

For the automatonA1, data pathw∈L(A1) and runτ witnessing the acceptance ofw, let us

denote byuw,τ the resulting data pathwn+1 after performing all transformations above, and by

σw,τ the resulting runτn+1. Note that the constructed run remains a valid run, so thatA1 accepts

as well the pathuw,τ. Moreover, the following can be shown aboutuw,τ (the proof follows from

the construction): if there are positionsj1 and j2 of uw,τ such that bothj1 and j2 contain the

same data value, then such data value is present in at least one register in all configurations of

σw,τ starting from positionj1 and ending in positionj2.

Moreover, since the automatonA2 does not acceptw, we have that it does not acceptuw,τ.

This follows simply because we are only using automata with equalities, and our transformation

actually introduce additional inequalities on the data values of paths. From the above facts we

obtain the following claim.

232 Chapter 10. Query containment

Claim 10.1.4. Given automataA1 andA2, we have thatL(A1)⊆ L(A2) if and only if there is

a data path w∈ L(A1), accepted by runτ, such that uw,τ belongs toL(A1) but does not belong

to L(A2).

All that remains now is to show that the existence of such a data path can be decided in

EXPSPACE.

Let now A1 = (Q1,q0
1,F1,λ0

1,δ1) andA2 = (Q2,q0
2,F2,λ0

2,δ2). Furthermore, assume that

REG1 andREG2 are all possible assignments of registers inA1 andA2, respectively (obviously

these are infinite sets).

Consider the following transition system. Its states areQ1×REG1×2Q2×REG2. The initial

state is(q0
1,λ

0
1),{(q

0
2,λ

0
2)}, the set of final states are all those states that contain a state in F1

and do not contain any state inF2 (i.e. if at any point we are in a final state, we know that a

given data path is accepted byA1 but it is not accepted byA2).

The transition is defined as follows: there is a transition between state

(q1,λ1),{(q1
2,λ1

2), . . . ,(q
n
2,λn

2)} and state (q′1,λ′1),{(q′
1
2,λ′

1
2), . . . ,(q

′m
2 ,λ′

m
2)} by letter

a or data valued if one can go from(q1,λ1) to (q′1,λ′1) using δ1 over a or d, and

{(q′12,λ′
1
2), . . . ,(q

′m
2 ,λ′

m
2)} is the set of all states that are reachable from any state in

{(q1
2,λ1

2), . . . ,(q
n
2,λ

n
2)}, usingδ2 anda or d.

Now, obviously the size of this transition system is infinite. However, we proceed as fol-

lows.

We guess, symbol by symbol, the data pathuw,τ and its runσw,τ, and only pick those moves

in the transition system whereq1 andλ1 move as inσw,τ. Then by the properties ofuw,τ and

σw,τ we know that any state(q1,λ1),{(q1
2,λ1

2), . . . ,(q
n
2,λ

n
2)} can be simplified into a state in

which all values inλ1
2, . . . ,λn

2 that are not inλ1 are mapped to a single fresh valued. This is

because such data values will never appear again inuw,τ, and thus from the equality point it is

just as good as any data value which is different to all the remaining values inuw,τ.

But we can do even better, as here it suffices to store only the equivalence classes of the

registers, i.e. whether the registers store, at any given point, the same data value as in other

register, or a different one. If the next symbol we are guessing corresponds to a data value

that was in one of the registers ofλ1, then we guess, instead of the particular data value, the

following information "the incoming data value is the one stored in registerx". The system then

updates the equivalence classes according to the registers. If, on the contrary, the incoming data

value is a data value different from allλ1, we just guess "the incoming data value is not stored

in any register", and then updates the information as before.

Thus, for our simulation ofA1 it suffices to store, at any given point, the equivalence class

formed by the registers inA1, and to simulate all possible runs ofA2 we need to store, besides

the equivalence classes of its registers, a pointer indicating whether it is storing a value also

stored in a register ofA1, or whether it is storing a data value not currently stored inA1 (that

10.1. Containment of path queries 233

will never show up again in our data path). This amounts to a total of Q1×2|A1|×2Q2×2|A2|×|A1|

states, which is doubly exponential inA1 andA2. We can therefore decide whether there is

a valid run fo this system (that ends in a final state) using a standard on-the-fly EXPSPACE

algorithm.

Hardness. The proof of EXPSPACE-hardness is by reduction from the complement of the

acceptance problem of a Turing machine.

Let L be a language that belongs to EXPSPACE over some alphabetΓ, M be a deterministic

Turing machine that decidesL in EXPSPACE, andw be a word (plain, without data values) over

Γ. Next we show how to construct RQMse′ ande (in polynomial time in the size ofM and

w) such thatL(e′)⊆ L(e) if and only if M does not accept the inputw. By Proposition 10.1.1

this is enough for the proof of the hardness.

Let M = (Q,Γ,q0,{qf },δ), whereQ = {q0, . . . ,qf } is the set of states,Γ is the tape al-

phabet, containing the distinguished blank symbolB, q0 andqm are the unique initial and final

states, andδ : (Q\{qf })×Γ→Q×Γ×{L,R} is the transition function. Notice, that without

loss of generality we assume that no transition is defined on the unique final stateqf . SinceM

decidesL in EXPSPACE, there exists a polynomialP (which does not depend onw) such that

M decidesw using space 2n, wheren= P(|w|). Let alsow= a0a1 · · ·ak.

In what follows we will slightly abuse the notation. Namely,for alphabet∆ = {b1, . . . ,bm}

of symbols, we denote by the same∆ the regular expression(b1∪ ·· ·∪bm).

Let Σ = {#,& ,%,△}∪Γ∪ (Γ×Q) be the alphabet of the constructing expressionse′ and

e.

Let 〈i〉 denote the binary representation of the numberi as a data path onn labels # such

that its data values represent the string representation ofi as a binary number. That is, the data

pathdn#dn−1#. . .#d1 such thatdndn−1d1 is precisely the string representation ofi as a binary

number. For example,〈0〉 is the data path(0#)n−10, and〈2〉 is the data path(0#)n−21#0.

We represent configurations of the Turing machine by data paths satisfying

〈0〉(Γ∪ (Γ×Q))d & 〈1〉(Γ∪ (Γ×Q))d & 〈2〉(Γ∪ (Γ×Q))d & . . .

〈2n−1〉(Γ∪ (Γ×Q))d& d%d, (10.1)

whered stands for any data value. Intuitively, the data paths〈0〉, 〈1〉, 〈2〉, 〈2n−1〉 indicate each

of the 2n cells of M , and the symbol following such a data path represents eitherthe content

of the cell (which means that the head does not point here), orthe content of the cell plus the

state ofM (if M is pointing at that particular cell at a given point of the computation).

Since every configuration ofM can be represented as a data path of form (10.1), a run of

M on the inputw can be seen as a sequence (i.e. concatenation) of data paths of form (10.1).

234 Chapter 10. Query containment

The idea of the reduction is the following. The expressione′ is such that it accepts all data

paths in each of which every data value is equal to one of the first two data values of the path.

Without loss of generality we can then denote the first data value of each of these data paths by

0 and the second data value by 1. In turn, the expressione shall represent all those data paths

that belong toL(e′) that are either not valid concatenations of paths of form (10.1), or that the

sequence of configurations is not a valid run ofM on inputw (in both cases, followed by some

initialisation). This way, if there is a valid run forM on w, we have that there is a data path in

L(e′) that is not inL(e), i.e.L(e′) 6⊆ L(e).

Formally, the first of these expressionse′ is defined as following:

e′ = ↓x.△↓y.(△[x=]∪△[y=])
(
Σ[x=]∪Σ[y=]

)∗
.

We split the definition of the second expression into six partse= e0∪e1∪e2∪e3∪e4∪e5, such

that

- e0 describes all data paths that use a single data value (instead of two);

- e1 describes all data paths that are not concatenations of paths of form (10.1);

- e2 describes all data paths that, even if they are concatenations of paths of form (10.1),

some of them do not represent valid configurations forM ;

- e3 describes data paths in which the first configuration does notcorrectly describe the

initial configuration ofM on inputw;

- e4 describes those data paths in which the last sub path of form (10.1) does not represent

an accepting configuration ofM ;

- e5 describes data paths that contain two consecutive sub pathsof form (10.1) that repre-

sent configurations forM which, however, do not agree onδ.

Expressione0 is straightforward to define. Next we give the remaining ones.

Expressione1. Most of this expression is not really related to data values, but instead can

be defined by an NFA in a standard way (see [Barceló et al., 2013b] Theorem 6). The only

interesting part is the one which accepts all data paths witha “configuration” in which “cells”

are concatenated not in the only proper order, from〈0〉 to 〈2n−1〉. To do this we include ine1

the a disjunction of the following expressions:

- the expressions

↓x.△↓y.△Σ∗ (#[x=])n(Σ\{%})∗ (#[x=])n Σ∗,

↓x.△↓y.△Σ∗ (#[y=])n(Σ\{%})∗ (#[y=])n Σ∗,

which look for two data paths of form〈0〉 within one configuration, and likewise for

〈2n−1〉;

10.1. Containment of path queries 235

- the expressions

↓x.△↓y.△Σ∗%(#[x=])i #[y=]Σ∗, for each 0≤ i ≤ n−1,

↓x.△↓y.△Σ∗#[x=] (#[y=])i (Γ∪ (Γ×Q))%Σ∗, for each 0≤ i ≤ n−1,

which look for a configuration starting with something different from〈0〉, and likewise

ending with something different from〈2n−1〉;

- the expression

↓x.△↓y.△Σ∗#n−1#[x=] (Γ∪ (Γ×Q))&#n−1#[x=]Σ∗,

looking for a configuration where an even number follows withanother even number;

- the expressions

↓x.△↓y.△Σ∗#i #[x=]#n−i−2 #[x=] (Γ∪ (Γ×Q))&# i #[y=]#n−i−1 Σ∗, 0≤ i ≤ n−2,

↓x.△↓y.△Σ∗#i #[y=]#n−i−2 #[x=] (Γ∪ (Γ×Q))&# i #[x=]#n−i−1 Σ∗, 0≤ i ≤ n−2,

looking for a configuration where an even number follows witha number where some of

the digits are different from the onces in the previous number (except the last).

Note that last 2 cases cover all configurations in which even position numbers are not

followed by their successors. It is also possible, but rather cumbersome and lengthy, to define

expressions which cover the even—odd cases. We omit such definition, and refer the reader

to [Barceló et al., 2013b] for very similar constructions.

Expressione2. Similarly to the next expressionse3 ande4, it can be described with standard

NFA’s. In particular,e2 is the union of expressions stating the following:

- between two symbols % there is no symbol in(Γ×Q), which means that in some con-

figuration the machine dos not point to any cell;

- between two neighbouring symbols % there are two symbols in(Γ×Q), which means

that the machine is pointing at two cells.

Expressione3. It is the union of expressions stating the following:

- the first configuration does not contain the initial state inthe first position of the tape,

reading the first symbol of the input;

- the followingk−1 cells do not contain the remainder of the input;

- any of the remaining cells does not contain the blank symbol.

Expressione4. It can be dfined in the similar way ase3.

Expressione5. It is defined as the union of the following expressions:

236 Chapter 10. Query containment

- a cell not pointed by the head changed its content from one configuration to the subse-

quent one:

⋃

a∈Γ
↓x.△↓y.△Σ∗#↓x1.#s↓xn−1.#↓xn.a(Σ\{%})∗%

(Σ\{%})∗#[x=1]#[x
=
2]s#[x

=
n]
(
(Γ\{a})∪ ((Γ\{a})×Q)

)
Σ∗;

- a configuration which is not final features a pair inΓ×Q for which no transition is

defined

⋃

{(a,q)|δ(q,a) is not defined}

Σ∗ (a,q)Σ∗%Σ+;

- the change of state does not agree withδ:

⋃

{(a,q)|δ(q,a)=(a′,q′,{L,R})}

Σ∗ (a,q)(Σ\{%})∗%(Σ\{%})∗
(
Γ× (Q\{q′})

)
Σ∗;

- the symbol written in a given step does not agree withδ:

⋃

{(a,q)|δ(q,a)=(a′,q′,{L,R})}

↓x.△↓y.△Σ∗#↓x1.#s↓xn−1.#↓xn.(a,q) (Σ\{%})∗%

(Σ\{%})∗#[x=1]#[x
=
2]s#[x

=
n] (Γ\{a

′})Σ∗;

- the movement of the head does not agree withδ:

⋃

{(a,q)|δ(q,a)=(a′,q′,R)}

↓x.△↓y.△Σ∗#↓x1.#s↓xn−1.#↓xn.(a,q) (Σ\{%})∗%

(Σ\{%})∗#[x=1]#[x
=
2]s#[x

=
n]a

′& (ε∪
(
#n Γ(Σ\{%})∗

)
)%Σ∗,

⋃

{(a,q)|δ(q,a)=(a′,q′,L)}

↓x.△↓y.△Σ∗#↓x1.#s↓xn−1.#↓xn.(a,q) (Σ\{%})∗%

(ε∪
(
(Σ\{%})∗ #nΓ&

)
)#[x=1]#[x

=
2]s#[x

=
n]Σ

∗.

With these definitions in hand, it is now straightforward to show thatL(e′) ⊆ L(e) if and

only if M does not accept on inputw. This finishes the proof of the EXPSPACE lower bound.

10.1. Containment of path queries 237

The previous proof relies on the fact that the set of variables used in our queries is un-

bounded. Carefully checking the proof reveals the following corollary. Heren-bounded posi-

tive RQMsrefers to the class of positive RQMs which can use at mostn variables (that is they

are defined using conditions fromCk, for a fixedk).

Corollary 10.1.5. Let n be a natural number. The problemCONTAINMENT (n-bounded posi-

tive RQMs) is PSPACE-complete.

Hence, positive RQMs are a natural subclass of RQMs with decidable query containment.

However, when comparing the complexity with the one for RPQs, we see that allowing positive

data test comparisons results in an exponential jump. In thefollowing section we will see that

positive RQDs form a class of queries with complexity of the containment problem matching

that of RPQs.

10.1.2 Containment of RQDs

Similarly as for RQMs, we can show an analogue of Proposition10.1.1, thus reducing query

containment to language containment.

Proposition 10.1.6.Given two RQDs q1 = x
e1−→ y and q2 = x

e2−→ y, it holds that q1 ⊆ q2 iff

L(e1)⊆ L(e2).

RQDs were originally introduced as a restriction of RQMs that enjoys much better query

evaluation properties. In light of this result, one might also hope for good behaviour when

query containment is considered. Surprisingly, the following theorem shows that this is not the

case.

Theorem 10.1.7.The problemCONTAINMENT (RQDs) is undecidable.

Proof. We will in fact prove a stronger result stating that the universality problem for regular

expressions with equality , defined below, is undecidable. Let Σ[D]∗ denote the set of all data

paths over the alphabetΣ and set of data valuesD.

UNIVERSALITY OF REWES

Input: A REWEe.

Qestion: DoesL(e) = Σ[D]∗?

The undecidability of this problem immediately implies that given regular expressions with

equality e1 ande2, checking whetherL(e1) ⊆ L(e2) is undecidable. The latter then implies

undecidability of query containment over graphs by Proposition 10.1.6.

The proof of undecidability of universality problem for RQDs is similar to the proof of the

universality of register automata in [Neven et al., 2004]. The reduction is fromPost correspon-

dence problem (PCP), which is well-known to be undecidable.

238 Chapter 10. Query containment

An instance of PCPis a set of pairs of words

{(u1,v1), . . . ,(un,vn)}, (10.2)

over a finite alphabetΓ. A solutionfor an instanceI is a sequencek1, . . . ,km of numbers from

{1, . . . ,n} such thatuk1 · · ·ukm = vk1 · · ·vkm. The question is whether an instance has a solution.

Throughout the reduction we will use the following notationfor every data pathw =

d1a1d2 . . .ak−1dk. Let REV(w) be the reversal ofw, that is REV(w) = dkak−1 . . .d2a1d1. Also,

let Proj(w) be its projection to the labels, i.e. the worda1 . . .ak−1.

Let $,# be two special symbols not inΓ, let Σ′ = Γ∪{$,#}, and letΣ = Γ∪{$}. A solution

k1, . . . ,km of a PCP instanceI of the form (10.2) can be encoded as a data pathw1#REV(w2)

overΣ, where

w1 = 0 $c1 a1d1 · · ·aℓ1dℓ1 $c2 aℓ1+1dℓ1+1 · · ·aℓ1+ℓ2dℓ1+ℓ2 · · · · · ·

$cm aℓ1+···+ℓm−1+1dℓ1+···+ℓm−1+1 · · ·aℓ1+···+ℓmdℓ1+···+ℓm,

w2 = 0 $g1 b1 f1 · · ·bℓ1 fℓ1 $g2 bℓ1+1 fℓ1+1 · · ·bℓ1+ℓ2 fℓ1+ℓ2 · · · · · ·

$gm bℓ1+···+ℓm−1+1 fℓ1+···+ℓm−1+1 · · ·bℓ1+···+ℓm fℓ1+···+ℓm,

such thata’s andb’s are labels fromΣ, c’s, g’s, d’s, f ’s, and 0 are data values, and, for a shortcut

ℓ= ℓ1+ · · ·+ ℓm, the following conditions hold:

(C1) the symbol # appears only once;

(C2) Proj(w1) ∈ ($u1∪ ·· ·∪$un)
∗;

(C3) Proj(w2) ∈ ($v1∪ ·· ·∪$vn)
∗;

(C4) the data valuesci ’s anddi ’s are pairwise different;

(C5) the data valuesgi ’s and fi ’s are pairwise different;

(C6) c1 = g1 andcm = gm;

(C7) d1 = f1 anddℓ = fℓ;

(C8) for eachi, j ∈ {1, . . . ,m−1} if ci = g j thenci+1 = g j+1;

(C9) for eachi, j ∈ {1, . . . , ℓ−1}, if di = f j thendi+1 = f j+1;

(C10) for eachi, j ∈ {1, . . . , ℓ}, if di = f j , thenai = b j ;

(C11) for eachi, j ∈ {1, . . . ,m}, if ci = g j , then

(aℓ1+...+ℓi−1+1 · · ·aℓ1+...+ℓi ,bℓ1+...+ℓ j−1+1 · · ·bℓ1+...+ℓ j) ∈ I .

10.1. Containment of path queries 239

Note that e.g. Conditions (C4–C6, C8) forces the sequence ofc’s in w1 to be equal to the

sequence ofg’s in w2.

It is straightforward to show that there exists a solution tothe PCP instanceI if and only

if there exists a data path of the formw1#REV(w2) overΣ′ that satisfies Conditions (C1–C11)

above. Data pathw1 is meant to encode theu-part of I andw2 the v-part. The idea is that

the equalityci = gi codes a positionki in a solution by a unique data value, and in (C11) it

is checked that the pair on this position belongs toI . Also, d’s and f ’s code the actual pairs

(ui ,vi) in I and since we check thatd’s equal f ’s in Conditions (C4–C9) and that the letter after

eachd equals the corresponding one before the appropriatef in Condition (C10). Note that we

require data pathw2 to be reversed in order to nest equality tests according to the semantics of

REWEs.

We now construct a REWEe overΣ′ that accepts a data pathw such that it is either not of

the formw1#REV(w2), or at least one of the Conditions (C1–C11) above is not satisfied. Thus,

if e is universal (i.e. accepts all data paths) then in particular there is no data path coding a

solution to the PCP instance, and, hence there is no solutionby itself. The REWEe is obtained

by taking the union of the following, using the usual shortcut ∆ for the expressionb1+ . . .+bp

over any alphabet∆ = {b1, . . . ,bp}:

- REWEs recognising the negations of Conditions (C1–C3), which can be written as stan-

dard regular expressions without equality tests;

- the REWE
(

Σ∗$(ΓΣ∗$)=Σ∗ ∪ Σ∗$ΓΓ∗(Σ∗Γ)=
)

#Σ∗,

which recognises the negation of (C4); here the left part of∪ finds equalc’s, while the

right one finds equald’s; note that for equalds we take care that we don’t incidentally

compare with somec;

- a REWE which recognises the negation of (C5), which is very similar to the previous

one, but takes into account thatw2 is reversed;

- the REWE

$(Σ∗)6=$ ∪ Σ∗$(Γ∗#Γ∗)6=$Σ∗,

which recognises the negation of (C6); note, that here we usethe fact thatw2 is reversed,

so in particularg1 appears as the second last data value (and right before the final $),

which is covered by the left disjunct; similarlycm is the value after the last $ inw1, so

after that we can only advance by means ofΓ before reaching # and then we proceed in

w2 to the first $ in front of whichgm is located;

- a REWE which recognises the negation of (C7), which is very similar to the previous

one;

240 Chapter 10. Query containment

- the REWE

Σ∗$(Γ∗$(Σ∗#Σ∗$)6=Γ∗$)=Σ∗,

which recognises the negation of (C8);

- REWEs which recognise the negation of (C9–11), which are very similar to the previous

one.

It is straightforward to see that the PCP instanceI has no solution if and only ifL(e) = Σ[D]∗.

This concludes our proof of Theorem 10.1.7.

This naturally opens the search for subclasses of RQDs with decidable containment prob-

lem. Similarly to positive RQMs, one can consider the class of positive RQDs, i.e. RQDs

where subexpressions of the forme6= are not allowed. Note that if we apply the procedure

described in Proposition 4.4.2 to a positive RQD we end up with a positive RQM. Hence, we

again have a strict containment of the corresponding classes, and from Theorem 10.1.3 we

conclude that containment of positive RQDs is decidable andin EXPSPACE. However, it was

shown in [Kostylev et al., 2014] that we can perform even better, in fact, the best possible in

light of the PSPACE lower bound for plain RPQs.

Theorem 10.1.8([Kostylev et al., 2014]). The problemCONTAINMENT (positive RQDs) is

PSPACE-complete.

Using the results about containment of RQDs and RQMs we can also deduce the following

about RQBs.

Corollary 10.1.9. Query containment is undecidable for the class of RQB queries. It becomes

decidable if we disallow testing for inequalities in conditions.

Here undecidability follows from Theorem 10.1.7 and the fact that RQBs subsume RQDs.

That the positive fragent is decidable is a consequence of Theorem 10.1.3.

10.1.3 Impact of inverse on containment

The classic result by Calvanese et al. [Calvanese et al., 2003] states that one can add the in-

verse operator to RPQs and maintain not only the same complexity of query evaluation, but

also the same complexity of query containment. Since addinginverses to RQMs and RQDs

does not affect the complexity of query evaluation this gives a hope that it will also not affect

the complexity of containment of 2RQMs and 2RQDs. Of course,by the results of previous

sections, containment is undecidable when full languages are considered. Unfortunately, as we

show next, decidability for positive RQMs does not propagate to their two-way variant.

10.1. Containment of path queries 241

The class ofpositive2RQMs is defined as the subclass of 2RQMs that use only conditions

built from atoms of the formx= (but not x6=). Note that for 2RQMs we can no longer use

language containment to check for query containment [Calvanese et al., 2003]. Indeed, it might

be tempting to do the same as we did for Proposition 5.1.3, andreduce containment checking

of two-way queries to containment of the same queries, but viewed as one-way queries over

the extended alphabet containing symbolsa− for eacha ∈ Σ. However, this does not imply

that queries are contained, because labels of the forma− can also symbolise going backwards

(for example, querya is contained inaa−a, but they are not contained when viewed as regular

expressions over the extended alphabet). This leads to the following result.

Theorem 10.1.10.The problemCONTAINMENT (positive 2RQMs) is undecidable.

Proof. The proof is by reduction from the problem of non-emptiness of deterministic, stateless

2-way 3-head automata, which was shown to be undecidable in [Yang et al., 2008].

Formally, adeterministic stateless 2-way 3-head automaton(or, DS23A) over a finite alpha-

betΓ is given by a transition partial functionδ : Σ×Σ×Σ⇀ {−1,0,1}3, whereΣ =Γ∪{⊢,⊣},

the latter symbols assumed not to be inΓ. These automata accept language of words of form

⊢ σ ⊣, with σ a word overΓ. The automaton starts with its 3 heads reading the⊢ symbol of just

beforeσ, moves its heads according toδ (−1 denotes “move one cell back”, 0—“no move”,

and 1—“move one cell forward”), and acceptsσ if at any step of computation over this word

all 3 heads point at the symbol⊣.

Let A be a DS23A. We now construct 2RQMse′ andeoverΣ such that the language ofA

is empty if and only ife′ ⊆ e.

The definition ofe′ is as follows:

e′ = ⊢ Γ∗ ⊣ .

As expected, the definition ofe is much more intricate. But before it we present a crucial

claim.

Claim 10.1.11. Let e′ be the RPQ defined as above, and let e be a 2RQM. Then e′ (e is and

only if there exists a graph Gw corresponding to a data path w with start and end nodes u and

v (see Figure 5.2), respectively, such that(u,v) ∈ Je′KGw but (u,v) /∈ JeKGw.

Proof. The if direction is obvious, so we only show the only if direction. Assume then that

e′ (e. Then there is a graphG and a pair(u′,v′) of nodes inG such that(u′,v′) ∈ Je′KG

but (u′,v′) /∈ JeKG. Consider a data pathw which is a projection of labels and data values

of a path inG witnessinge′. Then let us consider the graphGw corresponding tow, with

start and end nodesu andv, respectively. Clearly,(u,v) ∈ Je′KGw. Now assume for the sake

of contradiction that(u,v) ∈ JeKGw. By examining the definition of 2RQMs one immediately

242 Chapter 10. Query containment

obtains that(u,v) ∈ JeKG, which results in a contradiction. This implies that(u,v) /∈ JeKG,

which was to be shown.

Next we continue with the definition ofe. The idea is the following. SinceA is deter-

ministic, if A accepts some wordσ then there exists a single run that leads to this acceptance.

We can take advantage of this determinism, and code witheall computations ofA that end up

failing at some point. This way, if there is a data path with a corresponding data graph accepted

by e′, which is not accepted bye, then the language ofA is nonempty, asA really accepts this

word.

The definition ofe is split into three parts as follows:

e = eeq∪ecrash∪enotdef.

Intuitively, eeq accepts all graphs corresponding to data paths that have twoequal data

values (data values shall be used as placeholders for the positions of the heads ofA , as will

be explained shortly);ecrashcorresponds to data paths for which the computation ofA crashes,

andenotdef corresponds to all data paths for which the computation ofA ends up in a position

that is not defined.

The parteeq is straightforward to define. For definitions of the other parts ofewe first need

to describe the 2RQMevalid, that simulates the computation ofA on its input.

For each(a,b,c) in Σ3 for whichδ is defined, assume thatδ(a,b,c) = (t1, t2, t3), where each

ti is either−1, 0 or 1. Then lete(a,b,c) be the following expression:

(Σ−)∗ ⊢ Σ∗[x=1] a (Σ−)∗ ⊢ Σ∗[x=2] b (Σ−)∗ ⊢ Σ∗[x=3] c

(Σ−)∗ ⊢ Σ∗[x=1] r1 (Σ−)∗ ⊢ Σ∗[x=2] r2 (Σ−)∗ ⊢ Σ∗[x=3] r3,

where, as usual,Σ stands for the union of all symbols in the alphabetΣ, Σ− stands for the union

of inverses of all symbols inΣ, and for eachi, 1≤ i ≤ 3,

r i =







Σ− ↓xi . , if ti =−1,

ε, if ti = 0,

Σ ↓xi . , if ti = 1.

Having this construction in hands, let

evalid = # ↓x1.↓x2.↓x3.




⋃

(a,b,c) s.t. δ(a,b,c) is defined

e(a,b,c)





∗

.

This expression, so far, describes valid computations, up to some step. In order to make

sure that we represent all words not accepted byA , we need to accept all words in which this

10.1. Containment of path queries 243

route of valid computation leads to either a crash (by movingout of the word), or to a transition

that is not defined.

Specifically, to describe that a run goes out from the computation space, we define

ecrash = evalid

(
⋃

i=1,2,3

(
(
(Σ−)∗[x=i] ⊢

)
∪
(
Σ∗[x=i] ⊣

−
)
))

.

Furthermore, for each(a,b,c) such thatδ(a,b,c) is not defined, except(⊣,⊣,⊣) (because

this is the final step of an accepting computation), define

e¬(a,b,c) = (Σ−)∗ ⊢ Σ∗[x=1] a (Σ−)∗ ⊢ Σ∗[x=2] b (Σ−)∗ ⊢ Σ∗[x=3] c,

and then

enotdef = evalid




⋃

(a,b,c) s.t. δ(a,b,c) is not defined, and(a,b,c) 6=(⊣,⊣,⊣)

e¬(a,b,c)



 .

It is now straightforward to show that the language ofA is nonempty if and only if there

exists a graphGw corresponding to a data pathw with start and end nodesu andv, respectively,

such that(u,v) ∈ Je′KGw but (u,v) /∈ JeKGw. Application of Claim 10.1.11 finishes the proof of

the theorem.

This negative result comes as a surprise, and it poses a question on whether the containment

problem is at least decidable for positive 2RQDs. We leave this question for future work.

10.1.4 Containment of Variable automata

It is known that the language containment problem for VFAs isundecidable [Grumberg et al.,

2010a]. Since query containment for RQVs is equivalent to language containment of un-

derlying VFAs it readily follows that the problem of checking, for two RQVsQ1,Q2 if

Q1(G)⊆Q2(G), for every data graphG, is undecidable too. Thus we get that:

Proposition 10.1.12.The problemCONTAINMENT (RQVs) is undecidable.

As mentioned previously to obtain decidable language containment one has to restrict to

deterministic VFAs (see Fact 6.5.7). These then give a rise to a subclass ofRQVs with decidable

query containment.

Proposition 10.1.13.The containment problem for queries posted bydeterministicVFAs is in

CONP.

244 Chapter 10. Query containment

10.2 GXPath and its many fragments

In this section we study the containment problem for variousfragments ofGXPath. As men-

tioned previously, here we can no longer reduce containmentover graphs to containment over

data paths as we did for RQMs and RQDs in Lemmas 10.1.1 and 10.1.6. To see this consider

e.g. GXPath querya[b+]c. This query will select all nodes connected by a path labelled ac,

with the intermediate node having an arbitrary sequence of outgoing b-labelled edges. The

pattern described by this query is illustrated in the following image.

v

v′

b b
a

c

. . .

Figure 10.1: A pattern forGXPath querya[〈b+〉]c.

It is straightforward to see that such a query is not satisfiable on words, while it is on graphs.

From this it readily follows that containment over graphs differs from containment over words.

We begin our study by considering navigational fragments ofGXPathreg first, moving to

extensions allowing data value tests later on.

10.2.1 Containment of navigational languages

Analysing the expressive power ofGXPathreg reveals that this class of queries is equivalent to

the extension of first order logic with three variables (FO3) with the transitive closure operator

(see Theorem 7.3.5). It is well known that satisfiability of FO3 formulas is undecidable over

arbitrary (possibly infinite) graphs, and it is folklore to assume that this bound is maintained

for finite graphs studied here. Since containment is a more general problem than satisfiability

we immediately obtain undecidability forGXPathreg. As we could not find a formal proof of

the aforementioned result about finite satisfiability ofFO3 in the literature, we include a self

contained proof below.

Theorem 10.2.1.TheCONTAINMENT (GXPathreg) problem is undecidable.

The proof shows that even satisfiability problem forGXPathreg formulas is undecidable. To

obtain this result we give a reduction from a variation of tiling problem from [Gurevich and

Koryakov, 1972]. In particular we use the fact that the setSnotiling, of all finite sets of tiles that

can not tile the positive plane, and the setSperiod, of all finite sets of tiles that can tile the plane

periodically, are recursively inseparable.

10.2. GXPath and its many fragments 245

Following the ideas from [Goldblatt and Jackson, 2012], we then show how to construct,

for each finite set of tilesT , aGXPathreg node formulaγT such that satisfiability ofγT implies

thatT can tile the positive plane, while the fact thatT can tile the plane periodically implies

thatγT is satisfiable. Note that this shows that the setS= {ϕ | ∃G s.t. JϕKG 6= /0} contains the

set{γT | T ∈ Speriod} and is disjoint from{γT | T ∈ Snotiling}. The fact thatSnotiling andSperiod

are recursively inseparable then implies thatS can not be recursive, so satisfiability, and thus

containment, ofGXPathreg queries is undecidable.

To define the formulaγT we rely heavily on the fact thatGXPathreg can force loops in a

graph, thus allowing us to check that tiles are placed correctly and that the tiling can proceed

from any point in the plane.

We now give the full proof.

Proof. The proof follows the main lines of the proof of undecidability of PDL with extras

from [Goldblatt and Jackson, 2012]. To deduce undecidability we do a reduction from a variant

of the tiling problem shown to be undecidable in [Gurevich and Koryakov, 1972] and [Börger

et al., 1997].

First we define the terminology needed to state the problem precisely.

A finite set of tilesis a collectionT = {T1, . . . ,Tk} of square tiles, together with twoedge

relations∼h and∼v. The fact thatTi ∼h Tj means that the tileTj can be placed to the right of

the tileTi in a horizontal row, whileTi ∼v Tj means thatTi can be placed belowTj in a vertical

column.

A tiling of the non-negative gridN×N is a function fromt : N×N→ T such that for all

i, j

- t(i, j) ∼h t(i +1, j) and,

- t(i, j) ∼v t(i, j +1).

Tilings of integer gridZ×Z are defined analogously. We say that a set of tiles can tile

Z×Z periodically if there is a tiling ofZn×Zm for some positive integersn andm that can be

used to tile the entire grid by repeating this segment both vertically and horizontally. One can

imagine this tiling as forming a torus since the bottom row can be "glued" to the top one and

the same for left and right edge of this finite grid.

Let nowSnotiling denote the set of all finite sets of tiles that cannot tile N×N and letSperiod

be the set of all finite sets of tiles that can tileZ×Z periodically.

To prove undecideability we will use the following fact.

Fact 10.2.2. ([Gurevich and Koryakov, 1972, Börger et al., 1997])Sets Snotiling and Speriod

are recursively inseparable. In particular there is no recursive set S such that Speriod⊆ S and

Snotiling∩S= /0.

246 Chapter 10. Query containment

Fix the finite alphabet of edge labelsΣ = {U,D,L,R,a}. In what followsU is meant to

interpret "up",D "down", L "left" and R "right", while a will be used to code the tiles. Note

that we can work with only{U,R,a}, since we can useU− instead ofD ansR− instead ofL,

but we opted for the extended alphabet to make the formulas easier to understand.

Let now T = {T1, . . . ,Tk} be a finite set of tiles. Fori = 1. . .k defineαi = 〈ai ∩ ε〉. In

what followsαi is meant to denote the placement of the tileTi at some position in the grid.

E.g.〈aaa∩ ε〉 will denote the placement of the tileT3 and so on.

We also define the following node formulas ofGXPath that will be used throughout the

proof. First, for every path formulaβ we define

loop(β) := 〈β∩ ε〉∧¬〈β∩ ε〉.

This formula extracts all nodesv from the graph that have an outgoingβ path and such that

every such path ends atv itself. It is easy to check that for any graph databaseG:

Jloop(β)KG = {v∈G | (∃v′) s.t. (v,v′) ∈ JβKG and(∀v′) if (v,v′) ∈ JβKG thenv= v′}.

Second, for every path expressionβ and every node testϕ we define the following formula:

when(β,ϕ) := ¬〈β[¬ϕ]〉.

The intended meaning of this node formula is to extract all nodesv from a graph such after

everyβ-path starting inv ends with a node belonging toJϕKG. Again, it is easy to check that

for any graph databaseG:

Jwhen(β,ϕ)KG = {v∈G | (∀v′) if (v,v′) ∈ JβKG thenv′ ∈ JϕKG}.

Associated with the set of tilesT we define the formulaγT = γ1∧ γ2.

To define our formulaγ1 we need to be able to force a "square" at any position in our model,

both in a clockwise and in anticlockwise direction. This is done by the means of formula

square which is defined as the conjunction of the following two formulas:

clockwise := loop(U ·D) ∧ when(U,loop(R·L)) ∧ when(U ·R,loop(D ·U))

∧ when(U ·R·D,loop(L ·R)) ∧ loop(U ·R·D ·L),

anticlockwise := loop(R·L) ∧ when(R,loop(U ·D)) ∧ when(R·U,loop(L ·R))

∧ when(R·U ·L,loop(D ·U)) ∧ loop(R·U ·L ·D).

Intuitively clockwise allows us to define a square starting at some point in our graphand

going "up", then "right", then "down" and finally "left", finishing at the same point. It also

forces the point to be able to complete the square whenever ithas an outgoing "up" arrowU .

10.2. GXPath and its many fragments 247

Similarly anticlockwise forces a square starting with "right" and completing it in anobvious

way.

Now γ1 simply states that we can make a square at any point:

γ1 := when(U∗,when(R∗,square)).

Formulaγ2 is going to be responsible for forcing a tiling and is defined next. First, let

α =
∨

i=1...k

αi ∧
∧

i=1...k

(αi →
∧

j 6=i

¬α j).

Note thatα simply states that precisely oneαi is true. Here and in the remainder of the

proof we use the node formulaϕ→ ψ as a shorthand for¬ϕ∨ψ.

Next for eachi, defineβi as the disjunction of all theα j such thatTi ∼h Tj . That isβi is a

disjunction of all the tiles that can be placed to the right ofthe tile i. Similarly, defineβi to be

the disjunction of allα j such thatTi ∼v Tj .

Now lettile be the formula denoting that a tile is placed correctly in thegrid. Formally:

tile := α∧
∧

i=1...k

(αi → (when(R,βi)∧when(U,β j))).

Finally define

γ2 := when(U∗,when(R∗,tile)).

We now show how to deduce the wanted reduction. More formallywe show that the set{ϕ |

∃G s.t. JϕKG 6= /0} contains the set{γT | T ∈ Speriod} and is disjoint from{γT | T ∈ Snotiling}.

Note that Fact 10.2.2 implies that{ϕ | ∃G s.t. JϕKG 6= /0} can not be recursive.

First we show that ifJγT KG 6= /0 for some graphG, thenT can tile the positive planeN×N.

Take any nodea0,0 ∈ JγT KG. By γ1 the propositionsquare has to be true ata0,0, so in particular

loop(U ·D) is true. This means that there is a point which we labela0,1 that can be reached

from a0,0 by anU -labelled edge. (Note that we can also get froma0,1 to a0,0 by andD-labelled

edge.) Now sincewhen(U,loop(R·L)) is also true ata0,0, there must be a node which we label

a1,1, reached by anR-labelled edge froma0,1 (and with the correspondingL-labelled edge in

the other direction). Again, this time using the fact thatwhen(U ·R,loop(D ·U)) is true ata0,0,

we get a node labelleda1,0, connected toa1,1 by anD-labelled edge (and with anU -labelled

edge connecting it back witha1,1). Next, we use the fact thatwhen(U ·R·D,loop(L ·R)) is

true ata0,0 to get a nodea′0,0 to the left ofa1,0. Finally, sinceloop(U ·R·D ·L) is true ata0,0,

it must be thata′0,0 = a0,0. Again we note that each edge has a dual edge with the appropriate

label, connecting the node in reverse direction.

Similarly, sincesquare is true ata1,1 (as we can reach it froma0,0 by traversingU and then

R-labelled edge), we can also find pointsa1,2,a2,2 anda2,1 in an analogous way. This process is

illustrated by the following image (note that we do not claimthat nodesai, j are in fact mutually

distinct nodes from our model).

248 Chapter 10. Query containment

a0,0

a0,1

a1,0

a1,1

a2,1

a2,2a1,2

U

U

R

R

D

D

L

L

Note now that sincesquare is also true ata0,1, thena0,1 must satisfyanticlockwise.

Since goingR and thenU from a0,1 takes us toa1,2 and sincewhen(R·U,loop(L ·R)) is true

ata0,1, there is some node which we labela0,2, that is reached by traversing anL-labelled edge

from a1,2. Note that this also implies that there is anR-labelled edge froma0,2 to a1,2. Again,

sincewhen(R·U ·L,loop(D ·U)) is true ata0,1 anda0,2 can be reached byR·U ·L we have

that there is a pointa′0,1 connected toa0,2 by anD-labelled edge (and in the other direction by

anU -labelled one). But now sincea0,1 also satisfiesloop(R·U ·L ·D) anda′0,1 is reached from

a0,1 by a path labelledR·U ·L ·D,we have thata′0,1 = a0,1. Thus we can draw a square starting

in a0,1, going in anticlockwise direction. This is illustrated in the following image.

a0,0

a0,1

a1,0

a1,1

a2,1

a2,2a1,2a0,2

U

U

R

R

D

D

L

L

L

D

We now note that with each edge there is a corresponding edge in the other direction with

the appropriate label (e.g.L andR). To see this observe that in e.g.a0,0 we have thatloop(U ·D)

is true. This means that there is anU -edge froma0,0 to a0,1 and also anD-edge froma0,1 to

a0,0 and analogously for all other edges.

In particular there is anR-edge froma0,0 to a1,0, so we can also complete the clockwise

square started ata1,0 and continuing througha1,1 anda2,1. This is done by the means of formula

clockwise.

It is straightforward to see that this process can be continued for any number of steps, start-

ing from the main diagonal and completing the squares above the diagonal in an anticlockwise

direction, while completing the ones below the diagonal in aclockwise direction. Thus we

showed that we can force a square grid by our formula.

Define nowt(i, j) = Tl , whereαl is the unique formula of the form〈al ∩ ε〉 that is true at

any pointai, j by means ofγ2. Note thatγ2 also forces the tilingt to be proper, since the formula

tile assures that the tilet(i+1, j) andt(i, j+1) can only come from the set of tiles compatible

with t(i, j) in the appropriate direction.

10.2. GXPath and its many fragments 249

Thus we have shown that if formulaγT is satisfiable, thenT can tile the positive plane

N×N. This implies that the set{ϕ | ∃G s.t. JϕKG 6= /0} is disjoint fromSnotiling.

On the other hand, suppose thatT = {T1, . . . ,Tk} can tile the plane periodically, that is

it can tile the torusZn×Zm for some integersn andm. Let t be the tiling functiont : Zn×

Zm→ T that witnesses this periodic tiling. We define the graph databaseG containing at most

(n+1) · (m+1)+ (k−2) nodes and satisfyingγT as follows.

First, let

V = {ai, j : i = 1, . . . ,n+1 and j = 1, . . . ,m+1}∪{T2, . . . ,Tk}.

Next add the following edges to our graph.

1. For vertical edges:

- for i = 1. . .n+ 1 and j = 1. . .m put anU -edge betweenai, j and ai, j+1 and an

D-labelled one in the other direction;

- for i = 1. . .n+1 put anU -labelled edge betweenai,m+1 andai,1 and anD-labelled

one in the other direction.

2. Analogously for horizontal edges:

- for i = 1. . .n and j = 1. . .m+ 1 put anR-edge betweenai, j andai+1, j and anL-

labelled one in the other direction;

- for j = 1. . .m+1 put anR-labelled edge betweenan+1, j anda1, j and anL-labelled

one in the other direction.

Also, defineT2,T3, . . . ,Tk to form ana-labelled chain. That is we add ana-edge betweenTi

andTi+1, for i = 2, . . .k−1.

Next, for eachai, j ,wherei 6= n+1 and j 6=m+1 letTl be the unique tile given by the tiling

t(i, j). If l = 1 we add ana-edge fromai, j to itself. If l > 1 we add ana-labelled edge from

ai, j to T2 and anothera-labelled edge fromTl to ai, j . This will allow us to satisfy the formula

αi = 〈al ∩ ε〉 as illustrated in the following image.

T2 T3 T4 T5

ai, j

a a a

a a

250 Chapter 10. Query containment

Finally, for i = n+1 and j 6= m+1 let Tl = t(1, j) and define the outgoinga-edges from

an+1, j to T2 and fromTl as above. Similarly, fori 6= n+ 1 and j = m+ 1 do the same for

Tl = t(i,1). Lastly, repeat the procedure foran+1,m+1 andTl = t(1,1).

Consider now formulaγ1. Note that we can reach any point by usingU andR transitions,

so we have to check thatsquare is true at any point. But this is straightforward to check, since

our graphG is a simple finite grid that folds onto itself (that is from each point on the edge

we can continue in the appropriate direction). The fact thatγ2 is true follows from the fact that

t is a periodic tiling. Namely, at any point in the graphG, precisely oneαi is true (note that

we require thea-path to loop over the node, so only one such path exists by ourconstruction).

After that, anyRorU step we take will take us to a node where the appropriateβ j or β j is true

sincet is a tiling.

This shows that the setS= {ϕ | ∃G s.t. JϕKG 6= /0} contains the set{γT | T ∈ Speriod}. As

mentioned above, Fact 10.2.2 implies that the set of all satisfiableGXPath node formulasS, is

not recursive.

In particular this implies that query containment forGXPath is not decidable, since the

latter would entail recursivity of the setSby simply checking does the containment[ϕ]⊆ [¬⊤]

hold.

Thus we proved that query containment forGXPath is undecidable, even with a fixed al-

phabetΣ of edge labels.

Note that the previous theorem also implies undecidabilityof query containment forTriAL∗,

since the language was shown to containGXPath in Section 9.3.

Corollary 10.2.3. Query containment forTriAL∗ is undecidable.

Due to the before mentioned connection ofGXPath to PDL, we have a result on satisfiability

of PDL with negation over finite models.

Corollary 10.2.4. The satisfiability problem for PDL with negation on paths is undecidable

over finite models, even in the absence of propositional variables.

In fact, by carefully examining the proof, one can check thatthe use of negation is quite

limited and that we only use intersection and the fact thatGXPathreg can define the set of all

pairs of mutually different nodes via the expressionε. We are hoping that further adaptations

of the proof could lead to solving the well know open problem of finite satisfiablity for PDL

formulas with intersection [Göller et al., 2009].

As in the previous sections, we have the following question:what are the restrictions on

GXPathreg that make containment decidable? The most natural candidates are of course the

ones that forbid negation. Since we have two forms of negation, one on node formulas and

another on path formulas, we consider bothGXPathpos
reg andGXPathpath-pos

reg , the positive naviga-

tional fragments ofGXPath.

10.2. GXPath and its many fragments 251

Note that, as opposed to the classes from previous sections,the word “positive” refers here

to restrictions of navigational properties, and not of datamanipulation abilities.

Using the equivalence ofGXPathpos
reg andNREs (see Theorem 9.2.3) we can use the result

on containment ofNREs from [Reutter, 2013a] to obtain the following.

Proposition 10.2.5([Reutter, 2013a]). The decision problemCONTAINMENT (GXPathpos
reg) is

PSPACE-complete.

Exploiting connections with PDL, we obtain the following result for GXPathpath-pos
reg .

Theorem 10.2.6. The decision problemCONTAINMENT (GXPathpath-pos
reg) is EXPTIME-

complete.

Proof. To show the upper bound we first prove that the problem of querycontainment for

GXPathpath-pos
reg path formulas can be polynomially reduced to the problem of satisfiability of

GXPathpath-pos
reg node formulas. The idea is similar to the one used in [ten Cateand Lutz, 2009]

to show that the two problems are inter-reducible forXPath queries on trees.

Let α andβ be twoGXPathpath-pos
reg path formulas and letΓ denote the alphabet of all symbols

occurring inα andβ plus one additional symbolb. It is straightforward to see that ifα is not

contained inβ, then there is a graphG witnessing this non-containment that uses labels from

Γ only. (The idea here is that only labels appearing inα andβ are relevant, and all the other

labels can be replaced by the new label.)

Let nowΓ′ := Γ×{0,1}. That is,Γ′ contains copies of each label decorated with either 0

or 1. We defineα′ as a formula obtained fromα by replacing each occurrence of a labela by

(a,0)∪ (a,1) and likewise forβ′. Finally, letout be the formula
⋃

a∈Γ(a,1). We show thatα

is contained inβ if and only if the formula

ϕ := 〈α′[out]〉∧¬〈β′[out]〉

is not satisfiable.1

Assume first thatα is not contained inβ. Then there is a graphG and two nodesv,v′ ∈ G

such that(v,v′) ∈ JαKG, but (v,v′) /∈ JβKG. As mentioned above, we can assume, without the

loss of generality, thatG uses only labels fromΓ. Define nowG′ to be aΓ′ labelled graph where

each labela is replaced by(a,0). In addition, we also add a loop fromv′ to v′ labelled(b,1).

Sincev′ is the only node with an outgoing edge whose label has second component equal to 1

we get thatv∈ JϕKG′, as required.

On the other hand, assume thatϕ is satisfiable. LetG′ be any graph such that there isv∈G′

with v∈ JϕKG′. Let G be a graph obtained fromG′ be replacing every edge labelled(a,0) or

(a,1) by a (note that theb-edges can be thrown away, since neitherα, norβ can access them).

1Note that here we are writing e.g.[α] instead of[〈α〉], when checking that a node has an outgoingα-path.

252 Chapter 10. Query containment

Sincev∈ JϕKG′, there is somev′ ∈G′ such that(v,v′) ∈ Jα′[out]KG′. It is then straightforward

to see that(v,v′) ∈ JαKG. On the other hand, if we had that(v,v′) is in JβKG, then we would

also get that(v,v′) ∈ Jβ′[out]KG′ , (sincev′ must have an outgoing edge with second component

equal to 1 to satisfyα′[out]), which contradicts the fact thatv∈ JϕKG′. Thusα is not contained

in β, as required. (Note that it could still be the case thatv∈ J〈α〉KG andv∈ J〈β〉KG, but we are

interested in binary containment.)

We have thus shown that query containment forGXPathpath-pos
reg path formulas is polynomi-

ally reducible to (un)satisfiability of node formulas of thesame language. Using this and the

fact thatGXPathpath-pos
reg is contained in PDL (in factGXPathpath-pos

reg is the same as PDL without

variables) we can use the decision procedure for PDL to solveGXPathpath-pos
reg query contain-

ment. Since the former is in EXPTIME (see [Harel et al., 2000], Theorem 8.4), we obtain the

desired result.

The lower bound follows from adapting known EXPTIME-complete results regarding the

satisfiability of PDL versions close toXPath (see e.g. Section 4.4 of [Alechina et al., 2003];

or Theorem 8.4 in [Harel et al., 2000]). These results present reductions from the acceptance

problem of a Turing machine that decides a language in EXPTIME. The only difficulty in the

adaptation of these proofs is dealing with a bounded alphabet, since the natural adaptation of

these results would result in a reduction needing an unbounded alphabet. But this can be done

by coding the symbols of the alphabet as binary strings—of unbounded length but now using

a bounded alphabet—as it is repeatedly done in [Barceló et al., 2013b] (see the EXPSPACE-

hardness proof). For example, ifΣ contains 4 characters, then we treat them as strings 00, 01,

10 and 11.

10.2.2 Containment with data values

We will now consider how data value tests affect containmentof GXPath queries. Recall from

Chapter 7 that these are either of the formα=,α6=, with α being a path expression, or〈α =

β〉,〈α 6= β〉 (as mentioned previously here we will disregard constants). The first type of tests

is denoted with∼, while the second is denoted witheq. These can again be coupled with

positive navigational features restricting negation in node or path formulas, giving rise to six

different fragments, ranging fromGXPathpos
reg(eq) to GXPathreg(∼).

To examine their containment problem, notice first that it was shown in Chapter 9, that

evenGXPathpos
reg(∼) contains RQDs. Theorem 10.1.7 then implies that containment for all of

the fragments with∼ tests is undecidable. From Theorem 10.2.1 we also get undecidability of

GXPathreg(eq). We summarise these results in the following corollary.

Corollary 10.2.7. The problems

- CONTAINMENT (GXPathpos
reg(∼)),

10.2. GXPath and its many fragments 253

- CONTAINMENT (GXPathpath-pos
reg (∼)) and

- CONTAINMENT (GXPathreg(∼))

- CONTAINMENT (GXPathreg(eq))

are undecidable.

The next step in the search for decidable fragments ofGXPath would be to restrict data tests

to equality only (i.e. forbid subexpressions of the formα6= and similarly foreq tests). Note that

these were already introduced in Section 7.4. Here we use∼= to denote fragments using only

α= tests andeq= for fragments using only〈α = β〉. From Theorem 10.2.1 we already know

that containment forGXPathreg(∼) with such restriction is undecidable. However, results for

similar fragments of RQDs give some hope that containment for e.g. GXPathpath-pos
reg (∼=) and

GXPathpos
reg(∼=) with such restrictions might be decidable. We summarise known results in the

following image. Note that the fragments are positioned in away that reflects their relative

expressive power (see Section 7.4).

GXPathreg(eq) GXPathreg(∼)

GXPathpath-pos
reg (eq) GXPathreg(eq=) GXPathreg(∼=) GXPathpath-pos

reg (∼)

GXPathpos
reg(eq) GXPathpath-pos

reg (eq=) GXPathpath-pos
reg (∼=) GXPathpos

reg(∼)

GXPathpos
reg(eq=) GXPathpos

reg(∼=)

Figure 10.2: Containment problem for GXPathreg fragments with data value tests. Red colour

indicates undecidability. Grey colour indicates that the status of containment problem is still

unknown.

10.2.3 Coming back to the core

When traditionalXPath over trees is considered, negative results about query containment, can

often be surpassed [Schwentick, 2004,Figueira, 2010b] by restricting attention to the core frag-

ment allowing Kleene star to range only over basic navigational axes. It therefore makes sense

to see how this restriction is reflected over graphs where a hierarchy ofGXPathcore fragments,

analogous to the one from Figure 10.2 exists.

254 Chapter 10. Query containment

By carefully examining the proof of Theorem 10.2.1 we can seethat all of the expressions

used there in fact belong toGXPathcore, therefore implying undecidability of all fragments

using negation both on node and path formulas. In the following figure we summarise the

known results about containment of core fragments ofGXPath with various data tests.

GXPathcore(eq) GXPathcore(∼)

GXPathpath-pos
core (eq) GXPathcore(eq=) GXPathcore(∼=) GXPathpath-pos

core (∼)

GXPathpos
core(eq) GXPathpath-pos

core (eq=) GXPathpath-pos
core (∼=) GXPathpos

core(∼)

GXPathpos
core(eq=) GXPathpos

core(∼=)

Figure 10.3: Containment problem for GXPathcore fragments with data value tests. Red colour

indicates undecidability. Grey colour indicates that the status of containment problem is still

unknown.

Here we see that, similarly as withGXPathreg there are still many unresolved questions

and a further study into the problem is warranted. Note that with core fragments, even when

navigation alone is considered, we can no longer rely on standard tools from automata theory or

formal languages, since the expressive power is severely restricted. This makes the fragments

more likely to have decidable containment problem, but the search for correct bounds seems to

be a challenging task in the same manner as it was forXPath over trees [Figueira, 2010b].

10.3 Summary of containment results

After conducting an initial study of query containment for main classes of queries for graphs

with data, we conclude that the picture here is quite different from the one for traditional

navigational languages. In particular, there is a sharp contrast between RPQs or CRPQs, where

containment is decidable, and any of the known extension of RPQs that handle data values.

Undecidability for the class of RQMs comes as not a surprise,due to high complexity of query

evaluation and powerful data manipulation mechanism, but we have seen that even classes with

good query evaluation properties can have undecidable containment.

The presence of inequality tests seems to be one of the major detractors here, although

the ability to define complex navigational patterns can leadto undecidability as well. Thus, it

10.3. Summary of containment results 255

Data comparisions RQD RQM 2RQD 2RQM GXPathpos
reg(∼) GXPathpath-pos

reg (∼) GXPathreg(∼)

none PSPACE-c∗ PSPACE-c∗ PSPACE-c∗ EXPTIME-c und.

full und. und. und. und. und. und. und.

positive PSPACE-c EXPSPACE-c ? und. ? ? und.

Table 10.1: Complexity of containment of data graph queries. Some classes have synonyms,

not given for clarity: i.e. RQDs and RQMs with no data comparisons are RPQs. Results, known

before, are marked with ‘*’, “-c” stands for “complete”.

seems that to obtain decidable fragments one has to limit attention to purely positive subclasses.

The situation further complicates in the presence of inverse operator. We summarise results for

main classes of queries in Table 10.1.

All of this shows that, although most of graph query languages are already well established,

there is still some fine tuning needed to define languages withdesirable static analysis prop-

erties. While results on query containment are well understood for path queries introduced in

Chapter 4, there are still some gaps when it comes to graph languages. In particular, we would

like to fully understand the containment problem for all fragments ofGXPath. Some results in

previous sections give us hope that decidability could be obtained for positive fragments using

only equality tests and for core fragments.

In particular, the decidability of containment for equalities-only versions ofGXPathpos
reg and

GXPathpath-pos
reg is still open. Furthermore, the picture for classes that useeq data tests is also

not well understood (Figure 10.2), and for core fragments wehave only started to scratch the

surface (Figure 10.3). Another valid line of research is also to purse decidable fragments of

TriAL, where some initial work was done, albeit for much more restricted languages [Rudolph

and Krötzsch, 2013].

All of this shows that query containment for graph languagespromises to be a fruitful

direction for future research, hopefully leading to development of many new techniques as was

the case with XML [Figueira, 2010b].

Part IV

Wrapping up

257

Chapter 11

Conclusions and future work

Historically querying graph data was done in two completelyseparate ways: either one would

query the raw data residing in the graph while completely disregarding how the data is con-

nected, or one would query only the topology of the model, determining intricate patterns

connecting the data, but not doing any reasoning on the data itself. The main objective of this

dissertation was to explore principles of good query language design that combines these two

modes of querying. Namely, we propose languages that, in addition to being able to ask ques-

tions about the underlying topology of the model, also allowto determine how the actual data

changes while navigating the graph.

In order to do so we study how adding various data manipulation features and mixing

them with navigational capabilities of the language at handaffects the complexity of main

reasoning tasks and how it relates to the expressive power ofthe language. In this thesis we

proposed two classes of languages: path languages and graphlanguages, based on the set of

basic navigational features they allow. Path languages extend the basic RPQs with different

data manipulation capabilities and here we see that efficiency of each one of them, as well as

their expressive power, is closely related to the nature of data tests we allow. Although naviga-

tionally quite simple (namely they can describe only paths), when extended with the ability to

store and compare data values, they become a powerful language for reasoning about graphs.

This power comes with a price though, as the complexity of query evaluation is relatively high

(although no worse than for traditional relational languages) and basic static aspects of the lan-

guage, such as containment or satisfiability, quickly become undecidable. Restrictions are, of

course, possible, but quite often the natural restrictionsdo not amount to any gain in efficiency,

and cutting out the ability to store data in variables, whileleading to highly efficient languages,

results in somewhat limited expressive power. This is, of course, a fact one has to deal with, as

even the basic matching of equal data values, such as the one used in well known grep expres-

sions from Unix operating systems, results in intractable complexity of query evaluation.

Graph languages on the other hand try to avoid this difficultyby allowing only simple

259

260 Chapter 11. Conclusions and future work

data value tests that were proven to be relevant in the context of XML (recall that our main

graph language,GXPath, is based on the XML query languageXPath), while at the same time

allowing more intricate navigational patterns lying outside of scope of path languages. Since

the language is highly efficient (namely query evaluation isalways tractable), and since both

the navigational and data manipulation abilities it allowswere shown to be of interest to many

practitioners, we believe that certain features of this language should be considered as a basic

building block of any practical graph language. Some users,however, simply need the ability

to store the data and check how it changes along the path, so tothem path languages will have

a greater appeal, despite the higher complexity. Another language,TriAL, that we introduced

to query RDF documents, could be used to overcome this issue,but only to a certain extent,

since it offers a bit more memory storage thanGXPath and comes with only a slightly higher

complexity of the query evaluation problem. However, as we discuss in the next section, it

seems that users have to pick from one brand of languages, either path or graph, based on the

type of queries they intend to ask and the availability of computational resources.

As one of the main goals of this study is to be able to pinpoint aspecific set of primitives

that a query language should posses in order to meet user requirements, in Section 11.1 we

discuss how to chose the appropriate language and how such a choice can be balanced in terms

of expressivity and efficiency. We conclude with some directions for future work in Section

11.2.

11.1 Choosing the right language

Having studied how various data and navigational features affect the ability of the language to

express relevant queries, as well as how they influence efficiency, we come to a conclusion that

there are no clear winners when it comes to choosing a particular language, if the context is

not known. Indeed, as some groups of practitioners will value a certain set of functionalities

above others, they will consider a language allowing these functionalities better suited for

their purposes, thus making it a worthy candidate for their particular goal, while others might

dismiss it on grounds of high complexity, or the inability toexpress the type of queries they

find relevant. Because of this we can not bring one of the proposed languages forward as

the language for graphs with data, however, we can point to good candidates when a specific

capability is required. Below we provide some recommendations of a suitable language if the

user has a specific goal in mind.

Navigational queries In the past the main focus of graph languages has been on retrieving

information about how the data is connected and not about theactual data. And while most

modern systems now also include some sort of data handling capability, navigational query-

11.1. Choosing the right language 261

ing still forms the core of many languages, and they are oftenused to ask strictly navigational

queries. If the users main concern are such queries then the answer to the question of which

language to use is quite clear – it isGXPath or some of its many fragments or variants. Indeed,

considering all of the languages proposed both here and in the research literature, it is difficult

to find one that is both as expressive and as efficient in terms of query answering. On top of

that, the language is closely connected to logic, both FO andPDL, and is capable of expressing

queries outside of the scope of most previous recommendations (with the sole exception of

extended RPQs [Barceló et al., 2012b], which are incomparable to GXPath, but also much less

efficient). Therefore, as far as navigational queries are considered it seems thatGXPath pro-

vides good balance between expressive power and efficiency and should be strongly considered

as a core of any purely navigational language. Some of the issues come with respect to query

evaluation, as it is not currently known if evaluation algorithms forGXPath can be parallelized.

We leave this interesting question as one of the directions for future research. We would also

like to note that from the point of view of static analysis thelanguage fares somewhat worse

than its competitors, but this is to be expected with such high expressivity. Note that even then

the most natural restrictions, still more powerful than thepreviously proposed languages, again

regain good algorithmic properties of query containment and satisfiability. Overall we believe

that, despite these minor difficulties which one still has toovercome even with much simpler

languages,GXPath can be recommended as the navigational standard for graphs.

Hybrid languages Although navigational queries are important in and of themselves, the

true power of the graph data model lies in its ability to mix navigation and the data. However,

since this dissertation is a first detailed study of languages that allow such mixing, it is still not

clear as to which language should be chosen above all others.Indeed, it seems that different

requirements call for different design principles to be applied to the language, all of them with

their strengths and weaknesses, but that no entirely uniform approach can be taken. This is,

of course, not so unusual for an area in its infancy and hopefully with the maturation of the

field it will become apparent how particular data manipulation tasks can be pruned to establish

a good querying basis that can be added to the navigational part of the language. In the mean

time, we provided several good options, that can, as we discuss next, be used to meet specific

requirements that a group of users might impose.

Languages with memory When memory usage is required, for example to ask queries

that propagate data (in)equality along the path connectingtwo data points, it seems thatRQMs

are the way to go. Not only do these queries have high expressive power matching that of

register automata, but their syntax is also clear and easilyunderstandable. Furthermore, they

can easily be extended to allow backward navigation and conjunction, making them a desirable

candidate for the user to chose. Of course, if strict scopingrules that mimic the use of variables

262 Chapter 11. Conclusions and future work

in usual programming languages are required, then we turn toRQBs, where, with a small hit

to expressive power, we still retain all of the desirable properties ofRQMs. On the other hand,

if we only need to use memory to match same data items in multiple locations we can use

variable automata, or some of their restrictions. In all of these cases the proposed language

has a great deal of expressive power when it comes to data manipulation, allowing us to store

and compare data values as one would in any common programming language, although their

navigational base does not extend beyond that of ordinary RPQs. The price we have to pay

for this expressive power comes in terms of high complexity of basic algorithmic tasks such

as query evaluation and query containment. The evaluation problem is PSPACE-complete for

RQMs andRQBs and it is well known that the best we can do with such approach, even if we

remove several capabilities from models such as variable automata, isNP (see [Aho, 1990]).

Highly efficient languages To overcome the issue of high complexity we first introduced

the class ofRQDs. These queries, although still being able to express many interesting proper-

ties of graphs, are somewhat limited, and as we showed, one obtains the same bounds for query

evaluation even for the navigationally much richer language ofGXPath. Furthermore, although

the data tests used inGXPath are based on the same idea as the ones inRQDs, combining them

with the ability to define patterns and not only paths (as in the case ofRQDs), allows us to sub-

sumeXPath-style data tests that have been tried and tested by XML practitioners. Finally, the

language has a very clean logical core – namely it is equivalent to(FO∗)3(∼), the three variable

fragment of first-order logic with binary transitive closure and data value comparisons. All of

this leads to the conclusion that when high efficiency is sought GXPath with data value com-

parisons seems to be the most likely candidate to pick. It is also worth emphasizing again that,

in addition to being able to define data tests that were shown to be useful in practice, we also

get the best possible language in terms of navigational features, and all of that basically for free

– the complexity does not change much even when compared to RPQs that do not deal with

data values. Of course, if the users require memory, they might find the language somewhat

lacking, but as theoretical results tell us, to use memory freely (Theorem 4.2.7), or even in a

severely restricted way (Theorem 4.5.6), we have to pay the price in terms of efficiency (after

all, if expressing a certain property isNP-hard it isNP-hard and there is no way around this

fact). Overall,GXPath seems to be a strong candidate when high efficiency is required and in

the future research we would like to address the question of parrallelizability of the evaluation

algorithms for the language, or in the case the problem is PTIME-hard (here we use the usual

complexity assumption that NC6= PTIME), to find fragments that make evaluation easier.

What to do when graph languages fail Finally, when the users require a language for query-

ing a slightly more general model of RDF, we argued that the language of choice should be

TriAL. Here one can, of course, use various graph languages, as wassuccessfully done in the

11.2. Where to go from here 263

past (for exampleNREs form the navigational basis of n-SPARQL [Pérez et al., 2010], while

the latest standard of the SPARQL query language for RDF usesa variation CRPQs [Harris and

Seaborne, 2013]). Another graph language that can be seen asuseful for this isGXPath and

particularly its conjunctive version, as it allows slightly more varied queries thanNREs. How-

ever, as we showed in Chapter 8, applying graph languages to RDF will have some inherent

limitations linked to it, as it disregards the fact that edgelabels in RDF are nodes themselves.

To overcome this issue we introduced the languageTriAL, geared exclusively towards the RDF

data model and allowing users to express many properties that lie outside of the scope of graph

languages. The language also retains good evaluation bounds and its datalog counterpart pro-

vides us with an intuitive declarative syntax for the language, thus making it a good choice of

a theoretical basis for querying RDF documents.

11.2 Where to go from here

This thesis initiated the study of query languages for graphwith data, and while many questions

are already resolved, there are still several questions remaining opened and, as with any area

that is just beginning, many possible directions for futureresearch. We would like to finish by

briefly naming a few of them:

Practical issues The theoretical study that we undertook here enabled us to determine the

practical potential of a query language. The next logical step is to efficiently implement these

languages using the algorithms and reasoning procedures wedeveloped and test how they be-

have in practice where the optimal theoretical solution might not always be what the users need.

While doing these practical experiments we hope to interactwith graph database vendors and

suggest which features of a graph language are best suited for their specific goals and how to

implement such features. The problem with the existing systems, such as [Dex, 2013, Neo4j,

2013, InfiniteGraph, 2013], is that the syntax and semanticsthat they use is not precisely de-

fined, which makes it difficult to understand where the main issues that practitioners face when

using such products originate from. On top of that, most systems fail to express many impor-

tant graph queries that mix topological properties and data. What we hope to produce is a good

library of procedures that vendors could use to efficiently implement various features needed

in practice.

Note that this is a difficult and challenging task which promises to lead to many new inter-

esting research topics, such as the issue of storing and indexing graph data, and particularly its

performance on massively parallelizable systems.

Additional features We have already explored how some basic add-ons, such as inverses

and conjunctive queries, affect the language. There are, ofcourse, many other features that

264 Chapter 11. Conclusions and future work

come into play when languages are applied, such as aggregation or allowing more freedom in

manipulating the attribute data. For example we could compare string values for substrings, or

do arithmetical operations over integers. It would therefore be interesting to look how adding

such features can be accommodated into the languages we proposed in this thesis. What we

also hope to achieve is a syntax that would be more attractiveto users who require multiple

attributes per node (or edge). There are various options that present themselves here, as our

languages are readily extendible to support this functionality, but some careful examination of

actual requirements by various groups of users is needed to determine which syntax is better

suited for such a language.

Using languages in different scenarios Connected to the practical considerations above

we would also like to explore how our languages can be used in new application domains that

require navigational and data patterns to be detected in theunderlying model.

The first area we would like to tackle is querying of the Semantic Web, where SPARQL

seems to be the current language of choice. What we propose istesting if a more "lightweight"

language, namely the conjunctive version ofGXPath would do the trick. We already know

that from a theoretical point of view evaluation is more efficient in this language and there are

several important queries that SPARQL can not express that our language can. Of course, our

language also does not capture all of SPARQL, and it would therefore be interesting to see if

conjunctiveGXPath is sufficient to express most queries that are of interest to practitioners.

The second area we had in mind is querying data and workflow provenance. Here one

typically stores information about how data is created and modified and sometimes it is useful

to have the ability to track the origins of such data. For example if a bug is found in a large

software project it is important to locate the library, or the modification of code, that led to

this bug. One language that naturally lends itself to such queries isTriAL and we are hoping

to see how its implementations fare in practice, especiallyconsidering the fact that the queries

such as the one above are often outside the reach of languagesthat are currently used to extract

information about such data.

Static analysis When considering static properties of our languages we mainly focused on

containment, but there are several other important questions to consider here. For example

to optimize queries one often uses equivalence and satisfiability is often crucial for checking

consistency of documents. It would therefore be interesting to explore these properties for the

languages we proposed in previous chapters. On top of that, there are also many open questions

relating to containment, particularly when various fragments ofGXPath are considered, all of

these promising to form a fruitful direction for future research.

11.2. Where to go from here 265

Incomplete information Finally, it would be interesting to see how missing and incom-

plete data impacts graph languages. To an extent this problem has been previously addressed

in [Reutter, 2013b, Barceló et al., 2014], however, there only navigational aspects of graph

languages were taken into account, and data values were not considered. The situation when

data values are present (or, as we are dealing with incomplete information, missing) seems to

complicate the issue quite considerably and promises to hold many intricate problems that need

to be tackled.

Bibliography

[Abiteboul et al., 1999] Abiteboul, S., Buneman, P., and Suciu, D. (1999). Data on the Web:
From Relations to Semistructured Data and XML. Morgan Kauffman.

[Abiteboul et al., 1995] Abiteboul, S., Hull, R., and Vianu,V. (1995). Foundations of
Databases. Addison-Wesley.

[Abiteboul et al., 1997] Abiteboul, S., Quass, D., McHugh, J., Widom, J., and Wiener, J.
(1997). The LOREL query language for semistructured data.International Journal on
Digital Libraries, 1(1):68–88.

[Abiteboul and Vianu, 1999] Abiteboul, S. and Vianu, V. (1999). Regular path queries with
constraints.J. Comput. Syst. Sci., 3(58):428–452.

[Aho, 1990] Aho, A. V. (1990).Handbook of Theoretical Computer Science, chapter Algo-
rithms for finding patterns in strings. MIT Press.

[Alechina et al., 2003] Alechina, N., Demri, S., and de Rijke, M. (2003). A modal perspective
on path constraints.J. Log. Comput., 13(6):939–956.

[Alechina and Immerman, 2000] Alechina, N. and Immerman, N.(2000). Reachability logic:
An efficient fragment of transitive closure logic.Logic Journal of the IGPL, 8(3):325–337.

[Amer-Yahia et al., 2009] Amer-Yahia, S., Lakshmanan, L. V.S., and Yu, C. (2009). So-
cialScope: Enabling Information Discovery on Social Content Sites. InCIDR.

[Anand et al., 2010] Anand, M. K., Bowers, S., and Ludäscher,B. (2010). Techniques for
efficiently querying scientific workflow provenance graphs.In EDBT, pages 287–298.

[Andréka et al., 2001] Andréka, H., Németi, I., and Sain, I. (2001). Handbook of Philosophi-
cal Logic, volume 2, chapter Algebraic logic. Springer, 2 edition.

[Angles, 2012] Angles, R. (2012). A comparison of current graph database models. InICDE
Workshops, pages 171–177.

[Angles and Gutierrez, 2008] Angles, R. and Gutierrez, C. (2008). Survey of graph database
models.ACM Computing Surveys, 40(1).

[Anyanwu and Sheth, 2003] Anyanwu, K. and Sheth, A. (2003).ρ-queries: enabling query-
ing for semantic associations on the semantic web. In12th International World Wide Web
Conference (WWW), pages 690–699.

[Arenas and Pérez, 2011] Arenas, M. and Pérez, J. (2011). Querying semantic web data with
SPARQL. InPODS, pages 305–316.

267

268 Bibliography

[Bachman, 1973] Bachman, C. W. (1973). The Programmer as Navigator. ACM Turing Award
lecture.Communications of the ACM, 16(11):653–658.

[Barceló, 2013] Barceló, P. (2013). Querying graph databases. In32th ACM Symposium on
Principles of Database Systems (PODS).

[Barceló et al., 2012a] Barceló, P., Figueira, D., and Libkin, L. (2012a). Graph logics with
rational relations and the generalized intersection problem. In27th Annual IEEE Symposium
on Logic in Computer Science (LICS).

[Barceló et al., 2012b] Barceló, P., Libkin, L., Lin, A. W., and Wood, P. T. (2012b). Expressive
languages for path queries over graph-structured data.ACM TODS, 38(4).

[Barceló et al., 2011] Barceló, P., Libkin, L., and Reutter,J. (2011). Querying graph patterns.
In 30th ACM Symposium on Principles of Database Systems (PODS), pages 199–210.

[Barceló et al., 2014] Barceló, P., Libkin, L., and Reutter,J. (2014). Querying regular graph
patterns.Journal of the ACM, 61(1).

[Barceló et al., 2012c] Barceló, P., Pérez, J., and Reutter,J. (2012c). Relative expressiveness
of nested regular expressions. InAMW, pages 180–195.

[Barceló et al., 2013a] Barceló, P., Pérez, J., and Reutter,J. L. (2013a). Schema mappings and
data exchange for graph databases. InICDT.

[Barceló et al., 2013b] Barceló, P., Reutter, J. L., and Libkin, L. (2013b). Parameterized regu-
lar expressions and their languages.Theor. Comput. Sci., 474:21–45.

[Benedikt et al., 2008] Benedikt, M., Fan, W., and Geerts, F.(2008). Xpath satisfiability in the
presence of dtds.Journal of the ACM, 55(2).

[Benedikt and Koch, 2008] Benedikt, M. and Koch, C. (2008). Xpath leashed.ACM Comput-
ing Surveys (CSUR), 41(1).

[Bienvenu et al., 2013] Bienvenu, M., Ortiz, M., and Šimkus,M. (2013). Conjunctive regular
path queries in lightweight description logics. InIJCAI.

[Bojanczyk, 2010] Bojanczyk, M. (2010). Automata for data words and data trees. InRTA.

[Bojanczyk et al., 2011] Bojanczyk, M., David, C., Muscholl, A., Schwentick, T., and
Segoufin, L. (2011). Two-variable logic on words with data.ACM TOCL, 12(4).

[Bojanczyk and Lasota, 2010] Bojanczyk, M. and Lasota, S. (2010). An extension of data
automata that captures XPath. In25th Annual IEEE Symposium on Logic in Computer
Science (LICS), pages 243–252.

[Bojanczyk et al., 2009] Bojanczyk, M., Muscholl, A., Schwentick, T., and Segoufin, L.
(2009). Two-variable logic on data trees and XML reasoning.Journal of the ACM, 56(3).

[Bojanczyk and Parys, 2011] Bojanczyk, M. and Parys, P. (2011). Xpath evaluation in linear
time. J. ACM, 58(4).

[Börger et al., 1997] Börger, E., Gräedel, E., and Gurevich,Y. (1997). The Classical Decision
Problem. Perspectives in Mathematical Logics. Springer-verlag.

Bibliography 269

[Bouajjani et al., 2003] Bouajjani, A., Habermehl, P., and Mayr, R. (2003). Automatic verifi-
cation of recursive procedures with one integer parameter.Theoretical Computer Science,
295.

[Bouyer et al., 2001] Bouyer, P., Petit, A., and Thérien, D. (2001). An algebraic characteriza-
tion of data and timed languages. InCONCUR, pages 248–261.

[Calvanese et al., 2000] Calvanese, D., De Giacomo, G., Lenzerini, M., and Vardi, M. (2000).
Containment of conjunctive regular path queries with inverse. In7th International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR), pages 176–185.

[Calvanese et al., 2003] Calvanese, D., De Giacomo, G., Lenzerini, M., and Vardi, M. (2003).
Reasoning on regular path queries.ACM SIGMOD Record, 32(4):83–92.

[Calvanese et al., 2009] Calvanese, D., De Giacomo, G., Lenzerini, M., and Vardi, M. (2009).
An automata-theoretic approach to regular XPath. InDBPL, pages 18–35.

[Calvanese et al., 2001] Calvanese, D., De Giacomo, G., Lenzerini, M., and Vardi, M. Y.
(2001). View-based query answering and query containment over semistructured data. In
DBPL, pages 40–61.

[Cassidy, 2003] Cassidy, S. (2003). Generalizing XPath fordirected graphs. InExtreme
Markup Languages.

[Chandra and Merlin, 1977] Chandra, A. and Merlin, P. (1977). Optimal implementation of
conjunctive queries in relational data bases. InSTOC, pages 77–90.

[Cleaveland and Steffen, 1993] Cleaveland, R. and Steffen,B. (1993). A linear-time model-
checking algorithm for the alternation-free modal mu-calculus. Formal Methods in System
Design, 2(2):121–147.

[Consens and Mendelzon, 1990] Consens, M. and Mendelzon, A.(1990). Graphlog: A visual
formalism for real life recursion. In9th ACM Symposium on Principles of Database Systems
(PODS), pages 404–416.

[Consens and Mendelzon, 1989] Consens, M. P. and Mendelzon,A. O. (1989). Expressing
structural hypertext queries in graphlog. InHypertext, pages 269–292.

[Cruz et al., 1987] Cruz, I., Mendelzon, A., and Wood, P. (1987). A graphical query language
supporting recursion. InACM Special Interest Group on Management of Data 1987 Annual
Conference (SIGMOD), pages 323–330.

[Cudré-Mauroux and Elnikety, 2011] Cudré-Mauroux, P. and Elnikety, S. (2011). Graph data
management systems for new application domains.PVLDB, 4(12):1510–1511.

[David et al., 2013] David, C., Gheerbrant, A., Libkin, L., and Martens, W. (2013). Contain-
ment of pattern-based queries over data trees. InICDT, pages 201–212.

[Demri and Lazíc, 2009] Demri, S. and Lazić, R. (2009). Ltl with the freeze quantifier and
register automata.ACM TOCL, 10(3).

[Demri et al., 2007] Demri, S., Lazić, R., and Nowak, D. (2007). On the freeze quantifier in
constraint ltl: Decidability and complexity.Information and Computation, 205(1):2–24.

270 Bibliography

[Deutsch and Tannen, 2001] Deutsch, A. and Tannen, V. (2001). Optimization properties for
classes of conjunctive regular path queries. In8th International Workshop on Database
Programming Languages (DBPL), pages 21–39.

[Dex, 2013] Dex (2013). DEX query language, Sparsity Technologies. http://www.sparsity-
technologies.com/dex.php.

[Dey et al., 2013] Dey, S. C., Cuevas-Vicenttín, V., Köhler,S., Gribkoff, E., Wang, M., and
Ludäscher, B. (2013). On implementing provenance-aware regular path queries with rela-
tional query engines. InEDBT/ICDT Workshops, pages 214–223.

[Fan, 2012] Fan, W. (2012). Graph pattern matching revised for social network analysis. In
ICDT, pages 8–21.

[Fan et al., 2010a] Fan, W., Li, J., Ma, S., Tang, N., and Wu, Y.(2010a). Graph pattern match-
ing: from intractable to polynomial time.Proceedings of the VLDB Endowment (PVLDB),
3(1):264–275.

[Fan et al., 2011] Fan, W., Li, J., Ma, S., Tang, N., and Wu, Y. (2011). Adding regular expres-
sions to graph reachability and pattern queries. In27th International Conference on Data
Engineering (ICDE), pages 39–50.

[Fan et al., 2010b] Fan, W., Li, J., Ma, S., Wang, H., and Wu, Y.(2010b). Homomorphism
revisited for graph matching.Proceedings of the VLDB Endowment (PVLDB), 3(1):1161–
1172.

[Fernández et al., 2000] Fernández, M. F., Florescu, D., Levy, A. Y., and Suciu, D. (2000).
Declarative specification of web sites with strudel.VLDB J., 9(1):38–55.

[Figueira, 2009] Figueira, D. (2009). Satisfiability of downward XPath with data equality
tests. In28th ACM Symposium on Principles of Database Systems (PODS), pages 197–206.

[Figueira, 2010a] Figueira, D. (2010a). Forward-XPath andextended register automata on
data-trees. InICDT, pages 231–241.

[Figueira, 2010b] Figueira, D. (2010b).Reasoning on words and trees with data. PhD thesis,
ÉNS de Cachan.

[Figueira and Segoufin, 2009] Figueira, D. and Segoufin, L. (2009). Future-looking logics on
data words and trees. InProceedings of the 34th International Symposium on Mathematical
Foundations of Computer Science (MFCS’09), volume 5734 ofLecture Notes in Computer
Science, pages 331–343. Springer.

[Figueira and Segoufin, 2011] Figueira, D. and Segoufin, L. (2011). Bottom-up automata on
data trees and vertical XPath. In28th Annual Symposium on Theoretical Aspects of Com-
puter Science (STACS), pages 93–104.

[Fletcher et al., 2011] Fletcher, G. H. L., Gyssens, M., Leinders, D., Van den Bussche, J.,
Van Gucht, D., Vansummeren, S., and Wu, Y. (2011). Relative expressive power of naviga-
tional querying on graphs. InICDT, pages 197–207.

[Fletcher et al., 2012] Fletcher, G. H. L., Gyssens, M., Leinders, D., Van den Bussche, J.,
Van Gucht, D., Vansummeren, S., and Wu, Y. (2012). The impactof transitive closure on
the boolean expressiveness of navigational query languages on graphs. InFoIKS, pages
124–143.

Bibliography 271

[Florescu et al., 1998] Florescu, D., Levy, A. Y., and Suciu,D. (1998). Query containment for
conjunctive queries with regular expressions. InPODS, pages 139–148.

[Fortune et al., 1980] Fortune, S., Hopcroft, J., and Wyllie, J. (1980). The directed homeomor-
phism problem.Theoretical Computer Science, (10):111–121.

[Freydenberg and Schweikardt, 2011] Freydenberg, D. and Schweikardt, N. (2011). Expres-
siveness and static analysis of extended conjunctive regular path queries. In5th Alberto
Mendelzon International Workshop on Foundations of Data Management (AMW).

[Glaister and Shallit, 1996] Glaister, I. and Shallit, J. (1996). A lower bound technique for the
size of nondeterministic finite automata.Information Processing Letters, 59(2):75–77.

[Goldblatt and Jackson, 2012] Goldblatt, R. and Jackson, M.(2012). Well structured program
equivalence is highly undecidable.ACM Trans. Comput. Log., 13(3).

[Göller et al., 2009] Göller, S., Lohrey, M., and Lutz, C. (2009). Pdl with intersection and
converse: satisfiability and infinite-state model checking. J. Symb. Log., 74(1):279–314.

[Gottlob et al., 2002] Gottlob, G., Grädel, E., and Veith, H.(2002). Datalog lite: a deductive
query language with linear time model checking.ACM TOCL, 3(1):42–79.

[Gottlob and Koch, 2004] Gottlob, G. and Koch, C. (2004). Monadic datalog and the expres-
sive power of languages for web information extraction.J. ACM, 51(1):74–113.

[Gottlob et al., 2005] Gottlob, G., Koch, C., and Pichler, R.(2005). Efficient algorithms for
processing XPath queries.ACM Trans. Database Syst., 30(2):444–491.

[Grädel, 1991] Grädel, E. (1991). On transitive closure logic. In CSL, pages 149–163.

[Gremlin, 2013] Gremlin (2013). Gremlin Language.
https://github.com/tinkerpop/gremlin/wiki.

[Grumberg et al., 2010a] Grumberg, O., Kupferman, O., and Sheinvald, S. (2010a). Variable
automata over infinite alphabets. InProceedings of the 4th International Conference on
Language and Automata Theory and Applications (LATA), pages 561–572.

[Grumberg et al., 2010b] Grumberg, O., Kupferman, O., and Sheinvald, S. (2010b). Variable
automata over infinite alphabets. Manuscript.

[Gupta and Mumick, 1995] Gupta, A. and Mumick, I. S. (1995). Maintenance of materialized
views: Problems, techniques, and applications.IEEE Data Eng. Bull., 18(2):3–18.

[Gurevich and Koryakov, 1972] Gurevich, Y. and Koryakov, I.(1972). Remarks on berger’s
paper on the domino problem.Siberian Math. Journal.

[Gutierrez et al., 2011] Gutierrez, C., Hurtado, C., Mendelzon, A. O., , and Pérez, J. (2011).
Foundations of semantic web databases.Journal of Computer and System Sciences,
77(3):520–541.

[Gyssens et al., 1994] Gyssens, M., Paredaens, J., Van den Bussche, J., and Van Gucht, D.
(1994). A graph-oriented object database model.IEEE Trans. Knowl. Data Eng., 6(4):572–
586.

[Harel et al., 2000] Harel, D., Kozen, D., and Tiuryn, J. (2000). Dynamic Logic. MIT Press.

272 Bibliography

[Harris and Seaborne, 2013] Harris, S. and Seaborne, A. (2013). SPARQL 1.1 query language.
W3C recommendation.http://www.w3.org/TR/sparql11-query/.

[Hopcroft and Ullman, 1979] Hopcroft, J. E. and Ullman, J. D.(1979). Introduction to Au-
tomata Theory, Languages and Computation. Addison-Wesley Publishing Company.

[Immerman and Kozen, 1989] Immerman, N. and Kozen, D. (1989). Definability with
bounded number of bound variables.IANDC, 83(2):121–139.

[InfiniteGraph, 2013] InfiniteGraph (2013). Infinitegraph release 3.1 by objectivity inc.
http://www.objectivity.com/infinitegraph.

[Ioannidis et al., 2011] Ioannidis, Y. E., Vayanou, M., Georgiou, T., Iatropoulou, K., Karvou-
nis, M., Katifori, V., Kyriakidi, M., Manola, N., Mouzakidis, A., Stamatogiannakis, L.,
and Triantafyllidi, M. L. (2011). Profiling attitudes for personalized information provision.
IEEE Data Eng. Bull., 34(2):35–40.

[Jena, 2012] Jena (2012). The Apache Jena Manual. http://jena.apache.org.

[Jones, 1975] Jones, N. (1975). Space-bounded reducibility among combinatorial problems.
Journal of Computer and System Sciences, 1:68–75.

[Kaminski and Francez, 1994] Kaminski, M. and Francez, N. (1994). Finite memory au-
tomata.Theoretical Computer Science, 134(2):329–363.

[Kaminski and Tan, 2006] Kaminski, M. and Tan, T. (2006). Regular expressions for lan-
guages over infinite alphabets.Fundamenta Informaticae, 69(3):301–318.

[Kaminski and Tan, 2008] Kaminski, M. and Tan, T. (2008). Tree automata over infinite al-
phabets. InPillars of Computer Science, pages 386–423.

[Kay, 2004] Kay, M. (2004).XPath 2.0 Programmer’s Reference.Wrox.

[Klyne and Carroll, 2004] Klyne, G. and Carroll, J. J. (2004). RDF concepts and abstract
syntax, W3C recommendation.

[Kostylev et al., 2014] Kostylev, E. V., Reutter, J. L., and Vrgoč, D. (2014). Containment of
data graph queries. InTo appear in ICDT.

[Lange, 2006] Lange, M. (2006). Model checking propositional dynamic logic with all extras.
J. Applied Logic, 4(1):39–49.

[Lenzerini, 2002] Lenzerini, M. (2002). Data integration:a theoretical perspective. InPODS,
pages 233–246.

[Leser, 2005] Leser, U. (2005). A query language for biological networks. Bioinformatics,
21(2):ii33–ii39.

[Libkin, 2004] Libkin, L. (2004).Elements of Finite Model Theory. Springer.

[Libkin et al., 2013a] Libkin, L., Martens, W., and Vrgoč, D. (2013a). Querying Graph
Databases with XPath. InICDT.

[Libkin et al., 2013b] Libkin, L., Reutter, J. L., and Vrgoč, D. (2013b). TriAL for rdf: Adapt-
ing graph query languages for rdf data. InPODS.

Bibliography 273

[Libkin et al., 2013c] Libkin, L., Tan, T., and Vrgǒc, D. (2013c). Regular expressions with
binding over data words for querying graph databases. InDLT.

[Libkin and Vrgǒc, 2012a] Libkin, L. and Vrgǒc, D. (2012a). Regular expressions for data
words. InLPAR, pages 274–288.

[Libkin and Vrgǒc, 2012b] Libkin, L. and Vrgǒc, D. (2012b). Regular Path Queries on Graphs
with Data. InICDT, pages 74–85.

[Losemann and Martens, 2012] Losemann, K. and Martens, W. (2012). The complexity of
evaluating path expressions in SPARQL. InPODS, pages 101–112.

[Martens, 2006] Martens, W. (2006).Static Analysis of XML Transformation and Schema
Languages. PhD thesis, Universiteit Hasselt.

[Marx, 2003] Marx, M. (2003). Xpath and modal logics of finitedag’s. InTABLEAUX, pages
150–164.

[Marx, 2005] Marx, M. (2005). Conditional XPath.ACM Trans. Database Syst., 30(4):929–
959.

[Mendelzon and Wood, 1995] Mendelzon, A. and Wood, P. (1995). Finding regular simple
paths in graph databases.SIAM Journal on Computing, 24(6):1235–1258.

[Miklau and Suciu, 2004] Miklau, G. and Suciu, D. (2004). Containment and equivalence for
a fragment of XPath.J. ACM, 51(1):2–45.

[Milo et al., 2002] Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and
Alon, U. (2002). Network motifs: simple building blocks of complex networks.Science,
298(5594):824–827.

[Neo4j, 2013] Neo4j (2013). Neo4j, The graph database.http://www.neo4j.org/.

[Neven, 2002] Neven, F. (2002). Automata theory for XML researchers. SIGMOD Record,
31(3):39–46.

[Neven et al., 2004] Neven, F., Schwentick, T., and Vianu, V.(2004). Finite state machines for
strings over infinite alphabets.ACM Trans. Comput. Log., 5(3):403–435.

[Olken, 2003] Olken, F. (2003). Graph data management for molecular biology. 7(1):75–78.

[Papadimitriou, 1993] Papadimitriou, C. H. (1993).Computational Complexity. Addison Wes-
ley.

[Pérez et al., 2009] Pérez, J., Arenas, M., and Gutierrez, C.(2009). Semantics and complexity
of sparql.ACM Transactions on Database Systems, 34(3).

[Pérez et al., 2010] Pérez, J., Arenas, M., and Gutierrez, C.(2010). nSPARQL: A navigational
language for RDF.Journal of Web Semantics, 8(4):255–270.

[Reutter, 2013a] Reutter, J. L. (2013a). Containment of nested regular expressions. CoRR
abs/1304.2637.

[Reutter, 2013b] Reutter, J. L. (2013b).Graph Patterns: Structure, Query Answering and
Applications in Schema Mappings and Formal Language Theory. PhD thesis, School of
INformatics, University of Edinburgh.

274 Bibliography

[Ronen and Shmueli, 2009] Ronen, R. and Shmueli, O. (2009). Soql: a language for querying
and creating data in social networks. In25th International Conference on Data Engineering
(ICDE), pages 1595–1602.

[Rudolph and Krötzsch, 2013] Rudolph, S. and Krötzsch, M. (2013). Flag & check: data
access with monadically defined queries. InPODS, pages 151–162.

[Sakamoto and Ikeda, 2000] Sakamoto, H. and Ikeda, D. (2000). Intractability of decision
problems for finite-memory automata.Theor. Comput. Sci., 231(2):297–308.

[San Martín and Gutierrez, 2009] San Martín, M. and Gutierrez, C. (2009). Representing,
querying and transforming social networks with rdf/sparql. In 6th European Semantic Web
Conference (ESWC), pages 293–307.

[Schwentick, 2004] Schwentick, T. (2004). Xpath query containment. SIGMOD Record,
33(1):101–109.

[Segoufin, 2006] Segoufin, L. (2006). Automata and logics forwords and trees over an infinite
alphabet. InCSL, pages 41–57.

[Segoufin, 2007] Segoufin, L. (2007). Static analysis of XML processing with data values.
SIGMOD Record, 36(1):31–38.

[Sipser, 1997] Sipser, M. (1997).Introduction to the Theory of Computation. PWS Publishing.

[Tal, 1999] Tal, A. (1999). Decidability of inclusion for unification based automata. Master’s
thesis, Department of Computer Science, Technion - Israel Institute of Technology.

[Tarski and Givant, 1987] Tarski, A. and Givant, S. (1987).A Formalization of Set Theory
Without Variables. AMS.

[ten Cate, 2006] ten Cate, B. (2006). The expressivity of XPath with transitive closure. In25th
ACM Symposium on Principles of Database Systems (PODS), pages 328–337.

[ten Cate and Lutz, 2009] ten Cate, B. and Lutz, C. (2009). Thecomplexity of query contain-
ment in expressive fragments of XPath 2.0.Journal of the ACM, 56(6).

[ten Cate and Marx, 2007] ten Cate, B. and Marx, M. (2007). Navigational XPath: calculus
and algebra.Sigmod Record, 36(2):19–26.

[Van den Bussche and Vossen, 1993] Van den Bussche, J. and Vossen, G. (1993). An exten-
sion of path expressions to simplify navigation in object-oriented queries. InDOOD, pages
267–282.

[Vardi, 1982] Vardi, M. Y. (1982). The complexity of relational query languages. InSTOC,
pages 137–146.

[Vardi, 1995] Vardi, M. Y. (1995). On the complexity of bounded-variable queries. InPODS,
pages 266–276.

[W3C Consortium, 2013] W3C Consortium (2013). Semantic web: The w3c consortium’s
vision of the web of linked data.http://www.w3.org/standards/semanticweb/.

[Wood, 2012] Wood, P. (2012). Query languages for graph databases. Sigmod Record,
41(1):50–60.

Bibliography 275

[Xpath, 1999] Xpath (1999). XML Path Language (XPath). www.w3.org/TR/xpath.

[Xpath 2.0, 2010] Xpath 2.0 (2010). XML Path Language (XPath) 2.0 (Second Edition).
www.w3.org/TR/xpath20.

[Yang et al., 2008] Yang, L., Dang, Z., and Ibarra, O. H. (2008). On stateless automata and p
systems.International Journal of Foundations of Computer Science, 19(5):1259–1276.

Index

FO∗, 150
TriAL, 175
TriAL=, 187
TrCl, 194, 201
c, 132
GXPathcond, 151
#GXPathcore, 133
GXPathcore, 132
#GXPath, 133
GXPath, 132
GXPathpath-pos

core , 136
GXPathpath-pos

reg , 136
reachTA=, 191
GXPathreg, 132
∼, 132
TripleDatalog¬, 178
eq, 132
2RPQ, 15
2RQB, 76
2RQD, 76
2RQM, 73

C2RPQ, 16
ConditionalGXPath, 151
Conditions, 35
ConjunctiveGXPath, 162
Conjunctive queries, 78

CRDPQ, 78
CRQB, 78
CRQD, 78
CRQM, 78
CRQV, 78

Conjunctive regular path queries, 15
CoreGXPath, 132
CRPQ, 15

Data graph, 10
Data path, 14
Data words, 86

GraphXPath, 132
Graph database,see alsoData graph
Graph languages, 20

Ground RDF document, 168

Join, 174

Language containment, 87
Left Kleene closure, 176

Membership, 87

Navigational languages, 10
Nested path query, 17
Nested regular expressions, 17
Node expressions, 132

Node formulas, 132
Node tests, 132

Nonemptiness, 87
NPQ, 17
NRE, 17

Parameter-free Transitive-closure logic, 150
Path, 14
Path expressions, 132

Path formulas, 132
Path languages, 20
Path-positiveGXPath, 136
PositiveGXPath, 136

Query answering,see alsoQuery evaluation
Query containment, 227
Query evaluation, 18

RDF triple, 168
RDPQ, 37
Register automata, 35

over data words, 89
Register automata with variables, 80
RegularGXPath, 132
Regular data path query, 37
Regular expressions with binding, 50

over data words, 103
Regular expressions with equality, 56

over data words, 115
Regular expressions with memory, 40

over data words, 94

276

INDEX 277

Regular path queries, 14
Regular queries with binding, 52
Regular queries with data tests, 59
Regular queries with memory, 45
Regular queries with variables, 66
Relation algebra, 147
REM, 94
REWB, 103
REWE, 115
right Kleene closure, 176
RPQ, 14
RQB, 52
RQD, 59
RQM, 45
RQV, 66

semipath, 16

Transitive closure logic, 194, 201
Triple Algebra, 175
Triple join, 174
Triplestore, 172
Two-way regular path queries, 15
Two-way regular queries with binding, 76
Two-way regular queries with data tests, 76
Two-way regular queries with memory, 73

Universality, 87
URI, 168

Variable automata, 64
over data words, 123

varRA, 80
VFA, 64

