Querying graphs with data

Domagoj Vrgoc¢

Doctor of Philosophy
Laboratory for Foundations of Computer Science
School of Informatics
University of Edinburgh
2014

Abstract

Graph data is becoming more and more pervasive. Indeed¢casgrsuch as Social Networks
or the Semantic Web can no longer rely on the traditionalticelal model, as its structure
is somewhat too rigid for the applications they have in miRdr this reason we have seen a
continuous shift towards more non-standard models. Ewgs the semi-structured data in the
1990s and XML in 2000s, but even such models seem to be towtiostfor new applications
that require navigational properties naturally modellgdykaphs. Social networks fit into the
graph model by their very design: users are nodes and thairections are specified by graph
edges. The W3C committee, on the other hand, describes RBFnodel underlying the
Semantic Web, by using graphs. The situation is quite similth crime detection networks
and tracking workflow provenance, namely they all have ggapbuilt into their definition.

With pervasiveness of graph data the important question®fying and maintaining it has
emerged as one of the main priorities, both in theoreticdl gpplied sense. Currently there
seem to be two approaches to handling such data. On the odethaxtract the actual data,
practitioners use traditional relational languages tbatgletely disregard various navigational
patterns connecting the data. What makes this data integéstmodern applications, however,
is precisely its ability to compactly represent intricat@dlogical properties that envelop the
data. To overcome this issue several languages that allewigg graph topology have been
proposed and extensively studied. The problem with thasgukges is that they concentrate
on navigation only, thus disregarding the data that is #igtatored in the database.

What we propose in this thesis is the ability to do both. Namak will study how query
languages can be designed to allow specifying not only hevd#ta is connected, but also how
data changes along paths and patterns connecting it. Teritlisve will develop several query
languages and show how adding different data manipulatiraltlities and different navi-
gational features affects the complexity of main reasomé@sggs. The story here is somewhat
similar to the early success of the relational data modegrevttheoretical considerations led
to a better understanding of what makes certain tasks maiéenging than others. Here we
aim for languages that are both efficient and capable of ezprg a wide variety of queries of
interest to several groups of practitioners. To do so weamilllyse how different requirements
affect the language at hand and at the end provide a good basiendives whose inclusion
into a language should be considered, based on the appfisadine has in mind. Namely,
we consider how adding a specific operation, mechanism,pabiiity to the language affects
practical tasks that such an addition plans to tackle. Iretitewe arrive at several languages,
all of them with their pros and cons, giving us a good overvigwiow specific capabilities of
the language affect the design goals, thus providing a sbasi$ for practitioners to choose
from, based on their requirements.

Acknowledgements

First and foremost, | would like to thank my supervisor Lebhibkin for his support and
advice during my studies. In addition to allowing me to imegemyself in a colourful and
lively scientific environment, he also managed to introdowe to the finest spirits that the
Scottish countryside has to offer, on which | am undoubtegateful.

Next, | would like to thank Jan Van den Bussche and Wenfei Baadreeing to be on my
examination committee and for providing many useful sutiges.

| would also like to thank Mladen Vuko®j who supervised my studies in Zagreb and in-
troduced me to the area of mathematical logic that finallythed although following a slightly
uneven path, to computer science and database theory.

A special mention goes to Juan for encouraging me in diffiiulés and suffering through
the trouble of writing papers with me. Out of many great pedgiad the luck to meet during
the previous years | am particularly grateful to my othemcthors: Egor, Wim and Tony.

Many thanks also go to Diego, Claire and Myrto for readinggaf this thesis and provid-
ing many helpful comments.

Finally, | would like to thank friends and family for their gport.

This work and my studies were made possible by the generqumoduof EPSRC grants
G049165 and J015377, as well as FET-Open Project FoX, ggaeément 233599.

Declaration

| declare that this thesis was composed by myself, that th& eantained herein is my own
except where explicitly stated otherwise in the text, arad this work has not been submitted
for any other degree or professional qualification exceppeasified.

(Domagoj Vrgog

Table of Contents

Introduction 1
1.1 Graphdatabases andtheirlanguages 1
1.2 Contributions 4
1.3 Otherrelatedwork 9
Preliminaries 11
21 Graphdatabases e 12
2.2 Regular path queries and extensionso 15
2.3 Nested regular expressions e e e e 17
2.4 Queryevaluation 19
2.5 Pathlanguages and Graphlanguages 20
Path languages 25
From words to paths 27
3.1 Datawordsvsdatapaths 29
3.2 Rulingoutbadalternatives au.. 31
Languages for data paths 35
4.1 Register automataasaquerylanguagew.ow... 37
4.2 Regular queries withmemory (RQMs) 42
4.3 Regular queries with binding (RQBs) ¢.u... 53
4.4 Regular queries with datatests (RQDS) 59
45 Variableautomata 67
4.6 Summary ofcomplexityresults e 74
Additional features 75
5.1 Languages withinverse e 76
5.2 Conjunctive qUErieS e e 81
5.3 Adding variables to register automata 83

Vii

6 The language theory gap 89

6.1 Registerautomata 92
6.2 Regular expressions withmemory 98
6.3 Regular expressions withbinding 107
6.4 Regular expressions withequality 119
6.5 \Variableautomata L 126
6.6 Summary of language theoretic properties130
Il Graph languages and beyond 133
7 Graph XPath 135
7.1 Thelanguage anditsmanyvariants wuu .. 137
7.2 Queryevaluation 143
7.3 EXPressive pOWEr e 146
7.3.1 Expressiveness of navigational languages 147
7.3.2 Expressiveness ofdatalanguages156
7.4 Hierarchy ofthefragments 160
7.5 Conjunctive Graph XPath queries ees. 163
7.6 Summary ... e e 164
8 Beyond graphs — TriAL 167
8.1 Graphdatabasesand RDF 169.
8.2 AnAlgebraforRDF 87
8.3 ADeclarative Language e 180
8.4 QueryEvaluation e 184
8.5 Low-complexity fragments 188
8.6 EXxpressive power 195
8.7 Summary e 207
[l Analysing the languages: Comparison and Containment 20
9 Comparing the languages 211
9.1 Pathqueries 112
9.2 Movingupthefoodchain. 212
9.3 Triple algebraand graphlanguages 217
9.4 Thecomplete picture 224

10 Query containment

10.1 Containment of path queries 229
10.1.1 Containmentof RQMs 023
10.1.2 Containmentof RQDs 723
10.1.3 Impact of inverse on containment 240
10.1.4 Containment of Variable automata243
10.2 GXPathandits many fragments 244
10.2.1 Containment of navigational languages 244
10.2.2 Containmentwithdatavalues 252
10.2.3 Coming backtothecore 532
10.3 Summary of containmentresults L. 254
IV Wrapping up 257
11 Conclusions and future work 259
11.1 Choosing therightlanguage 260
11.2 Wheretogofromhere 263
Bibliography 267
Index 276

Nemiri
Zaboravi nemire

Blaise Cendrars

Chapter 1

Introduction

1.1 Graph databases and their languages

In recent years we have witnessed a renewal of interest iragiag and maintaining graph
structured data, motivated by a high demand from servicatsfitid the traditional relational
model too restrictive. The the origins of the graph data rhode be traced back to the 1960s
and the network model used by Charles Bachman as a temptadedimning one of the first
general-purpose database management systems calledatate@ata Store and developed
at General Electric [Bachman, 1973]. With the emergenceslational databases the model
was then abandoned in the seventies and early eighties, dsigain revisited during late
eighties [Cruz et al., 1987, Consens and Mendelzon, 199%&nwvit was used for searching
and storing hypertext systems [Consens and Mendelzon], 1889 started regaining popular-
ity with the prominence of semi-structured data in the 19%0steboul et al., 1999]. How-
ever, its full potential only became apparent with the eraecg of the Semantic Web [W3C
Consortium, 2013, Pérez et al., 2010, Gutierrez et al., P@dd Social networks [Ronen and
Shmueli, 2009, San Martin and Gutierrez, 2009, Fan, 2012&revthe data is naturally repre-
sented in a graph like structure [Klyne and Carroll, 2004hdD applications of the graph data
model also include crime detection networks [Fan et al. 0BQEan et al., 2010a], biological
databases [Olken, 2003, Leser, 2005, Milo et al., 2002] ardying workflow and data prove-
nance [Anand et al., 2010, Dey et al., 2013]. As a result of inere are now several vendors
offering graph database products [Neo4j, 2013, Dex, 20d8]easteady stream of research lit-
erature on the subject (for a survey see e.g. [Angles ancdk(eeri 2008, Barceld, 2013, Wood,
2012)).

In all of these applications data is modelled by a graph, witties representing entities in
the database and edges representing various connectamesehtities can form. For example
if we are describing a social network it is natural to repnesgsers by nodes, with edges
symbolizing the connection between two users, such asdfsiecto-workers, relatives and so

2 Chapter 1. Introduction

Figure 1.1: A movie database represented as a graph

on. Another example would be a movie database where eachsta@s information about a

specific movie, movie genre, or actor, while the edges of thplgtell us how two entities are

connected. We could for instance have an edge between a epassenting a specific actor
and a node representing a movie the actor had starred in, edfgaconnecting a movie with

its generic description. One such database is presenteigneFL.1. Since nodes can form
different types of connections, it is usual to assign latmethe edges connecting them. Finally,
nodes themselves contain the actual data, such as the atfonmabout the movie title and

duration, actor's names and ages, etc. The data is of courdellad as the usual relational
data with attribute values coming from an infinite domain fes and Gutierrez, 2008].

One of the fundamental issues related to graph data is ofedhe question of querying
it. When designing query languages one is primarily core@mith striking a good balance
between expressivity and efficiency. Namely, a languagedias capable of describing a wide
variety of relevant queries , while at the same time keegnegcomplexity of main reasoning
tasks low. To achieve this for graph data two separate appesshave been studied in the past.

The first approach treats the graph model as a relationabalstaand uses traditional rela-
tional languages to extract the data. For example in thebdagaabove one could ask for all
movies of the same duration, or all actors of the same age cllse of queries one typically
uses to express such properties is the classwojunctive queriefAbiteboul et al., 1995].

On the other hand, what makes graph databases attractivaiermapplications is the abil-
ity to query intricate navigational patterns between adigjethus obtaining more information
about thetopologyof the stored data. For example, considering the databdSigumne 1.1 one
might want to find pairs of actors connected by collaborationnections. This query would
give us that Paul Efs and Charlotte Rampling have collaborated since they tmitarred
with Tomasz Luczak. The same can be said for Kevin Bacon antBrdds, but the sequence

1.1. Graph databases and their languages 3

of collaborations is now longer. Taking into considerattbat our databases can grow by in-
serting more data, it is easy to see that no fixed number aftomiators can be set in advance to
answer this query, thus calling for languages that alloifahsitive closure. A basic building
block for such languages are typicaliggular path queriesor RPQs that select nodes con-
nected by a path described by a regular language over thiéngtedphabet [Cruz et al., 1987].
Extensions of RPQs with more complex patterns, backwartyation and relations over paths
have been studied extensively too [Abiteboul and Vianu,91B@rcel6 et al., 2012a, Barceld
et al., 2012b, Calvanese et al., 2000, Calvanese et al., 20d8ens and Mendelzon, 1990].

Note that both of these approaches treat the data and thiegagad patterns enveloping it
as two separate entities. Thus, the querying mechanismdeaie with generally fall into one
of the following categories:

e (ueries aboutlata, i.e., essentially relational queries (e.g., finding pairactors of the
same age), or

e queries aboutopologysuch as finding nodes connected by a path with a certain label
(e.g., actors who are connected via collaboration links).

However, both approaches have some serious shortcomisgaeAtioned above, treating
the graph model as a relational database, while allowingttaet information about the stored
data, completely ignores topological queries that explar@us patterns connecting the data.
On the other hand, traditional graph languages such as RRfthair extensions talk only
about the topology, while ignoring the data. What both ofstheapproaches are incapable
of doing is combining data and topologyAs an example of a query that involves such a
combination, one could for example ask for people who havaite fBacon number (that is,
there is a sequence of collaboration connections linkiegntlvith Kevin Bacon). Note that
here we have to test that the name attribute of the final acttirei sequence is indeed Kevin
Bacon and not some arbitrary value. Another example is ayahet finds actors connected
via professional links restricted to actors of the same dgethis case, comparison of data
values (having the same age) is done for every node alongathe A similar query might ask
for people with a finite Bacon number, but such that collati@naconnections must always go
through movies — documentaries will no longer suffice. Inexample this would still give us
that Tomasz Luczak has a finite Bacon number, but Padldides not, because his connection
is realized by co-starring in a documentary.

Since answering such queries lies at the very core of manlcappns using the graph
data model, this opens up space for the main focus of thigdion which is the design
and analysis of languages for querying graph data in a waatlmavs combining navigational
patterns with the data they connect. To this end we will psepgseveral languages, based on
traditional and new approaches and explore how they staezkgainst the other, as well as how

4 Chapter 1. Introduction

they relate to previously proposed languages, both relatiand graph-oriented. The purpose
of such a study is, of course, to point to a good set of primdtithat should be present in any
graph query language, either theoretical or applied. Iretiek we will describe several such
sets and argue why they could serve as a logical core of a gmggidge for querying graph

data.

1.2 Contributions

Describingthe graph language, both efficient and expressive enough tareaptcombination
of data and navigational queries, is a difficult task, esglsctaking into consideration that
different groups of users might have different requireragvtien it comes to the type of queries
they wish to ask. The main contribution of this dissertatioan is to develop several classes
of query languages for graphs with data and to analyse howmgddrious data manipulation
capabilities and navigational features affects the efiyeof the main reasoning tasks such as
query evaluation and query containment, as well as howateslto the expressive power of
the language.

To explain two main design principles for the languages vo@@se it is important to notice
the duality present in traditional graph languages thatederd data values and only reason
about edge labels. To illustrate this consider for instaRP&s, a standard building block for
any navigational language over graphs. An RPQ query is fipetiy a regular expression and
it retrieves all pairs of nodes connected by a path whose kadhgés form a word belonging to
the language defined by this expression. Therefore, in tnitegt one uses a language theoretic
formalism to specify the set of allowed path labels and thearches for a path in the graph
whose label belongs to this set. We call such languagéls languages On the other hand
more advanced languages, sucmasted regular expressignsr NREs ([Pérez et al., 2010]),
work directly on graphs, allowing to search for patterns tfae no longer be described by paths
alone. Such a query could for instance check if in a sequehcellaborating actors from the
example above each movie appearing on the path connecenghhs a director entered into
the database. These languages will be cajieghh languagesFollowing this duality we will
be talking about path languages and graph languages wheitledng data values as well.

Path languages We start with the more traditional path based approach ansider various
language theoretic formalisms that allow for data valuegdiition to a finite set of labels. The
question then is how to select the one appropriate for thedfiguerying data graphs? Here
we will be governed by the usual objective of keeping the dexity of the query evaluation
problem — that is the problem of determining if an object hglto the answer of a particular
query — low. This will allow us to immediately rule out sevengll studied formalisms, such

1.2. Contributions 5

as FO [Bojanczyk et al., 2011], Pebble automata [Kaminski &@n, 2008], or LTL with
freeze quantifiers [Demri and La&zi2009], leaving us with the model oégister automata
[Kaminski and Francez, 1994], which we maodify for our purp®sThe class of queries defined
by register automata, calleggular data path querigsor RDPQs for short, has reasonable
complexity bounds, in fact matching those of the usual i@lal languages, and relatively
high expressive power, at least when specifying propedfgsaths is concerned. Its main
shortcoming, however, is the relatively cumbersome andtuitive syntax that is unlikely to
attract much interest from the practitioners.

In order to overcome this, we develop an expression analofjtegister automata called
regular expressions with memoryhese expressions have the same relationship with registe
automata as ordinary regular expressions do with NFAs,ishidiey define the same class of
languages, but are much easier to read and specify. To mamisters they will use variables,
allowing one to store a value into a variable in the same waywaeuld have been stored in
a register. The class of queries they give rise to, cakgdlar queries with memorfRQMs)
retain the P8ACE complexity bound of the RDPQ query evaluation problem (giog to
NLOGSPACE if the query is fixed — also known as data complexity in therditere [Vardi,
1982]). This, coupled with easy and intuitive syntax makesit much more useful than regis-
ter automata as a graph query language.

To lower the complexity of the query evaluation problem wertfook into various ways of
restricting register automata RQMs, while still retaining most of the expressive power that
powerful data manipulation mechanisms used there alloantixing regular expressions with
memory one immediately notices that they do not define prepepe of variables — a feature
very common in programming languages and software veiificatlt is therefore natural to
look at a restriction that limits this. By giving variablesope we arrive at the class kdgular
queries with bindingor RQBs. Surprisingly, it turns out that the complexity of queralesation
remains the same, although the language has slightly weakeessive power.

So far we only considered languages operating with varsatn@egisters explicitly, grant-
ing high expressive power in terms of data value comparisénsrder to develop an effi-
cient, yet expressive language, we turn to a class of quvasallows testing for data value
(in)equality at the beginning and the end of a subpath ortiys first-in-last-out discipline will
allow us to obtain very low combined complexity (RIE to be more precise), while still being
able to express many interesting graph queries. The claggenies is calledegular queries
with data testand will be important in understanding how data tests inyjlerguages relate
to the ones in first-order logic.

Finally, in order to develop a language that still has thditglib store data values in vari-

ables, but at the same time has query evaluation complegitgpvibthe one olRQMs we turn
to variable automata We extend this formalism, introduced first in [Grumberg let 2010a]

6 Chapter 1. Introduction

to reason about words over infinite alphabets, to work ove deaphs. The complexity here
is reasonable, nameNP-complete and the different nature of data comparisonsstinzti au-
tomata use makes them orthogonal to the previously progesgdages.

An important issue in query language design is enrichingbiee theoretical languages
with features required from database practitioners. Irctmext of graph databases two of the
most important such features are the ability to traversegtgckwards and allowing conjunc-
tive queries to be formed from simple graph queries. Indédwhs been argued before [Cal-
vanese et al., 2000, Calvanese et al., 2003] that the inegrseator is a required feature of
any practical graph language, while the usefulness of catijte queries has been well studied
both on relational databases [Abiteboul et al., 1995] angraphs [Barcel6 et al., 2012b, Frey-
denberg and Schweikardt, 2011, Bienvenu et al., 2013]. \&fetbre study the impact of such
extensions on previously proposed languages. It turnshatradding inverses has no impact
on the complexity of query evaluation (however, it will tusar to have a big impact on query
containment, as we later show), and results on conjunctiegies are the best possible in light
of the results for more restricted languages.

Overall, we see that as far as path languages are concemedfpl data manipulation
features come with a price of relatively high complexity.iSTis also coupled with relatively
poor navigational power, since such languages can onlyalefiths. We address this issue
when defining graph languages.

The results on path languages are presented in Chapters43 &xtkending the languages
with inverses, conjunction and the ability to use varialimegs more general way is presented in
Chapter 5. Most of these results appeared previously irk[hiand Vrg&, 2012b] and [Libkin
et al.,, 2013c]. Languages with inverse were briefly studiedKiostylev et al., 2014] and
conjunctive queries for some classes were considered linkifLand Vrg&, 2012b]. Note that
in this dissertation all of the languages come equipped tuitability to check equality with a

constant, which was not present in the aforementioned esurc

Language theoretic aspects of path languages As mentioned previously, to define path
languages, one uses a language theoretic formalism tofgpleeiset of allowed path labels.
To properly analyse such languages one must also understesicl properties of formalisms
defining them. Indeed, we will later use language contairinpeoblem to infer results on
query containment of path languages, and the results on hewahguages compare one to
another over graphs will follow from the study on the expragsof their language theoretic
counterparts.

Since we introduced several new language theoretic fosmah Chapter 4, it is important
to understand their properties. We do this in Chapter 6, &vhar consider these formalisms
in the setting of data words (basically words that in eachitiposcarry a letter from a finite

1.2. Contributions 7

alphabet and a data value from an infinite domain) and deterthie complexity of basic al-
gorithmic tasks such as membership, nonemptiness or comait for them. We also look at
usual closure properties and show how formalisms compagd@amanother in terms of expres-
sive power.

Most of the results from Chapter 6 have previously appeargdilbkin and Vrga, 2012a,
Libkin et al., 2013c]. Some of the result that were missinthigse publications are presented
here for the first time.

Graph languages Having considered several languages using the traditjpataiF-based ap-

proach, in Chapter 7 we turn our attention to languages tpgrdirectly over graphs. Extend-

ing the idea of nested regular expressions [Pérez et alQ] 284 well as some previous work
based on algebras for binary relations [Fletcher et al.22Bletcher et al., 2011], we show
how a well established query language from the XML conteaimelyXPath, can be adapted

to suit our purposes. Using the branching capabilities chdanguages, coupled with data
value tests, we can now for instance search for all the agtoosir sample data graph from
Figure 1.1 who have a finite Bacon number, but stipulate tiatcbnnection is made by co-
starring in movies and not documentaries. Tomasz Luczdiers $till an answer to our query,
however, Paul Ex@s is not, since his link to Kevin Bacon goes through the dantary "N is

a Number".

The language we propose is caller’Path and we study its query evaluation properties and
connections to logic. We obtain good complexity bounds (glsi® TiMe for any reasonable
variant of the language), as well as the ability to expressyng@eries of interest in the graph
setting. We also show that the language is strongly rootddgit, as it is equivalent to an
extension of FO with binary transitive closure over graprisis, together with the fact that its
navigational fragment is just PDL [Harel et al., 2000] inglisse, make&XPath a definitive
graph language when navigation is the main priority, andangtcandidate for practitioners to
consider when choosing the appropriate language for thepgses. Its main deficiency, the
inability to freely use memory in a way that, for instanBQMs do, is somewhat lessened by
the fact thatXPath-style data tests that the language uses have been trie@stad bver time
by XML practitioners, however, there are still some projgsrthatRQMs can express that are
outside the scope @XPath.

Note that most of the results from Chapter 7 appeared prelyiao [Libkin et al., 2013a].
Some results, such as the complete hierarchy of the landuagments, connections to FO
with data value tests, and conjunctive queries basedXfath, are however new and appear
here for the first time.

RDF and graph data RDF databases are often cited as one of the most importalitatgm
of the graph data model, however, there is a slight mismagtivden data graphs and RDF

8 Chapter 1. Introduction

Triplestores. Although big majority of RDF data is indeedrap, the model itself allows
edge labels to be objects themselves, thus permitting thdra & source of another edge. This
fact becomes increasingly important in areas such as dagration, provenance tracking, or
querying and maintaining clustered data.

In Chapter 8 we develop a language with such applicationsiid.mOn top of that, we
design the language specifically for RDF data, thus makiolp#ted in the same way that rela-
tional algebra never takes the user outside of the reldtropdel. The language, call&@iAL,
is based on the concepts of relational algebra, but alswslolimited amount of recursion.
Here we study the usual query evaluation problem, compardatiguage to previously pro-
posed languages for RDF (namely SPARQL and nSPARQL [HamdsSeaborne, 2013, Pérez
et al., 2010]) and compare it to traditional relational laages. We also show that, due to its
close connections with relational algebra, the languageahaell defined Datalog equivalent,
making it very attractive to the users. The main conclusienelis that treating RDF data model
as a graph database has some inherent limitations and ednsgidt in full generality leads to
a richer theory, subsuming that of graphs alone. On the dthed, this study also allows to
transfer RDF techniques back to graphs, allowing more génewigational and data patterns.

Most of the results appearing in Chapter 8 were previoussgmted in [Libkin et al.,
2013b].

Comparing the languages To obtain a complete picture of the graph querying landscape
in Chapter 9 we compare previously introduced languagesring of expressive power. As it
turns out, the ability to use variables makes path langusgesnparable to the navigationally
richer query classes such @xPath or TriAL. On the other hand, variable automata turn out
to be orthogonal to all of the other languages because af sheiewhat unnatural ability to
guess assignments beforehand, thus giving them the abilisason globally, unlike the other
languages which are based on the automata or expressidrsdhia essence local.

Although most of the results in Chapter 9 have already aggeiarthe publications where
the languages were originally introduced (see above), sdiie results are new and have not
been considered previously.

Query containment Finally, in Chapter 10 we will initiate the study of staticaysis aspects

of our languages. Here we concentrate on the problem of quoerainment which asks us to
determine, given two queries in some language, if the ansetesf the first query is contained
in the answer set of the second query over all possible dafhgr Query containment is a fun-
damental database theory problem [Abiteboul et al., 1988]ia crucial in several important

database tasks such as query optimisation, view definitimhnaaintenance and view-based
query answering. In this chapter we study the problem foviptesly proposed languages and

1.3. Other related work 9

determine the decidability border based on both data mbatipn abilities as well as naviga-
tional features a language allows. It turns out that deditialsan not be established without
severe restrictions on the use of negation and data in¢iggalbut once these are excluded
from the language we generally obtain reasonable compléwitinds, ranging from PCE
to EXPSPACE. While we obtain a relatively complete picture for the clagpath languages
and several of their extensions, the situation is far fromndpeesolved in the case @fXPath,
where the abundance of fragments promises to be a fruitbulrgf for future research, similarly
as was the case witkPath over trees [Figueira, 2010b].

Most of the results presented in Chapter 10 already appeargbstylev et al., 2014],
however some results, such as containmentTfiL and several fragments @XPath, are
presented for the first time.

Remark 1. Following the usual assumption of XMlata treeswhere each node carries a
single data value [Bojanczyk et al., 2009, Kaminski and 2008, Segoufin, 2006], we will
also consider graphs where each node has only one data vétaehad to it. Note that this is
not a real restriction, as multiple attributes can be modeélwith additional outgoing edges,
labelled with the attribute name, and ending in a node whasa dalue is the value of the
appropriate attribute. Furthermore, as we show in Sectidh @ne can go from one model to
the other without having any effect on the presented restiltere we also show how the graph
from Figure 1.1 can be modelled using this assumption.

This simplification is done mostly for the ease of notatiarn, &s already mentioned, all of
the results still hold if one assumes nodes with multipletaites.

1.3 Other related work

As we mentioned earlier most current approaches to quegyriaigh database separate the data
aspect and the topological aspect of such databases. Tkiagrof these two modes of query-
ing is needed became apparent in the early days of graphadatalgstems when users started
asking questions about propagating the data along pathgsadteins. The first system that rec-
ognized the necessity of treating both data and topologyjaalevas GOOD [Gyssens et al.,
1994], however, the navigational features used there vaher rudimentary [Van den Buss-
che and Vossen, 1993], as the system was focused on mané#ggatroriented databases. The
Lorel system [Abiteboul et al., 1997] partially addresd@s problem by allowing conjunctive
RPQs with variables returning nodes whose data values candassed and compared. This,
however, still does not resolve the issue, as it does novalkta to be propagated along the
path: it first extracts nodes using navigational queriesn@ig CRPQs) and after that filters
the data from extracted nodes by a relational mechanismerdstingly, despite these defi-
ciencies, the system actually matches many capabilitiesiwént commercial graph systems

10 Chapter 1. Introduction

such as Neo4j [Neo4j, 2013], Dex [Dex, 2013], or Gremlin [@la, 2013]. Several other
systems based on similar principles were developed in 1886s2000s ([Fernandez et al.,
2000, Amer-Yahia et al., 2009] — for a survey see [Angles antiegBez, 2008]), but to the best
of our knowledge none of them had the ability to ask querias tthix data and topology be-
yond basic tasks that essentially amount to treating theseparately. Furthermore, the main
concern in these approaches was usability and they werensditbked at from a theoretical
perspective, so issues such as query evaluation and statigses aspects of these languages
are not that well understood.

Chapter 2

Preliminaries

In this chapter we will provide necessary background infation about graph databases, for-
mally define the model used throughout this thesis and giveeh dverview of graph query
languages studied in the past. We begin by describing thehmm&ection 2.1 and explaining
how it generalizes the usual graph data model. We alsordéitesshow theoretical restrictions
imposed by the formal definition can easily be lifted in a mapglied setting which requires
multiple attributes and values per node, as in e.g. soctalorks. Following that we define
the class of regular path queries, or RPQs, which had forimefdsis of every graph database
language since its inception in the late eighties [Cruz et1887, Consens and Mendelzon,
1990]. Following that we will review information about somm@re general languages recently
proposed in the context of RDF databases [Pérez et al., 2010]

One of the main issues governing the design of a query lamgisathe efficiency of the
query evaluation problem. Indeed, it is this problem thatmfmakes or breaks a proposed
language and some elegant theoretical constructions bdediscarded if they give an unrea-
sonable rise in computational complexity of this problem.Skction 2.4 we define the query
evaluation problem formally and review main results abdassical graph query languages
such as RPQs and NPQs.

Lastly, in Section 2.5 we discuss differences and simiéribetween two main language
design principles for graph databases. Namely, we idecléfyses of path queries, whose main
design principle is to define sets of permissible paths usimge language theoretic formalism,
and graph queries, that operate directly on graph, usuaihgdoeyond the reach of paths. We
also show how path queries can be redefined to work directlyraphs and show that the two
approaches are equivalent.

11

12 Chapter 2. Preliminaries

2.1 Graph databases

As mentioned in the introduction, the model of data we cagrdigre is that of a graph database.
In what follows we will take the approach where data residabé nodes, however a different
approach, with data residing in the edges is also possiloldéader on we will show that the two
are equivalent. Next we define graph databases formally.

Let Z be a finite alphabet, an@® a countably infinite set of data values. Data graphs will
have edges labelled by letters fréand nodes that store data values frém

Definition 2.1.1 (Data graphs) A data graphor a graph databas@ver ~ and D) is a triple
G = (V.E,p), where:

¢ V is afinite set of nodes;

e ECV xXZxV isasetof labeled edges; and

e p:V — Dis afunction that assigns a data value to each node inV.

An example of a graph database is given in Figure 2.1. Heresagnae that edge labels
area,b and data values are integers.

Figure 2.1: A graph database with data values

Note that traditionally [Cruz et al., 1987, Angles and Girée, 2008, Calvanese et al.,
2003] graph databases had no data values attached to thethusnaimounted to finite edge
labelled graphs. When we disregard data values and corsitieedge labels we simply drop
the functionp from the above definition.

Query languages that do not refer to data values, but onlersa graph edges, such as
RPQs and NRQs introduced below, will be caltealigational languages

On single value vs. multiple values Here we assume that each node has only a single data
value assigned to it. In a more applied setting, such as teepogsented in Figure 1.1, we
might want to view nodes as small databases themselvessthrisg multiple data values
or relations. Assumption that each node has only a singke d&ute is not a real restriction

2.1. Graph databases 13

as multiple attributes can be modelled by extra outgoingeedgpm one node, each with the
attribute name as the label and attribute value as the data wg&the node it points to. This
solution is illustrated in Figure 2.2. Furthermore, the way design languages will make it
easy to extend them to work with multiple data values.

I@nes.com

userl
name: Luigi

multiple attributes
email: |@nes.com ANNANNNNANNNNANS

age: 27

Figure 2.2: Dealing with multiple data values in a social network

Applying such a transformation to the graph in Figure 1.1 weelld obtain the following
graph. Note that for compactness of presentation we only $loev to model the age attribute
of certain actors, since this is all we will need in the futaramples.

type

Figure 2.3: A movie database represented as a graph — now with a single data value per node

Placement of labels and data values In defining our model we followed the traditional
approach where labels reside on the edges and data valube motles [Abiteboul et al.,
1999, Cruz et al., 1987, Mendelzon and Wood, 1995, Consethd/@mdelzon, 1990]. Other
approaches are of course possible and have been considerati@years. For example in the
XML setting it is usual that labels as well as data values #exhed to the nodes, while child
edges in trees modelling the data remain unlabelled [Nex@®2, Segoufin, 2007, Figueira,
2010a, Figueira, 2010b]. Regarding data values, it may ke sense to place them on the

14 Chapter 2. Preliminaries

edges, for example when each edge label also has an asdogidie attached to it, as in
e.g. [loannidis et al., 2011]. And there is, of course, theraach where both edges and nodes
carry labels and data [Neo4j, 2013, Dex, 2013]. All of thegpraaches have their pros and
cons, however it is easy to see that they are all essentigllivaent. Since the setting we
will be using is fixed (that is, we assume labels on edges alu@v#n nodes), all of the query
languages will be designed to operate in this setting. Hewdtvis important to note that this
poses no restrictions, as all of the languages can easilgdadined to accommodate for data
values in the edges, or labels in the nodes, without affgctity of the complexity bounds. To
see this assume that we have a model with both nodes and eatggag a label from a finite
alphabet and a datum from an infinite domain. We could themnasghat this model amounts
to "splitting" edges into two and adding self loops to emailabde labels. This process is

illustrated below.

edgetype=link

created = 11-10-13

use578 \ user7784

nodetype = user nodetype = user

age = 25 age = 27

§ transfering to model

with data in the nodes

user user
v
link_in -1 link_out
age = 25 created = 11-10-13 age = 27
useib78 user7784

Figure 2.4: Simulating the model with data in both nodes and edges

Here we assumed that nodetype and edgetype attributesnapéy dabels from a finite
alphabet, while age is an integer. Each edge is replaced bgewith one incoming and one
outgoing edge corresponding to the original edge labehtjmgj to and from a node with the
data value. Labels on the nodes are simulated by self loops shows how we can view
graphs with data both in the nodes and in the edges as dafasgirapn our definition. It is
important to note that, in the case when data is stored asguralues both in nodes and edges,
one does not need to restructure the data, as queries candigetha run-time, taking into
account the way the data is stored.

On node ids and data values Itis important to remark here that data values do not amaunt t
node ids. Indeed, in the database from Figure 2.1 both nadasd e.gv, have the same data
value, namely 1, but they are not the same entity in the dagabihis illustrates that in general

2.2. Regular path queries and extensions 15

data values can not be used as node ids, unless we assumecthabde is assigned a different
data value. For reasons discussed in Section 3.2, none gutry languages considered in
this thesis will allow checking this, thus making it a glolséhtement outside of the reach of
our model. Furthermore, assuming that node ids are the saidsavalues might lead to some
confusion in e.g. a genealogy database where two nodes oagiytthe same name, but it is
important to be aware that they represent a different entity

Paths Most of the classical graph query languages rely on definatggbetween two nodes
of a graph. In graphs with data, paths, however, carry sortra @formation. Consider, for
example, a patk vovsvs in the graph from Figure 2.1. If we traverse it by startinginreading
its data value, then reading the label(ef,v,), then the data value i, etc., we end up with
the following sequence:aPb3al. We shall refer to such sequencegslat paths

Next we define the notion of paths and data paths formally.

A path between nodeg andv, in a graph is a sequence

TT=Via1Vo@V3...Vh—18n—-1Vn (2.1)

such that eaclivi,a,vi;+1), fori < n, is an edge irE. Corresponding to the path(2.1) we
have adata path

Wi = p(V1)arp(V2)azp(Va) ... P(Vn—1)@n-1P(Vn) (2.2)

which is a sequence of alternating data values and labefsingt and ending with data values.
The set of alldata pathsi.e., such alternating sequences okesind D, will be denoted by
Z[D]*. For both paths and data paths, we use the notatizi or A(wy) to denote their label,
i.e. the worda; ...a,_1 € 2*.

2.2 Regular path queries and extensions

The core class of queries for graph databases is the onewérgmth queries or RPQs. These
queries are purely navigational and disregard data vallesever, as we will shortly see, they
form a natural base for all languages that include any santeigation in graphs. RPQs are
based on the principle of describing permitted paths in plgr&ince edges in data graphs are
labelled by letters from a finite alphabet it is natural toalid the set of permitted paths as a
regular language over this alphabet.

Regular path queries Formally regular path queriesor RPQs for short, are queries of the
form Q=x LN y, whereL is a regular language over some fixed finite alphahetpecified

by a regular expression or a finite state automaton [Cruz,e1287, Consens and Mendelzon,
1990, Calvanese et al., 2003]. Given a data gi@gthe data in the nodes will be irrelevant for

16 Chapter 2. Preliminaries

RPQs), answer of a quefy on G, denoted byQ(G), is the set of all pair$v,V) of nodes inG
such that:

e There is a pathmin G, starting withv and ending with/, and

e The label\(m) is a word fromL.

Note here a degree of separation between queries and lanfpragalisms defining them.
Namely, we have a regular expression (or an NFA) definingahguagé. of permissible paths
(or rather their labels), while the que®itself looks for paths in a graph whose label belongs to
this setl of permissible paths. We will call such languagedh languagessince they amount
to finding a path in the graph and matching the label of thik path a corresponding language
defining the query.

An example of an RPQ is e.g.

Q:x(agy.

From database in Figure 2.1 this query will extract éwg,vs) since patht= vyavbvsavsby,
has the labedbabwhich belongs to the language @fb)*. The other pairs in the answ&(G)
are(vi,Vs), (V1,vs) and(Vs, Va).

The fact that regular languages are closed under conjuncta lead us to a conclusion
that taking two regular expressiors ande, one can define a query which extracts pairs of
nodes connected by two path, oneeinand another ire,. However the expression defining
intersection of; ande, specifies a query that returns nodes connected by a sindilevbaise
label belongs to both languages. In fact, to define querida@$or multiple paths one has to
use conjunctive regular path queries (CRPQs).

Conjunctive regular path queries Conjunctive RPQr CRPQs[Consens and Mendelzon,
1990] are the closure of RPQs under conjunction and exiatentantification. Formally, they
are expressions of the form

o(®) = Iy \@ = u), (2.3)

where all variables;,u; come fromx,y. The semantics naturally extends the semantics of
RPQs:0(a) is true inG iff there is a tupleb of nodes such that, for every< n, every pairv;, v/
interpretingz, andy; is in the answer to the RP@% Ui.

We can now ask queries as e.g. the following one:

O(xY) = (x5 y) A (x 2B y).

The query will return all pairs(v,v') of nodes such that there are patiisandm,, both
starting withv and ending with/ such thai (1) belongs to language of, while A(T) equals
ba Applied to the graph in Figure 2.1 this query will retuis, vs).

2.3. Nested regular expressions 17

Two-way regular path queries A natural extension of RPQs is to allow them to traverse
graph edges backwards. Indeed, such a functionality is oéiquired in practical scenarios,
for example in a genealogy database one might want to redsmnri ancestors and in a crime
detection scenario links are often tracked backwards tatéothe main supplier of trafficked
goods. RPQs extended with this ability are caltas-way regular path queriesr 2RPQs
[Consens and Mendelzon, 1990, Calvanese et al., 2000 ,iteslezet al., 2003].

Formally, letZ be a finite alphabet. We will denote &/ the setzU{a™ :ac Z}. The
lettera~ denotes that an edge is supposed to be traversed in a bactliseetion (note that
edge labels can also be viewed as binary relations betwetgsnthus~ would be the reverse
of relationa). If p € * we usep™ to denote the inverse @f Thatis if p = a, for someac X
thenp =a,andifp=a, thenp™ =a. A 2RPQ overZ is then an expression of the form
Q =x— vy, whereeis a regular expression or a finite state automaton Bver

In order to define semantics of 2RPQs we need the notion of ga#m A semipath
between nodeg, andv, in a graphG = (V,E) is a sequenca of the formvppivipsz... paVn,
wheren > 0 and for eacti we havep; € * and(vi_1,a,v) € Eif p=aand(v,a,vi_1) € E,
if pj =a . Intuitively, a semipath amounts to traversing graph edgsh backwards and
forwards, as dictated by the sequence of lalpels. ., pn. Then the answer to a 2RRQover
G, denotedQ(G), is the set of all pairgv,V) of nodes connected by a semipath whose label
A(T1) = py1--- pn belongs to the language ef

A sample 2RPQ is e.g.

Q=x*"Yy
For a graph in Figure 2.1 we ha@G) = {(vs3,Vs), (V3,V2), (V3,V3), (V3,V4) }.

It is straightforward to define a class of conjunctive guetising 2RPQs as atoms, much
like CRPQs use RPQs. This class of queries is caltagunctive two-way regular path queries
or C2RPQs.

2.3 Nested regular expressions

One of the most apparent shortcomings of RPQs and relatethfisms is their inability to
abstract away from paths. In semi-structured data one oéeds to define patterns connecting
certain nodes, or exhibit some structural properties ofuthgerlying model that can not be
captured by paths alone. For example in a social networkasicewe might want to test if
there is a chain of users connected by friends links and tbagahis chain each person likes
the same type of music. This would be modelled by checkingafooutgoing edge labelled
likesto a node representing some music type (here we assumedhmatrttber of types is known
in advance; in a more realistic setting we will need dataesto model types of music). Note
that since the length of such a chain can be arbitrary thisncarbe defined using CRPQs,

18 Chapter 2. Preliminaries

since the number of conjuncts of a CRPQ is fixed in advance.s, Ténen though they can
define some simple patterns, CRPQs fail to express many npiexpef interest when querying
graphs. Indeed, the importance of ability to define pattématead of paths was recognized
in the study of XML, where even the most basic languages alinching from the main
path and checking if a certain condition is satisfied alorghth. XML languages, and most
notably XPath [Xpath, 1999, Benedikt and Koch, 2008, tereGaid Marx, 2007], considered
to be the logical core for querying XML documents [ten Catd antz, 2009], form a good
basis for graph language design and in later chapters weshdllv how the underlying ideas
can be transferred from XML to graphs.

The first language influenced by XPath’s functionality tawailbranching away from a
path (and thus defining patterns) is that of nested path egjesir NPQs. This language, first
introduced in [Pérez et al., 2010], was created in order ptuca certain navigational aspect
of RDF documents [Klyne and Carroll, 2004] that lie beyonacte of the proposed SPARQL
standard [Harris and Seaborne, 2013]. The expressionsriefitPQs, called nested regular
expressions, are themselves quite simple and amount tadixte RPQs with inverses and
nesting operators. The intuition behind nesting is thatti tike a test that a certain node in the
path has to satisfy. The test itself is defined by a nestedaegupression — hence the name.
Next we define NREs.

Nested regular expressionspr NRE, over a finite alphabeX extend ordinary regular ex-
pressions with the nesting operator and inverses [Pérelz, €040, Barcelo et al., 2012c].
Formally they are defined as follows:

n:=¢|ala |nn|n|n+n]|[n

wherea ranges ovek.

Intuitively NREs define binary relations consisting of pairs of nodes camigeby a path
specified by th&l\RE. When interpreted on a data gra@hhe relations are defined inductively
as follows:

[el® = {(wv)|veV}
[a® = {(wV) | (waVv)eE}
[a]® = {(wV) | (V,av) €E}

[n-n]® = [)®o[n]®
[n+n]® = [n°u[n]®
[n*]€ = the reflexive transitive closure ¢h]©

[N = {(vv) | 3V suchthatv,v) € [n]®}.

A nested path query, or NPQ, is an expression of the fQrmx LN y, wheree is aNRE.
Given a data grapi, the answer t@ on G, denotedQ(G) is the sef/e]®.

2.4. Query evaluation 19

An example of an NPQ is the e.qg.:
Q=x (b@+ y.

It checks that node at the end of edelabelled edge also has an incomimdpbelled edge.
For the graph in Figure 2.1 we haf€]® = {(v2,V3), (V2,V4), (V3,V4)}. Note that(v,, i) is not
in the answer t@ sincevs has no incoming-labelled edges.

Note that the semantics of a NPQs is defined directly on graqatisaking a detour through
language theory like e.g. RPQs do. We will call such langsagaph languages

2.4 Query evaluation

One of the main problems associated with query languagest®fquery evaluationor as it

is sometimes calledjuery answering Indeed, gauging applicability of some language often
depends on obtaining desirable complexity bounds of tliblpm. Studying query evaluation
problem for a wide range of graph query languages that dehldeta values constitutes the
main portion of this dissertation and throughout the subbertjchapters we will explore how
different features impact the complexity of the problem.

To define the query evaluation problem formally assume tleahawe a query language
over some finite alphabé&t and a queryQ(X) from L returning tuples of nodes from a data
graphG. Here we writeQ(X) to denote tha® returns tuples of lengtfx|. The query evaluation
problem for languag€ is then defined as follows:

PROBLEM: QUERY EVALUATION (£)
INPUT: A queryQ(X) with [X| = k, a graph databag® overs and a tuplez € V.
QUESTION: Isve Q(G) ?

When studying query evaluation we will be interested in thmplexity of this problem.
Stated as above, this is often referred t@@sbined complexityof query evaluation problem
[Vardi, 1982]. In databases we are often interested in tmi@maof this problem where the
query Q is fixed, and only the grapl®s (together with tuplev) is given as the input. This
version is referred to as tlata complexity of the query evaluation problem.

We will now review basic results about combined and data dexity of the languages

introduced in previous sections.

Fact 2.4.1([Cruz et al., 1987]) Both data and combined complexity of evaluating RPQ queries
are NLOoGSPACE-complete.

This easily follows from the observation that in the case BER one is given a gragghand
a tuple of nodes,t, along with the regular expressieras the input. To check {fs,t) € Q(G),

20 Chapter 2. Preliminaries

whereQ = x —» v, it suffices to observe th& can be viewed as an automaton vstie initial
andt the final state. Then the result follows from performing sleal product construction
of the graph with the automaton f& where we check this product for nonemptiness on-
the-fly. The lower bound follows from the fact that complgxdf reachability in graphs is
NLoGSPACE-hard [Jones, 1975].

It was also shown that if one allows only simple paths in alyrédpat is paths that repeat
no nodes), then both data and combined complexity jump tocbiRplete [Mendelzon and
Wood, 1995]. We however do not require paths to be simpleheaortentioned result does not
affect our presentation.

When moving to CRPQs a jump in combined complexity occurs.

Fact 2.4.2([Consens and Mendelzon, 1990, Barcel6 et al., 2012bPmbined complexity of
evaluating CRPQs iblP-complete. Data complexity ML 0GSPACE-complete.

The data complexity bound follows from the same techniqum@RPQs (but now using
multiple automata). Bound for combined complexity is obai by guessing a polynomial
length witnessing paths and verifying that the guess isctriThe lower bound follows from
a matching bound for relational conjunctive queries [Charathd Merlin, 1977].

It is also known that adding inverses incurs no extra contjmuial cost.

Fact 2.4.3([Calvanese et al., 2000]Both combined and data complexity of evaluating 2RPQs
are NLOGSPACE-complete.

This observation is straightforward, since evaluating QR the same as evaluating RPQs
over an extended alphabet.
For NPQs query evaluation is very efficient. In fact it is hne

Fact 2.4.4([Pérez et al., 2010])Both combined and data complexity of evaluating NPQs are
in PTIME. In fact, checking if a paifv,V') belongs to @G) can be done in QG| x |e|), where

Q=x->y.

This algorithm relies heavily on the solution to the modedaiting problem for proposi-
tional dynamic logic [Harel et al., 2000].

2.5 Path languages and Graph languages

Examining carefully the semantics of NPQs one can see thwgitate in fact defined to operate
directly on graphs, without taking an intermediate stepulgh language theory as e.g. RPQs
do. Indeed, the distinction betwe®REs and NPQs is purely artificial, and introduced only
in order to keep the notation consistent throughout theighed/e have already mentioned
that such languages, whose semantics is dependant on thiesgrad not language theory

2.5. Path languages and Graph languages 21

formalism defining the set of allowed paths, will be calledpr languages and their semantics
graph semantics.

RPQs on the other hand start with the premise of specifyiagéht of allowed path labels
and then their semantics is defined by finding paths in thehgrdqose label belongs to this set
of allowed paths. Therefore there is a certain duality whesdidg with such languages, which
we call path languages. Namely, there is a language thedoethalism (regular languages in
the case of RPQs) that defines the set of allowed path labdlthan there is the query itself

whose semantics depends on two things:

1. Finding paths in the graph, and

2. Checking that the path label belongs to the language aféfining expression.

We have mentioned already that such languages are calledapguages, since they rely
on finding paths in the graph and do not operate on the graphsstiives. In order to underline
this connection between queries and language theoretielsiddfining them we will be us-
ing such a duality between expressions defining path lalmelstee queries themselves, when
appropriate. Therefore in the forthcoming chapters welvégltealing with:

e Path languages— when the underlying idea is to describe the set of pernisgiath
labels and then the semantics calls for finding paths in thptgwhose labels belong to

this set.

e Graph languages— when queries are defined to operate directly on graphs aed wh
paths alone no longer suffice to capture the intended sersanti

Important thing to note is that e.0NRES can not be used in the same manner as regular
expressions, since they no longer define paths, but patteichsed, using the nesting operator,
one can specify various patterns in a graph that are no loraggured by paths alone. Note
that NREs could also be used to define sets of words (i.e. their seosariuld be adopted
to paths instead of graphs), where the nesting would onlk &wad (or backwards) along a
single path; however, this approach, although interestirigg own right [Reutter, 2013a], falls
outside the scope of this thesis.

An important and useful observation is that path languagasbtvays be defined to operate
directly over graphs, where the definition simply captuhesibtended behaviour of navigating
the graph along a path with the permissible label. This iSqdarly useful when one wants to
define the semantics of e.g. the inverse operator, sincethevghat counter intuitive notion of
a semi-path is no longer needed. In fact defining semantipatbf queries directly on graphs,
called thegraph semantics of path querjesso gives a uniform way of looking at queries that
is in a sense more relational then the traditional path s@osagiven above. However, due to

22 Chapter 2. Preliminaries

historical reasons, and to exemplify the underlying designciple of path queries, we will in
general use the path semantics when dealing with such guerie
Next we show how to define graph semantics for RPQs.

Graph semantics for RPQs Here we define graph semantics of RPQs and 2RPQs formally
and show that it matches the path semantics above. RecaRRRQs (which subsume the
class of RPQs) are defined using expressions specified bgltbwihg grammar:

e=¢|ala |ee|€ |ete (2.4)

wherearanges over a fixed finite alphal¥tNote that these are simply regular expressions
over the extended alphabEt, just as in the definition of 2RPQs.
The graph semantics of such an express@ver a graph databage is then defined as

follows:

[e]® = {(wv)|veV}
[a]° = {(wV) | (vaV)<cE}
[a]® = {(wV) | (V,av)€E}
[e-€]® = [e]c[e]®
[e+€]® = [e]°Ule]®
[e]¢ = the reflexive transitive closure §€]°

In the end we simply define (2)RPQs as queries of the Ormx — y, whereeis defined
by the grammar above, and $@(G) = [€]®. Same as for NPQs ardREs, this extra step,
separating expressions from the queries they define, idysisgptactic and we do so only to
keep the notation uniform. Note that (2)RPQs now operatctlir over graphs. It is however
easy to show that the two semantics coincide.

Lemma 2.5.1. Let e be an expression defined by the grammar 2.4. Then forataygdaph
G and a pair y of nodes in G it holds thatv,V') € [€]® if and only if there is a semi-patft
connecting v and'\such that the labek (1) belongs to the language of e, when e is viewed as

a regular expression ovexr™.

Note here that when only RPQs are considered semi-pathsplaced by paths. The
lemma is proved by a straightforward induction on the stmecbf the expressioa

Remark 2. Since for graph semantics there is no longer a real diffeecletween the expres-

sions defining the queries and the queries themselves, Wefteit simply use the expressions
to denote queries and vice versa. Therefore, we willNREs when talking about NPQs, or

use the expressions from grammar 2.4 when talking about 2RPQ

2.5. Path languages and Graph languages 23

A short note on the structure Seeing how there is a divide amongst the class of navigdtiona
graph languages, it is only natural that in our search faable querying framework for graphs
with data we follow that divide. In that respect, we will begiur study using the more tradi-
tional approach of path languages in Part |, where variotradbsms defining languages that
handle data values will be used to describe the set of allgyvaglis. Here we will begin with
some well established language theoretic formalisms, liutiso define new ones, opening
space to study them in separation, as well as when used tp gagrhs. Following that we will
expand on the idea of NPQs and define several languages e@smwork directly on graphs
in Part Il. There we will also consider what happens when wédttransfer ideas from graphs
to a more general setting of RDF triplestores. Finally, int Bawe will examine how path
and graph languages compare to each other, thus giving umplete picture of the current
landscape of languages for graphs with data.

Part |

Path languages

25

Chapter 3

From words to paths

In order to define queries on graphs with data we will have tiddewhether we will be using
the traditional approach of path queries (e.g. RPQs, 2RR#ihe more general approach
of graph queries such as NPQs. In this part of the dissentati® will concentrate on path
gueries, showing how, even when we want to reason not onlytabe shape of the path, but
also about the values appearing along it, these can be defsilegl some standard language
theoretic formalisms that take data value comparisonsdotideration. In order to illustrate
what a suitable formalism for describing both navigaticeradl data aspects of graphs might be
consider the following data graph.

Figure 3.1: Graph database with data values

Over such a graph a typical RPQ may ask for pairs of nodes ctethdy a path from
the regular languaggab)*. In the graph in Fig. 3.1, one possible answefvisvs), another —
(v1,Vs). To combine this with data values, we may ask queries of thesfimg kind:

e Find nodes connected by a path frgab)* such that the data values at the beginning and
at the end of the path are the same. In this c@geys) is still in the answer butvy, vs)
is not.

e We may extend comparisons to other nodes on the path, notmttie first and the last

27

28 Chapter 3. From words to paths

node. For example, we may ask for nodes connected by pathgaltich the data value
remains the same, or on which all data values are different the first one. The pair
(v1,v3) is in the answer to the first query (the patlvavs witnesses it), while the pair
(v1,Vs) is in the answer to the second, as witnessed by the\paikis.

What kind of languages can we use in place of regular langutmespecify paths with
data? To answer this, consider, for example, a pathvsvs in the graph. If we traverse it by
starting invy, reading its data value, then reading the labef{wafv,), then the data value in
Vo, etc., we end up with the following data patha2b3al. Data paths are extremely close to
an object that has been actively studied in the XML contexamely,data wordgBojanczyk,
2010, Bojanczyk et al., 2011, Segoufin, 2006, Segoufin, 209data word is a word in which
every position is labelled by both a letter from a finite alpéia(e.g.,a or b) and a data value
(e.g., a number). Data paths are essentially data wordsamitbxtra data value. We can
#
1

represent the data patra2b3al as a data word?) (3) (2) (2), where # is a special symbol

reserved for the extra data value.

We can thus use multiple formalisms developed for data wfwith a minor adjustment
for the extra value) to specify data paths. Such formalidmasiad in the literature, and include
first-order and monadic second-order logic with data compas [Bojanczyk et al., 2009,
Bojanczyk et al., 2011], LTL with freeze quantifiers [DemmideLazic, 2009], XPath fragments
[Bojanczyk, 2010, Figueira, 2009], and various automataetosuch as pebble and register
automata [Bouyer et al., 2001, Kaminski and Francez, 198rjlski and Tan, 2008, Kaminski
and Tan, 2006, Neven et al., 2004].

The question is then, which one to choose? To answer thispakedt data complexity of
query answering for each of these formalisms. We show tHahgsas the formalism is capable
of expressing what is perhaps the most primitive languagle data value comparisons (two
data values are equal) and is closed under complementttemjatacomplexity is NP-hard.
Clearly one cannot tolerate such high data complexity, aiirules out most of the above

mentioned formalisms excemgister automata

Before examining this issue, in the following section welwiow how to go from data
paths to data words and vice versa. In particular we will artnat the approach when graph
databases are defined in such a way that data values reside modes (as in Section 2.1)
naturally gives rise to data paths, while graphs with datthnedges are better suited for
working with data words. Both of the approaches have thegngths and weaknesses, but as
we will shortly see, they are essentially equivalent.

3.1. Data words vs data paths 29

3.1 Data words vs data paths

As mentioned before, data words can easily be used in pladt&apaths. To see this, consider
e.g. a data pathaBcl. This data path can be replaced by the data W) (5). Here we
take the approach that the missing symbol from the finiteadphis replaced by the special
label #. Then when defining the language one has to make sairéhthfirst letter symbol is
not considered. This, however, will be easily achievablang of the data word formalisms
discussed below.

On the other hand, to move from data words to data paths wéawitt to add an extra data
value. Letl be a new data value, not used in the domain of the considengddge. Then the
data word(®) (3) () is replaced by the data pathbla3cl; that is, we add this special symbol
L to the start of the path to denote the missing data value.

To see where this discrepancy between the two approachessdoom, consider a typical
graph database, as for example the one in Figure 3.1. A péltisidatabase is e.g1VoVsVs.
When traversing this path we see that each edge comes witiebdad two data values as-
signed to its ends. Therefore, by reading data values angl latdgls in order in which they
appear on this path we obtain the sequera2b3al, that is, we end up with a data path. This
approach, where data values are placed in the nodes is mmkfasgraph databases [Abite-
boul et al., 1999] and has historically prevailed over thalelevhere data values reside in the
edges. One of the main reasons for this is the fact that inghgtatabase nodes are themselves
considered to be small databases, thus carrying data, vemetiurally modelled by data values
from an infinite domain.

The dual approach, where data values reside in the edgebyhesv been mostly aban-
doned. However, its main attraction is that it allows patiela to be described in terms of data
words, which are, unlike data paths, symmetric objects,tAnd much easier to manipulate.
For example concatenating data words is straightforwahilevdoing the same for data paths
requires some attention (namely, one has to make sure thitshvalue in the first path equals
the first one in the second path). In what follows, mostly &y stith the traditional approach
to graph querying, we will consider the model where datadessin the nodes, although, as we
now show, the two approaches are equivalent. Note thatdoisaence comes as a ho surprise
as a similar duality is present in the are of formal verifieatiwhere one can use both labelled
transition systems and Kripke structures as models for éeahjpr modal logic formulas.

In a model where data values are in the edges a typical edge ld@ the one in the
following figure.

(a)

v Vv

30 Chapter 3. From words to paths

If we wanted to convert a usual data graphas defined in Section 2.1, we would have to,
for each noder in G add a new nods, and an edge Iabelle@ff,)) from s, to v. Furthermore,
each edgév,a,V) in G has to be replaced by the edge(p("i‘,,)),\/). This is illustrated in the
following example:

b

o O——0

V. V. V:
1 c 2 3

GraphG with data values in the nodes

An equivalent grapl@’ with data values in the edges

To see that the two graphs from the figure above indeed représe same set of data
paths consider for example the patk= v;bwavs and the associated data pattvdl. As we
mentioned above we will represent this data path with the daird (f) (?) (9). But then the
corresponding path i@’ simply starts irs; and continues along the nodes fr@nthat is the
whole path isst ()i (5)v2(2)vs and the label of this path is obviously the one required. The
intuition behind this transformation is to push data valtethe incoming edge, with a new
nodes, for every nodev to allow it to be the start point of some path. Therefore wethae
using data word formalisms to reason about data paths, agdom the model where data
resides in the nodes to the one where it is in the edges, firesgmoblems.

Going from graph with data values in the edges back to the whese it is in the nodes is
a bit more cumbersome, as now we can not simply push the valoreet node, since there can
be multiple edges between the nodes. The solution thenadd@ new node for each edge of
the graph and assign it the data value of that edge. The nesvistiten connected to the graph
by adding an extra label. All of the nodes from before aregaexi the same data valug
signifying that this value should be skipped. This solui®illustrated in the following image.

An graph with data values in the edges

An equivalent graph with data values in the nodes

Note that here the equivalent data path would require a biempadding than in the other
case. For example the pat/m(i‘)vz would now correspond te;ae;$v,, and thus data path

3.2. Ruling out bad alternatives 31

1al$l, with special symbol $ denoting that the following data ealu should be ignored.
It is however easy to see that such a behaviour can easilydmled by any of the data path
formalisms we study in the following chapter.

Seeing how the two approaches differ, from now on we will hegtaditional model where
data resides in the nodes and develop language formalisnie$oribing data paths. As we
have shown, it is straightforward to adapt data word forsmadi to work in this setting, however,
to keep notation consistent, we will redefine all of the dadadiformalisms to operate directly
on data paths. We will briefly return to the setting of datadgan Chapter 6, where we show
how formalisms introduced specifically for data paths camdegpted to work on data words.
In that chapter we will deal with main language theoreticiéssconnected to such languages
and show how they relate one to another.

3.2 Ruling out bad alternatives

A data path query is an expression of the fori@ = x LI y, whereL is a set of data paths.
Depending on which formalism we use to specify allowed laggsL we will have different
classes of data path queries.

Therefore, to talk about data path queries, as just definedheed to express properties
of paths with data. As we already mentioned, these are éalbeiata words, with an extra
data value attached. Quite a few languages and automatdsinade been developed for data
words over the past few years, mainly in connection with tbdysof XML, especially XPath.
We now give a quick overview of them. A more extensive survay be found in [Segoufin,
2006].

FO(~) and MSO(~) These are first-order logic and monadic second-order logfieneed
with the binary predicate- saying that data values in two positions are the same. For
example,3x3Jy a(x) Aa(y) AX ~ y says that there are tweslabeled positions with the
same data value. Two-variable fragments of(FQand existential MSO with the-
predicate have been shown to have decidable satisfiabilitiylgm [Bojanczyk et al.,
2009, Bojanczyk et al., 2011].

Pebble automata These are basically finite state automata equipped with te fait of peb-
bles. To ensure regular behavior pebbles are required tradh a stack discipline. The
automata are modeled in such a way that the last placed pabtideas the automaton
head and we are allowed to drop and lift pebbles over the mupsition. In addition
to this we can also compare the current data value to the atalteady has a pebble
placed over it. Algorithmic properties and connectiongwaigics have been extensively
studied in [Neven et al., 2004].

32 Chapter 3. From words to paths

LTL | This is the standard LTL expanded with a freeze operatorahaivs us to store the
current data value into a memory location and use it for Rieomparisons. The full
logic has undecidable satisfiability problem, but varioasidable restrictions are known
[Demri and Lazt, 2009, Demri et al., 2007].

Register automata These are in essence finite state automata extended withtea @ti of
registers allowing us to store data values. Although finstlisd only on words over
infinite alphabet [Kaminski and Francez, 1994, Neven e84, Sakamoto and lkeda,
2000] they are easily extended to handle data words, agrdtes in [Demri and Lazi
2009, Segoufin, 2006]. They act as usual finite state autom#ta sense that they move
from one position to another by reading the appropriateddtom the finite alphabet,
but are also allowed to compare the current data value wigs @aiready stored in the
registers.

XPath fragments XPath is the standard language for navigating in XML docus\are., for
describing paths in a way that may also include conditionglata values that occur
in documents. Fragments of XPath (with and without dataes)lihave been exten-
sively studied, see, e.g., [Benedikt et al., 2008, Bojakaztyal., 2009]. While in gen-
eral the satisfiability problem is undecidable, severaididie restrictions are known,
e.g., [Figueira, 2009, Figueira and Segoufin, 2011].

In deciding which formalism to choose, we look at theta complexityof evaluating data
path queries, and try to rule out those for which data conityléx intractable. Technically,
a formalism just defines a set of allowed languages Z[D]*. As before, a quer® is then
simply an expression of the for@ = x BN y. Thus each formalism for defining allowed lan-
guaged. gives rise to an associated class of queries. It turns outrtbst of the formalisms for
data words/paths are actually not suitable for graph qogryrhis is implied by the following
result. Letloq be the language of data paths that contain two equal datas/ale will denote
its complement, i.e. the language of all data paths comigipairwise different data values by
Leq

Theorem 3.2.1. The data complexity of evaluating © x Lﬂ y over data graphs iNP-
complete.

Proof. The proof is by showing that witheq, One can encode the 2-disjoint-paths problem
which is NP-complete [Fortune et al., 1980]. This problenoisheck, for a grapks and four
nodess,t1,$,to in G, whether there exist two paths @ one froms; to t; and the other from

s, to tp that have no nodes in common. First, we argue that we can asthats;,t;, sy, and

to to be distinct. This is because we can always add two new nodesach repeated node

3.2. Ruling out bad alternatives 33

and connect them with all the nodes the repeated node wasaednto, thus modifying our
problem to have all source and target nodes different.

Assume thatG = (V,E) is a digraph and;,t;,s,t, are four distinct nodes iG. Recall
that our query i€Q = x Lﬂ y. Since the query will disregard edge labels we can kake{a}.
We will construct a data grap®’” and two nodes,t € G’ such that(s,t) € Q(G) if and only if
there are two disjoint paths i@ from s; tot; and froms; to ts.

LetV = {v1,...,Vvn}. The graphG’ will contain two disjoint isomorphic copies @ (ex-
tended with data values and labels) connected by a singke &tg define the two isomorphic

copiesG; = (V1,Ez,p1) andG;, = (o, Ez, p2) by:

o Vi ={V,...,V,},

o Vo ={V],...,vi},
Er={(v,aV)): (v,vj) €E},
E>={(\.aV]):(v,Vj) € E} and
p1(V) = p2(V') =i, fori=1...n,

and then leG' = (V/,E’,p’), where

o V' =V1UV,,
e E'=EiUEU{(t},as;)} and
° p'=p1Up2.

Note thatp’ is well defined sinc&; andV; are disjoint. Finally, we define= s, andt =t7.

We claim that(s,t) € Q(G') if and only if there are two disjoint paths i@ from s; to t;
and froms, to t; in G. To see this assume first th@t) € Q(G'). This means that we have a
path inG’ which starts ins; and ends iri5. In particular, it must pass the edge frafrto s,
since this is the only edge connecting the two graphs. Alsogsall data values on this path
are different, we know that no node can repeat, i.e., thegaitains no two copies of the same
node inG. But then we simply split this path into two disjoint pathsGrsince the structure of
edges inG' is the same as the one @Gwith the exception of edge betwegrands;.

Conversely, assume that we have two disjoint paths fspo t; and froms, to t; in G.
Notice that we can assume these two paths to contain no Isop® loops can be removed
while keeping the paths disjoint. To obtain a data path fsdmt in Leg, We simply follow the
corresponding path from} tot; in G; (and thus inG'), traverse the edge betwegrands, and
then follow the path irG; (and thus inG’) from s; totj corresponding to the path frosa to t,
in G. Since the two paths i@ have no node in common and do not have loops, all data values
on the constructed data path frato t in G’ are different.

This completes the proof. O

34 Chapter 3. From words to paths

Note thatleq is about the simplest property one can express about déta/ywatds; it
would be hard to imagine a formalism that cannot check foretipgality of data values. The
corollary below effectively rules out closure under conmpéat for such formalisms if they are
to be used in graph querying.

Corollary 3.2.2. Assume that we have a formalism for data paths that can defipend that
is closed under complement. Then data complexity of evatudata path queries iBlP-hard.

This immediately rules out F@-) and its two-variable fragment, LTL with the freeze
guantifier, and pebble automata.

The only hope we have among standard formalisme&gsster automatasince they are
not closed under complementation [Kaminski and France24JL9n the following chapter we
show that we can achieve good query answering complexihgusigister automata and some
of their restrictions, while still retaining sufficient engssive power.

Remark 3. It is important to note that we will come back to FO in Chapterwhere its
semantics will be defined directly on graphs. As a conseguém¢hat context negation will be
limited to the active domain, and not to the set of all datadsas here, therefore expressing
that all data values along a path are different will no londes possible.

In Chapter 7 we will also come back to XPath, which we do nosictan in the context of
path queries. The main reason for this is the fact that XPathtrinsically a graph (originally
tree) language, and even when it is used to reason about datdswhe semantics relies on
defining patterns [Figueira, 2010b] in a same way as on trdesleed, when used over data
words XPath simply treats them as trees and is thus not a tatie |pnguage. Another reason
not to study XPath as a path language is that even the moregegaph approach already
yields very efficient query evaluation algorithms (comtisemplexity is alway® TIME and

for some fragments even linear).

Chapter 4

Languages for data paths

This chapter will consider classes of graph query langubgsed on the principle of defining
paths in a graph. As already mentioned, we will take the idakapproach of RPQs and
consider language theoretic formalisms defining sets @ daths, while the query will then
be satisfied if we can find a data path in the graph whose latb@hdpe to the defined set. In
that respect, we will differentiate between a language &ism used (e.g. regular expressions
in the case of RPQs) and the class of queries they give righabig RPQs).

In Chapter 3 we showed that due to unreasonably high datalegitypmost formalisms
defining languages of data words(all of which can easily tmptatl to define data paths) can
be ruled out, with the notable exception of register autamat

These automata, originally introduced in [Kaminski andieez, 1994] to work with words
over infinite alphabets and later extended to data wordsoi#ay 2006, Demri and Lagj
2009], give rise to a class of queries called regular data guaeries, or RDPQs for short. Here
we study their query answering problem and present an #hgoribased on computing the
product of automata, which, when nonemptiness is checketiefly, gives an NIDGSPACE
data complexity and P\ce combined complexity bound. The bound for data complexity is
good (it matches the usual RPQs) and the bound for combinaglegity is tolerable (equiv-
alent to that of FO, but higher than the NP bound for conjwecRPQs or the PiME bound
for RPQs).

However, automata are not an ideal way of specifying commitin queries. In RPQs, we
use regular expressions rather than NFAs. While some negufaessions have been consid-
ered for register automata [Kaminski and Tan, 2006], theyvary far from intuitivé and lack
the expressive power to capture register automata. Theref® propose three types of regular
expressions that can be used in queries, all of them subshynegjister automata.

The first, called regular expressions with memory and givieg to regular queries with

1For instance to express the langudgg of paths with two equal data values the formalism in [Kaminsk
and Tan, 2006] uses the expressiont -g x-g Y*™ g X-¢ y*®, while the class of regular expressions with equality
introduced in Section 4.4 defines the same language usimgpdeséxpressiof* - (1) - =*.

35

36 Chapter 4. Languages for data paths

memory (or RQMS), is close in spirit to automata themselvesialets one store a data value
and use it later. For example, to express the query “conddntea path along which the data
value remains the same”, we would use the expregskafz|[x~])*. This expression says: store
the first value of the path intg, and then go along, if labels are arbitraB) @nd the condition

X=, meaning that the value is equal xpholds. These expressions are much easier to write
than the automata, and at the same time they can be trangiédecbgister automata; thus
data complexity of queries remains in NL. We show that thelioed complexity remains the
same as for automata, i.e., PPEE-complete (except in a rather limited case when the Kleene
star is not used: then it drops to NP-complete). Later on wiealgio show that they have the
same expressive power as register automata.

One unusual feature of regular expressions with memorytanddsociated class of queries
is that they do not define proper scope of variables. Inddwdydriable, once stored, can be
used at any point further on. This behaviour, although rssogsto show equivalence with
register automata, seems very unnatural, so in the follpwection we study the language
with proper scoping rules defined. We will show that this laenge is strictly weaker than the
two above, however, this is not reflected on the evaluatioblpm, as it remains F8ce-hard
for combined complexity.

This motivates a third class of expressions that restrigtathility to compare data values
along the path; instead, one can only do comparisons forechegbexpressions. A simple
example of such an expressiondis, which denotes nonempty data paths that have same data
value at the beginning and at the end of the path:indicates the label of the path, and the
subscript= states the condition for the first and the last data valuedightly more elaborate
example is¥* - 3 . ¥*. It says that a subpath conformsXd, i.e., it denotes data paths on
which two data values are equal. For expressions of this kialled regular expressions with
equality, we give a polynomial-time algorithm for combinedmplexity. The key idea is to
translate expressions into push-down automata and thenthakproduct with an automaton
obtained efficiently from the graph database.

Finally, we will consider variable automata, introducedenatly in [Grumberg et al., 2010a]
to define languages over an infinite alphabet. Here we redbfme on data paths and show that
the corresponding class of queries, called regular queiigsvariables (or RQVs) has com-
bined complexity of query evaluation between that of regisiutomata and the much weaker
regular expressions with equality. These automata theresdhowever, are incomparable with
register automata and can even not express some propesfiralde by regular expressions
with equality.

4.1. Register automata as a query language 37

4.1 Register automata as a query language

As stated in the previous chapter, register automata amtiiestandard formalism for defining
classes of data words that does not immediately lead to Nédeta complexity of queries
on graphs with data. In this section we define them and studyygevaluation for data path
queries based on these automata. We will slightly alter #iimition of register automata used
in e.g. [Demri and LaZi, 2009, Segoufin, 2006] to work on data paths rather thanvaatas,
without affecting their desirable properties.

As mentioned earlier register automata move from one statmother by reading the
appropriate letter from the finite alphabet and compariegitita value to one previously stored
into the registers. Our version of register automata wil siightly more involved comparisons
which will be boolean combinations of atomig £ comparisons of data values.

To define such conditions formally, assume that, for dast®, we have variables, ..., x.
Then conditions irt are given by the grammar:

C = &:!X?é\e:\eﬂC/\c]cvqﬂc, 1<i<k,

wheree is a data value fronD, also referred to as theonstant Let D, = DU{L}, where
L is a special symbol signifying that the register is emptye Bhtisfaction of a condition is
defined with respect to a data valde D and a tupler = (di,...,dk) € Q)E as follows:
e d,T=x iff d=d;;
dtl=x iff d#d;
diEeiffd=¢g
diE=eiff d£e
d, T EciAciff d,T=cp andd, T = ¢, (and likewise forc; V ¢y);
e d, T —ciff d,T¥cC.

In what follows, [K] is a shorthand fof1,...,k} ande for a condition that is true for any
valuation and data value (e.gV —c).

Definition 4.1.1 (Register data path automatd)et ~ be a finite alphabet, and k a natural
number. A kregister data path automatana tuple4 = (Q, qo, F, 10, 0), where:

e Q=0Q,UQq, where Q, and Q are two finite disjoint sets of word states and data states;

Jo € Qq is the initial state;
F C Qu is the set of final states;
To € Df is the initial configuration of the registers;

0 = (dw,0q) is a pair of transition relations:

— Oy € Qu x Z x Qq is the word transition relation;
— 3¢ C Qg x Gk x 2 x Qy is the data transition relation.

The intuition behind this definition is that since we alteéenbetween data values and word

38 Chapter 4. Languages for data paths

symbols in data paths, we also alternate between data ¢rettesh expect data value as the
next symbol) and word states (which expect alphabet ledtethe next symbol). We start with
a data value, sqq is a data state, end with a data value, so final states, sesredding that
value, are word states.

In a word state the automaton behaves like the usual NFA (bwemto a data state using
its word transition function). In a data state, the automatieecks if the current data value and
the configuration of the registers satisfy a condition, dnlgy do, moves to a word state and
updates some of the registers with the read data value. Bathidnalities are illustrated in
the following image, where in the data transition automatbacks if data value is different
that the one stored in register seven and then moves to a vatedvghile storing the value into
registers from the sdt

Word transition: Data transition:
(—— O =0
word state data state data state word state

Note that we could have modelled constants by storing thémtire initial assignment
(possibly using more registers). We put them into condgtioowever, to have a uniform way of
handling them when we define RQBs and RQMs in the followingiees. When the condition
€ is used, or wheh = 0 (that is we do not store the data value into some register) emit
them from the transition in the image above.

Now we formally define acceptance of a data path by a registenaaton. Given a data
pathw=dpagdi1a; .. .a,_1dn, where eacld; is a data value and eaehis a letter, a configuration
of 4 onwis atuple(j,q,1), wherej is the current position of the symbol mthat 4 readsq
is the current state arde Q)E is the current content of the registers. The initial confgion
is (0,00, To) and any configuratiofij,q,t) with q € F is a final configuration.

From a configuratio€ = (j,q,T) we can move to a configurati€®@®i = (j+1,¢,7’) if one
of the following holds:

e the jth symbol is a lettes, there is a transitioq,a,q) € 8y, andt’ = T; or

e the current symbol is a data valde and there is a transitiofg,c,|,q) € dq such that
d,T = candt’ coincides witht except that theth component of’ is set tod whenever
iel.

A data pathw is accepted bya if 4 can move from the initial configuration to a final
configuration after reading. The language of data paths acceptedaig denoted by ().

Example 4.1.2.Next we provide three examples of data path languages af&tegegqutomata
recognizing them.

4.1. Register automata as a query language 39

1. The following automaton recognizes the language of at g@ths where the first data
value differs from all the others and the label is dt operates by storing the first data
value into the register x, which is denoted here and in thergptas below by x. It then
moves to the state;gwhere it loops(by alternating betweep and q,), while checking
that the data value being read is different from the one stamex. If this is satisfied it
ends its computation in an accepting staie q

a
RO O WSO
X7

2. The language of paths where all data values are the sameranthbel of each path
starts with an a and is then followed by an arbitrary numberbsfis defined by the
automaton below. Similarly as in the example above we stwditst data value into
the register x and then move te,gvhere the automaton checks that the first letter is a.
It then proceeds to loop over bs by making sure that each date\equals to the one
stored, ending its accepting run in the state q

=
O OWl
start —(do > 1 > 02
N4
b

3. To illustrate how comparisons with constants work we nowstruct the automaton
defining the language where each data value equals the fiestlmrt the second value
is different from 5. It proceeds as above, storing the firdti@anto its register, with the
exception that after reading the second value it expligtigcks if it is different from 5.

a
X £ A x=

Regular data path queries

Ouir first class of queries on graphs with data is based onteegiata path automata.

Definition 4.1.3. Aregular data path query (RDP@yer a fixed finite alphabét is an expres-
sion Q= x N y where4 is a register data path automaton ovEr

Given a data graph G, the result of the query@®) consists of pairs of nodgy, V') such
that there is a data path w from v té that belongs to [2).

40 Chapter 4. Languages for data paths

Example 4.1.4. Coming back to the movie database from Figure 2.3, assumnigftiteeach
edge labellectast that connects a movie or a documentary with an actor, we aése fan
edge going in the other direction labelletars_in. For example we will add one such edge

connecting<evin Bacon with Mystic River, or Charlotte Rampling with The Mill and The Cross.

We can then ask for all people who have a finite Bacon numbeg tise query G= x N Y,
specified by the following register automatdn

O

stars_in cast

start —(% 0 >®< - @ :KevinBacon>

;

To improve readability we write- ¢ instead of T when comparing a data value with the
constant ¢c. The automaton works by traversing a sequencstan$_in - cast edges, which
connect all pairs of actors who co-starred in a same film, e anakes sure that the last data

value equal¥evin Bacon.

Note that in addition to the actor with a finite Bacon numbekis tquery also returns the
node corresponding to Kevin Bacon.

To evaluate RDPQs, we transform both a data g@pimd ak-register data path automaton
4 into NFAs over an extended alphabet and reduce query ei@luiat NFA nonemptiness.
More precisely, to evalua®(G), we do the following:

1. LetD be the set of all data values @&

2. TransformG = (V, E, p) into a graphG’ = (V',E’) over the alphabeX UD as follows:

e V. = A{w,vw|veV}
o F {(Vtvav\/s) ’ (v,a,\/) € E}
U{(vs,p(v),%) [veV}

Basically, we split each nodewith a data valuel into a source node; and a target node
v; and add al-labeled edge between them; after that we restore the edmagfso that
they go from target to source nodes. This is illustratedvelo

4.1. Register automata as a query language 41

a
v \V4
J

O Omn OnnO

3. Transform the automatod = (Q, o, F,To, (8w, 0d)) into an NFA4p = (Q',qp, F',d)
over the alphabeX U D as follows:

e Q =Qx D, withDg=DU{L}uU{to(i)li=1...k};
* o= (o, To);

e F'=F x D

e & includes two types of transitions.

(a) Whenever we have a transitiofg,a,q) in d,, we add transitions
((g,7),a,(q,1)) to & for all T € D,

(b) Whenever we have a transitiofg,c,1,q) in &y, we add transitions
((9,1),d,(q,T')) if d,T =c and T’ is obtained front by puttingd in posi-
tions from the sel.

For two nodes,V of G, we turnG’ into an NFA4g v by lettingvs be its initial state and
V{ be its final state. Then we have the following.

Proposition 4.1.5. Let Q= x A, y be anRDPQ and G a data graph whose data values form
aset DC D. Then

(W) €QG) & L(Azuy x o) #0.

Proof. It follows immediately from the construction that the autdom 4p accepts precisely
those data paths forin(2) that have data values frof. To see this it suffices to show that
every accepting run affp corresponds to an accepting run_@fand vice versa, in the case
of paths whose data values come fobm But this follows easily sincedp has all possible
configurations of registers at it's disposal.

To see that the statement of Proposition holds assume fatstul') € Q(G). Then there
is a data patlwy = dpapdha; . .. a,_1d, from vto V' such thatw,; € L(4). Since this is a data
path inG starting withv and ending with/ it must also be a word in the language @ .
On the other hand, since it is Ir{42), it must also be in.(4p), sinceA4p is simply restriction
of 4 to alphabet in which data values come only from thelsethusL(Ag vy x Ap) # 0.

Conversely, assume thdt(Agz vy x Ap) # 0. Then there is a data pativ; =
doapdhay ... an—1dy such thatwy € L(Ag vv) andwy € L(Ap). But then by constructiomvy

42 Chapter 4. Languages for data paths

must be a data path i6 from v to V. Also wy € L(4), sinceL(4p) is simply a restric-
tion of language of4 to data paths whose data values come fidmBut this implies that

(vV) € Q(G). O

Thus, query evaluation, like in the case of the usual RPQsgedsiced to automata
nonemptiness, although this time the automata are ovesrlatghabets. Since the construction
is polynomial in the size o and exponential in the size ¢f (ask gets into the exponent), we
immediately get a PIME upper bound for data complexity and arfd IME upper bound for
combined complexity. By performing on-the-fly nonemptmesecking for the product, we
can lower these bounds.

Theorem 4.1.6. Data complexity oRDP(s over data graphs is ilNL, and the combined
complexity oRDP@s over data graphs i SPACE-complete.

We only need to prove B8cEehardness, since upper P&E bound follows from on-the-
fly method for checking nonemptiness of exponential sizeraata. But this is an immediate
consequence of Proposition 4.2.3 and Theorem 4.2.7, whecpraved for a more restricted
language.

The bound for data complexity cannot be lowered as there sixipple RPQs for which
data complexity is NL-complete.

4.2 Regular queries with memory (RQMs)

Regular data path queries based on register automata haetalole complexity bounds: data
complexity is the same as for RPQs, and combined complatitypugh exceeding the bounds
on conjunctive queries and RPQs, is the same as for reldtiafaulus or for RPQs extended
with regular relations. Despite this, RDPQs as we defineththave no chance to lead to a
practical language as it is inconceivable that the userspécify a register automaton over data
paths. Even for queries such as RPQs and their extensiomditioas are normally specified
via regular expressions.

Our goal now is to introduce regular expressions that canskbd in place of register au-
tomata in data path queries. Note that as long as they exiaregsages accepted by register
automata, we shall achieve an NL bound on data complexityngaoiiem 4.1.6.

The first class of queries, studied in this section, is basedroextension of regular ex-
pressions wittmemorythat lets us specify when data values are remembered and tivéyen
are used. The basic idea is this: we can write expressioag kla" [x~] saying: store the
current data value ir and check that after reading a word fram we see the same data value
(conditionx= is true). This will define data paths of the fomha. ..ad. Such expressions are

4.2. Regular queries with memory (RQMSs) 43

relatively easy to write and understand (much easier théonaata), and the complexity of
their query evaluation will not exceed that of register audta.

Definition 4.2.1 (Expressions with memory)Let 2 be a finite alphabet andix .., xx a set of
variables. Themegular expressions with memoaye defined by the grammar:

e =c¢|alete|ee]|e | €| lxe (4.1)

where a ranges over alphabet letters, ¢ over conditiongiinand x over tuples of variables

from x, ..., Xk.

A regular expression with memory e is well-formed if it Sastwo conditions:

e Subexpressions'e€c|, and | X.e are not allowed if e reduces & Formally, e reduces
toeifitise, oritise;+e ore;-e or ef or e [c] or | X.e; where g (and &) reduce to
€.

e No variable appears in a condition before it appears .k

The class of well-formed regular expressions with memory dsnoted by
REGZ[X1,...,X])-

The extra condition of being well-formed is to rule out paduical cases likee[c| for
checking conditions over empty subexpressions|xr| for checking equality with a variable
that has not been defined. In what follows we always assuntadbalar expressions with
memory are well-formed.

The intuition behind the expressions is that they procesata phth in the same way that
the register automaton would, by storing data values inataes, using these variables for
comparisons and moving through the word by reading a letten the finite alphabet. Note
that when we bound a variable we do not specify the scope sfihding. This means that
the variable can be used at any point after it was boundethéilend of the expression and is
analogous to how register automata store and use data values

Example 4.2.2.We now give four examples of such expressions and langubggsdcognize,
before formally defining their semantics.

1. The expressiogx.(ajx”])* defines the language of data paths where all edges are la-
beleda and the first data value is different from all other data valdestarts by binding
x to the first data value; then it proceeds checking that therleta and conditionx”
is satisfied, which is expressed ajx”|; the expression is then put in the scopetofo
indicate that the number of such values is arbitrary.

2. The expression x.(ab)* [x*] denotes the language of data paths whose label is of the
form ab...ab and for which the first data value is different from the lasbtéthat the

44 Chapter 4. Languages for data paths

order of+ and condition is now different: the condition is checkeaafterifying that
the label is in(ab) ™, i.e., at the end of the word.

3. The expressiofx.at[x~| + € denotes the language of data paths where all labela are
and the first data value is equal to the last. Note that one daizhpath is simply of the
form d, for d € D, with labele.

4. The languagé.q of data paths in which two data values are the same (see SECHD
is given by the expressiob* - | x.Z*[x~|-Z*, whereX is the shorthand foa; + ... + &,
wheneverZ = {a,...,a } andZ* is the shorthand foE* + €. It says: at some point,
bind x, and then check that after one or more edges, we have the sdameatlie.

5. The language where each data value equals the first ortbghsstcond value is different
from 5 is given by| x.a[5” Ax"](a]x"])*. It operates similarly as the expression in the
first example, except that it tests for equality with the fitata value, while explicitly
testing that the second value differs from 5.

Semantics First, we define theconcatenationof two data pathsv = dia;...a,_1d, and
W = dnhay...am 10m asw-W = dia;...an_10han...am-1dm. Note that it is only defined if
the last data value aof equals the first data value of. The definition naturally extends to
concatenation of several data pathswH wy ---wj, we shall refer to it as aplitting of a data
path (intowy,...,w).

The semantics is defined by means of a relat®w, o) - ¢, wheree€ REG(Z[x, ..., X])
is a regular expression with memony,is a data path, and both and ¢’ are k-tuples over
DU{L} (the symbolL means that a register has not been assigned yet). Theantistias
follows: one can start with a memory configuratior(i.e., values ofx,...,xx) and parsev
according tee in such a way that at the end the memory configuratiasi.ihe language of
is then defined as

Le) = {w | (ew, L)+ oforsomeo},

where L is the tuple ok values.L.

The relationt is defined inductively on the structure of expressions. Réta the empty
word corresponds to a data path with a single data vél{ie., a single node in a data graph).
We use the notatiooy—q for the valuation obtained frorm by setting all the variables ixto
d.

e,w,0) - ¢ iff w=d for somed € D ando’ = o.

a,w,0) - o’ iff w=djad, ando’ = 0.

(
(
(e1-&,w,0) - d iff there is a splittingw = w; - w, of w and a valuatioro” such that
(e1,w,0) F0” and (e, wp,0”) - ad'.

(

e +e,w,0) o iff (e;,w,0)F 0 or(e,w,0) 0.

4.2. Regular queries with memory (RQMSs) 45

e (ef,w,0) - o iff there are a splittingw = w;---wy of w and valuationso =

00,01,...,0m = 0’ such thatw,w;,q;_1) - g for all i € [m|.
e ([Xxew0)tFdiff (ew,0x—_q) o', whered is the first data value of.

e (e[c],w,0) -0’ iff (e w,0) -0’ andd’,d |= c, whered is the last data value of.

Take note that in the last item we require tligtand noto, satisfiesc. The reason for this
is that our initial assignment might change before reackivegend of the expression and we
want this change to be reflected when we check that conditimids.

Translation into automata We now show that regular expressions with memory can be effi-
ciently translated into register automata.

Proposition 4.2.3. For each regular expression with memorg®Z[xy,...,X]) one can
construct, inDLOGSPACE a k-register data path automatoft: such that l(e) = L(4e).

More precisely, the automatafle = (Q,qo,F, L,8) (over data domair® U { L }) has the
property that for any two valuations,¢’ and a data path w, we have, w,o) - ¢’ iff the
automaton(Q, do, F, 0,0) has an accepting run on w that ends with the register configama

0-/

Proof. We prove this by induction on the structureefNote that the initial assignment gk
is not specified in advance. We will simply put the assignnieiats needed, since it does not
change the structure of the underlying automaton. In wHeowis we will identify the vector
x of variables with the set of registers (i.e. positions) itresponds to. For example the vector
(x3,Xs) will correspond to the sét= {3,5} of registers.

If (e,w,0) @, we will write w € L(e,0,0’) and similarly if 4. = (Q,qo,F, L,d) started
with o acceptsv with @’ in the registers, we writes € L(4,0,0").

o If e=¢, then4, = (Q,qo,F, L,8), whereQ = {d} U {w} is the set of statesjp = d is
the initial stateF = {w} the set of final states and the only transitioridse, 0, w).

e If e=a, for someac X then 4, = (Q,qo,F, L,8), whereQ = {d1,dp} U {wy, Wy} is
the set of statesp = d; the initial state,F = {w,} the final state and the transition
functions are as followsd,, = {(w1,a,d)} is the word transition relation, andl =
{(dq,€,0,w1), (d2,€,0,w5) } is the data transition relation.

e If e=e; + e then by the inductive hypothesis we already have autonfaja=
(Qq,dq,Fp, 1,81) and Ae, = (Q2,do, Fo, L, 8,) with the desired property. The registers
of 4. will be the union of registers ofle, and 4.,. To obtain the desired automaton we
set4, = (Q,do,F, L,d), where

- Q=Q1UQxU{do}, whered, is a new data state,

46

Chapter 4. Languages for data paths

- F=RUFR,
— To & we add all transitions fronfle, and 4., and in addition, for every transition
(d,c,l,w) € 01 Udy, whered = d;, ord = dp, we add a transitioiidp, ¢, |, w).

To see that this automaton has the desired property asswane thlL(e; +€,0,0").
This meange; + e;,w,0) - ¢’. By definition, (e;,w,0) - ¢’ or (e2,w,0) - @’. By the
induction hypothesis it follows that eithef, or 4., acceptsw and halts witha' in
the registers (when started witt). From this it is clear thatd, can simulate the same
accepting run when started within the registers(by using the transition fraimto the
appropriate automaton and continuing on the same run th@te)e that all conclusions
here are equivalences.)

If e= | X.e, then again by the induction hypothesis we halye= (Q1,dy,F1, L,8;) with
the desired property. The automaton fayis defined asZe = (Q1 U {do},do,F1, L,d),
wheredp is a new data state ariicontains all the transitions ofl;, and in addition,
for every transition(ds, c,1,w), going from the initial state ofde,, we add a transition
(do,c,l UX,w) to 8. The registers of4 are the union of registers ofg, and x| new
registers.

To see the equivalence, assume thatlL (e, 6,0’). By definition(e,w,0) - ¢’. It follows
that (e1,w,0x—y,) F- 0’, wherev, is the first data value iw andox—,, is the same as
except that every register mcontainsvy. By the induction hypothesis we know that
e, With oz, as initial assignment has an accepting runwoending witha’ in the
registers. But thet#, starting witho in the registers can go through the same run with
the exception that the first transition will changéo ox-,, and since all other transitions
are the same we have the desired result. (Note that all cgionkihere are equivalences.)
It is important to note that potential confusion of the vhles will cause no conflicts.
To see this assume we have a transitidnc,|,w) in 4, and we start witho as initial
assignment. If andx have variables in common it will not matter, since all of thet

get replaced by the same value, namely the first data vale Bihis means that the first
step of the run will end up with the same result. Also note titatransition indy with dy

as the first component will hawe# €, since this would amount to an expression starting
with a condition, something disallowed by our syntax.

If e=ey[c] then let4e, = (Qq, 0, F1,L,81) be an automaton fas as before. We define
As = (Q,dy,F, L,8) whereQ = Q; U {wys }, with ws a new statef- = {ws } and for every
transition(d,c/,|,w) wherew € F; we add a transitiorid,c’ A c,l,ws) to .. We have
to add a new state simply because our original automator ¢@mve looped back from
some final state.

To get the equivalence assume again thatlL (e,0,0’). By definition(e;,w,0) ¢’ and

4.2. Regular queries with memory (RQMSs) 47

o',V = ¢, wherev is the last data value iw. From the induction hypothesis we get an
accepting run ofde, with o as initial configuration and’ as final one. But since’,v=c
instead of the last transition we can simply make a tranmsitiov; in 4. (since all other
transitions are the same). We again notice that all the gafitins can be reversed, i.e.

we can prove the equivalence.

o If e=e;- &, take againd,, and 4, as above. The automaton feis simply the union
of the previous two automata, but in addition to the alreadgtimg transitions we add
the following: for every(d,c,|,w) in 4, wherew € F; and for every(d,,c’,1’,w) in
4e,, Whered; is the initial state ofZ,,, we add(d,cAc/,l Ul',w) to d. Note thatl is
going to be an empty set, since we work with well formed exgioes. We also maka
the initial state andr, the set of final states. The registersafare again the union of

registers of4,, and4e,.

To get the desired result once again assumewtat (e ,0,0’). This meange,w,o) -
o’, which implies that there exists son®& and a splittingw = w; - w, of w such that
(e1,wy,0) - 0” and (ez,w,,0”) F ¢’. By the induction hypothesis we know that there
is an accepting run afly, onw; starting witho and ending witho” in the registers and
also an accepting run dof,, on w;, starting witha” and ending witho’ in the registers.
But we can simply combine these two runs into an acceptingofufie on w. We do
S0 by settingo as initial assignment and tracing the run4gf till the final state. Now
instead of taking the last transition we will take one of tiesvty added transitions from
the next to final state irfl, to the next to first state ifle,. Note that we can do this since
we know there is an accepting run.@g, onw, and sincex = wz - Wy, so their last and
first data value, respectively, coincide. Note that at tloisfwe end up witho” in the
registers and can continue the accepting ruAgfand thus4e.

Conversely, if we have an accepting rungf onw, we split the run, and thus the path,
into the part before and after taking the new transition dddhile constructing the
automaton. Note that we have to take this transition in a@pass from the initial state,
which is in 4, part of 2, to a final state, which is in &, part of Z.. From this it
follows thatw € L(e).

o If e= ¢, then let again,, be the automaton from the induction hypothesis. Note first
that this automaton has at least four states, sincédrjcf €, where Pradje) denotes the
projection to the finite alphab&t and transitions going directly from initial to final state
can only accept the empty word, so they will not alter comtpaia or acceptance. We
let the automaton fagbe the same as the one far but we add the following transitions:
for every(d,c,|,w) with w € F; and for every(d;,c’,1’,w'), whered; is the initial state
of 4, we add(d,cAc/,I UI",w) to our transition function, thus bypassing the last and

48 Chapter 4. Languages for data paths

the first state.

Assume now thate, w,o) - ¢’. Then either(e;,w,0) - ¢/, so we are done by the induc-
tion hypothesis, ow = wy - - - Wy with k > 2 and valuation®, ..., 0y, 1 exist such that
(e1,w;,0i) F o1 fori =1,...,k Butthen by the induction hypothesis we have compu-
tations of 4, with o; as the initial assignment aral, ; as final assignment that accept
wi, fori = 1,...,k. Note that this actually means that we start withdo a computa-
tion for w1, end withas in the registers, then take the new transition bypassingide
state for this computation and thus starting the computatiith o, in the registers(and
updating the registers as dictated by the first transitiothénnew cycle), etc., until we
reacho’ after readingw, thus acceptingv.

For the converse, ifl; acceptsv when started witlo and ended witlo’ then we simply
split the data path for every time we take the additionalditions added in the con-
struction of4.. From this we get computations ¢, on sub-paths with intermediate
valuations. By the induction hypothesis we have acceptaht®se subpaths kg with
appropriate valuations and thus the membership of theegpaithw in L(e,0,0”) .

This concludes the proof. To see that the construction caratréed out in DLOGSPACE
we use the well known fact that DoGsPACEalgorithms can be composed [Papadimitriou,
1993]. O

A natural question to ask is do regular expressions with nmgrdefine the same class of
queries as register automata. We will prove that this iseddaie when addressing the problem
from a language theory point of view in Section 6.2.

Defining queries using Regular expressions with memory

We now deal with the following class of queries.

Definition 4.2.4. Aregular query with memorig an expression & x —y, where e is regular
expression with memory.

Given a data graph G, the result of the query®) consists of pairs of nodgy,V') such
that there is a data path w from v t6 that belongs to [e).

The class of these queries is denoted by RQM.

Example 4.2.5.To illustrate some interesting queries expressed by RQMxgai@ turn to the
movie database from Figure 2.3. Same as in the Example 4d wWilWassume that eactast
edge has a correspondirggars_in edge going in the other direction.

e To express the query from Example 4.1.4 returning actorsthae a finite Bacon num-

ber we can use @ x — y, where e is given bysfarts_in - cast)* [=Kevin Bacon|.

4.2. Regular queries with memory (RQMSs) 49

¢ To find movies having at least two different actors starinthagm we would use the RQM
Q=x—>y, where eig x. cast | y. stars_in [x"]-cast[y”]. Note that here, in addition to
the movie we also return one of the actors. The expressimistares the movie name
into the variable x and after that moves to first of the actdfsllowing this it stores
the actor's name into y and moves back to the movie usktgra in edge and checking
that it arrived at the same movie by comparing the data valitle tlve one stored into x.
Following that the expression simply traverses anottet edge, ensuring it reached a
different actor by comparing the value in the node to y.

Using Proposition 4.2.3 combined with Theorem 4.1.6 we imliately obtain:
Corollary 4.2.6. Data complexity of RQM queries is ML.

From the same connection we also get the upper boune&&p for combined complexity.
It turns out that we can achieve P& E-hardness with expressions with memory. Thus, we
have

Theorem 4.2.7.Combined complexity of evaluating RQM querieB 8AcE-complete.

Proof. The P$ACE upper bound follows from Theorem 4.1.6 and Proposition34.2Z hus

we only have to prove P CEhardness. For this we do a reduction from regular automata
nonuniversality problem. The idea is to simulate on the fachability testing in the powerset
automaton by using two sets of variables, each of the sizaehtutomaton, for coding the
current and the next state.

Let 4 = (Q,%,d,q1,F) be a finite state automaton, whe@= {q,...,0n} andF =
{d,..., 0, ;- We will construct a fixed grapl® with 5 nodes, containing two distinguished
nodess andt in G and construct, in polynomial time, a regular expressioth wriemorye,of
lengthO(n % |Z]), such thats,t) € Q(G) if and only if L(4) # Z*, whereQ = x — y.

The graphG is shown below:

We now ses = v; andt = vs.

Since we are trying to demonstrate nonuniversality of tieraaton4 we simulate reach-
ability checking in the powerset automaton f@r To do so we designate two distinct data
valuest andf, and code each state of the powerset automaton adarsequence df/ f val-
ues, where thih bit of the sequence is setttd the stateq; is included in our state ofl. Since

50 Chapter 4. Languages for data paths

we are checking reachability we will need only to rememberdbrrent and the next state of
4. In what follows we will code those two states using varialsig. .., s, andwy, ..., w, and
refer to them as stable tape and work tape. Our expressiothcode data paths that describe
successful runs aff by demonstrating how one can move from one state of this attom
to another (as witnessed by their codes in stable and wods}aptarting with the initial and
ending in a final state.

We will define several expressions and explain their role villlause two sets of variables,
s throughs, andws, ..., w, to denote stable and work tape (i.e. current and next stateein
powerset automaton). All of these variables will only camtiavo valuest and f, which are
bound in the beginning and that will correspond to 0 and 1 éngitaphG.

The first expression we need is:
init:=|talt”]] f.at7]is.af7]ls....af|lsa

This expression codes two different valueg asd f and initializes stable tape to contain
encoding of initial state (the one where only initial statanf 4 can be reached). That is, a data
path is in the language of this expression if and only if ittstavith two different data values
and continues witim data values that form a sequence iri.10

end :=a[f~ Ag]-a[f~ As,]---a[f~ As], whereF = {q;,,...,q}

This expression is used to check that we have reached a staterntaining any final state
from the original automaton. That is, a data path ik(end) if and only if it consists ok data
values, all equal td and where value stored &) also equald, for j =1...k.

Next we define expressions that will reflect updating of thekwape according to the
transition function of4. Assume thad(q;,b) = {q;,,...,q; }. We define

Usq b i= (Alt™ As]-alt™]iw;,....at7]Lwj.a) +a[f~ AsT].

Also, if 8(qj,b) = 0 we simply putug 1) = €.

This expression will be used to update the work tape by vgritinie to corresponding
variables if the statg; is tagged witht on the work tape (and thus contained in the current state
of 4). If itis false we skip the update.

Since we have to define update according to all transitiam #ll the states corresponding
to chosen letter we get:

update :=\/ A Usq -
bez geQ

This simply states that we non deterministically pick th&trsymbol of the word we are
guessing and move to the next state accordingly.

4.2. Regular queries with memory (RQMSs) 51

We still have to ensure that the tapes are copied at the hiegiamd end of each step, so
we define:

step:=(a[f7]{ws....a[f "]} wy.a)-updat e - (alwy |1 S;....awW,]).

This simply initializes the work tape at the beginning ofteatep, proceeds with the update
and copies the new state to stable tape. Note the few odd #ie &nd of the expressions.
These will not affect what we what to achieve and are here yotastical reasons(to get a
proper expression).

Finally we have

e:=init-(step)*-end.

Here we uset ep* as abbreviation fost ep™* + €.

We claim that forQ = x — y, we have(s,t) € Q(G) if and only if L(4) # *.

Assume first that () # Z*. This means that there is a path from the initial to the final
state in the powerset automaton f@r That is, there is a word from >* not in the language
of 4. This path can in turn be described by pairs of assignmentlofest/f to stable and
work tape, where each transition is withessed by the carrefipg letter of the alphabet. But
then the path fronstot in G that belongs td.(e) is the one that first initializes the stable tape
(i.e. the variables,,...,s,) to initial state of the powerset automaton, then runs treates
of the tape according tev and finally ends in a state where all variables corresponiirend
states otZ are tagged. Note that we can describe this pathGnsince we start irs and put
lintot in nodevy, O into f in nodev,. After that 1 is assigned tg in vz and 0 tos,,...,s,
by looping throughv,. After that each transition is reflected by going throughandv, as
necessary, to update tapes withf and finally going tovs and looping there to check that all
s’s corresponding to end states are tagf§ed

Conversely, each path frosttot in L(e) corresponds to a run of the powerset automaton
for 4. That is, the part of path corresponding to t sets the initial state. Then the part of this
path that corresponds $b ep* corresponds to updating our tapes in a way that properlyscode
one step of powerset automaton. Finallgd denotes that we have reached a state where all
end states off have been tagged by thus, an accepting state far. O

The question is whether we can reduce this complexity —ligéalP TIME, but at least to
NP, to match the combined complexity of conjunctive querigse following corollary (to the
proof of Theorem 4.2.7) shows that many restrictions witlwork.

Corollary 4.2.8. Combined complexity of evaluating RQM queries rem&8sace-hard for
expressions that use at most oheand # symbol, are specified over a singleton alphabet
> ={a}, and are evaluated over a fixed graph.

In one case, we can lower the complexity.

52 Chapter 4. Languages for data paths

Proposition 4.2.9. Combined complexity of RQM queries whose regular expressio not
have subexpressions of the formie NP-complete.

Proof. Recall that fore € REG(Z[x1,...,X]), by Proje) we denote the projection @fto the
finite alphabetk.

First we show NP-membership. Since we do not usee know that every data path in the
language of expressiarnuses at mosiProj(e)| letters and one more data value. Assume now
that we are given a data graf) two nodess,t € G and an expression with memoey To see
if (s,t) € Q(G), for Q =x —25y, we use the following algorithm. First compute the register
automaton4, for e. Note that this can be done in @IGSPACE Then nondeterministically
guess a data path, in G from s to t that is of length at mosfProj(e)|. Now also guess
2|\ (wp)| + 1 states of4. and check that the path, is accepted by4e, as witnessed by this
sequence of states, and thus id.if). It is straightforward to see that this can be done in
polynomial time and since our guesses are of polynomiab@hlfnear) size we get the desired
result.

For hardness we do a reduction frd@CLIQUE. This problem asks for a given gragh
and a numbek, to determine ifG has a clique of size at ledst

Suppose we are given an undirected gr&phnd a numbek. We will construct a data
graphG’ with |G|+ 2 nodes, select two nodeg € G’ and construct a regular expression with
memorye of sizeO(k?) such thatG contains &-clique if and only if there is a data path from
stot in G’ that satisfies.

TakeXZ = {a,b} and makeG directed by adding edges in both directions for every edge in
G. Label all the edges by and add two more nodesandt. Add an edge fronsto every other
node exceps,t and label them wittb. Also add an edge from every node@to t and label
them byb. To finish the construction just add a different data valueviery node. We call the
resulting graptG'.

To defineg, we use an auxiliary expressi@ndefined as:

& i=apq]-ax]-ahg]-alx]...aza]-ak].

This expression will simply allow us to test that the curreatle is connected to all nodes
previously selected in our potential clique.
Now we can definex inductively as follows:

o e1:=b-|x.ahq],
° ez::e1-¢x2.a[xf/\x§],
o g ::a,l-ixi.éi-a[xf/\.../\x,?é],fori:3,...,k—1and

® & =6 1| XO b

4.3. Regular queries with binding (RQBS) 53

Next we show that there iskaclique inG iff there is a data path formtot in G’ that satisfies
€.

Suppose first that there iskaclique inG. Then we simply move frons to an arbitrary
point in that clique using thé labeled edge and traverse the clique back and forth until we
reach thek-th element of the clique. Note that starting from the thileheent, whenever we
select a different node in the clique we have to move back artd between this node and all
previously selected ones to satigy but since we have a clique this is possible. Finally, after
selecting the last node and verifying that it is connectealltthe others we move tbusing a
b labelled edge.

Now suppose that there is a data path freto t in G’ that satisfies. This means that
we will be able to seledt different nodesn, ..., ng in G with data values stored ixy, ..., Xk.
Since all data values in the graph are different they alsasitts. Now take any tway, nj with
I < j <k. Then we know that; andn; are connected it because after selectimg we have
to go throughd; which containsa[x~] - a[xj’| and since no two data values @are the same
this means that we have an edge betwaemdn;. This completes the proof. O

The restriction, while achieving better combined compigxs too strong, as it effectively
restricts one to languages of data paths whose projectiohs are finite. All the examples we
saw earlier use subexpressiais So if we want to achieve tractability, we need to look at a
very different way of restricting expressions. This is wivatdo in the next two sections.

4.3 Regular queries with binding (RQBs)

When examining Regular expressions with memory one asymgrbetomes apparent quite
quickly. Namely, they do not define the scope of variables.illlistrate this, consider the

following regular expression with memory:
I xa-(ax’]] xa)"-ax].

This expression re-binds variabkeinside the scope of another binding, and then crucially,
when this happens, the original bindingfs lostt Such expressions really mimic the be-
haviour of register automata, which makes them more proe¢doan declarative. Although
this behaviour is necessary to show equivalence betwe@taegutomata and regular expres-
sions with memory, as we will demonstrate in Section 6.2pégagainst the usual practice of
writing logical expressions and programs that have bounidbies.

Therefore it makes sense to study expressions that haverpsopping rules defined. In
this section we show that using such expressions makeswgvgtiaph queries more natural,
however, it does not garner any decrease in computatiogaireganents when querying graphs.

54 Chapter 4. Languages for data paths

In a later section we will also study these expressions fréemguage theory point of view and
show that they are strictly weaker than register automata.

Definition 4.3.1 (Expressions with binding)Let ~ be a finite alphabet andyx ..,xx a set of
variables. Themegular expressions with bindirage defined by the grammar:

e =¢|alete|ee]|e |€gd]|lx{e (4.2)

where a ranges over alphabet letters, ¢ over conditiongiinandx over tuples of variables

from x, ..., Xk.

As before we will assume that all the expressions are wathdd.
The class of well-formed regular expressions with bindgndgnoted bRREB(X[x1, ..., Xk]).

Note that the scope of variabl&sn an expression of the foripix.{e} is explicitly denoted
by parenthesis which make it extend only in the subexpressié-or example the last occur-
rence ofx in | x.{(a[x”])*} -a[x"] is outside of the scope gfx and will thus not be compared
to the first data value in the word, as would be the case in daegupression with memory.

Since regular expressions with binding have proper scofiiay also have the usual notion
of free and bound variables. A variablés bound if it occurs in the scope of some operator
and free otherwise. More precisely, free variables of amasgion are defined inductivelg:
anda have no free variables, igc] all variables occurring i are free, ine; + e; ande; - e
the free variables are those &f ande,, the free variables of™ are those of, and the free
variables of| x.{e} are those o€ exceptx. We will write e(x1,...,x) if x1,...,X are the free
variables ire.

A valuation on the variableg,... % is a partial functionv : {xi,..., %} — D. For a
valuationv, we write v[x; < d] to denote the valuation’ obtained by fixingv’(x) = d and
V/(x) = v(x) for all otherx # x;. Likewise, we writev[X +— d] for a simultaneous substitution of
values fromd = (dy, ..., d;) for variablesx = (xq,...,x) andv[X <— d] whend; = ... = d, = d.
Also notationv(X) = d means thav(x;) = d; for all i <1.

Let e(X) be from REBX[xs,...,X«]). A valuationv is compatible witte, if v(X) is defined.

The semantics of a regular expression with binding given with respect to a compatible
valuationv : {xq,...,X%} — D and it denotes the set of data pallis,v) inductively as follows:

e L(g,v)={d|de D}.
L(a,v) = {dad | d,d' € D}.

(

(
L(e+€,v)=L(eVv)UL(€,v).
L(e-€,v) =L(ev)-L(€,v).

(

(

L(et,v) =L(ev)".

o L(g[c],v) = {chay ... adk:1 € L(€V)|dki1,V =}

4.3. Regular queries with binding (RQBS) 55

o L([x{e},v)={d1ay...a0ki1|thas ... a1 € L(e,V[X <+ di])}.

If an expression has no free variables it is calttmbed When dealing with closed regular
expressions with binding it is not necessary to specify aat&n. We can thus talk aboute),
the language of data paths defined by a closed expression

Next we give a few examples of regular expressions with bigdind languages they define.

Example 4.3.2. Here we give some examples of data path languages definaliegbhar
expressions with binding. These will be similar to the oriesrgin Example 4.2.2 to demon-
strate that one can define some interesting properties @ gaths even with the restrictions
that proper scoping rules impose.

1. The language where all data values differ from the first isngiven by the expression

Ix{(ax*]) "}
2. The language where first data value differs from the lastisrgiven by, x.{a*a[x”]}.
3. The language where two data values are equal is giver bya{a*a[x~|} - a*.

4. The language where each data value equals the first onghdsecond value is different
from 5 is given by, x.{a[5" Ax"](a]x"])*}.

It is straightforward to see that regular expressions witiling are subsumed by regis-
ter automata and expressions with memory. Moreover, goorg Expressions with binding to
expressions with memory (and thus register automatayialtyi achieved by renaming of vari-

ables. For instance regular expression with bindirgalx~] - | x.{a[x”]} - a[x~]} is equivalent
to regular expression with memafy.ajx=]- | y.aly”]-a[x~]. We thus obtain the following.

Proposition 4.3.3. For every regular expression with binding e we can constanmcequivalent
regular expression with memoryia DLOGSPACE

When comparing the formalisms in Section 6.3 we will showt tha converse is not true.

Queries based on expressions with binding

Similarly as when dealing with RQMs, we now define a class adriggs based on regular
expressions with binding.

Definition 4.3.4. Aregular query with bindings an expression & x — y, where e is a closed
regular expression with binding.

Given a data graph G, the result of the query@®) consists of pairs of nodgy, V') such
that there is a data path w from v té that belongs to Le).

The class of these queries is denoted by RQB.

56 Chapter 4. Languages for data paths

Example 4.3.5. To give an example of an RQB query we note that both expresgioBx-

ample 4.2.5 can be expressed with a properly defined scopeile Wk expression find-
ing people with a finite Bacon number already is a regular egpion with binding, to
find movies having at least two different actors we use-@ — y, where e equals

Ix{cast]y.{stars_in[x~] - cast[y”]}}.
Using Proposition 4.3.3 combined with Corollary 4.2.6 wariadiately obtain:
Corollary 4.3.6. Data complexity of RQB querieséL-complete.

Seeing how scoping puts a restriction on the expressive pofdanguages, and since the
expressions used to show hardness in Theorem 4.2.7 usectiibdano scope is defined for
the variables they use, one might hope that query evaluardRQBs might be more efficient
that forRQMs. However, we show next that this is not the case.

Theorem 4.3.7.The combined complexity of query evaluation for RQB33sACE-complete.

Proof. Note that the upper bound follows from Proposition 4.3.3 @odollary 4.2.6.
Now we prove the PSacE-hardness of our theorem. The reduction is form QBF.
Let

Y = VX3Yn...VX3dy1 ¢

¢ = (5171 V 5172 V 5173) AN (52,1 V 5272 V 52’3) VAREEWAN (£m71 V £m72 V Em’g)

where eaclt; ; is a literal. We call a literal; ; anegativeliteral, if it is a negation of a variable.
Otherwise, we call it gositiveliteral.

For eachi € {0,1,...,n}, we will denoteW; = ¥x3y;...Vx13y1¢. Hence,¥y = ¢ and
W, = W. We are going to construct (in polynomial time) a graphtwo nodess,t € G and a
closed regular expression with bindinguch that for th&RQB Q= x — y it holds that

Wistrue ifandonlyif (sit) € Q(G).

Construction of the graph G and the two nodetsssG: The graphG is a data graph over

> ={ab,#$}. Its construction is done inductively are {0,1,...,n}, whereG;,s,t; are
constructed from¥;. The desired grapl® and the two nodes;t € V(G) is the following
graph.

4.3. Regular queries with binding (RQBS) 57

The construction 06;, s,t; is inductive oni. The graphGg and the two verticesy, tp are

as follows.
a /N a N\ a Q a /o a /N a Q
-1 €11 €12 €13 ceeeee e €m1 €m2 €m3
Q _/ _/ _/ _/
S \%1 V2 V3 Vam-2 Vam-1 Vam = 1o
where

o= 1 ifthe literal4; j is positive
J 0 ifthe literal/; j is negative

Now we show the construction &;,s,tj . Suppose we already constructed 1,5 _1,t_1.
ThenG;, s, is as follows.

The construction of the expressionin: the following we are going to show the construc-

tion of the expression. We first show how to construct an auxiliary expressigrfor each
i =0,1,...,n, which is based on the formuld;. The desired expressianis then defined as
r=#rq-9.

The expressiom; is defined inductively om= 0...n. First we set

ro = clause - clause - - - clausg,,
where each clausés defined as follows.

clause=alx;]-a-a+a-ax,)-a+a-a-axz|

andx; 1,X 2, 3 are the variables in the literalsy, ¢; », ¢; 3, respectively.
Now, assuming we have the expressipn, we definer; as follows.

f= <b¢xi.{b¢yi.{b-ri,1}-b[xi:]})*.

Finally we setr = #-r,-$.
It is straightforward to verify that the construction of hdhe data grapks and the expres-
sionr runs in time polynomial in the length of the formuia

58 Chapter 4. Languages for data paths
Remark 4. For every i=0,1,...,n,

¢ the formulaW¥; has free variablesiX1,¥ii1,---,%n, Yn;

o the expression; thas free variablesix1,Vii1,...,X%n, Yn.

Moreover, for a tupled € {0,1}2"), we writeW;(d) to denote the formul&; in which the
variables X.1,Yi+1,...,%n,Yn are assigned witld. We also define the query?@: X rﬂi) Y,
wherev(d) is the valuation assigning values@to %, 1,Yi. 1, .., %, Yn. Then we havév,V) €

QY(G) if and only if there is a pathtfrom v to V in G such that w € L(ri,v(d)). Note that the
query here is dependant on the valuatian

To prove thatV is true if and only if(s,t) € Q(G), we prove the following claim.

Claim 4.3.8. For each i=0,1,....n and for every tupl@ € {0,1}2""), W;(d) is true if and
only if (s,t) € QX(G)).

Proof. The proof is by induction on The basis i$ = 0. We have to prove th&¥; (d) is true if
and only if(sp,to) € Q(Go).

Let for eachk=1,...,mandj = 1,2,3, we writedy j to denote the 0-1 value assigned to
the variable in the literali j. Letv denote the valuation whergXxy),v(y1),...,V(Xn),V(Yn)
are assigned with, respectively. Then, we have

Wo(d) is true
i
every clausé/y 1V {2V ¢y 3) is true under the assignment
i
for eachk=1,...,m, there existy € {1,2,3} such that

q 1 if 4 is positive
kj= . : ,
! 0 if 4 is negative

0

for eachk=1,...,mwy € L(clausev) where

Tk = Vak+0aVak+1aVak+2aVak+3

(3
(s0,to) € Q3(Go)

For the induction hypothesis, we assume thgid) is true if and only if(s,t;) € QY(G;).

4.4. Regular queries with data tests (RQDS) 59

For the induction step, we prove the claim far 1, which follows from the following equality.

Wi, 1(d) is true
)
there exisky, & € {0,1} such thaW;(dOey) and W;(dle;) are true
)
there exisky, e; € {0,1} such that(s,t;) € Qidoeo(Gi) and(s,t) € Qidlel(Gi) € Q(ri,G).
)

there exists a pattifrom s, 1 tot; 1 such thawy € L(ri1,v(d))

The last inequality follows from the definition of, 1, where

risn = (B1%s1{byiea b} bpGal})

and to go from the verteg . to tj 1, the pathrt has to go thorougl®; at least twice: once
when the variable 1 is assigned with 0 and at least once when the varigbleis assigned
with 1. Thus, we havé¥.1(d) is true if and only if(s1,t11) € Q% ;(Gi11). O

This concludes the proof of the hardness part, hence, oardhe

4.4 Regular queries with data tests (RQDs)

The class of regular expressions for data paths that le@weyr the combined complexity of
queries to PTME permits testing for equality or inequality of data valuethatbeginning or the
end of a data (sub)path. For examfE). denotes the set of all data paths having different
first and last data values. The languaggof data paths on which two data values are the same
is given byZ* - (Z7)_ - Z*: it checks for the existence of a nonempty subpath (withllebE™")
such that the nodes at the beginning and at the end of thisgubpve the same data value,
indicated by subscript.

To allow for constants we will ussimplified conditionsThese are simply conjunctions of
the forme= ande”, whereeranges oveD. Then a data valué satisfies a simplified condition
¢, denotedd = ¢, if T,d |= ¢, wheret is an empty assignment. Note that the valuation itself is
irrelevant here.

Definition 4.4.1 (Expressions with equality)Let X be a finite alphabet. Themegular expres-
sions with equalityare defined by the grammar:

e=¢|lalete|ee|e |€c|e |e (4.3)

where a ranges over alphabet letters and c is a simplified itiomd

60 Chapter 4. Languages for data paths
The languagé (e) of data paths denoted by a regular expression with equaistylefined

as follows.

o L(e)={d|de D}
e L(a) = {dad | d,d’ € D}.

(
(
o L(e-€)=L(e)-L(€).
e L(et+€)=L(e)UL(€).
o L(e")={wy---wx | k>1and eachyv, € L(e)}.
o L(e[c)) ={dhai...an_10h € L(e) | dy = C}.
o L(eo)={dhay...an_10, € L(e) | dy =dn}.

L(es) ={dhay...an—10n € L(€) | d1 # dn}.

These expressions sacrifice the ability to store data vatuaking it only possible to check
for (in)equality at the start and the end of chosen subegjmes. The only exception is testing
against constants, but since these tests are so naturaafdatabase point of view we include
them in the definition. Looking at Example 4.2.2, all langesigxcept the first can be defined
by regular expressions with memory. We already saw how thddanguagé.cq, the expres-
sion | x.(ab)*[x”] is equivalent tqab);. The expression x.(a[x”])* describing the language
of data paths in which all data values are different from trst fine, requires checking a condi-
tion multiple times. We now show that this goes beyond thegraf expressions with equality,
which are strictly weaker than expressions with memory.

Proposition 4.4.2. 1. For each regular expression with equality, there is anieajent reg-
ular expression with memory.

2. For the regular expression with memagy.(a[x”])* there is no equivalent regular ex-
pression with equality.

Proof. For first item it is enough to observe that for expressionsiekinde_ ande., wheree

is an ordinary regular expression, the expressions with ongtx.e[x~] and| x.e[x”] denote
the same language of data paths. From this it is straigh#fi@hio construct a translation of
arbitrary regular expression with equaligpto regular expression with memory by doing the
above mentioned construction bottom-up, starting fromegpkessions oé and using a new
variable for each subexpression of the fagmor € ”

To prove the second claim we introduce a new kind of autonzied weak register
automata, show that they capture regular expressions guikliey and that they can not express
the language x.(a[x”])* of a-labeled data paths on which all data values are differemh fr
the first one.

4.4. Regular queries with data tests (RQDS) 61

The main idea behind weak register automata is that they e¢hesdata value that was
stored in the register once they make a comparison, thusregdthe register empty. We
denote this by putting a special symholfrom D in the register. Since they have a finite
number of registers, they can keep track of only finitely mpogitions in the future, so in the
case of our language, they can only check that a fixed finitebeumof data values is different
from the first one. We proceed with formal definitions.

The definition of weak-register data path automaton is the same as in the Defiitiofh.
The only explicit change we make is that we now assumehabntains a special symbe}
that will allow us to simply skip the data value, without dgiany comparisons (previously we
have been using a simple tautology suchxas xf, or an additional register to emulate this).
Thus we simply add,d |= ¢, for every valuatiort and data valuel, to semantics ofy. We
will also assume that the initial configuration is always ¢mp

Definition of configuration remains the same as before, baitwhy we move from one
configuration to another changes.

From a configuratiort = (j,qg,T) we can move to a configuratiann= (j +1,q, 1) if one
of the following holds:

e the jth symbol is a lettea, and there is a transitiofg,a,q') € dy; or

¢ the current symbol is a data valde and there is a transitiofg,c,|,q') € &y such that
d,T = c andt’ coincides witht except that every register mentioneddiis set to be
empty (i.e. to contain_) and theith component of’ is set tod wheneveii € |.

The second item simply tells us that if we used a conditioadik x5 /\x%é in our transition,
we would afterwards erase data values that were stored isteeg3 and 7. Note that we can
immediately rewrite these registers with the current datae:

The notion of acceptance and an accepting run is the saméaae.be

We now show that weak register automata can not recognizéatigeiagel. of all data
paths where first data value is different from all other dallaes, i.e. the language denoted by
the expression x.(a[x”])*.

Assume to the contrary, that there is some wieakegister data path automatchrecog-
nizing L. Since data pathv; = diadca. .. dkadc 1ad. 2, whered;s are pairwise different and
do not appear in any condition i, is in L, there is an accepting run of onw;. The idea
behind the proof is thafl can check that only the fir&t+ 1 positions have different data value
from the first.

First we note a few things. Since every data value in the patts different, no= com-
parisons can be used in conditions appearing in this rurefeibe the condition test would
fail and the automaton would not accept). This also must fai@onstants appearing in the
conditions, since nd;s appear in them.

62 Chapter 4. Languages for data paths

Now note that since we have onkyregisters, and with every comparison we empty the
corresponding registers one of the following must occur:

e Thereis a data value<d i < k+ 2 such that the condition used when processing this data
value is€. In this case we simply replaak by d; and get an accepting run on a word
that has the first data value repeated — a contradiction. tNateve could store; in that
transition, but since afterwards we only test for ineqyaliis will not alter the rest of
the computation.

e There is a data value such that when the automaton readsoigst ot use any register
with the first data value, i.edq, stored. Note that this must happen, because at best we
can store the first data value in all the registers at the bawirof our run, but after that
each time we read a data value and compare it to the first weHed@st data value in
this register. But then again we can simply replace this dalae withd; and get an
accepting run (just as before, if this data value gets stioréds transition and then used
later it can only be used in comparison, which is also true fdg, so the run remains
accepting). Again we arrive at a contradiction.

This shows that no weak register automaton can recognizearnigeage..
To complete the proof of Proposition 4.4.2 we still have tovslthe following:

Lemma 4.4.3. For every regular expression with equality e there existseak\k-register au-
tomaton4e, recognizing the same language of data paths, where k istthmbar of times=, £
symbols appear in e.

The proof of the lemma is almost identical to the proof of Pxifion 4.2.3. We can view
this as introducing a new variable for every+ comparison ire and act as the subexpression
€_reads| x.¢[x~| and analogously fof. Note that in this case all variables come with their
scope, so we do not have to worry about transferring registefigurations from one side of
the construction to another (for example when we do coneéitar). The underlying automata
remain the same. O

Queries based on Regular expressions with equality

We now deal with the following queries.

Definition 4.4.4. A regular query with data tests an expression @ x — y, where e is a
regular expression with equality.

Given a data graph G, the result of the query@&) consists of pairs of nodgs,V') such
that there is a data path w from v t6 that belongs to [e).

The class of these queries is denoted by RQD.

4.4. Regular queries with data tests (RQDS) 63

Example 4.4.5. Coming back to the database from Figure 2.3, we can now asfotlosving
queries.

e The query asking for people with a finite Bacon number is atf@rsame as in Example
4.2.5.

e Query that checks if there is a movie in the database withagtlavo different actors is
defined by G= x -5y, with e:= (stars_in-cast).. Note that a nonempty answer to this
guery merely signifies that such a movie exists. To actuathere the movie we would
need to use conjunctive queries with RQDs as atoms (Secpn 5

Combining Propositions 4.2.3 and 4.4.2 we see that the pofwegular expressions with
equality is subsumed by register automata; hence combiithdTiveorem 4.1.6 we immedi-
ately obtain:

Corollary 4.4.6. Data complexity of RQD queries is ML.

We now show that combined complexity fBIQD queries is tractable, i.e., is even better
than the combined complexity of conjunctive queries. Outima of the polynomial-time
algorithm is as follows. We start with a data gra@h= (V,E,p) whose data values form a
(finite) setD C D and a regular expression with equaliy

1. We first show that we can efficiently generate a context-tp@mmarGep whose lan-
guage corresponds to the set of all data paths frgghwhose data values areh More
precisely, every word i (Gep) will be of the formd;a;dxda203ds. . . dy—10h—180—10n,
whered; € D anda; € ~. We say that this word, in which each data value, except tbe fir
and the last, appears twice, corresponds to the datadpatthards. .. a,_10dn.

2. We then convertjep, in polynomial time, into an equivalent PDA(Gep).

3. Given two nodes,V in G, we construct an NFAg . To do so we first define a graph
G' = (V/,E’) that will reflect the fact that all data values frdBhave to be doubled if
they appear on a path as intermediate nodes. We deéfiae(V’,E’) as follows:

e V= Vu{Gd|ueV}u{st}
o FE {(v1,8,%) | (v1,a,v2) € E}

U{(G, p(u),), (,p(u),u) [ueV}
Similarly as when dealing with register automata we trimgelenode and add an edge

between new nodes that will reflect the fact that every inégliate data value will have
to be doubled. This is illustrated below.

(@)) ()% (@) (8)

64 Chapter 4. Languages for data paths

In addition, we also add edgés p(v),v) and(V,p(V),t) to E’. We now get the automa-
ton 4g,yv as the automaton obtained fra& by settings as the initial and as the final
state. Note that the construction of the automafigy, is polynomial.

4. Finally, forQ = x - y we have(v,V) € Q(G) iff the languages,, has nonempty
intersection with the language generated by the grangagr This follows by an argu-
ment similar to the proof of Proposition 4.1.5.

Since the intersection of a context-free language and daefnguage is context-free
and can be obtained by the product construction of a PDA andF this means
that (v,V') € Q(G) iff the product4(Gep) x Agyy defines a nonempty language. This
product is a PDA, so we can check its nonemptiness in polyalotime, giving us a
polynomial algorithm for query evaluation.

Steps 2, 3, and 4 above use the standard constructions oértogvCFGs into PDAs,
taking products, and checking PDAs for nonemptiness. Sd ishmissing is the construction
of the CFGGep, which we show next.

Regular expressions with equality into CFGsAssume that we have a finite dBtof data
values. We now inductively construct CFGgp for all regular expressions with equality.
The terminal symbols of these CFGs will Beplus all elements oD. All nonterminals in
Gep Will be of the formAy andAgd/, where€ ranges over subexpressionseadndd,d’ € D.
Intuitively, words derived fromﬁgd will correspond to (in a way previously described) data
paths inL(€') with data values fronD that start withd and end withd’; words derived from
Ag will correspond to data paths In(€') with data values fronD. The start symbol for the
grammar corresponding to the expressiomill be Ae.

The productions of the grammagk p are now defined inductively as follows.

e If e= ¢, we have productiond; — \/y4.p Al andAd? — d for eachd € D.
o If e=a, for ac %, we have production#e — Vg gcp Al and AYY — dad for all

d,d €D.

o If e=e1-e&, we have productionde — Vg gep ALY andAIY — \/ g ep A ALY for all
d,d’ € D together with all the productions of the gramm&gks p and G, p.

o If e=e;+e, we have production8e — Vg gcp ASY andAZY — AIY |AY for all d,d’ €
D together with all the productions of the grammaks p and Ge, p.

o If e= (e1)*, we have productionfie — Vg gepAS? andAZY — AIY|\/ i p AL
for all d,d’ € D together with all the productions of the gramniz p.

!

A(ej// d/

o If e= ey[c], we have production8e — Vg gep ac ALY andAd? — A forall d,d’ € D
whered’ = ¢, together with all the productions of the gramntz{ p.

4.4. Regular queries with data tests (RQDS) 65

e If e= (&), we have production8e — \/gep AS? andAZ? — AJY for all d € D together
with all the productions of the grammag, p.

o If e= (e1), we have productionSe — Vg g cp, go ALY andAId — A for all d,d’ e
D with d # d’, together with all the productions of the gramntz{ p.

It is clear from the construction that all words generatedhiy grammar(with the sole ex-
ception of the empty word) have all of their intermediateadagiues (i.e. letters corresponding
to values inD) doubled, except the first and the last one.

Note that with these expressions we assumegtban appear only when denoting the empty
word and will be removed otherwise. We require this, so tretweuld not get productions that
produce objects that are not data paths, such agdelgfor the expressios - €- €. Note that
this is not a problem, since all expressions can be rewritidre of this form in DILOGSPACE

The main result connecting these CFGs with languages ofaegxpressions with equality
is this. Recall that when we say that a word okemdD corresponds to a data path with values
in D, we mean that it equals the data path with all the data vaxegpt the first and the last,
doubled.

Proposition 4.4.7. The language of words derived by each CEgp corresponds to the set of
data paths in I(e) whose data values come from D. Furthermore, the set of weandged! from
each nonterminal & corresponds to the set of data paths ifeLwhich start with d, end with
d’, and whose data values come from D.

Moreover, the CFGGep can be constructed in polynomial time from e and D.

Proof. We prove the proposition by induction on the structure.oNote that it is enough to
show the second claim, i.e. we will show that the set of woetsvdd from each nonterminal
AJ? corresponds to the set of data pathk g) which start withd, end withd’, and whose data
values come fronD. This means that a word;a;d>d>axdzds. .. an—1d, in which all values
but first and last are doubled is derived fr@tﬁ" if and only if data pathta;doasds. .. an_ 10y

is in L(e) and uses data values frolh We prove this by induction on the structure of the
expression.

o If e=¢, ore=a, withac Z, the claim is immediate.

o If e=e1+e thenAd — AJY|AY. But then each word idd? is either inAZY or in
AdY, so the claim follows from the induction hypothesis.

o If e=e; e, we have a productiodd? — \/g.p AITAZY. To see the equivalence
assume first thaw is generated byAd?. This means that there exigié € D such that
w is generated bypd?' AZY. By definition this means that = wy - w, such thatw; is
generated bd®" andw; is generated bpd @', By the induction hypothesis this implies
that data patlw; corresponding tavy, is in the language of;, starts withd and ends

66 Chapter 4. Languages for data paths

with d”. Likewisew,, a data path correspondingwg starts withd”, ends withd’” and

is in the language of,. Note that the induction hypothesis also implies that thitisg

of the word is correct. Since; ends withd” andw/, begins with it we can concatenate
these two data paths to get, a data path correspondingug that is in the language of
e, begins withd and ends withd’ as required.

Conversely, suppose that € L(e) is a data path that begins with ends withd’ and
takes only data values from the 48t By definition of concatenation there exists a
splitting w = w} - w,, such thatw; € L(e1) andw, € L(e). Sincew takes data values
from D there is somel” such thatw; ends withd” andw, begins withd”. But then
by the induction hypothesig;, word obtained fromw) by doubling all intermediate
data values, will be generated lagld', while w,, a word obtained fromv, by doubling
all intermediate data values, will be generatedA@}d’. But then their concatenation
W = Wy - W, is precisely the word corresponding to data pathand is generated by
ALY AL and thusadd

o If e= (e1)", we have a productioAd® — AJY|\/y..p ASY A'Y. This implies that every
word is generated either bggld, in which case the claim follows immediately from the
induction hypothesis, or is generated\y,.p AT AZ'?, in which case the proof mimics
the proof for the concatenation case, taking into accouatt riacursion will terminate
after finitely many steps and thus the final expression wiklk Ipeultiple concatenation of
terms for which the induction hypothesis holds.

o If e=e[c], we haveAl? — AJY, whered’ |= c, which by the induction hypothesis
corresponds to all words in(e) with data values fronD.

o If e=(e1)_, we haveAd? — AdY, which by the induction hypothesis corresponds to all
words inL(e) with data values fronD.

o If e= (e1),, we haveAld — AJY, whered # d’, which by the induction hypothesis
corresponds to all words in(e) with data values fronD.

To see that the grammar for an expres®a@an be constructed in polynomial time observe
that there are at mo§)(n?) subexpressions & where the length ofis n. Since the grammar
for eis constructed by starting from subexpressions and takimgns of already constructed
subgrammars and every new rule adds at nfgb|®) productions to our grammar we get a
grammar of the size at mo&{(n?- |D|3). Note that we reuse old subgrammars so we do not get
exponential blow-up. O

This, together with the algorithm shown above, finally giusstractability of combined
complexity.

Theorem 4.4.8. Combined complexity of RQD queries isRAIME.

4.5. Variable automata 67

Proof. It is clear from the description that algorithm runs in paymal time. It remains to
prove that it is correct, i.e. that f@ = x — y we have(v,V') € Q(G) iff the language of
Ag vy has nonempty intersection with the language generated(loip).

To see this assume first thatV') € Q(G). This means that there is a data pathform v to
Vv in G such thaiv,; € L(e). By Proposition 4.4.7 this implies that the correspondirggdwvith
all intermediate data values doubled is in the languagg.gfand thus4(Gep). Also, sincews
is a path inG itis of the formd;a; . .. a,-1dy, Wwhered; = p(v;), fori =1,...,n, for some nodes
Vi,...,Vp in G such thaty; = vandv, = V. This implies that(vi,&,Vv;1) is an edge irE, for
i=1,...,n—1. This again implies thad;; 101 enables us to change the statedgf,,, from
vi to vi;1 (by going throughv 1 andvi; 1), fori =2,...,n—1. Since(s,ds,v1) and (¥, dn, V)
are also transitions itflg vy (as well as(vn_1,a1-1,%)) we see thatds,, accepts the word
diagdodrardsds. .. a,_1dn, i.e. the word corresponding t@,. It follows that the intersection
of 4(Gep) and Ag vy is Nnonempty.

Conversely, assume that the produi,, x A(Gep) defines a nonempty language and
thatw = dia;dodrapdsds. .. an_1ds is some word in that language. If we delete doubled data
values fromw (remember the discussion before the statement of Propogitd.7 where we
show that all words irL(Gep) are of this form) we get a word. By Proposition 4.4. Ay will
be in the language af On the other hand, sina& € L(A4g,y) we know that there is a run
fromstotin A4, that accepts this word. Then by the construction of thisraaton there
exists a sequenag, . .., V, of nodes fronG such that;, = p(v;) are the appropriate data values,
(vi,&,Vi+1) € E the corresponding edges ane: v;, while V. = v,. It is clear thatw coincides
with data path defined by this path and is thus a data pa@hstarting inv and ending in/.
We conclude thatv,V') € Q(G). O

We also note that a simpler dynamic programming algorithat ¢évaluate fRQDs bottom-
up can be applied to prove membership inilRd. We will describe this algorithm in Section
7.1 where it will be used to evaluate queries from a more esgire language calledXPath.
We have opted for the approach taken here to emphasise ¢mmeith formal languages.

4.5 Variable automata

We have seen in previous sections that query languages ¢ehdve either polynomial or
P S,acE combined complexity when evaluated on graph databasestutahguestion to ask
is if we can find a reasonable formalism whose combined coxitplwill be between these
two classes.

Here we do so by using variable automata introduced in [Gergbt al., 2010a]. These
automata can be viewed as less procedural than registanatatpin fact they can be seen as
NFAs with a guess of values to be assigned to variables, wdtihun of the automaton verifying

68 Chapter 4. Languages for data paths

correctness of the guess. Originally they were defined onsvover infinite alphabets [Grum-
berg et al., 2010a], but it is straightforward to extend thertine setting of data graphs. In what
follows we define variable automata as a formalism for defilamguages of data paths and
show how they can be used to post queries on graph databasesill\Also give several exam-
ples of such queries and show that they can be evaluated itinNPwith respect to combined
complexity.

We begin by defining variable automata formally.

Definition 4.5.1. Let X be a finite alphabet an@® an infinite domain of data values. We wiill
also assume that we have a countable set V of variablegri@ble finite automatofor VFA
for short) overZ is a a tuple4 = (Q, do,F,I,d), where:

e Q=QuwUQq, where Q,and @ are two finite disjoint sets of word states and data states;

Jo € Qq is the initial state;

F C Qu is the set of final states;

N =CuUXU{*} such that:

— C C Dis afinite set of data values callednstants
— X CV is afinite set obound variablesand

— «x is a symbol for théree variable

0 = (dw,0q) is a pair of transition relations:

— Oy € Quw x Z x Qq is the word transition relation;

— 8q € Qg x I x Qu is the data transition relation.

Next we define when a VFA accepts a data path= dpagdia; . . . dhandn 1.

Let v = vgbgvibs ... vyabavhy 1 be a word wherey,... vy 1 € T andby,...b, € . We will
say thatv is awitnessing patteriior w (or thatw is alegal instanceof v) if there is a sequence
o, 0o, A1, - - - Gn, O, On+ 1, Oy, 1 OF States in, with g, ; € F such that the following holds:

1. for eachi we have(q;,vi,qf) € 8 and(q,bi,0i+1) € dw,
2. g =bj and(q},&,0i+1) € dw, fori=0,...,n,

3. if vy =ceCthen(qg,c,q) € dg andd; =c,

4. if vi,vj € X thend; = d; iff v = v; andd;,d; ¢ C,

5. if vi = x andv; # thend; # d;.

Intuitively the definition states that in a legal instancenstants and finite alphabet part
will remain unchanged (conditions 2 and 3), while every libuariable is assigned with the

4.5. Variable automata 69

sameuniquedata value from®D — C (condition 4) and every occurrence of the free variable
is freely assigned any data value fran— C that is not assigned to any of the bound variables
(condition 5). Note that the condition 5 is a lot stronget B&ying that- means any data value.

Intuitively, finding a witnessing pattern for a data pathhie same as guessing an assign-
ment which maps each constant, bound, or free variable t@propriate data value in the
path. This assignment is then checked against conditioogeaid make sure all data value
comparisons are as specified by the automaton. One imper@mrty of condition 5 though,
is that unlike all the other ones, it is not dependant onlyhlmndurrent and next state of the
automaton, but allows it to reason along the whole run.

We now define théanguage of4, or simplyL(2) for short, as the set of all data paths
for which there exists a witnessing pattetn

Note that it is straightforward to define regular-like exgsiens for VFAs that will simply
inherit the associated semantics.

Example 4.5.2. Here we give a few examples of languages accepted by VFAs.

1. The language where the first data value is equal to the ladtall other values are
different from them (but can be equal among themselves).

a
sar—()— =] (%)~
*

The witnessing patterns here has the forfa-x)* - a-x, so condition 5 will imply that
the data values in the middle are different from the first drallast.

2. The language where the first data value is different fronotaler data values.

a
sart—()—~
*

This time the witnessing pattern takes the fofi@-x)*, thus dictating that the first data
value is never repeated.

3. The language where the last data value differs from akottata values.

*
s ~(B_(®)
a
X

70 Chapter 4. Languages for data paths

Finally in this example, the witnessing pattern has the f¢xma)*x, so the last value
can never be replicated because of the condition 5.

Note that the last example is not expressible by registemaatia [Kaminski and Francez,
1994].

It was shown in [Grumberg et al, 2010b] that the Ilanguade =
{diadiadhada...dadad 1 | k > 1} is not expressible by VFAs. However, it is straightfor-
ward to show that this language is defined by the regular ezfme with equality((a)--a)™.
Thus, we obtain:

Proposition 4.5.3. VFAs are incomparable in terms of expressive power withstegiau-
tomata, regular expressions with binding and regular egpiens with equality.

Regular queries with variables

Here we define a class of queries based on variable autométaxamine the complexity of
their query evaluation problem.

Definition 4.5.4. A regular query with variables an expression @ x N y, where4 is a
variable automaton.

Given a data graph G, the result of the query@&) consists of pairs of nodgs,V') such
that there is a data path w from v t6 that belongs to [2).

The class of these queries is denoted by RQV.

Example 4.5.5. Coming back to the database in Figure 2.3, we can use theafisipvariable
automaton4 to specify a query returning all the actors who have a finite@anumber:

stars_in cast

?
OO

Kevin Bacon
start —(Yo > 01)< >
N

As before, we also return the node corresponding to KeviroBaltie an inherent limitation
of path languages to define unary queries. Note that the aattim does not allow Kevin
Bacon to appear more than once along a path due to conditiom Befinition 4.5.1. This,
however, does not affect the intended semantics of our query

As announced we can now prove that for queries posted byblaraaitomata combined
complexity of query evaluation drops téP. Moreover, we also show the matching lower
bound.

4.5. Variable automata 71

Theorem 4.5.6. Combined complexity of query evaluation problem for RQWsHscomplete.

Proof. First we prove membership. Assume we are given a g@&pivo nodess,t € G and a
RQV Qspecified by a VFAZ. We show that iftis a path inG from stot, such thatv,; € L(2)
then there is also a patli in G from stot of length at mosh := |G+ 1|-(2/.4|+ 1) + 1 such
thatwy € L(A4), where| 4| denotes the number of statesdn

Assume thatmt = ng,...,n 1 is a path of length greater than such thatny =
s =t and the associated data path, = dpay...diad .1 belongs to the language
L(A4). Letv=vpby...vibvi;1 be a witnessing pattern fam;. Then there is a sequence
o, o, 1,y - - -, Q1+1, 0, 1 Of states of4 that confirms this according to definition of accep-
tance by VFAs.

By the pigeon hole principle there existg < | such than; = n; andg; = g;. Observe that
T =nNo,...,N;,Nj+1,...,N41 is still a path inG from sto t with the associated data paih =
dodo...a—1d;ajdj;1...diadi 1 and thatv = vpby...bi_1vjbjvji1...vibviy1 is a witnessing
pattern forw/, as verified by the sequenag, dp, - - - G, d}j+1, - .- G, ; Of states.

By repeating this cutting procedure we get the desired tredldw for the NP-algorithm
we simply guess a path of length at maswhich is polynomial in the size of the input, and
verify that it belongs to our language in RME. Note that in order to obtain adP algorithm
we also guess an assignment of data values to variables iExpugssion at the same time as
guessing the path (thus effectively guessing the witngsgattern). This is necessary since
membership for VFAs idlP-complete [Grumberg et al., 2010a].

To show NP-hardness we do a reduction fio@LIQUE. This problem asks, given a graph
G and a numbek, to determine ifG has a clique of size at lealst

Suppose we are given an undirected gr&umd a numbek. We will construct a grapls’
with |G| + 2 nodes , select two nodeg € G’ and construct a VFAZ of sizeO(k?) such that
G contains &-clique if and only if there is a path fromto t in G’ whose associated data path
belongs td_(4).

TakeX = {a,b} and makeG directed by adding edges in both directions for every edge in
G. Assume that every vertaxis given an unique data valug. Label the edgeév, V') € G’ by
a and add two more nodesandt, with unique valuesls andd; attached. Add an edge from
to every other nod& excepts,t and label them witlb. Also add an edge from every node in
G tot and label them by. We call the resulting grap@’. (The idea is that every node has a
unique data value —its id.)

We define our VFA as a linear path with transitions:

® (o, s, 0p), (G, b, A1), (0lz, X1, Gy), (0, & 02), (G, X2, 0) (this collect the first two nodes
in the clique),

72 Chapter 4. Languages for data paths

e (0_1.2,G),(q,%,0), (selecting nodé)
(d,a,q)), (q‘l,xl,q_‘l), (q_‘l, a, pl), (ph,% ,p_il), (checking it is connected with the first node
selected)
(pL,a,db), (dh, %2, o), (c, @, pP), (P2, %,), . .., (checking it is connected with the sec-
ond node)
(Fl 22,0 1), (4 1% 1.9 1),
(Gi_1.8,G), (q,%,0) ((checking it is connected with the last node selected))3foi <
k and

o (Gfb.Ge-1). (Ghr1. k. G, 1) (t0 get the target node).

Note that here we add a new state for each transition of tloereaion.

Next we show that there iskaclique in G iff there is a data path forratot in G’ whose
label belongs td.(4).

Suppose first that there iskaclique inG. Then we simply move frors to arbitrary point
in that clique using thé labelled edge and traverse the clique back and forth untiteaeh
thek-th element of the clique. Note that starting from the thikehgent, whenever we select a
different node in the clique we have to move back and forttvben this node and all previously
selected ones to match the transitions (we check that tieagptarconnected), but since we have
a clique this is possible. Finally, after selecting the tastie and verifying that it is connected
to all the others we move tousing ab labelled edge.

Now suppose that there is a path freento t in G’ whose label belongs th(4).
This means that we will be able to seldctdifferent nodesn,...,n¢ in G with data val-
ues stored inx,...,X. Since all data values in the graph are different they aldo ac
as ids. Now take any tway,ny, with | < m< k. Then we know thatn, and ny, are
connected inG because after selecting,, we have to go through the transitions stating
(phLa, a™), (™%, "), (G, & Ph); (Pl Xms Phy) @nd similarly for wherl,m are at the begin-
ning or end of the transition chain. Since no two data valo&s are the same this means that
we have an edge betweapandny,. This completes the proof. O

Furthermore, we can also show that data complexity remailg_i
Proposition 4.5.7. Data complexity for RQV queries is NL-complete.

Proof. Assume that we have a fixed quépspecified by a VFAZ. We are giverG ands;t € G
as input. Using the same construction as in the proof of Témat.1.6 we can transform the
graphG into a graphG’ with a number of nodes doubled. Note that tiscan be viewed
as a VFA that uses only constants and vggtas initial andt; as the final state (these nodes
correspond tas andv; in the aforementioned construction).

Using Theorem 1 in [Grumberg et al., 2010a] we build the pobafiour graphG’, viewed
as a VFA and our fixed VEA. Theorem 2 in [Grumberg et al., 2010b] counts the number of

4.5. Variable automata 73

states in the product construction @&n; - nz%w

O(W), whereny is the number of states|, the number of bounded variables and

the number of constants frof in each of our automatons.

) and the number of transitions as

Note now that sinceq is fixed ny,d, andc, are constants. Le¥l = n, +d, +co. Also

notice that our graph, viewed as an automatondias 0 andn; andc; are both bounded

(M-[G)!
(c1+|GN!

O(M-|G|- (M +|G|)M), that is polynomial in the size & and the same calculation applies to
the number of transitions.

by the size of the graplG|. Thus the size of our product automatorGgM - |G|) <

Using standard on-the-fly technique we check the producinaaton for nonemptiness in
NL. It is straightforward to see thas,t) is in the answer to our que® on G if and only if
this product is nonempty. Thus we get the desired upper hound

Lower bound follows from the same result for RPQs (withoutdalues). O

Note that the combined complexity dropped fromPRSEto NP, which is viewed as much
more acceptable for query evaluation, at least over larggbdaes. This is the complexity of
relational conjunctive queries, for instance [Abiteboudile, 1995], or conjunctive regular path
queries over graphs [Consens and Mendelzon, 1990].

74 Chapter 4. Languages for data paths

4.6 Summary of complexity results

We have seen in previous sections that even when the mosssi class of queries, those
based on register automata, are considered, the combimeplecdty matches that of usual
relational calculus queries [Abiteboul et al., 1995], or@&Pextended with rational relations
[Barcel6 et al., 2012b]. Data complexity, on the other hasdhe best possible in light of
the results for RPQs (which basically follow from the boufalsgraph reachability problem
[Jones, 1975]). These results extend to the class of RQM®wearl to RQBs, which restrict
automata and RQMs with proper scoping rules, making theghthli weaker, but closer in
syntax to usual programming languages. When expressienidiner restricted we arrive at
the class of RQDs, whose combined complexity drops tevieT From this we can see that
there is somewhat of a split between path languages whenigechbomplexity of the query
evaluation problem is considered. Namely it it is ratheP®RS or PTIME. In our search for
a formalism with intermediate complexity we showed that wihjaeries are based on variable
automata one indeed gets an NP bound. All of these resulsuarmarised in Table 4.1.

Query evaluation RDPQ RQM RQB RQD | RQV
combined complexityy PSPACE-C | PSPACEC | PSPACEC | PTIME | NP-C
data complexity] NL-c NL-c NL-c NL-c | NL-c

Table 4.1: Complexity of the query evaluation problem

Chapter 5

Additional features

An important issue in query language design is enrichingotee theoretical languages with
features required from database practitioners. In theegbof graph databases two of the most
important such features are the ability to traverse edgelswads and allowing conjunctive
queries to be formed from simple graph queries. Indeedsitiegn argued before [Calvanese
etal., 2000,Calvanese et al., 2003] that the inverse aprasz required feature of any practical
graph language, while the usefulness of conjunctive gsidrés been well studied both on
relational databases [Abiteboul et al., 1995] and on gridhecel6 et al., 2012b, Freydenberg
and Schweikardt, 2011, Bienvenu et al., 2013].

In this chapter we will first examine what happens when patguages from Chapter 4 are
enriched with the inverse operator. Here we will take theraagh somewhat different from
the one in that chapter and define our queries to work directlgraphs, instead of taking the
additional detour through language theory. This will all@svto obtain a uniform semantics for
all classes of queries and to define inverse operators in @lesiway. We will also show that
the two semantics are equivalent and that enriching ounlages with the ability to traverse
graph edges in both ways has no impact on the complexity ajukey evaluation problem.

Following that, we will study the impact of conjunction omtuages from Chapter 4,
showing that in most cases no cost is incurred, except wiveer lbounds are already dictated
by weaker classes of queries. In particular we can obtaimaptjuery evaluation bounds, in
light of those for single queries.

Finally, we will also show that by merging two incomparatenialisms from the previous
chapter, that of register automata and variable automatacam obtain a highly expressive
model with no incurred cost in evaluation complexity. Ho@ewas we argue at the end of the
chapter, such a model requires much care when designinigguerd is thus highly unlikely
to be adopted as a querying standard for data graphs.

75

76 Chapter 5. Additional features

5.1 Languages with inverse

All of the languages considered in the previous chapter eavidwed as extensions of RPQs
which manage data values. However, as noted in [Calvanede 2000], RPQs by themselves
lack a very natural construction for navigation through stricture of graphs—namely, the
inverseoperator. Indeed, consider for example a genealogy graphaogingleparent label,
such as the one presented in the following figure.

Vi Vs

parent

i
parent parent

Y y
V3 (Paul) Michael) V7

Figure 5.1: A genealogy database over tharentlabel.

We assume that nodes represent people and data valuesiareathes. A natural query
over this graph, which does not deal with data values, woeldobask for all pairs of sib-
lings. This, however, is clearly not expressible as an RP4Xh® other hand, it can be written
as parent parent where ' is the inverse operator, which traverses edgaskwards This
query will retrieve e.g(vz,va) from the graph in Figure 5.1, since these nodes have a common
parentv;.

The class of queries enriching RPQs with inverse, cdlleday RPQsor 2RPQsfor short,
was introduced in [Calvanese et al., 2000], where it was shitvat even with this extension
query evaluation remains the same as for RPQs (namelydfeAcE-complete). Moreover,
in [Calvanese et al., 2003] the authors also show that quama;ment is as efficient as for
plain RPQs (hamely PR CE-complete).

Here we will consider the extensions of queries defined inp&hral with the inverse oper-
ator. As argued above such extensions are natural from gatanal point of view, but they
can also be used to ask interesting queries where data \aeidsvolved and should thus be
incorporated into formalisms for querying data graphs. é&@mple, one query of interest in
our genealogy database might be to retrieve all pairs obf)lcelatives with the same name.
This can be easily done by the means of two-way RQ&arent™)™ parent”)_, which checks
that two people have a common ancestor and ensures thatlfoeyeave the same name. For
example the paifvs,vs) is an answer to this query in our sample graph. Next we defise th
class of queries formally.

5.1. Languages with inverse 77

Graph semantics

As mentioned in Section 2.5, semantics of regular path gaeran be defined directly on
graphs, without taking a detour through language theorye e show that the same can be
done for the classes of queries based on expressions witlrpdnnding and equality. In this
respect we can identify e.g. regular expressions with mgmod regular queries with memory
and say that an expressieris anRQMand vice versa (recall the discussion in Remark 2). As
demonstrated before, this approach will allow us to haveifaum relational semantics for all
the languages we consider, as well as allowing us to bypasmavehat awkward approach
using semi-paths from [Calvanese et al., 2000] when defitlignverse operator. Note that
here we will not consider register nor variable automatd wiverses, as such model amounts
to more than simply adding the ability to traverse edges afalyin both directions and has
some deeper language theoretic implications which woutchdieus from our goal to study
languages for querying graph databases.

Two-way regular queries with memory 2RQMs).

Here we will define the language oR®Ms to work directly on graph databases, thus remov-
ing the distinction between (two way) regular expressioits wmemory and RQMs. In that
respect we will from now on identify the two and say that a tway regular expression with
memoryeis an RQMand vice versa. We will also show that this approach is etprivdo the
one taken in Section 4.2.

The syntax of RQMs is defined by extending Definition 4.2.1 with the inverserafue.
That is, for a finite alphabét and a se{xy, ..., x} of variables, they are expressions specified
by the following grammar:

e=¢|ala|ete|ee]|e |€gd]lxe (5.1)

wherea ranges over alphabet letteispver conditions in(k, andx over tuples of variables
fromxq,..., X.

To define semantics ofRQMs we will need some additional terminology. Given a data
graphG and a set of variableX, astateis a pair consisting of a node & and an assignment
of variableso : X — D.

The semantics of 2RQMs over a data gr&ph- (V,E,p) can then be defined in terms of
function #©, which associates with each 2RQM a set of pairs of states.iffaigion of the
setHC(e), for some 2RQM, is as follows. Given states= (v,0) ands = (V,d’), the pair
(s,§) is in HC(e) if there exists a patkwv from v to v, such that the expressia@can parsav
assuming that the variables are initialized according,tmodified and compared as dictated
by e, and the resulting assignment after traversing the path is

78 Chapter 5. Additional features

Formally, given a data gragh = (V, E, p), the function#© is constructed by the following
inductive definition.

HO(¢) = {(s,9) | sis a state,

HC(a) {((v,0),(V,0)) | (vaV) € E},

HC(a") {((v,0),(v0)) | (vaV) € E},

HC(e1Uep) H®(e1) UHC(e2),

HC(e1- &) H (1) o HO(e2),

HC(eh) = HC(eUHC(e-eU...,

HO(eld) = {((%0),(V,0"))]((%0),(V,0")) € #C(e) andp(V),0" = c},
HO(Ixe) = {((%0),(V,0))]((%0),(V,0")) € #C(e) anda(x) = p(v)}.

The symbok above refers to the usual composition of binary relations:

HC(e1) o HO(€2) = {(51,%) | Iz S.1. (51, %) € HC(e1) and (s, S3) € HO(&)}.

Finally, theevaluation[e]© of an RQM eover a data graps is the following set of pairs of
nodes inG:

{(vV) |30 st.((v 1), (V,0")) € (o)},

where_L is the empty assignment.

To see that RQMs indeed extenQMs from Section 4.2 we have to show that when the
language without the inverse operator is considered, ttmaustics given here matches the one
for regular queries with memory defined in Section 4.2.

Proposition 5.1.1. Let e be any regular expression with memory ang-® — y an RQM.
Then for any data graph G it holds that V') € [€]€ if and only if (v,V) € Q(G).

Proof. Note first that any regular expression with memory is als®@m®I (for this see Gram-
mar 5.2). Proof can now be carried out by a routine inductiothe structure oé. O

It is important to note that two things can be inferred fronis:th

a) With graph semantics for 2RQMs we can avoid defining twg-gaeries using semi-
paths.

b) This also gives us graph semantics for RQMs, as the preyimposition illustrates.

Furthermore, we can also show that graph semanticR@vis can be used to define data
path languages in a way that is equivalent to Definition 4.Zar that note first that every
data pathw = dia1dy...a,_1d, can be easily transformed to a data gr&afy consisting of
n different nodes with data valuek, ..., d,, respectively, consequently connected by edges
labelled withay,...,a,_1, as illustrated in the following figure.

5.1. Languages with inverse 79

O @ 2@
v v

Figure 5.2: Data graph corresponding to the data path w

We could then say that a data pattis accepted by regular expression with memeif
and only if (v,v') € [€]®. That this is equivalent to Definition 4.2.1 follows from tleenma
below.

Lemma 5.1.2. Take any regular expression with memory e and a data path w&n Tdr any
two assignments, @’ it holds that

(ew,0) 0 < ((v,0),(V,0")) € H®(e).

Proof. This can be easily shown by a straightforward induction endinucture of expression
e O

We could thus also define the language of data paths accepteglilar expressions with
memory using this graph semantics: a data pathacceptedoy eiff (v,v) € [€]®, wherev
andV are the first and the last node @f,. This shows that the two definitions are indeed dual
when one-way languages are considered.

Next we show that even with this additional functionalite t)ame complexity of query
evaluation applies toRQMs as does to their one-way variant.

Proposition 5.1.3. The problem of deciding whether a pair of nodes belong§e}§ for a
2RQM e and a data graph G BS,Acecomplete. If we assume that e is fixed the problem
becomedNL 0OGSPACE-comlete.

Proof. Take any 2RQMe over and a data grapB. LetY =>uU{a :ac X} and letG' =
(V,E',p), whereV andp are as inG, whileE' =EU{(V,a",v) : (va,V) € E}. Note that we
can vieweas an ordinary one-way regular expression with memory tneektended alphabet.
A straightforward induction on expressions shows tvat') € [€]©, whereeis viewed as an
two-way query ovek, if and only if (v,V) € [[e]]G', whereeis now a (one-way)query over.
The desired upper bounds then follow from query evaluatigordhm in Theorem 4.1.6,
since both the alphabet and the graph grow only linearlyzie.dNote that here we use Lemma
5.1.2 that allows us to switch between graph and path secsanti O

Two-way regular queries with binding (2RQBs).

Let 2 be a finite alphabet anfk,..., X<} a set of variables. The class of two-way RQBs is
defined by the following grammar:

80 Chapter 5. Additional features

e:=¢lala |et+te]|ee|e |€gd]|ix{e} (5.2)

wherea ranges over alphabet lettexspver conditions in(i, andX over tuples of variables
fromxg, ..., X.

Graph semantics of 2RQBs is defined with respect to a valuatad variables. Thevalu-
ation [e,v]® of an 2RQBe, with respect to a valuation over a data grapt = (V,E, p) is the
set of all pairgv,V') of nodes inv defined recursively as follows:

[e,v]® = {(wv)|veV},
[a,v]® = {(wV)[(vaV)eE},
[a,v]® = {(wV)[(V,av)€E},
[e1-&,v]® = [er,v]®o e, V],

[erUex,v]® = [en,v]®U[ex, V],

[et,v]€ s the transitive closure d,v]C,

[elcv]® = {(wV)][(wV) e [eVv]®p(V),vI=c},
[Lx{e}]® = {(wV)] (V) e [evx=pv)]]°}.

Again, that for one-way languages the semantics for 2RQBEmdg the one in Section 4.3
is easily shown by induction on the structure of expression.

Proposition 5.1.4. Let e be any closed regular expression with binding ang Q—e> y an
RQB. Then for any data graph G it holds thafv') € [€]€ if and only if (v,V) € Q(G).

Just as with 2RQMs and regular expressions with memory weatssamshow that graph
semantics oRQBs can be used to define data path languages in an equivaletsveiyne for
regular expressions with binding in Section 4.3.

Lemma 5.1.5. For any regular expression with binding e, valuationand any data path w we
have that we L(e,v) if and only if (v,V') € [e,v]®*, with G, as in Figure 5.2.

Algorithm for solving the query evaluation problem foR@Bs is identical to the one for
2RQMs. Thus we obtain the following.

Proposition 5.1.6. Combined complexity of evaluating 2RQB querie® 8AcCE-complete.
Data complexity ifNLOGSPACE-complete.

Two-way regular queries with data tests PRQDs).

The class of two-way RQDs is defined by the following grammar:

e==¢|lala |eve|ee|e |e |e (5.3)

wherea ranges over labels from the alphabet

5.2. Conjunctive queries 81

Note that here we do not consider constant tests given bylifiedpconditions. It is how-
ever readily observed that these can be added without iaffeaty of the results below.

Graph semantics of 2RQDs is defined in a much simpler way hraR®Ms. Theevalua-
tion [€]© of an 2RQDe over a data grapls = (V,E, p) is the set of all pairgvi,v») of nodes
in V defined recursively as follows:

[e]® = {(wv)[veV},
[a]® = {(wV)[(waV)eE},
[a]¢ = {(w)|(V,av)€eE}
[e1-&]® = [e]®c[e]C,

[qUe]® = [e]®Ule]C

[et]® is the transitive closure di]®,

[e-]°® = {wV) [(wV) € [€Cp(v) =p(V)},
[es]® = {wV) [(wV) € [€Cp(v) #p(V)}.

As before, one can check that using this semantics restriotene-way queries yields the
same result as when applying semantics from Section 4.4 eNare have the following.

Proposition 5.1.7. Let e be any regular expression with equality and=Q — y an RQD.
Then for any data graph G it holds that V') € [€]€ if and only if (v,V) € Q(G).

Again, we can use graph semantics of RQDs to define langudgietapaths accepted
by regular expression with equaligpby asserting that a pathi is accepted b if and only if
(v,V) € [€e]®, with v,V andG,, as in Figure 5.2. That this definition is equivalent to the one
from Section 4.4 follows from the next lemma, easily shownrguction one.

Lemma 5.1.8. For any regular expression with equality e and any data pativevhave that
w e L(e) if and only if(v,V') € [e]®, with G, as in Figure 5.2.

Using the same trick of doubling the alphabet with inveramisgls and subsequently us-
ing the algorithm from Theorem 4.4.8 we can see that addimgrses has no impact on the
computational complexity of query evaluation.

Proposition 5.1.9. Combined complexity of evaluating 2RQD queries iBTaME. Data com-
plexity isSNLOGSPACE-complete.

5.2 Conjunctive queries

A standard extension of RPQs is that ¢donjunctive RPQsor CRPQs [Calvanese et al.,
2000, Deutsch and Tannen, 2001, Florescu et al., 1998].€eTdmd conjunctions of RPQs and
existential quantification over variables, in the same waganjunctive queries extend atomic
formulae of relational calculus. We now look at similar exgimns of RPQs with data.

82 Chapter 5. Additional features
Formally, they are defined as expression of the form

Angz) = A X IV (5.4)
1<i<m
wherem > 0, eachx; LN y; is a query in one of the formalisms from Chapter 4, aigla tuple
of variables among andy. A query with the head\ng) (i.e., no variables in the output) is
called aBooleanquery. To establish terminology we will talk about:

e Conjunctive regular data path queries (CRDPQs), when JaaeLh» y; is a RDPQ,

e Conjunctive regular queries with memory (CRQMSs), when eac*Lf—> yi is an RQM,
e Conjunctive regular queries with binding (CRQBS), wheri*eaci> y; is an RQB,
e Conjunctive regular queries with data tests (CRQDs), wizeig N yi is an RQD,

e Conjunctive regular queries with variables (CRQVSs), whaohe; R yi isan RQV.

We will also use the nameonjunctive data path query(CDPQ) for a query from any of
the five classes just defined.

These gueries extend their base atoms with conjunction,elisaw existential quantifica-
tion: variables that appear in the body but not in the head, {fariables irx andy but notz)
are assumed to be existentially quantified.

The semantics of a CDPQ of the form (5.4) over a data graggh= (V,E, p) is defined as
follows. Given a valuationw : U;<j<m{X.¥i} =V, we write (G,v) |= Qif (v(x),v(yi)) is in
the answer oX; L yi onG, for eachi =1,...,m. ThenQ(G) is defined as the set of all tuples
V(2) such thatG,v) = Q. If Qis Boolean, we [eQ(G) be true if(G,v) = Q for somev (that
is, as usual, the empty tuple models the Boolean constagtadnd the empty set models the
Boolean constant false).

As before, we study data and combined complexity of the gegajuation problem, i.e.
checking, for a CDP@, a data grapl@ and a tuple of node®, whetherv € Q(G) (for data
complexity the quer@ is fixed).

First, we show that for all the formalisms studied in the vas chapter, no cost is incurred
by going from a single query to a conjunctive query as far & damplexity is concerned.

Theorem 5.2.1.Data complexity of conjunctive data path queries remalhscomplete if they
are defined using RDPQs,RQMs, RQBs, RQDs, or RQVs.

Proof. Consider a query of the form (5.4) and #be the tuple of variables fromandy that is
not present irz. To check whethev € Q(G), we need to check whether there exists a valuation
V' for Z so that under that valuation each of the queries in the cotipmin (5.4) is true.

We know from the previous sections that checking whethefs v evaluates to true for
some nodes,V can be done with NL data complexity for all the formalisms timred in the

5.3. Adding variables to register automata 83

theorem. Thus, given a data gra@h= (V,E,p), we can enumerate all the tuples franf,
and for each of them check the truth of all the queries in amtjon (5.4). Since we deal with
data complexity)Z| is fixed, and thus such an enumeration can be done in logacitpace,
showing that query evaluation remains in NL. Note that the @lijorithms can be composed
here since they are independent one of another. O

For combined complexity, we have the same bounds for CRDERMs, CRQBs and
CRQVs. For CRQDs we get NP-completeness, which matchesothbined complexity of
conjunctive gueries and CRPQs.

Theorem 5.2.2. Combined complexity of conjunctive regular data path qeeriemains
PSPace-complete if they are specified using RDPQs, RQMs and RQBs. NP-complete
if they are specified using RQDs or RQVSs.

Proof. PSpace-hardness follows from the corresponding resultsRQBs, and NP-hardness
follows from NP-hardness of relational conjunctive queri€hus we show upper bounds. The
algorithm (using notations from the proof of Theorem 5.21he same in all the cases: guess
a tupleV of nodes forZ, and check whether all the queries in conjunction (5.4) are. tWe
know that for RDPQs, RQMs and RQBs the latter can be done S since PBACE is
closed under nondeterministic guesses we have tlra@&@Supper bound for combined com-
plexity. For CRQDs, an NP upper bound for the algorithm feldfrom the PTME bound
for combined complexity for RQDs. Finally, for CRQVs we wdlso guess a path between
the nodes corresponding ¥ay; (along with an associated witnessing pattern), which are by
Theorem 4.5.6 of polynomial size. We can then verify our gues? TIME, thus obtaining the
desired bound. O

All of the complexity bounds for languages considered s #@ction are summarized in
the following table.

Query answering CRDPQ CRQM CRQB CRQD CRQV

data complexity NL-complete NL-complete NL-complete NL-complete| NL-complete

combined complexity) PSPACE-complete| PSPACE-complete| PSPacecomplete| NP-complete| NP-complete

Table 5.1: Summary of complexity bounds for classes of conjunctive queries

5.3 Adding variables to register automata

In the previous chapter we proved that variable automatdanammparable in terms of ex-
pressive power with register automata and regular expmessiith binding. In particular we
showed that they can express a property that all data vaiffesfcom the last, a feature know

84 Chapter 5. Additional features

not to be expressible by register automata. On the other, lemohd variables in variable au-
tomata behave like a limited version of registers that apabke of storing a data value only
once. As the result, variable automata are not able to exmesn some simple properties
definable by regular expressions with equality.

In this section we define a general model that will encompatis kegister and variable
automata and study its query evaluation problem over grapts model is essentially a vari-
able automaton that can use the full power of registers inreesaay that an ordinary register
automaton would. Another way to look at it is as adding the frvariable and constants to
register automata. It will subsume both models, but we Swalthat it does not increase the
complexity of query evaluation beyond P&E.

Definition 5.3.1. LetX be a finite alphabet, k a natural number and C a finite set of gataes.
A k-register automaton with variablésr varRA for short) is a tuple = (Q, qo, F, 8,70, {*},C),
where:

e Q=QuwUQq, where Q,and @ are two finite disjoint sets of word states and data states;

Oo € Qq is the initial state;

e F C Qy is the set of final states;

T € DX is the initial configuration of the registers;

0 = (0w, 0q) is a pair of transition relations:

— Oy € Quw x Z x Qq is the word transition relation;

— 3w CQixGx2MxQy U Qgx{CU{x}}Qyis the data transition relation.

Note that the data transition relation has three differgpés of transitions. The first type
is of the form(qg,c,1,q) and is the same as in Definition 6.1.1. The second type chéeks i
given data value is a constants and is of the fogul, q') with d € C. Finally, the last type is
of the form(q,*,q') and we will refer to such transitions agransitions.

We now define the notion of acceptancekAegister automatori with variables accepts
a data patlw = dpapd;a . ..an_10n if there is a sequena, qp, 01,7, - - - , On, O, Of states iIMQ
with g, € F, a sequence, t),...th_1,t,_;,t, of transitions and a sequente... T, of register
assignments such that:

e Fori=1...nwe havet! = (g,a,0i11) anda = &;
e Fori =0...neacht; is a data transition and precisely one of the following holds
1. Ift; = (gi,c,1,q), thent;,di = candt;1 is obtained by storing; in registers from
I3
2. Ifti=(qg,d,q), thend; = d;

5.3. Adding variables to register automata 85

3. Ifti = (qi,*,q), thend; = d; iff t; = (qj7*7q/j)'

Register automata with variables can use standard registemata transitions, as well as
check if some data value matches a constant. Additionaflgllowing x-transitions, they can
state that some value will not be stored in the registers.e Nwt, unlike standard automata
transitions x-transitions are global in character — that is, they do nfetrrenly to the next and
the previous state in a run, but to the run as a whole.

It is apparent that register automata with variables extsstti register and variable au-
tomata in a natural way. Moreover, if we restrict the reggstey allowing them to store values
only once and restrict conditions to single equality tesly,ave get variable automata. On the
other hand if we disallow the usage of the free varialee get register automata.

In the previous Chapter we have seen several examples aéntiespexpressible by regis-
ter automata and variable automata. Next we show that witRAave can define data path
languages not expressible by either of them.

Example 5.3.2. The language of all data paths where both the first and thedasa value
differ from all other data values is defined by the followirsgRA.

a
S ROSOM O
X

Here the first three states make sure that first data value isqoal to any value before the
last. Finally thex-transition taking us to the final state makes sure that neot#alue is equal
to it. Note that this automaton depends on the fact fhansitions can reason about complete

runs of an automaton and not just adjacent transitions.

We can now define a class of graph queries based on registenaitat with variables in
the same way as we did for other data path formalisms in Chdp#e will call such queries
register queries with variables.

Definition 5.3.3. Aregister query with variables (RQVag an expression & x N y where
A4 is a register automaton with variables.

Given a data graph G, the result of the query@®) consists of pairs of nodgy, V') such
that there is a data path w from v té that belongs to [2).

Surprisingly, despite the increased expressive powerntioidel still retains the complexity
of register automata.

Theorem 5.3.4. e Combined complexity of RQVar queriePiSPACE-complete.

e Data complexity of RQVar queries L -complete.

86 Chapter 5. Additional features

Proof. To prove this we use a similar construction to the one usetfierptoof of Theorem
4.1.6. We start by showing that, given a finite set of dataesiluand ak-register automaton
with variables4, we can produce a variable automatdp that accepts precisely the same
words asq does when both use only data values frbm

Let 4 = (Q,qo,F, 9,10, {*},C) be ak-register automaton with variables aBda finite set
of data values.

We define the desired VFAp = (Q',qp,F', T, &) as follows:

o [={CUD}U{x}

e Q' =Qx D}, wherel is anew data value not B andDo =D U { L }U{to(i)|i = 1...k}

qE): (QO,TO)
o F'=F x D

For the transitions:

- If (g,a,9) € &, we add
((a.1),a(d,1))
to &, for every assignmertt
— If (g,c,1,q) € &y, we add
((0.1),d,(d, 1)
to &, for every data value € D and assignments T’ such thatr,d = c andt’ is
obtained by storingl into registers fron

— If (q,d,d’) € dq, with d a constant ifC we add

((9,1),d,(d,1))

to &, for every assignmernt
— If (q,%,q) € 84 we add
((@,1),%(dq,1))

to &, for every assignmertt

Note that our VFA4p uses no bound variables.
Next we prove that the variable automaton obtained in thistaction indeed accepts the
same class of data paths oas the original register automaton with variables does.

Claim 5.3.5. Let w be a data path whose data values come from D. TherLy4p) if and
only ifwe L(4).

5.3. Adding variables to register automata 87

Proof. Assume first thatv = dpag . . . a,_10dn, Whered, ... d, are fromD, is accepted byEp.

Since 4p is a VFA with constants and free variable only (and no boundi- va
ables), this means that there is a withessing pattesa vgbg...bn 1V, and a sequence
(9o, T0), (d; Tp), - - -, (Gn, Tn), (G, Ty) OF States indp, with (¢, T,) € F’ such that:

1. for each we have(q;,Vi,q) € &¢ and(q,bi,Gi+1) € dw,
2. 8 =byand(q,&,qi+1) € 0w, fori=0,...,n,
3. if vy =d e Cthen(q;,d,q) € &g andd; =d,

4. if vi = x andv;j # % thend; # d;.

But then this sequence of states and transitiongljptan be easily transformed into an
accepting run of2 onw (follows from the construction oflp), thus implying thatv € L(4).

To see that the reverse is true we simply transform the aogepin of 4 on w into the
matching run of4p. The witnessing pattern faw will be obtained by converting every data
value matched with in w by x itself. All the details easily follow from the definition of
acceptance and the construction. O

To complete the proof of Theorem 5.3.4 we use the same taohrag in the proof of
Theorem 4.5.7.

As input we are given a quer, specified by a register automaton with variabiesnd
a data graplG, together with two nodesandt. Let D = D(G) be the set of all data values
appearing irG.

We again view our graph as a VFA (with the initial stateand final statd;) and denote it
by 4. We can now build the product dig and 4p. Testing his automaton for nonemptiness
is the same as answering our query evaluation problem.

Note that the numbem; of states of4p is O(|4| x |D|¥), the number of bound variables
d; = 0 and the number of constardsat most|D| + | 4|.

For 4g we haven, = O(|GJ), while d; = 0 andc, = |D|.

By the construction in [Grumberg et al., 2010b] we know tlg size of the product is
O(ny-nz- _(Cli—zifcji;_dm) =0(n-ny).

Using the values above we get that the siz@(54| x |D|¥ x |G|).

Since|D| = |G| this is polynomial in|G| if the automaton is fixed and exponential if it is
part of the input (as the number of registers gets into the@mapt). Thus using the standard
on-the-fly method for testing nonemptiness we obtain theetksesult. O

Despite their high expressive power and acceptable el@tuldunds, it is highly unlikely
that regular queries with variables might be of interestrapf database practitioners due to
their added complexity. Indeed, to specify a query in thisnfalism requires a lot of care and

88 Chapter 5. Additional features

even simple queries are quite cumbersome to write. Thupjtdegod algorithmic properties

and a wide variety of queries they can express, we will notangromote RQVs as a querying

standard for data graphs (as far as path queries are codesitee a language suited for that
role should strike a fine balance between expressive poffieiercy and ease of use.

Chapter 6

The language theory gap

In Chapter 4 we developed several classes of queries fordads. As we have seen all of
these classes were based on an underlying automaton modellass of expressions defining
data paths. Therefore formalisms used to define path guesias an intrinsically language
theoretic flavour and there are many interesting questitsitathem that fall out of scope
when approached from a purely database theoretic poineef Vhdeed, register automata, for
example, were originally introduced to describe languames infinite alphabets [Kaminski
and Francez, 1994], and later extended to operate over datis\WDemri and Lazi, 2009,
Segoufin, 2006], a setting that, as we have already discluissgithpter 3, is very close to that
of data paths.

Such setting, where languages draw their letters not ool fa finite alphabet, as is the
case with NFAs or context-free grammars, but also from amitefiset of data objects, has
received a lot of attention recently due to applications riogpam verification and XML. In
particular, data word languages are commonly used to modieite state systems [Demri
and Laze, 2009, Segoufin, 2006, Bouajjani et al., 2003] and to reakmut static properties
of XML documents [Figueira, 2010b, Segoufin, 2007, Nevenl.et2804]. In these scenar-
ios questions like nonemptiness and membership naturattiyecinto play as they relate to
checking if a class of documents or programs respects soowtstl property. Furthermore,
another common language theoretic question, that of lageggoantainment and universality, is
naturally linked to program or query equivalence, an issartiqularly important when doing
optimisation.

All of this warrants a language theoretic study of data patmflisms we introduced in
Chapter 4 and that is what we do in the present chapter. Asrjastioned, here it is more
interesting to define our formalisms over data words, howeasgealready discussed, these two
approaches are equivalent. For this reason we will redellioé¢ the formalisms from Chapter
4 to specify data words instead of data paths, while stilpkeg the original terminology in
order to reduce proliferation of different names for sanassbs of expressions or automata.

89

90 Chapter 6. The language theory gap

Therefore we will still be working with e.g. regular express with memory, the only dif-
ference being that these will now specify data words and ata gaths. In what follows we
will also remove constant tests from our expressions anohaath, as these are seldom used
in language theory, although all of the results still holth#y are present. This is mainly done
for the ease of notation and to make our presentation moogspre

We begin with the study of register automata. Note that jqomestsuch as nonemptiness,
membership, universality and the important closure priggwere already considered in e.g.
[Sakamoto and Ikeda, 2000, Neven et al., 2004, Kaminski aaddez, 1994]. However, it
was observed in [Demri and Ld@zi2009] that subtle changes to the model can lead to differen
complexity bounds for some of these problems. For examlieyiag the automata to have the
same data value stored in more then one register and all@pigcit inequality comparisons
makes them more intuitive, but it also increases the contglex nonemptiness [Demri and
Lazi¢, 2009]. The model of register automata used here is eallgrdgguivalent to the one
in [Demri and Lazé, 2009], however the notation is different, so in line witte tprevious
remarks about slight changes affecting some of the contpleriunds, we will reprove all of
the results to have a self contained study.

Following this, we will see how to modify the definition of thieree classes of expressions
introduced in Chapter 4 and study their closure properties standard decision problems.
In the end we also expand the definition of variable autonrata {Grumberg et al., 2010a],
where they were used to define words over an infinite alphadé¢he setting of data words,
showing that all of the results still hold here.

Basic definitions ~ We will now shortly recall the definition of data words andrfally define
standard decision problems and closure properties thatudg & the following sections.

A data word is simply a finite string over the alphabEtx D, whereX is a finite set of
letters andD an infinite set of data values. That is, in each position a data carries a letter
from X and a data value fror®. We will denote data words b@i) (3:) wherea; € ¥ and
d € D. An example of a data word over the alphabet {a,b,c} and the seN of integers as

EEOE0)

The set of all data words over the alphaletind the set of data value®d is denoted by

data values is:

(2 x D)*. A data word language is simply a subket (Z x D)*.

Standard decision problems Some of the most important standard decision problems in for
mal language theory are membership, nonemptiness, laagaagainment and universality. In
this chapter we will examine all of these problems for eacthefformalisms we introduce and
determine whether they are decidable, and if they are, wghtakeir computational complexity.

91

Next we define the problems formally.

Let C be a class of automata, or expressions, defining languagkstafvords over some
fixed finite alphabek. The nonemptiness problem asks, given an automaton, orpmassion
over the alphabel, are there any data words in the language of this expressiantomaton.
Formally we have:

NONEMPTINESE ()

Input: An expression, or an automatghe .

Task: Decide whethet(4) # 0.

When considering data word formalisms in this chapter wé aldo examine the com-
plexity of the membership problem, that is the problem ofcgimgy, for an expression (or
an automaton) and a data word, if this word belongs to theuagg of the automaton. The
membership problem is defined as follows.

MEMBERSHIF ()

Input: An expressions, or an automatdhe ¢ and a data worgv € (X x D)*.

Task: Decide whethew € L(4).

Another problem we will consider when studying propertié$oomalisms defining data
word languages is language universality. Here we will aslgrgan expression (or an automa-
ton) over some fixed finite alphabEf whether it generates all the words frgnx D)*. The
language universality problem is defined below.

UNIVERSALITY (C)

Input: An expression, or an automatehe C overZ andD.

Task: Decide whethek () = (Z x D)*.

An important generalisation of universality is the langei@gntainment problem. Here we
simply ask, given two expressions or automata, if every detal in the language of the first
one is also contained in the language of the second one. @igecose connection of path
queries and language theoretic formalisms used to defime, heomes as a no surprise that
this problem is basically equivalent to query containment,ssue which we will address in
Chapter 10. Next we define language containment problemalitym

CONTAINMENT(C)

Input: Two expressions, or automat and.4, in C.

Task: Decide whethet (4;) C L(4y).

92 Chapter 6. The language theory gap

Closure properties Another important class of questions regarding languadi@idg for-
malisms are closure properties. Indeed, it is crucial temeine if a language defining formal-
ism is closed under certain properties to be able to buildkemmomplex languages starting from
simpler ones. Some of the most commonly studied closuregptiep are:

1. Union, which asks, given two languages definable by some formalistimeir union is
also definable.

2. Intersection asking if the intersection of two languages is definableome formalism
if the languages themselves are.

3. Complementasking if one can define the set theoretic complement ofenganguage.
4. Concatenationasking if concatenation of two definable languages is asimable.

5. Kleene star determining if the language containing arbitrary longatmns of a word
from the starting language is definable.

In this chapter we will examine closure properties of eacthefproposed formalisms for
defining data word languages. While all of these propertiesmaportant, exclusion of some
of them does not necessarily render a language unusableednevhile the class of regular
languages is known to be closed under all of the above mearttignoperties, context free
languages lack closure under intersection and completm@m{&iopcroft and Uliman, 1979],
but are still heavily used in compiler design, programmiagguages and pattern matching.
Similar behaviour will be witnessed by the languages weystndhis chapter. In particular,
none of the languages will be closed under complementati®aready discussed in Section
3.2, while some will be shown not to be closed under intersedither.

6.1 Register automata

Register automata are an analogue of NFAs for data wordsy Wowe from one state to
another by reading the appropriate letter from the finitbalgt and comparing the data value
to ones previously stored into the registers. Our versiargitter automata will use conditions
which are boolean combinations of atorsic~ comparisons of data values.

Conditions are defined in the same manner as in Section 4t th&eake of readability we
define them here again adding some additional syntactia sagease the notation. To define
conditions formally, assume that, for edch 0, we have variablesy, ..., x. Then the set of
conditions(is given by the grammar:

c = tt|ff|Xi:|X|7é|C/\C|C\/C|—|C, 1<i<k

As before, the satisfaction is defined with respect to a dataewd € D and a tuplet =
(dy,...,d) € DX as follows:

6.1. Register automata 93

e d,T | ttandd,T |~ £f;

o d,TE X iff d=d;

o d,TEX iff d£di;

e d,TEciACIff d,T=cpandd, T = ¢, (and likewise forc; V ¢y);

e d,TE—ciffdTFcC
In what follows,[K] is a shorthand fof1,..., k}.

Definition 6.1.1 (Register data word automata)et > be a finite alphabet and k a natural
number. A kregister data word automatoor RA for short, is a tupleZ = (Q,qo,F, T), where:

e Qis afinite set of states;
e (p € Q is the initial state;
e F C Qisthe set of final states;

¢ T is a finite set of transitions of the forfn,a,c) — (I,q), where qq are states, ais a
label, I C [k], and c is a condition ir’k.

Intuitively the automaton traverses a data word from leftighit, starting ingo, with all
registers empty. If it read§)) in stateq with register configuratiom, it may apply a transition
(g9,a,c) — (I,d) if d,T =c; it then enters statg’ and changes contents of registensithi €I,
to d. We will represent register data word automata transitgraghically as follows:

C]| x

A typical transition in a data word automaton.

Here we assume that the value is compared to the one stored irdister corresponding
to X7 and later on stored into the one correspondingzto

To define acceptance formally we first define a configuratiom kfregister data word
automaton4 on data wordv = (&) ... (§") as a triple(q, j, 1), whereq is the current state of
A4, j is the current position of the symbol im that 4 reads and is the current state of the
registers. We use the symhtlto indicate that a register is unassigned; that iis, ak-tuple
over D, = DU{L}. The initial configuration igqgp,1,7o), whereto = (L,..., 1), and any
configuration(q, j,t) with g € F is a final configuration.

From a configuratioriq, j, T) we can move to a configuratida/, j + 1,7') if:

¢ (g,aj,c) — (1,d) is a transition in4,
e dj,T=cand

e T’ is obtained front by replacing data values in registers frory d;.

94 Chapter 6. The language theory gap

We say that4 acceptsaw if there is a sequence of configurations@fon w that leads4
from the initial to a final configuration while reading

RemarkGiven ak-register data word automatof and a tupler € DK, we can turn4 into
an automatorA (1) defined just as? but starting witht as the register configuration. Such
an extension does not affect the class of accepted langubgiewill be useful in inductive
constructions when automata need not start with all ragisteassigned.

Example 6.1.2.Next we present two examples of register automata and layeguthey define.

e The data word language where all data values are differeminfthe first (and the label
is @) is defined by the following register automaton:

alx
start —

e The language of data words having two equal data values (dmetenthe label is g is
given by the following automaton:

e AN e
start—(Q 4 []

Language theoretic properties

In this section we recall the basic language theoretic ptigseof register data word automata.
Most of these results follow from [Kaminski and Francez, 49%owever, since some subtle
differences were introduced to the model we will reprove trobthe results to make the presen-
tation self contained. Some changes introduced here wi# ha impact on the nonemptiness
problem, as already noted in [Sakamoto and Ikeda, 2000, Derdr_azE, 2009], however, all
of the other results remain intact. In order to prove coniplexesults about membership and
nonemptiness we will require some general properties dstegautomata that we examine
next. At the end we will also recall closure properties of theess of languages defined by
register automata.

General properties of register automata A useful property of register automata that will be
needed in what follows is that, intuitively, such automada only keep track of as many data
values as can be stored in their registers. Formally, we: have

6.1. Register automata 95

Lemma6.1.3.Let 4 be a k-register data word automaton.Afrecognizes some word of length
n, then it recognizes a word of length n that uses at mast klifferent data values.

Proof. We first set some notation. We will say that tkgegister assignmentsandT are of
the same equality type if we haw¢i) = t(j) if and only if T(i) = T(j), for all i, j < k. Note
that this also implies that(i) # 1(j) if and only if T(i) # T(}j).

We will prove a slightly more general claim, allowing our emtata to start with an
nonempty assignment of the registers. %Htg) = (Q,qo,F,T) be ak-register data word
automaton, starting with the initial assignmeptin the registers and/ = (3!) ... (') a word
that it accepts. This means that there is a sequence of sta®gs...,qn, with g, € F and
a sequence of register assignmenysty,...,Tn such that(g-1,a,¢) — (li,q) € T, that
Ti_1,d; = ¢ andt; is obtained front;_1by replacing all registers fromy with d;, fori =1...n.

Now letS= {1o(i) : 1 <i <k} —{L}. ThatisScontains all the data values from the initial
assignment, except the one denoting that the register isyfemp

Let Sbe any set of data values such tigjt= k+ 1 andSC S

We prove by induction om < n that we can define a data wowg, of lengthi, such that
W = (E) (3*:) whereay, ... are fromw anddi, ...,d' are fromS. We then show that for
thisw; there is a sequence of assignmergts’, ... Ty such that each] is of the same equality
type astj, wherej <iand it holds that;_1,d; |~ ¢j, for all j <i and eaclt} is obtained from
r’jfl by replacing all the data values froimby d;. Note that this actually means thatgoes
through the same sequence of states while readlirzg it did while readingv. But thenw;, is
the desired word from the statement of the lemma.

To prove this we first assume that 1. We setr; = 1o and selectl € Ssuch thatro,d = ¢;
(note that this is possible since we hdw¢ 1 values at disposal and test only for equality or
inequality with a fixed set ok elements) and such thet andt are of the same equality type,
whereTt] is obtained from; by replacing all data values frofa by d. Again, this is possible
since the originab; (from w) could have either been different from all data valueggror
equal to some of them, a choice we can simulate with elememts3. We now setv; = (%).

Assume now that the claim holds fox n. We prove the claim for+ 1. By the induction
hypothesis we know that there exists a data ware- (gi) . (3.) with data values fronsand
a sequence of assignments each one obtained from the @ édyidkie condition dictated by the
original accepting run that allowd to go through the stateg,q;,...,q. We now pickd € S
such thatr{,d |= ¢y 1 andt], ;, obtained front; by replacing all data values from 1 by d, has
the same equality type a@s.1. Note that this is possible sinagandt] have the same equality
type by the induction hypothesis and we have enough dateavatour disposal (again, we
have to pickd so that it is in the same relation to data values f®sd; 1 from wwas to data
values fron;, but this is possible since each assignment can remembersik iaiata values).
Now we simply definev; 1 =w; - (a*'gl). Note that thisw;; has all the desired properties and

96 Chapter 6. The language theory gap

can takeq from qp t0 g 1.
This concludes the proof of the lemma. O

We now show that we can view register automata as NFAs whericted only to a finite
set of data values. Note that this construction follows thmes idea as when done for data
paths in Section 4.1. For the sake of completeness, and tinasotation differs in the two
cases, we also include it here.

Let 4 = (Q,qo,F, T) be ak-register data word automatadn,a finite set of data values, and
D, =DU{L}. We transform4 into an NFA4p = (Q',qp, F’,8) over the alphabeX x D as
follows:

o Q@ =QxDk;
4 q6: (q07J~k);
o F/=F xDX;

e Whenever we have a transitigg,a,c) — (I,q') in T, we add the transition

a
((a,0), <d> ,(d. 1))
to T if d,T = candt’ is obtained front by puttingd in positions from the sdt

It is straightforward to check thad accepts a data word ovErx D if and only if 4p does.
That is we obtain the following.

Lemma 6.1.4. Let D be a finite set of data values arila register automaton oveX. Then
there exists a finite state automatdiy over the alphabek x D such that we L(A4p) iff w €
L(4), for every w with data values from D. Moreove, is of size exponential in the size of
A and polynomial in the size of D.

Decision problems Membership, nonemptiness and universality are some of th&t im-

portant decision problems related to formal languages. SMeracall the exact complexity of

these problems for register automata. Since the model sftee@utomata we use here differs

slightly from the one in previous work, we sketch how thesilts carry over to our model.
Recall that nonemptiness problem for an automaids checking whethel (2) # 0.

Fact 6.1.5([Demri and Lazt, 2009]) The nonemptiness problem for register data word au-
tomata isP SPACE-complete.

The lower bound will follow from Theorem 6.2.3 and Propasiti6.2.5. For the upper
bound we convert ouk-register automatort into an NFA 4p over the alphabef x D (as in
the Lemma 6.1.4), whefl@ = {0, ... ,k+1}. We know that4p recognizes all data words from

6.1. Register automata 97

L(4) using only data values frod. By Lemma 6.1.3 and invariance under automorphisms
(see Fact 6.1.9), we know that checkiAgior nonemptiness is equivalent to checkidg for
nonemptiness. Using on-the-fly construction we get thee@siesult (note thaflp can not be
created before checking it for nonemptiness).

Remark 5. It is important to note that subtle differences in the debnitof the automaton
can lead to slightly better complexity bounds. Indeed, tbdehused in [Sakamoto and lkeda,
2000] allows each value to be stored in only one register ampldses some further restrictions,
thus bringing the complexity of nonemptiness problem daadR-complete. Here we have
opted for a more intuitive approach, that has now become camyrused [Demri and Lazi€,
2009, Segoufin, 2006].

The membership problem asks, for an automadicend a wordv, whetherw € L(2).

Fact 6.1.6([Sakamoto and Ikeda, 2000]Ihe membership problem for register data word
automata iSfNP-complete.

The lower bound will follow from Theorem 6.2.3 and Propasiti6.2.6. For the upper
bound it simply suffices to guess an accepting run of the aatom Since every transition of
the automaton processes one symbol of our data word, we eely to guesgv| states of the
automaton, wherw is the input data word. It is straightforward to check thatoaa simulate
the automaton in PIME.

On the other hand, universality and containment problemsiadecidable.

Fact 6.1.7([Kaminski and Francez, 1994]Both universality and language containment prob-
lems for register data word automata are undecidable.

It turns out that when no inequality comparisons are alloimetie conditions the problem
becomes decidable.

Fact 6.1.8([Tal, 1999]) Containment and universality problems are decidable fgister
automata that compare data values for equality only.

Closure properties Since register automata closely resemble classical fitdite automata,
it is not surprising that some (although not all) constiuasi valid for NFAs can be carried
over to register automata. We now recall results about oboproperties of register automata
[Kaminski and Francez, 1994]. Although our notion of auttaria slightly different than the
one used there, all constructions from [Kaminski and Frant®94] can be easily modified to
work in the setting proposed here.

Fact 6.1.9([Kaminski and Francez, 1994]) 1. The set of languages recognized by register
automata is closed under union, intersection, concatenagind Kleene star.

98 Chapter 6. The language theory gap

2. Languages recognized by register automata are not cloaddr complement.

3. Languages recognized by register automata are closedruauttomorphisms: that is, if
f: D — D is an automorphism and w is accepted fay then the data word (fv) in
which every data value d is replaced bydj is also accepted byi.

Closure under union and Kleene star is apparent immedialledysee that the automata
are closed under intersection the product constructiorsésl.u The usual powerset construc-
tion, however, does not yield an automaton defining the cempht of a given language as
demonstrated in [Kaminski and Francez, 1994].

6.2 Regular expressions with memory

In order to develop an expression analogue for register ghttaautomata in Section 4.2 we
introduced regular expressions with memory. These exprgssased on the idea of storing
data values in variables were defined to work over data phitase we show that they can also
be used to specify data word languages. In fact, we will sgeusing the idea of storing data
values in variables (and comparing them using conditiong@sgrise to a class of expressions
capturing register data word automata in the same way asstie tegular expressions cap-
ture regular languages. To do this notice that registernaatia can be pictured as finite state
automata whose transitions between states have labele ébrtm ajc|||, wherel is a set of
registers. Such an automaton can move from one state toeanatimg an arrova/c||| if the
letter it sees i, and the data value (together with the current registegassnt) satisfies the
conditionc. It then proceeds to the next state and updates the registemsith the current
data value. This suggests that the basic building blockedoexpressions will be expressions
of the formajc]/|. Note that this is in a way analogous to how ordinary regutaressions are
defined based on the fact that NFA transitions have the &laeld move to the next state if this
letter can be matched in the word during a run. Similarly athéncase of NFAs and regular
expressions, we will define regular expressions with menstagting from register automata
edge labels and closing them under union, concatenatioiKlzethe star.

Definition 6.2.1 (Expressions with memory)Let X be a finite alphabet and;x .., xx a finite
set of variables. Regular expressions with memory, or REMHort, overX[xs,..., x| are
defined inductively as follows:

e £ and0 are expressions;
e ac|/l is an expression; here @ Z, c is a condition in(k, and 1 C {x1,...,%};

e If e, are expressions, then so areee, € - €, and €.

6.2. Regular expressions with memory 99

For convenience we will write just if | = 0 and the conditiort = tt and similarly when
only one of them can be ignored. Also) i {x}, we writea[c]|x, oralxwhenc= tt, instead
of ajc]/I.

To define the semantics, we first define what it means for areegjmme over 2 |xs, ... Xy,

a data wordv and a tuples € Q)E to infer another tuple’ € DK, viewed as partial assignment
of values to variables. We do this inductively en

e (e,w,0)F 0 iff w=gando’ =o.

(alc]il,w,0) - o’ iff w= (§) ando,d |= candd’ is obtained frono by assigningd to
eachx e l.

(e1-e,w,0) - iff w=w;-w, and there exists a valuatiaf such thate;,w;,0) - ¢”
and(ey,wp,0") -0’

e (e1+e,w,0) o iff (e;,w,0) 0 or(e,w0) 0.

(e*,w,0) - o’ iff

1. w=¢gando =0, or

2. w=w;-W, and there exists a valuatioo” such that(ew;,0) - ¢” and
(e*,wp,0") -0’

We say that a regular expressieimducesa tuplec € ’Df on a data woravif (e,w, LX) o.
We then defind_(e), the language oé, as the set of all data words on whielinduces some
tuple o. A regular expression with memoeyis well-formedif every variable is bound before
being used in a condition. From now on we will assume that &l expressions are well-
formed.

Example 6.2.2. We now give a few examples of data word languages definablegojar
expressions with memory.

1. The expressiofa/x) - (b[x”])* defines the language of data words where word part reads
ab* and such that the first data value is different from all othdtdinds while reading
the first a, and then it proceeds checking that the letter ind@ndition X is satisfied,
which is expressed by |; the expression is then put in the scope o indicate that
the number of such values is arbitrary.

2. The language of data words in which two data values are #meesis given by the ex-
pressionz*- (Z]x)-Z*- (Z[x~]) - ¥, whereX is the shorthand for g+ ...+ &, whenever
> ={a,...,a} andZ|x is a shorthand for g|x+...+a]x. It says: at some point,
bind x, and then check that after one or more letters, we hawsame data value.

100 Chapter 6. The language theory gap

3. The language of data words in which the last two data vaheesr elsewhere in the word
with label a is defined b¥* - (a|x) - Z* - (aly) - Z* - (Z[x7] + Z[y7]) - (Z[XT] + Z[y7]).

Equivalence with register automata

In this section we prove that every language recognized gigter automata can also be de-
scribed by a regular expression with memory and vice versdadt, we show a tighter con-
nection, from which the equivalence will follow. Lé{e o,0’) be the set of all data words
such thate,w,0) - d’, and letL(4,0,0") be the set of all data wordg such thatv is accepted
by 4(0), and there exists an accepting run that ends with a registéigarationa’.

Theorem 6.2.3. 1. For every regular expression with memory e okg4q, ..., Xy there ex-
ists (and can be constructed in logarithmic space) a k-tegidata word automatorile
such that (e, 0,0") = L(Ze,0,0") for everyo, o’ € DX.

2. For every k-register data word automatch there exists (and can be constructed
in exponential time) a regular expression with memogy @ver x,...,x such that
L(eq,0,0') = L(4,0,0") for everyo,o’ € DX.

The structure of the proof follows of course the standard Mégular expressions equiv-
alence, cf. [Sipser, 1997], with all the necessary adjusts® handle transitions induced by

acll.

Proof. We prove the first item by induction on the structureeofin what follows we will
identify the vectoik of variables with the set of registers (i.e. positions) iresponds to. For
example the vectofxs, xs) will correspond to the sét= {3,5} of registers.

As before, if(e,w,0) - ¢’, we will write w € L(e,0,0") and similarly if Ze = (Q, qo, F,d)
started witho acceptsv with @’ in the registers, we writes € L(4e,0,0").

o If e=0,then. = (Q,do,F, T), whereQ = {qo} is the set of statesy is the initial state,
F = 0is the set of final states affd= 0.

o If e=¢,thend. = (Q,qo,F,T), whereQ = {qo} is the set of statesy is the initial state,
F = {qo} the set of final states arid= 0.

o If e=alc]ll, then4. = (Q,qo,F,,T), whereQ = {go, 1} is the set of stategy is the
initial state,F = {g;} the set of final states arid= {(qo,a,¢) — (1,q1)}.

e If e=e; + e then by the inductive hypothesis we already have autonfta—=
(Q1,51,F1,T1) and 4e, = (Q2, %2, F2, T2) with the desired property. The registers.@af
will be the union of registers ofl;, and 4.,. To obtain the desired automaton we set

4o = (Q,qo,F, T), where:

6.2. Regular expressions with memory 101

- Q=0Q1UQ2U{qo}, whereqo is a new state,

-F=RUR,

— To T we add all transitions fron#le, and 4., and in addition, for every transition
(g,a,c) = (1,q) € TLUT,, whereq=s;, orq= s, we add a transitioliqo, a,c) —
(I,d).

e If e=e;-e then by the inductive hypothesis we already have autonfiia—
(Q1,51,F1,T1) and 4, = (Q2,%,F2, T2) with the desired property. The registers of
Ae will be the union of registers ofl;; and 4,,. To obtain the desired automaton
4o = (Q,qo,F, T) we distinguish two cases:

1. If s; ¢ Fy we set

- Q=Q1UQy,
-F=F,
—Qo=%1

— To T we add all transitions fronfle, and 4., and in addition, for every transi-

tion (g,a,c) — (I,q') € T1, whereq € F1, we add a transitiolq, a,c) — (I,).
2. If 51 € Fy we set
- Q=Q1UQy,
F_l PR ifs ¢ R
FUR fgef

— Q=%

— To T we add all transitions frorn#le, and 4., and in addition, for every tran-
sition (sp,a,¢) — (1,q) € T, we add a transitiorig,a,c) — (I,q'), for each

qe F.

e If e= ¢ then by the inductive hypothesis we already have the automdt =
(Q1,s1,F1,T1) with the desired property. The registers.@f will be equal to the reg-
isters of4,, . To obtain the desired automaton we ggt= (Q,qo,F, T), where:

- Q=0Q1U{qo}, whereqp is a new state,

- F=FRU{o},

— ToT we add all transitions fromilg, and in addition, for every transitiofs;, a,c) —
(I,d) € T1, we add a transitiorigo,a,c) — (I,q) to T. Now for every transition
(g,a,c) — (I,q) € T (note that we now have transitions fragg as well), where

q € F, we add(g,a,c) — (1,qo) to T

In all cases it is straightforward to check that the consé@i@utomaton has the desired
property. The DloGspacebound follows immediately from the construction.

102 Chapter 6. The language theory gap

Next we move onto the second claim of the theorem.

To prove this we will have to introduce generalized registgiomata (GRA for short) over
data words. The difference from usual register automathbeilthat we allow arrows to be
labelled by arbitrary regular expressions over data wdrds.our arrows are now hot labelled
only by ac|]I, but by any regular expression over data words. The transi@lation is again
calledd and is defined ad C Q x X[xg,...,X| x Q. In addition to that we also specify that
we have a single initial state with no incoming arrows andaglsifinal state with no outgoing
arrows. Note that we also allogvtransitions.

The only difference is how we define acceptance.

A GRA A4 accepts data wordr if w=wy -w;-...-wg(where eachw; is a data word) and
there exists a sequencg= (qo, 1,70),. . .,Ck = (Ok, K+ 1,Tx) of configurations of2 onw such
that:

1. ¢pis initial,
2. ccisfinal,

3. for eachi we have(e,w;,Tj) F Tiza1(i.e. W € L(e,Ti,Tiy+1)), for someeg such that
(d,&,0+1) is in the transition relation foA.

We can now prove the equivalence of register automata andiaregxpressions over data
words by mimicking the construction used to prove equivedebetween ordinary finite state
automata and regular expressions (over strings). Sincesa/¢he same construction we will
get an exponential blow-up, just like for finite state auttana

Just as in the finite state case we first comv@ihto a GRA by adding a new initial state
(connected to the old initial state by erarrow) and a new final state (connected to the old end
states by incoming-arrows). We also assume that this automaton has only aesimgiw be-
tween every two states (we achieve this by replacing maltéptows by union of expressions).
It is clear that this GRA recognizes the same language ofwlatds as4.

Next we show how to convert this automaton into an equivadepression. We will use
the following recursive procedure which rips out one stata time from the automaton and
stops when we end with only two states (note that this praeeduaken from [Sipser, 1997]).

CONVERT(G)

1. Letn be the number of states 6f

6.2. Regular expressions with memory 103

2. If n= 2 thenG contains only a start state and an end state with a single’aoonecting
them. This arrow has an expressi@nvritten on it. ReturrR.

3. If n> 2 select any statep, different fromgstarr anddeng and modifyG in the following
manner to obtails’ with one less state. The new set of state®'is- Q — {¢ip } and for
anyq € Q — {Gacceptt and anyg; € Q' — {Gstart} We defined' (i, qj) = (Ry)(Rz)* (Rs) +
R4, whereRy = 8(qi, Grip), Re = &(Ckip, Orip), Rs = &(Qrip,q;) and Ry = 8(q},q;). The
initial and final state remain the same.

4. Return CONVERT(G).

We now prove that CONVERT(G) ard recognize the same language of data words. We
do so by induction on the numbarof states of our GRAG. If n= 2 thenG has only a single
arrow from initial to final state and by definition of acceptarfor GRA the expression on this
arrow recognizes the same languag&as

Assume now that the claim is true for all automatons with 1 states. Lefs be an au-
tomaton withn states. We prove th& is equivalent to automatd® obtained in the step 3 of
our CONVERT algorithm. Note that this completes the indurtti

To see this assume first thate L(G,0,0’), i.e. G with initial assignment has an ac-
cepting run onw ending witha’ in the registers. This means that there exists a sequence of
configurationspy = (qo, 1, 7o), - . . , &k = (O, K, Tk) such thatv = wiws ... wi, where eachy; is a
data word (with possibly more than one symbog)= 0,1« = ¢’ and(d(qi_1,Gi), Wi, Ti—1) - Ti,
fori=1,...,k. (Here we used the assumption that we only have a single dretween any
two states).

If none of the states in this run agg,, then it's also an accepting run @, sow &
L(G,0,0'), since all the arrows present here are als@'in

If orip does appear we have the following in our run

G = (Gi,i,Ti),Crip = (Grip,1 + L, Tix1),- -+, Crip = (Grip,] — 1, Tj—1),C; = (Qj, |, Tj)-

If we show how to unfold this to a run i&’ we are done (if this appears more than once
we apply the same procedure).

Since this is the case we know (by the definition of acceptinm) rthat
(Re,Wiy1,Ti) F Tiga, (R, Wit 2, Tiva) F Tig2, (Ro, Wi, Tig2) F Tiga, ..., (Ro,Wj_1,Tj—2) - Tj_1
and (Rs,w;j,Tj_1) I Tj, whereRy = &(0}, ip), R2 = 8(Grip, Grip), Rz = 8(Ckip,dj). Note that
this simply means that(R1)(R2)*(Rs), WiWit1...Wj,0) F ¢/, so G’ can jump fromgc; to c;
using only one transition.

Conversely, suppose thaetc L(G',0,0’). This means that there is a computationGSf
starting witho and ending witho” as register assignments. We know that each arro®'in
from ¢ to g; goes either directly (in which case it is alreadyGi or throughgyip (in which

104 Chapter 6. The language theory gap

case we use the definition of acceptance by regular exprssgicunravel this word into part
recognized byG). In either case we get an accepting rurGodn w.

To see that this gives the desired result observe that welwagsconvert register automa-
ton into an equivalent GRA and use CONVERT to obtain a regexg@ression with memory
recognizing the same language. O

SinceL (e) = Uy L(e, L*,0) andL(4) = Uy L(4, LK, 6), we obtain:

Corollary 6.2.4. The classes of languages of data words definable by k-reglata word
automata, and by regular expressions with memory &y, ..., x| are the same.

Properties of regular expressions with memory

Closure properties Since Corollary 6.2.4 states that regular expressions mvémory and
register automata are equivalent, using Fact 6.1.9 we inatedgl obtain that languages defined
by regular expressions with memory are closed under unigarsection, concatenation and
Kleene star, but areot closed under complement.

Decision problems ~ We start with the nonemptiness problem, i.e., checking ndrét(e) +#
0. Since going from expressions to automata is polynomiageten P $ACE upper bound (see
Fact 6.1.5). Here we also show a matching lower bound.

Proposition 6.2.5. The nonemptiness problem for regular expressions with meisiB SPACE-
complete.

Proof. We prove P8acehardness by doing a reduction from regular automata neacni
sality. This problem requires us to determine, given a fisigte automatord, whether

L(A) # Z*.
Assume we are given a regular automate- (Q,%,9,q;,F), whereQ={qs,...,q,} and
F = {qi1> e 7qik}-

Since we are trying to demonstrate nonuniversality of tieraaton4 we simulate reach-
ability checking in the powerset automaton far To do so we designate two distinct data
values,t and f, and code each state of the powerset automaton ashbénsequence of/ f
values, where théh bit of the sequence is settdf the stateq is included in our state ofl.
Since we are checking reachability we will need only to retbenthe current and the next
state of4. In what follows we will code those two states using varialsie. . ., s, andty, . .., t,
and refer to them as the current state tape and the next apate ®ur expressioawill code
data words that describe successful rungidfy demonstrating how one can move from one
state of this automaton to another (as witnessed by theescodcurrent state tape and next
state tape), starting with the initial and ending in a finatest

6.2. Regular expressions with memory 105

We will define several expressions and explain their roleviliaise two sets of variables,
s throughs, andty, ... ,t, to denote the current state tape and the next state tapef thkse
variables will only contain two values,and f, which are bound in the beginning.

The first expression we need is:

nit 1= (alt) - (@t*1L6) - (alt~lusy) - (@l F14se) .. (alf = Tisn).

This expression codes two different values and f and initializes current state tape to
contain encoding of initial state (the one where only théahstate from4 can be reached).
Thatis, a data word is in the language of this expressiordfaanty if it starts with two different
data values and continues wittdata values that form a sequence iri,M®here 1 represents
the value assigned taand 0 the one assigned fo

end:=a[f~ Ag/]-a[f~ As;]---a[f~ As |, whereF = {q;,,...,q}.

This expression is used to check that we have reached a staterntaining any final state
from the original automaton. That is, a data word i&{and) if and only if it consists ok data
values, all equal td and where value stored &) also equald, for j =1...k.

Next we define expressions that will reflect updating of the state tape according to the
transition function of4. Assume thad(q;,b) = {qj,,...,q; }. We define

Us(qi.b) -= ((a[t: AS])- (a[t:]uh) e (a[t:]uh)) +a[f AsT]

Also, if 8(qj,b) = 0 we simply putug 1) = €.

This expression will be used to update the next state taperttipgvtrue to corresponding
variables if the statej is tagged witht on the current state tape (and thus contained in the
current state ofd). If it is false we skip the update.

Since we have to define update according to all transitiam #ll the states corresponding
to chosen letter we get:

update :=\/ /\ Usqp)-
bezgeQ

This simply states that we non deterministically pick th&trsymbol of the word we are
guessing and move to the next state accordingly.

We still have to ensure that the tapes are copied at the biagiamd end of each step, so
we define:

step:= ((a[f7]it2)...(a[f 7]itn)) -update - ((alty]dst)... (alty]dsn)).

This simply initializes the next state tape at the beginmihgach step, proceeds with the
update and copies the next state tape to the current state tap
Finally we have
e:=init-(step)”-end.

106 Chapter 6. The language theory gap

We claim that forL(e) # 0 if and only if L(2) # Z*.

Assume first thal.(2) # Z*. This means that there is a path from the initial to the firatiest
in the powerset automaton fdt. That is, there is a word from X* not in the language ofl.
This path can in turn be described by pairs of assignmentloésg/ f to the current state tape
and the next state tape, where each transition is witnesséaebcorresponding letter of the
alphabet. But then the word that belongd.fe) is the one that first initializes the stable tape
(i.e. the variables,,...,s,) to initial state of the powerset automaton, then runs traates
of the tape according tev and finally ends in a state where all variable correspondingnt
states of4 are tagged .

Conversely, each word frosito t in L(e) corresponds to a run of the powerset automaton
for 4. That is, the part of word correspondingitoi t sets the initial state. Then the part of
this word that corresponds #b ep* corresponds to updating our tapes in a way that properly
codes one step of powerset automaton. Finellg,denotes that we have reached a state where
all end states ofl have been tagged by thus, an accepting state far. O

Next we move to the membership problem, i.e., checking verete L(e). Again, since
e can be translated efficiently into an equivalent automadgnFact 6.1.6 gives an NP upper
bound. We can prove a matching lower bound as well:

Proposition 6.2.6. The membership problem for regular expressions with merisiyP-
complete.

Proof. For the lower bound we do a reduction from 3-SAT.

Let¢g = (arvVbiver) A(aVbave)...A(ax Vb Vck), be an arbitrary 3-CNF formula.
We will construct a data word and a regular expression with memayboth of length linear
in the length ofp, such that is satisfiable if and only ifv € L(e).

Let X1,Xo,...,X, be all the variables occurring ip. We definew as the following data

= (EE) (@) - (@)@

whered, = 1, if & = X, for somej € {1,...n} and 0, ifa; = Xj and similarly fordy,, d; (note

word:

that everya;, b, ¢ is of the formx;, orXj, so this is well defined).

Also note that we are usirgy, b, ¢; both for literals inp and for letters of our finite alphabet,
but this should not arise any confusion. The idea behinddditia word is that with the first part
that corresponds to the variables, i.e. witf) (?))”, we guess a satisfying assignment and the
next part corresponds to each conjunciand its data value is set such that if we stop at any
point for comparison we get a true literal in this conjunct.

6.3. Regular expressions with binding 107

We now definee as the following regular expression with memory:

e= (ajx;+ahlx)-b*- (alx2 +ablxy) -b*- (alx3 +ablxg)- -
b* - (alxn+ablx,)-b* - clausg - clause.. . clause,

where each claugeorresponds to thieth conjunct ofp in the following manner.

If ith conjunct uses variableg, , x;,, Xj,(possibly with repetitions), then
clause = a;[xj:l] -bi-¢ + g -bi[>q_2] -G+ - b -ci[xj:3].

We now prove tha is satisfiable if and only iv € L(e).

Assume first tha is satisfiable. Then there’s a way to assign a value to gasich that
for every conjunct irp at least one literal is true. This means that we can travlesérst part
of w to chose the corresponding values for variables bounded kow with this choice we
can make one of the literals in each conjunct true, so we camiise every clauseasing one
of the tree possibilities.

Assume now thatv € L(e). This means that after choosing the data values for vagable
(and thus a valuation fap, since all data values are either 0 or 1), we are able to savbe
second part ofv using these values. This means that for every clatiieze is a letter after
which the data value is the same as the one bounded to thesponding variable. Since
data values in the second partwtorrespond to literal in the corresponding conjuncdb
evaluate to 1, we know that this valuation satisfies our fdanpu O

Finally, using Theorem 6.2.3 and Fact 6.1.8 we also get th@afimg result about univer-
sality and containment.

Corollary 6.2.7. Universality and containment problems are undecidablerégular expres-
sions with memory.

6.3 Regular expressions with binding

Here we redefine regular expressions with binding to work alaa words instead of data
paths. As already mentioned in Section 4.3, expressiorts iniding were originally devel-
oped as a graph querying formalism that restricts the usaridibles in regular expressions
with memory by imposing proper scoping rules. The idea hete use variables to store data
values and then compare them using conditions. The stofiagvalue, however, will bind it
only to the scope of the variable used, unlike in regular esgipns with memory.

Conditions are defined in the same manner as in Section 6.2 videdefine regular ex-
pressions with binding.

108 Chapter 6. The language theory gap

Definition 6.3.1. Let Z be a finite alphabet andlx, ...,x} a finite set of variablesRegular
expressions with bindinREWB) ove& [, ..., X4 are defined inductively as follows:

r:==¢ | alal]| r+r | rr | | alg{r} (6.1)
where ac X and c is a condition inck.

A variablex; is bound if it occurs in the scope of somg operator and free otherwise.
More precisely, free variables of an expression are definddctively: € anda have no free
variables, ing[c| all variables occurring i are free, irr1 +r, andry - r2 the free variables are
those ofr; andry, the free variables af* are those of, and the free variables af]y, .{r} are
those ofr except. We will write r(xy,...,x) if x,...,x are the free variables in

A valuation on the variables, ..., X is a partial functiorv : {xs, ..., X} — D. We denote
by F(xa,...,%) the set of all valuations oRy,...,x. For a valuatiorv, we writev[x <« d]
to denote the valuation’ obtained by fixingv'(x;) = d andVv’(x) = v(x) for all otherx # ;.
Likewise, we writev[x «— d] for a simultaneous substitution of values fros= (dy,...,d) for
variablesx = (xg,...,%). Also notationv(X) = d means thav(x;) = d; for all i < 1.

Semantics Letr(X) be an REWB ove&|xy,...,X|. A valuationv € F(xg,...,X) is com-
patible withr, if v(X) is defined.

A regular expression(X) over Z[xy,...,x] and a valuatiorv € ¥ (xy,...,X) compatible
with r define a languagk(r,v) of data words as follows.

e If r=aandac 3, thenL(r,v) = {(3) |d e N}.

e If r =alc], thenL(r,v) = {(§) | d,v = c}.

o If r =ri+rp, thenL(r,v) = L(ry,v)UL(rz,v).

If r =rq-rp, thenL(r,v) = L(r1,v)-L(rz,v).

If r =rj, thenL(r,v) =L(rq,v)*.

If r =aly {r1}, thenL(r,v) = | J {(:) } L(rg,v[x < d)).

deD

A REWB r defines a language of data words as follows.
L(r) = U L(r,v).
v compatible withr
In particular, ifr is without free variables, theh(r) = L(r,0). We will call such REWBs

closed

Example 6.3.2.We list several examples of languages expressible withxqressions. In all
cases below we have a singleton alphabet {a}.

6.3. Regular expressions with binding 109

e The language that consists of data words where the data valtiee first position is
different from the others is given by:|a.{(a[x"])*}.

e The language that consists of data words where the data satuthe first and the last
position are the same is given by:|a.{a" - a|x~|}.

e The language that consists of data words where there are tgdipns with the same
data value: 4-ay.{a*-a]x"]}-a".

Note that in REWBs in the above example the conditions arg siemple: they are either
x= or x*. We will call such expressiorsimpleREWBSs.

We shall also considgpositive REWBs where negation and inequality are disallowed in
conditions. That is, all the conditionsare constructed using the following syntag: :=
tt | X%~ | cAc|cve, where 1<i <k

Closure properties and connection with register automata

As mentioned before, regular expressions with memory haimidar syntax but rather differ-
ent semantics than REWBs. They are built using, concatenation, union and Kleene star.
That is, no binding is introduced with; rather it directly matches the operation of putting
a value in a register. In contrast, REWBSs use proper bindifigariables; expressioa |y ap-
pears only in the context |y .{r} where it bindsx inside the expressiononly. Theorem 6.2.3
states that expressions with memory and register autormatama and the same in terms of ex-
pressive power. Here we show that REWBS, on the other haadti@gctly weaker. Therefore,
proper binding of variables comes with a cost — albeit smailterms of expressiveness.

Theorem 6.3.3. The class of languages defined by REWBSs is strictly contaimta class of
languages accepted by register automata.

That the class of languages defined by REWBSs is containeckicléss of languages de-
fined by register automata can be proved by using a similarcinge construction as in Theo-
rem 6.2.3.

To show that the containment is strict we need to examineusdoproperties of REWB
languages.

Closure properties It follows from the definition that regular expressions wiitinding are
closed under union, concatenation and Kleene star. Nexhaw they are not closed under
complement.

Proposition 6.3.4. The class of languages definable by regular expressionsbivitting is not

closed under complement.

110 Chapter 6. The language theory gap

Proof. To see that they are not closed under complement, recall Example 6.3.2 that the
expressiora’ -a|x .{a" -a[x"]} -a* defines the set of all data words with two positions with the
same data value. The complement of this language, wheratalMdlues are different is well
known not to be definable by register automata [Kaminski aiath€¢ez, 1994]. O

We also show that REWB languages are not closed under intiense The proof of this

fact will also imply Theorem 6.3.3.
Theorem 6.3.5.REWB languages are not closed under intersection.

To prove this we define two languagés, andL,, both easily definable by a regular ex-
pression with binding, but such that their intersectionds REWB definable.
Let L; be the language consists of data words of the form:

(o) (&) (&) @) (&) (&) () (&)~ ()

whered, = d5,d6 = dg, e 7d4n—6 = d4n_3.
Let L, be the language as above, dyt=d7,dg = d11,...,dsn_4 = dan_1.
In particular,L; N L5 is the language consisting of data words of the form:

(@) () (&) (&) (&) (&) (&) (&) -+ (4 2) (1) () (o o) (o) () (e o) ()

BothL; andL, are REWB languages. We are now going to show the following.
Lemma 6.3.6.L; N Ly is not a REWB language.

Note that for simplicity we prove the theorem for the casemide REWBS. It is straight-
forward to see that the same proof works in the case of REWd&su8e multiple comparisons
in one condition.

The proof is rather technical and will require a few auxifimotions. Letr be an REWB
overX[xi,...,X|. A derivation tree twith respect ta is a tree whose internal nodes are labeled
with (r’,v) wherer’ is an subexpression ofandv € ¥ (x1,...,X) constructed as follows. The
root node is labeled witke, 0). The other nodes are labeled as follows. For a notibeled

with (r’,v), its children are labeled as follows.
e If i’ = a, thenu has only one child: a leaf node labeled wif}) for somed € D.
e If 1 = a[¢], thenu has only one child: a leaf node labeled wif) such that,v = ¢.

e If r’ =r1+ry, thenu has only one child: a leaf node labeled with eitfigrv) or (r,,v).

e If I’ =ry1-rp, thenu has only two children: the left child is labeled withy,v) and the
right child is labeled with(r,,v).

6.3. Regular expressions with binding 111

e If I’ =rj, thenu has either only one child: a leaf node labeled véttor at least one
child labeled with(r1,Vv).

e If I =alx.{r1}, thenu has only two children: the left child is labeled wiff}) and the
right child is labeled with(r1,v[x < d]), for some data valué € D.

A derivation treet defines a data wond(t) as the word read on the leaf nodeg @fom left to
right.

Proposition 6.3.7. For every REWB r, the following holds. A data wordc(r, 0) if and only
if there exists a derivation tree t w.r.t. r such thatww(t).

Proof. We start with the “only if” direction. Suppose thate L(r,0). By induction on the
length ofe, we can construct the derivation tresuch thatv = w(t). It is a rather straightfor-
ward induction, where the induction step is based on thase®udefinition of REWB, where
r is eithera, a[x=|, a[x?é], ri+rp,ri-ro, r;oraly.{ri}.

Now we prove the “if” direction.

For a nodau in a derivation tree, the word induced by the nodeis the subword made up
of the leaf nodes in the subtree rootediatVe denote such subword lay;(t).

We are going to show that for every nodeén t, if uis labeled with(r’,v), thenw,(t) €
L(r’,v). This can be proved by induction on theightof the nodeu, which is defined as

follows.

e The height of a leaf node is 0.

e The height of a node is the maximum between the heights of its children nodes plus
one.

It is a rather straightforward induction, where the base éashe nodes with zero height and
the induction step is carried on nodes of heilghtith the induction hypothesis assumed to hold
on nodes of height h. O

Supposen(t) = wiwy(t)ws, theindex pairof the nodeu is the pair of integersi, j) such
thati = lengthlwy) +1 andj = length(wwy(t)).
A derivation tred induces a binary relatioR; as follows.

R ={(i,]j) | (i,]) is the index pair of a nodein t labeled witha |, .{r'} }.

Note thatR; is a partial function from the sdtl,...,lengthiw(t))} to itself, where ifR;(i) is
defined, then < R(i).

For a pair(i, j) € R, we say that the variabbeis associated witki, j), if (i, j) is the index
pair of a nodeu in t labeled with a label of the form | .{r'}. Two binary tupleqi, j) and
(", "), wherei < j andi’ < j’, cross each othef eitheri <i' < j < jori’ <i<j <j.

112 Chapter 6. The language theory gap

Proposition 6.3.8. For any derivation tree t, the binary relation; Rhduced by it does not
contain any two pairgi, j) and(i’, ') that cross each other.

Proof. Suppos€i, j),(i’,j’) € R. Then letu andu’ be the nodes whose index pairs &rg)
and(i’, '), respectively. There are two cases.

e The nodess andu’ are descendants of each other.
Supposal is a descendant of. Then, we havé <i < j < j'.

e The nodess andu’ are not descendants of each other.
Suppose the nodé is on the right side of), that is,wy (t) is on the right side ofv(t)
inw. Thenwe have < j <i’ < j.

In either casdi, j) and(i’, j') do not cross each other. This completes the proof of our claim
O

Now we are ready to show thiat ML, is not defined by any REWB. Suppose to the contrary
that there is an REWB overX[xy, ..., X such thal.(r) = L1 N Ly, whereX = {a}. Consider
the following wordw, wherem = k + 2:

W= (g) () (o) (@) (@) (&) (&) () -
(am 2) () (e 2) (e o) (o) () (e o) ()

wheredp,ds, . ..,dm, €, €1, ..., 6n are pairwise different.
Lett be the derivation tree of.. Consider the binary relatioR; and the following seté\
andB.

A = {2,6,10,...,4m—6}
B = {4,812...,4m—4}

That is, the sef contains the first positions of the data valags...,dy 1S, and the sdB the
first positions of the data values, ..., en_1S.

Claim 6.3.9. The relation Ris a function on AJB. That is, for every k& AUB, there is h
such that(h,l') € R..

Proof. Suppose there existsc AUB such thaiR; (h) is not defined. Assume thate A andl|
be such thah =4l — 2. If R(h) is not defined, then for any valuatienfound in the nodes in
t, d ¢ Imag€gv). So, the word

W= (g0) (@) (&) (&) (a2) (D (62) (&) (@) (aZ) -

is also inL(r), wheref is a new data value. That is, the wosd is obtained by replacing the
first appearance @ with f. Noww” ¢ L; NLp, hence, contradicts the fact thatr) = Ly NLo.
The same reasoning goes for the cadedfB. This completes the proof of our claim. [

6.3. Regular expressions with binding 113

Remark 6. Without loss of generality, we can assume that each varisbtee REWB r is
introduced only once. Otherwise, we can rename the variable

Claim 6.3.10. There existhy, hp), (h},h,) € R such that h < h, < h; < h, and h,h; € Aand
both (hy,hy), (W}, H,) have the same associated variable.

Proof. The cardinality |[A| = k+ 1. So there exists a variablg € {x,...,x} and
(hg,hy), (M, h,) € R such that(hg,hy), (W, h,) are associated with the variabke By Re-
mark 6, no variable is written twice ig, so the nodesi, U’ associated wittthy, hy), (I}, 1)
are not descendants of each other, so we haveh, < h; < h,, orh} < h, <h; <hy. This
completes the proof of our claim. O

Claim 6.3.11 below immediately implies that Lemma 6.3.6.
Claim 6.3.11. There exists a word i L; N Ly, but w' € L(r).

Proof. The word w’ is constructed from the wordv. By Claim 6.3.10, there exist
(h1,h2), (h;,h,) € R such thaty < hy < W, < h, andhy,h] € A and bothhy, h} have the same
associated variable.

By definition of the languagé.; NL,, betweenh; andh), there exists an indek € B
such thath; < | < h}. (Recall that the sef contains the first positions of the data values
di,...,dyn_ 1S, and the sdB the first positions of the data values...,en 1S.)

Let h be the maximum of such indices. The indexs not the index of the last, hence
R:(h) exists andR; (h) < hy, by Proposition 6.3.8. Now the data valueRyth) is different from
the data value in positioh. To getw”, we change the data value in the positlowith a new
data valuef, and it will not change the acceptance of the waf'cby the REWBr.

However, the wordv’

< - OREE -

is not inL; NL», by definition. Thus, this completes the proof of our claim. O

This completes our proof of Lemma 6.3.6.

Since bothL; andL, are easily definable by a REWB using only one variable, thia-co
pletes the proof of Theorem 6.3.5.

As a corollary of this we also get the proof of Theorem 6.3.2 Mite that the separating
example is rather intricate, and certainly not a naturajlage one would think of. In fact, all
natural languages definable with register automata thatsed here as examples — and many
more, especially those suitable for graph querying — arealete by REWBSs.

114 Chapter 6. The language theory gap

Decision problems

Nonemptiness and membership Recall that for register automata, the nonemptiness prob-
lem is P$AcEcomplete (and the same bound applied to regular expressiidh memory).
By introducing proper binding we lose some expressivenedsyat can lower the complexity
of the problem to NP.

Note that standard nonemptiness checks if the languagelofadREWB is empty. More
generally, one can asklif(r,v) # 0 for a REWBr and a compatible valuation

Theorem 6.3.12. The nonemptiness problem for REWBs is NP-complete.

Proof. In order to prove the NP-upper bound from the theorem we wdt 8how that if there
is a word accepted by a REWB, then there is also a word accépaeds no longer than the
REWB itself.

Proposition 6.3.13. For every REWB r oveE[xy,...,X and every valuatiorv compatible
with r, if L(r,v) # 0, then there exists a data wordan_(r,v) of lengthO(|r|).

Proof. The proof is by induction on the length of The basis is when the length pfis 1.
There are two casegic| anda; and it is trivial that our proposition holds.

Letr be an REWB and a valuation compatible with. For the induction hypothesis, we
assume that our proposition holds for all REWBs of shortegtle thanr. For the induction
step, we prove our proposition for There are four cases.

e Caselr=ry+ro.
If L(r,v) # 0, then by the induction hypothesis, eitiigr,v) or L(r,,v) are not empty.
So, either

— there existsvy € L(r1,v) such thatw;| = O(|r1]); or

— there existsv; € L(r2,v) such thatw,| = O(|r2]).

Thus, by definition, there existg € L(r,v) such thatw| = O(]r|).
e Case2r =ryq-ro.
If L(r,v) # 0, then by the definitionL(r1,v) andL(r,,v) are not empty. So by the
induction hypothesis
— there existsvy € L(r1,v) such thatw;| = O(|r1]); and

— there existsv; € L(r2,v) such thatw,| = O(|r2]).

Thus, by definitionwy - w, € L(r,v) and|wy - wo| = O(|r]).

e Case 3r = (ry)*.
This case is trivial since € L(r,v).

6.3. Regular expressions with binding 115

e Casedr =aly .{ri}.
If L(r,v) # 0, then by the definitionl.(r1,v[x < d]) is not empty, for some data valde
By the induction hypothesis, there exists € L(r1,v[% « d]) such thaiw;| = O(|r1]).
By definition, (§)wy € L(r,v).

This completes the proof of Proposition 6.3.13. O

The NP membership now follows from Proposition 6.3.13, where giegeREWBTr, we
simply guess a data womd € L(r) of lengthO(|r|). The verification thatv € L(r) can also be
done inNP (Proposition 6.3.15).

Note that the data values here can be made small as well. dllaa/$ from the fact that
in a word accepted by a register automaton one can replacathezalues with the ones from
the set 1...k+ 1, wherek is the number of registers (see Lemma 6.1.3), while retgittie
acceptance condition. Thus we can always assume that thesvappearing in our word are
not bigger than the number of variables in our expressios phe.

We proveNP hardness via a reduction from 3-SAT.

Assume thath = (f11V 12V 13) A A (bn1V ln2V £n3) is the given 3-CNF formula,
where eaclt; ; is a literal. Letxy,...x denote the variables occurring gn We say that the
literal ¢; j is negative, if it is a negation of a variable. Otherwise, &k it a positive literal.

We will define a REWB overZ|yi,z,Y2,2,...,Yk, Z] of lengthO(n) such that is satis-
fiable if and only ifL(r) # 0.

Letr be the following REWB.

r.= a‘Lyl '{anzl '{aiyz '{ailz '{"'{aJ/Yk {aJ/Zk {
(ria+ri2+r13)-- (a+rn2+rnz)tt...}

by AZ(] if 4 j =X
r,j =

blyic A7)+ blzc AYE]if 6 = %
Obviously,|r| = O(n). We are going to prove thatis satisfiable if and only it (r) # 0.
Assume first thatp is satisfiable. Then there is an assignmént{xy,...,x} — {0,1}
making¢ true. We define the evaluation: {y1,z,...Yn,z,} — {0,1} as follows.
o If f(x)=1,thenv(y;) =v(z)=1.
e If f(x)=0,thenv(y;) =0andv(z) =1.

We define the following data word.

YT Q&QQ&)mQ&D@éﬁﬁﬁ;ﬁi

ntimes

116 Chapter 6. The language theory gap

To see thatv € L(r), we observe that the firsk2abels are parsed to bind valugsz, .. . yk, z
to corresponding values determined\nyTo parse the remaining?) . (2) we observe that
for eachi € {1,...,n}, ¢i1V {2V {3 is true according to the assignmehtif and only if
() eL(ria+riz+ri3,v).

Conversely, assume thiafr) # 0. Let

(D DD

We define the following assignmeft {xy, ..., %} — {0,1}.

1 ifdy,=d,
f()q) - {0 ifd)’i?'édz

We are going to show thdtis a satisfying assignment f¢r. Now sincew € L(r), we have

b b
e € L((rpa+ri2+r13)---(rni+rn2+rn3),v),
dl dn

wherev(y;) = dy, andv(z) = d,. In particular, we have for every=1,...,n,

b
(d,-) € L(rja+rj2+rj3,Vv).
W.l.0.g, assume tha({?j) € L(rj1). There are two cases.

o If rj1 =bly;7 AZ7], then by definition/; 1 = X, hence the clausg 1V ¢,V {j 3 is true
under the assignmerit

o Ifrj1 =Dy A ;?é] + bz Ay?é], then by definition/; 1 = —x;, hence the clausg 1 v
¢j 2V !j3is true under the assignmefit

Thus, the assignmeritis a satisfying assignment for the formudia This completes the proof
of Theorem 6.3.12. O

Note that for simple and positive REWBSs the problem triziadi.

Proposition 6.3.14. e For every simple REWB r ov&i{xy, ..., X, and for every valuation
v compatible with r, we have(Lv) # 0.

e For every positive REWB r ovélxy, ..., X], there is a valuatiorv such that Ir,v) # 0.
For membership we only have the upper bound.
Proposition 6.3.15. Membership problem for REWBSs ishNP.

This immediately follows from Theorem 6.3.3 and the boundrégister automata.

6.3. Regular expressions with binding 117

Containment and universality Next we examine the containment and universality problems
for REWBSs. It turns out that both are undecidable. In factcae show an even stronger state-
ment, thatuniversalityof simple REWBSs that use just a single variable is alreadyeaiuthble.

Theorem 6.3.16.Universality for one-variable REWBSs is undecidable. Intjgardar general
universality and containment are also undecidable.

Proof. We are first going to prove that given an REWBverX[xy, ..., X, checking whether
L(e) = (X x D)* is undecidable. This immediately implies that givgrr,, checking whether
L(r1) € L(r2) is undecidable, hence, the second item of our theorem.

The proof is similar to the proof of the universality of regisautomata in [Neven et al.,
2004]. The reduction is via Post Correspondence Probler®YR#hich is defined as follows.
An instance of PCP is a set of pairs of strings

I = {(u,v1),---, (Un,Vn)},

whereu;,v; € £*. A solution of the instancé is a sequencé,,...,In such thatu, ---u, =

m
Vi -V,

Let $,# be two special symbols not . Now a solutionly, ..., Iy of the PCP instance
can be encoded into data wosd () w, over= U {$,#}, where

W= ()6 GG G () (3 G (3)
by by by by,)
W = (D) G (@) (E) By ()

wherel =01+ 4lo+---+ 4y, and

(C1) The symbol # appears only once.
(C2) Projs(wy) € ($-ur+---+$-un)*.
(C3) Projs(Wp) € ($-vi+---+$-vp)*.
(C4) The data valueg’s andd;’s are pairwise different.
(C5) The data valueg’s and f;'s are pairwise different.
(C6) e, = g1 andey = gm.
(C7) dy = fy andd,,, = fy,.
(C8) Forallic {1,...,m—1}, there existg € {1,...,m—1} such that = g; ande 1 = gj 1.
(C9) Forallie {1,...,{m— 1}, there exist§ € {1,...,¢m— 1} such thatd; = f; andd, 1 =
fir1.
(C10) Foralli,je {1,...,4m}, if di = fj, theng = b;.

(C11) Foralli,je{1,...,m}, if & =gj, then(ay,_,11---a,by_,41---by) €1.

118 Chapter 6. The language theory gap

Now it is straightforward to show that there exists a sohutio the PCP instandeif and only
if there exists a data word ov&rU {$,#} that satisfies Conditions (C1)—(C11) above.

We now construct an REWBoverZ[xi,...,X| whereZ; = U {$ #} that accepts a data
wordw that does not satisfies at least one of the Conditions (CQ1&)above. Such REW8
can be constructed by taking the union of the negation of eaClonditions (C1) to (C11), and
it is a rather straightforward observation that the negatibeach of them can be stated as an
REWB. Hence, we have that the PCP instahnkas no solution if and only if(r) = (£ x D)*.
This concludes our proof in the case of multiple variables.

We now prove that we get undecidability even when using esginas with only one vari-
able. The proof is a slight modification of the proof in multiriable case and for completeness
we present it here.

Letr be an REWB oveE[X].

Let $,# be two special symbols not h Letl" = XU {$,#}. Now a solutionls, ...,y of
the PCP instancecan be encoded into data wosgl (ﬁ) REV(w,) overz U {$,#}, wherews,w,
are defined as above and REY) is the reversal ofv,.

We then construct an REWBoverl [xy, . .., X« that accepts a data wowd= w; #REV(ws,)
such thatw,#w, does not satisfies at least one of the Conditions (C1) to (@haye. The
REWB' is obtained by taking the union of the following.

e The negations of each (C1), (C2), (C3) which can be writtea standard regular ex-
pression without variables.

The negation of (C4) which can be written as:

(Frsbrs)y + r U (aboArapc]y) o

acz

The negation of (C5) can be written in a similar manner.

The negation of (C6) which can be written as:
$Ux AT $X]} + TSl {# TSI

The negation of (C7) can be written in a similar manner.

The negation of (C8) which can be written as:
s |y .{r*#@[xﬂz)* + T8 L T 4T $X7]} 2 $[x] }

Note that here we use the fact that (C8) can be paraphrasetcasst

1. Foralli € {1,...,m—1} existsj € {1,...,m— 1} such thai = g;
2. Forallie {1,...,m—1} andforallj € {1,...,m—1} if & = g; thene ;1 = gj+1.

6.4. Regular expressions with equality 119

(Recall that by (C6) we have thet = g;.)

The negation of (C9) can be written in a similar manner.

e The negation of (C10) and the negation of (C11), which can bieen in a straightfor-
ward manner using only one variable.

It is straightforward to see that the PCP instah&as no solution if and only if (r) = (Z1 x
D)*. This concludes our proof of Theorem 6.3.16. O

While restriction to simple REWBs does not make the problegidhble, the restriction to
positive REWBs does: as is often the case, static analysis teecome easier without negation.

Theorem 6.3.17.The containment problem for positive REWBSs is decidable.

Proof. Itis rather straightforward to show that any positive REVB be converted into a reg-
ister automaton without inequality [Kaminski and Tan, ZD0@e decidability of the language
containment follows from the fact that the containment peobfor register automata without
inequality is decidable (Fact 6.1.8). O

6.4 Regular expressions with equality

Regular expressions with equality were introduced in $acfi.4 as a mechanism for defin-
ing path queries with much better complexity bounds for therg evaluation problem than

register automata. Here we will redefine them in the contégfata words and show that the
complexity of membership and nonemptiness is much easér iththe case or register au-
tomata. Surprisingly, the universality problem is stilldecidable, thus witnessing that, even
strictly weaker, regular expressions with equality stliain much of the expressive power of
register automata and expressions with memory or bindimgalRthat the main idea of these
expressions is to allow checking for (in)equality of dathuea at the beginning and at the end
of subwords conforming to subexpressions. Next we defirma floemally.

Definition 6.4.1 (Expressions with equality)Let 2 be a finite alphabet. Theregular expres-
sions with equality (REWEare defined by the grammar:

e =0|¢c|alete|ee|e |e |e (6.2)

where a ranges over alphabet letters. The langua@® bf data words denoted by a regular
expression with equality e is defined as follows.

e L(0)=0.
o L(g)={¢}.

120 Chapter 6. The language theory gap

e L(@a)={(3) |de D}.

e-€)=L(e)-L(¢).

(@)

L(

o L(e+€)=L(e)UL(¥).
(
(
(

o L(e")={wy---wx | k>1and each we L(e)}.
L

e)={(3)...(%) eL(e) | dy=dn}.
L(es) ={(G) - (&) €L(e) | d #dn}.

Without any syntactic restrictions, there may be “pathialj expressions that, while for-

mally defining the empty language, should nonetheless Heded as really not making sense.
For exampleg_ is formally an expression, and soag, although it is clear they cannot denote
any data word. We exclude them by defining well-formed exgioes as follows. We say that
the usual regular expressi@reduces tce (respectively, to singletons) lf(e) is € or 0 (or
|w| <1 forallwe L(e)). Then we say that regular expression with equalityéd-formedif it
contains no subexpressions of the foemor e, wheree reduces te, or to singletons. From
now on we will assume that all our expressions are well formed

Note that we usé instead of« for iteration. This is done for technical purposes (the ease
of translation) and does not reduce expressiveness, simcamalways use’ as shorthand for
e +e.

We now provide two examples. The expression (X-2)_ - Z* denotes the language of
data words that contain two different positions with the eatata value. The language of data
words in which the first and the last data value are differegiven by(X-X")...

Properties of regular expressions with equality

Connection with other languages We have already shown that, when considered over data
paths, regular expressions with equality are strictly veedlkan register automata. It is there-
fore straightforward to see that this transfers to the cdrtedata words.

Proposition 6.4.2. Regular expressions with equality are strictly weaker tregular expres-
sions with memory or regular expressions with binding.

As mentioned above, we proved this result in the case of ddtesn Proposition 4.4.2. It
is straightforward to adapt this proof to work for data woedswell. In particular, the trans-
lation of regular expressions with memory into registeoadta is done by an easy inductive
construction. On the other hand, to show that REWEs ardlgtricaker, we can prove that
they can not define the language(af| x) - (a[x”])* in the same way as in the proof of Propo-
sition 4.4.2. The only adjustment that has to be made is tefireel weak register automata
over data words, much in the same manner as we have done wiinglesgister data word
automata in Section 6.1.

6.4. Regular expressions with equality 121

Closure properties As immediately follows from their definition, languages dexd by reg-
ular expressions with equality are closed under union, aiemation, and Kleene star. Also, it
is straightforward to see that they are closed under aufoimsms. However:

Proposition 6.4.3. Languages recognized by regular expressions with equaléynot closed
under intersection and complement.

Proof. Observe first that the expressi@rn - (Z-Z")_ - Z* defines a language of data words
containing two positions with the same data value. The cempht of this language is the
set of all data words where all data values are differentclkviid not recognizable by regis-
ter automata [Kaminski and Francez, 1994]. By Propositigh26this implies that regular
expressions with memory are not closed under complement.

To see that they are not closed under intersection we first #hat the language

- { (i) (;) (;) ‘ d; # dp,d; # d3 andd, # ds}

is not recognizable by any regular expression with equality prove this we simply try out
all possible combinations of expressions that use at most ttoncatenated occurrencesaof
Note that we can eliminate any expression with more thatethse or one that uses(since
this results in arbitrary long words), or union (since evergmber of the union would have
to define words from this language and since we do not useamtssive cannot just split the
language into two or more parts). Also, gocan occur in our expression (for subexpressions
of length at least 2). This reduces the number of potentiptessions to denote the language
to finitely many possibilities, and we simply try them all.

Now observe that the expressien= ((a-a) - a) defines the language

2= 1a) (&) (&)

Similarly &, = a- (a- a) defines

(G v

Note thatL = Ly N Ly, so if regular expressions with equality were closed undiarsection

d; 75 d, andd; 75 d3} .

they would also have been able to define the langliage O

Nonemptiness and membership To obtain fast membership and honemptiness testing algo-
rithms for expressions with equality, we first show how tousslthem to pushdown automata
when only finite alphabets are involved.

Assume that we have a finite d2of data values. We now inductively construct PCA$
for all regular expressions with equaliy The words recognized by these automata will be
precisely the words frorh(e) whose data values come frdin

122 Chapter 6. The language theory gap

We construct these PDAs so that they accept by final stateusticefmore have the prop-
erty that only transitions of the kin@p, (f,‘) ,X,0,0) leave the initial state (that is any transition
leaving the initial state will consume a letter) and eveaysition entering a final state will con-
sume a letter. We will maintain these properties througiioeiinductive construction.

It is quite clear how to construct the automatader e,e=0ande=a. Fore; +e,6,- &
ande; we use standard constructions, while & (e;)—, or e = (e1).. we push the first
data value on the stack, mark it by a new stack symbol and theseed with the run of the
automaton fole; which exists by the induction hypothesis. Every time we eatinal state of
that automaton we simply empty the stack until we reach tisedaita value (here we use the
new stack symbol) and compare it for equality or inequaliihvthe last data value of the input
word. The additional assumptions are here to assure thabtigruction works correctly.

Lemma 6.4.4. The language of words accepted by each PRA B equal to the set of data
words in L(e) whose data values come from D. Moreover, the PRA Ras at most Qe|)
states and Qle| x (|D|? + |e])) transitions, and can be constructed in polynomial time.

Proof. We will assume that we do not use expressiease ande = 0 to avoid some technical
problems. Note that this is not a problem since we can alwaysct the presence of these
expressions in the language in linear time and code thenoimautomata by hand.

Assume now that we are given a well-formed regular exprassith equalitye (with no
subexpressions of the formmand0) over the alphabeX and a finite set of data valu&s We
construct, by induction o, a PDAP.p over the alphabeX x D such that:

ai

e W= (dl

)--- (&) is accepted byep if and only ifw € L(e) andd, ..., dn € D.

e There are n@-transitions leaving the initial state (that is every titias from the initial
state will consume a symbol).

e There is nce-transition entering a final state.

We note that our PDAs will accept by final state and use stackstymbol.

e If e=a, with ac X we definePep = (Q,qo,%',I", Zo,F,d), where:

- Q={0o,m},
- F={a},
- ¥ =3xD,

- N=DuU{Zy}, and
- 3(qo, (3),Z0) = {(qu,€)}, for everyd € D.

It is straightforward to check th&.p has the desired properties.

6.4. Regular expressions with equality 123

e Casee =6+ ande=e;-& ande= ¢/ are straightforward and are executed in a
standard way using the inductive assumption to ageignsitions from initial state and
to final states.

o If e=(e1)-then letPy, p = {Q,q0,%',I,Zo,F,d} be the PDA fore; andD which exists
by the inductive hypothesis.

We definePep = (Q, 00, 2,1, Z;,F', &), where:

- Q'=Qu{d.d",ar,df,df

- F'={ar},

— =T U{Xo}, whereXp is a new stack symbol and
— To & we add all the transition from, plus

1. For every(qo, (3),Zo) — (a1, a) in & we add the transitions:
(@) (9. (), 20) — (d,dZy),
(b) (d,&,d) = (q", Xod),
(©) (d",&,X0) = (d",Z0Xo), and
d) (q",€,20) — (qu,0) to &.
2. Forevery(d;, (3),X) — (qj,a) in 8, with q; € F we add:

(@) (dj.& X) = (d, 0),
(b) (dt,&,Y) — (d;,€), for everyY €T,

(C) (Qf"‘E XO) (q/flas)1 and

(@ (. (§).9) — (ar,8) 103

Note first that, in the first item of transitions added & will never be a final state and
that q’j in the second item will never be the initial state. This siynfgllows from the
assumption that our expressions are well-formed. Furtbegrit is easy to see that no
e-transitions leave the initial state or enter a final stateuinautomaton.

Next we show that the constructed automaton recognizesitiggiagd.(e) restricted to
data values iD. To see this note that the first block of newly added transstisimply
pushes the first data value onto the stack, covers it with ¢hestack symbokX,, and
then proceeds &, p would right until the point whei, p enters a final state. At this
point Pep starts to empty the stack until it sees the new synxgolAfter popping this
symbol we know that the first data value is written below itws®mcompare it with the
current data value for equality. If they are equal we prodedtie final state and accept
(provided we have reached the end of the word).

124 Chapter 6. The language theory gap

Note that this proves that every word acceptedPyy is a word accepted bl p that
has equal first and last data value and is thuls(g) by the inductive hypothesis. The
converse follows easily from this same observation andritiedtion hypothesis.

Note also that we can not accept any word that does not useshidinsition that stores
the first data value onto the stack simply because we will aeglit on the stack (below
Xo) when we want to proceed to the final state.

o If e= (e1). then letP.p will be the same as fofe;)—, except that 2(d) changes to
(df,(3),d") — (ar,€), for all d’ £ d in D. The proof that this is correct is identical as in
that case.

Note that the size of the stack alphabet is at mbDst- 2|e|, since we have to add a new
stack symbol for every=, # that appears ie (as well as the new initial stack symbol).

To see that the automaton is linear in the length of expressite that we only add new
states when constructing automaton fer)_, (e1)» ande; + &. In each case we add only a
fixed number of states (five in the first two cases and one irathi |

To count the number of transitions observe that we add at {B¢%4- |D| + || transitions
between any two states when we construct the automatdesfor (all other cases hay®|, or
|e| transitions or less). Thus we have at mOste| x (|D|?+ |e])) transitions in our automaton.

U

From this and Lemma 6.1.3 it is easy to obtain the following.
Theorem 6.4.5. The nonemptiness problem for regular expressions withlégusin PTIME.

To see this, take an arbitrary expression with equaiand convert it to a-register data
word automaton4 that recognizes the same language. From the translatioknawe thatn
will be at most the number of times and+# appear ire. Now do the construction from Lemma
6.4.4 foreandD = {0,1,...,n+ 1} to obtain a PDAP.p. Proposition 6.4.2 and Lemma 6.1.3
now imply that checking it.(e) # 0 is equivalent to checkinBep for nonemptiness. Since this
automaton is of polynomial size, we can check it for nonengss in PTvE thus obtaining
the desired result.

Proposition 6.4.6. The membership problem for regular expressions with etyuiglin PTIME.

As in the proof of Theorem 6.4.5, we construct a PB4, for eandD = {0,1,...,n},
wheren is the length of the input wordl. By invariance under automorphisms we can assume
that data values im come from the seD. Next we simply check that the word is accepted
by Pep and since this can be done in RIE we get the desired result. The correctness of this
algorithm follows from Lemma 6.4.4.

6.4. Regular expressions with equality 125

PDAs vs NFAs It is natural to ask whether NFAs could not have been usedadsbf push-

down automata. The answer is that they can be used to capngadges of data words de-
scribed by regular expressions with equality over a finitecfedata values, but the cost is
necessarily exponential, and hence we cannot possibldeseto derive Theorem 6.4.5. That

is, we can first show:

Proposition 6.4.7. For every regular expression with equality e over the algtab and a
finite set D of data values there exists an Nfp, of the size exponential iig/, recognizing
precisely those data words frontd) that use data values from D.

Proof. We prove this by structural induction on regular expressiaith equality. All of the
standard cases are carried out as usual. Thus we only hawstali the construction for
subexpressions of the fore. ande.. In both cases by the induction hypothesis we know
that there is an NFA4.p recognizing words ir.(e) with data values fronD. The automaton
for 4, p (and likewise for4e_p) will consist of |D| disjoint copies ot4ep, each designated
to remember the first data value read when processing thé iAgaording to this, whenever
our automaton would enter a final state we test that the dudaa value is different (or the
same) to the one corresponding to this copy of the origin@liraaton. This is done in a manner
analogous to the one used in the proof of Proposition 6.4.4. O

However, the exponential lower bound is the best we can dweigéneral case. To see this,
we define a sequence of regular expressions with mef@aty,cn, over the alphabeX = {a},
and each of length linear m We then show that fdb = {0, 1} every regular expression over
the alphabek x D recognizing precisely those data words fraue,) with data values i
has length exponential ij@y,|.

To prove this we will use the following theorem for provingver bounds of NFAs [Glaister
and Shallit, 1996]. Let C >* be a regular language and suppose there existdfa-s¢tx, Vi) :
1 <i < n} of pairs such that:

1. x-yi €L, foreveryi=1,...n, and
2. %-y;j¢ L, for1<i,j <nandi# j.

Then any NFA accepting has at least states.
Thus to prove our claim it suffices to find such a set of size egptal in the length oé,.

Next we define the expressioasinductively as follows:
e & =(a-a-,

e e1=(ae-a-.

126 Chapter 6. The language theory gap

Itis easy to check that(e,) = {w-w1:we (Z x {0,1})"}, wherew~! denotes the reverse
of w.

Now letwy, ... wan be alist of all the elements it x {0,1})" in arbitrary order. We define
the pairs inP as follows:

® Xi =W,

o yi=(w)™

Since these pairs satisfy the above assumptions 1) and Xomaude, using the result
of [Glaister and Shallit, 1996], that any NFA recognizib(g,) has at leasO(21*!) states, so
no regular expression describing it can be of length polyabim |e;|.

Containment and universality Surprisingly one can show that even this relatively weagksla
of expressions still retains enough power to code PCP whamitersality problem is consid-
ered. Form this also follows that language containment dieaigable.

Proposition 6.4.8. Universality and containment are undecidable for regulgpressions with
equality.

Proof. The proof is basically identical to the proof of Theorem $63.0ne only has to notice
that each of the REWBs expressing negation of conditiong (€1C11) in that proof can
easily be replaced by an equivalent expression with egualit

For example, the negation of (C4) can be written as:

<r*$(r*$): i r*U(a(r*a):))#r*
acx

Similarly, the negation of (C6) is expressed by:
$r-$).. + F$H-Z°$)LM".

The negation of other expressions can be expressed in avganalmanner. When exam-
ining the query containment problem for RQDs in Chapter 1Quilepresent the proof in full
detail. O

6.5 Variable automata

Final data word defining mechanism we will consider is the oin€ariable automata. Recall
that we already studied variable automata over data patBgétion 4.5. Here we will show
that they can also be defined over data words, thus elimmétim need to have a separate set
of word states and data states, as one does when working atépdths.

6.5. Variable automata 127

Although most of the results presented in this section veilily follow from [Grumberg
et al., 2010a], where variable automata were first introdiae a means to define languages
over an infinite alphabet, we include them here to have a cetmpicture of currently available
data word formalisms.

We begin by defining variable automata over data words.

Definition 6.5.1. Let X be a finite alphabet an@ an infinite domain of data values. We will
also assume that we have a countable setV of variablegriable finite automatofor VFA
for short) overZ x D is a pair 4 = (I',A), where A is an NFA over the alphab®tx I, and

I =CuUXU{*} such that:

e C C Dis afinite set of data values callednstants
e X CV is afinite set obound variablesand

e x is a symbol for théree variable

Next we define when a VFA accepts a data were- wiw,...w, € (Z x D)*. For each
letteru = (3) in Z x D, we letA(u) = a (label projection) and(u) = d (data projection).

Letv=viva...vy € (£ xT)* be a word accepted by We will say thatv is awitnessing
patternfor w (or thatw is alegal instanceof v) if the following holds:

1. M) = A(w), fori=1,...,n,
2. 8(vi) = 5(wi) wheneveid(vi) € C,

3. if 8(wi),8(v;}) € X, thend(w),8(w;) ¢ C andd(w;) = &(w;) iff 8(vi) = 3(v;),
4. if 8(vi) =+ andd(v}) # *, thend(w) # d(w;).

Intuitively the definition states that in a legal instancenstants and finite alphabet part
will remain unchanged (conditions 1 and 2), while every libuariable is assigned with the
sameuniquedata value fromD — C (condition 3) and every occurrence of the free variable
is freely assigned any data value frabn— C that is not assigned to any of the bound variables
(condition 4). Note that the condition 4 is a lot strongetlt #&ying that is just a wild card.

We now define théanguage of4, or simplyL(.4) for short, as the set of all data words
for which there exists a witnessing pattera L(A). That is a word is accepted 3 if there is
a witnessing pattern for it that is accepted by the undegijNiFA A.

Note that it is straightforward to define regular expression VFAS that will simply inherit
the associated semantics.

128 Chapter 6. The language theory gap

Remark 7. Note that VFAs when defined over data words differ slightiynfthe ones defined
over data paths. The reason for this is that over data wordsetis no asymmetry when defin-
ing concatenation, as in the case for data paths. Therefeeeno longer need two separate
sets of states, so the automaton itself can be representdtebyns of a single NFA A as in
the definition above. However, the idea of guessing valuashiance is identical in both ap-
proaches and it is not difficult to see how one can go from otimgeo the other, much like in
Section 3.1.

Example 6.5.2.Here we give a few examples of languages accepted by VFAs.

1. The language where the first data value is equal to the ladtall other values are
different from them (but can be equal among themselves).

()

start —(Ga (i) /% (i) @

N

2. The language where the first data value is different frarothler data values.

)
start —(Ga (i) @

3. The language where the last data value differs from akottata values.
@)
(%)
start —(Ca @

Note that the last example is not expressible by registemaata [Kaminski and Francez,
1994].

It was shown in [Grumberg et al, 2010b] that the Ilanguade =
{(&) (@) (&) (&) (4)(g) [k> 1} is not expressible by VFAs. (Note that there VFA
were disregarding finite labels, but this already implies@aim.) However, it is straightfor-

ward to show that it is expressible by a regular expressidh aquality((aa)—)*. Thus, we

obtain:

Proposition 6.5.3. VFAs are incomparable in terms of expressive power withstegiau-
tomata, regular expressions with memory, regular expogssiwith binding and regular ex-

pressions with equality.

6.5. Variable automata 129

Closure and decision problems for VFAs

As already mentioned, most of the results below readilofelfrom [Grumberg et al., 20104,
Grumberg et al., 2010b]. For the sake of completeness wearalkae them here.

Closure properties ~ When it comes to closure properties VFAs behave in a simik@nmar
to register automata and regular expressions with memamely we have the following.

Fact 6.5.4([Grumberg et al., 2010a, Grumberg et al., 2010b]) 1. The set of languages
recognized by variable automata is closed under unionyseietion, concatenation and
Kleene star.

2. Languages recognized by variable automata are not claselér complement.

Although the proofs presented in [Grumberg et al., 2010bdatoconsider data words it is
straightforward to see that an analogous construction earatried out in this setting.

Decision problems ~ The somewhat unnatural behaviour of VFAs is exhibited im&of de-
cision problems. In particular, one can show that nonerepiramounts to no more than check-
ing nonemptiness of the underlying NFA, thus bringing theaptexity down to NLOGSPACE
complete , unlike in the case of e.g. register automata. ®rother hand, membership is
significantly harder and the complexity here jumps to NP {olete, since one can easily code
hamiltonicity using variables (see Theorem 5 in [Grumbergle 2010b]). Therefore we can
conclude that the use of variables leads to unusual behaggone usually exprects the mem-
bership problem to be easier that nonemptiness.

Fact 6.5.5([Grumberg et al., 2010a, Grumberg et al., 2010b]) 1. The nonemptiness prob-
lem for VFAs isNL OGSPACE-complete.

2. The membership problem for VFASN®-complete.

Unsurprisingly, one can show that containment and uniligysare also undecidable by
modifying the proof in [Neven et al., 2004] to the context dFAS.

Fact 6.5.6([Grumberg et al., 2010b])Both containment and universality problems are unde-
cidable for VFAs.

To get a decidable subcase of the language containmenepndlind thus also universal-
ity), we turn to restriction based ateterministic variable automata — DVFA3hese are the
VFAs with the property that for every word in their languagere is only one run accepting
it. Note that these are not the same as the ones whose undeN¥A is deterministic. It can
then be shown that:

130 Chapter 6. The language theory gap

Fact 6.5.7([Grumberg et al., 2010b])The containment problem faeterministicVFASs is in
CONP.

Although testing if a VFA is deterministic can be done in Nlplplem of determinizing
VFAs is undecidable [Grumberg et al., 2010b]. There is harewnice class of determinizable
VFAs — the ones with no free variable mentioned in the undeglNFA. It is easy to see that
this fragments corresponds to regular expressions witkrefarencing [Aho, 1990], which
are, in essence, grep specifications from the Unix systems.

6.6 Summary of language theoretic properties

When main computational tasks are concerned we see thatlexitypf the nonemptiness
problem basically matches the bounds on combined complekijuery evaluation, apart from
the case of variable automata and expressions with bindihig. fact, in conjunction with the
query evaluation algorithms presented in Chapter 4 whilgtorechecking NFA nonemptiness,
might lead to a conclusion that the two problems are clossted. However, it is important
to note that this is not the case. Indeed, the mentioned &watualgorithms simply use the
fact that all possible paths in a graph, together with theygwan be coded by an exponential
size NFA. This further exemplifies the two degrees of searah path queries, where paths
are selected beforehand, and then their labels are cheokedeimbership in the language
theoretic formalism defining them. The nonemptiness probbem the other hand, reasons
about the query itself, not taking a particular graph inte #tcount. It can, for example,
be the case that language of an expression with memory ismugewhile the answer to
the corresponding RQM produces no output on some partigudgnh. Indeed, there are graphs
where no path query will have a nonempty answer. The diffardrecomes even more apparent
when REWBs are considered, since here the nonemptineskemranjoys lower complexity
that that for evaluation of the associated class of graphiegie

We also studied membership, complexity of which ranges fRohME to NP, as well as
universality and query containment. The latter two werenshto be undecidable for all of
the formalisms studied in this chapter, however we did te@daveral decidable fragments. We
will return to this question later on in Chapter 10 where figddecidable fragments becomes
crucial for the static analysis aspects of graph query laggs.

The summary of the complexity bounds for nonemptiness, neeshiip and contain-
ment/universality is presented in Table 6.1.

6.6. Summary of language theoretic properties 131

RA REM REWB REWE VFA
nonemptiness PSPACEC PSPACEC NP-c PTIME NLOGSPACE-C
membership, NP-c NP-c in NP PTIME NP-c

containment| undecidable| undecidable| undecidable] undecidable| undecidable

universality | undecidable| undecidable| undecidable| undecidable| undecidable

Table 6.1: Complexity of main decision problems

Asis common in language theory, we also studied basic dqgmaperties of our languages.
A summary of the results is given in Table 6.2. We can see thdewll of the formalisms are
closed under union, concatenation and Kleene star, nothasisccunder complementation. The
main reason for this lies in the fact that closure under cempht (together with the ability
to define one of the most basic languages where two data valeesgual) would yield a high
query evaluation bound (see Theorem 3.2.1), making thedlism unsuitable for querying
graphs. We also studied closure under intersection, ankwiost languages do enjoy this
property (due to a fact that one can carry out the standard pdBduct construction), for the
case of REWBs and REWEs we can show that this is no longer true.

RA | REM | REWB | REWE | VFA
union | + + 4 + +
intersection| + + - — +
concatenation + + + + +
Kleene star| + + + + +
complement, — — — — _

Table 6.2: Closure properties of data word defining formalisms

Lastly, we also studied how the five classes of languages amgne to another. While
regular expressions with memory were originally introdlies an expression analogue of reg-
ister automata, here we also showed that they subsume sigmesith binding as well as
expressions with equality. Moreover, it is readily checkledt the language shown not ex-
pressible by regular expressions with equality in Propmsi6.4.2 is captured by REWBs,
giving us another proper inclusion. VFAs, on the other hard, orthogonal to all the other
formalisms studied in this chapter, as they can expresseptiep out of the reach of register
automata, while failing to capture even REWESs. We thus obtai

132 Chapter 6. The language theory gap
Theorem 6.6.1. The following relations hold, wher€ denotes that every language defined by
formalism on the left is definable by the formalism on thetright not vice versa.

¢ REWES. REWBS_ REMs= register automata.

e VFAs are incomparable in terms of expressive power with REWREWBs, REMs and
register automata.

Part Il

Graph languages and beyond

133

Chapter 7

Graph XPath

In Chapter 4 we have seen several languages for describapgmies of paths in data graphs,
but for some applications paths alone are no longer suffici@onsider again the database
from Figure 2.3. Here one might redefine the notion of Bacanlmer in such a way that each
collaboration witnessing it has to go through movies; doentaries will not suffice any more.
Such a query lies outside of reach of any path language, siheach point of the path one
has to check if the actors co-starred in a movie. Note that eeajunctive path queries can
not express this property, since the test has to be carriefboan arbitrary number of steps.
Therefore, in order to define such queries one needs langlageallow for patterns that are
no longer only paths, but allow testing if every point alongath has some property. Another
issue with path languages is that they are inherently hirguyfor instance, if we want to find
people with a finite Bacon number, we are asking a unary qidmn why not allow languages
to return only the source of a path or a pattern that confomtiset query?

Note that the well studied XML languag¢Path has the ability to do both of these two
things. It is also important to observe that the goakefth seems very similar to the goal
of many queries in graph databases: it describes propeftigaths and patterns, taking into
account both their purely navigational aspects as well asléita that is found in XML docu-
ments. The popularity ofPath is largely due to several factors:

¢ it defines many properties of paths and patterns that aneargléor navigational queries;

e it achieves expressiveness that relates naturally to §ekdsnguages for databases
(such as first-order logic, its fragments, or extension$ \witme form of recursion);
and

e it has good computational properties over XML, notably tmate combined complexity
for many fragments and even linear-time complexity for saiem.

A natural question then is to see if main ingredients thatendehth successful in the
context of XML can be applied on graphs. In what follows wd aildress this issue and show

135

136 Chapter 7. Graph XPath

that when applied to grapb&rath-like languages define an efficient and highly expressivescla
of queries.

There appear to be two ways to ugeath as a graph database language. The first possibility
is to essentially stick to the idea of RPQs and M&ath to describe paths between nodes,
thus making it a path language. Whi&ath on words with data is well understood by now
[Bojanczyk and Lasota, 2010, Figueira, 2010b], this ides $everal drawback. First of all,
XPath is intrinsically a graph (originally tree) language, ancewhen it is used to reason
about data words the semantics relies on defining patteegsgg. [Figueira and Segoufin,
2009], or Part | in [Figueira, 2010b]) in the same way as oedréndeed, when used over data
words XPath simply treats them as trees and is thus not a true path lapguatpther reason
not to studyXPath as a path language is that even the more general graph abmivaady
yields very efficient query evaluation algorithms (combirmmmplexity is always PiME and
for some fragments even linear). It therefore makes littfese to sacrifice expressive power for
no palpable gain in efficiency while at the same time makimgldimguage somewhat artificial.

A different approach is to applyPath queries to the entire graph database, rather than use
them to define sets of allowed paths. This is the approach wsueu To a limited extent it
was tried before. On the practical sidéRath-like languages have been used to query graph
data (e.g., [Cassidy, 2003, Gremlin, 2013]), without anglgsis of their expressiveness and
complexity, however. On the theoretical side, several mapwestigatekPath-like languages
from the modal perspective, dropping the assumption tlegtaine evaluated on trees [Alechina
et al., 2003, Marx, 2003], but most notably in [Fletcher et 2011] the authors consider an
algebra of binary relations which is the basis of our navwigetl language. It is important to
note that none of these approaches considered data vaiuesmiking them suited only to
ask queries about topology of the graph and not about thegplatethis topology has with the
stored data.

Thus, our goal is to investigate hotPath-languages can be used to query graph databases.
In particular, we want to understand both the navigationgrging power of such languages,
and their ability to handle navigation and data togetherraply databases. In this investiga-
tion, we can take advantage of the vast existing XML literaton algorithmic and language-
theoretic aspects ofPath.

We use several versions ®Path-like languages for graph databases, all of them collec-
tively namedGXPath. The core language is denoted ®¥Pathcore and is basically an adapta-
tion of CorexPath 2.0 [ten Cate and Marx, 2007, Xpath 2.0, 2010] for graphs. arredogue
of regularXpath, allowing arbitrary transitive closure, is call&XPath,eq. Like XPath (or
closely related logics such as PDL and CTlall versions oiGXPath have node tests and path
formulae, and as the basic axes they use letters from thaladptabelling graph edges. For
instance,a* - (b™)* finds pairs of nodes connected by a path that starts adges in the

7.1. The language and its many variants 137

forward direction, followed by-edges in the backward direction. Formulae may also include
node tests: for instance;|c]- (b~)* modifies the above expression by requiring that the node
where thea-labels switch tdb-labels also has an outgoirngedge. And crucially, node tests
can refer to data values and haeath-like conditions over them. For instance, the expression
a‘[=5] - (b™)* checks if the data value in that intermediate node is 5,a&f@& = b)] - (b)*
checks if that node has two outgoing edges, labedladdb, to nodes that store the same data
value.

We first study the complexity of various fragments@{Path. As it turns out,all GXPath
fragments inherit nice properties frokPath on trees due to the ‘modal’ nature of the lan-
guage: the combined complexity is always polynomial. Evemanit is always a low-degree
polynomial. In fact, the query complexity is linear for dlet fragments we consider. The data
complexity is not worse than cubic for navigatiom@XPath,eg and linear for its positive frag-
ments. With data comparisons added, data complexity bexouatgc again. We also show that
adding numerical formulas that specify length of a path eating two nodes, although mak-
ing the language exponentially more succinct [LosemannMaxdens, 2012], has no effect on
the complexity of query evaluation.

Following this we analyse the expressive power of the lagguasing the usual database
yardstick of first-order logic as our reference point. lngiout thatGXPathgere Captures pre-
cisely FG, first-order logic with 3 variables, like its analog (core &P 2.0) on trees. The
difference, though, is that on graphs BECOFO?, but on trees the two are the same. Note that
on trees there is another way of capturing FO, by mear®oflitional XPath [Marx, 2005],
which adds the until-operator. We show that on graphs thigrad conditional XPath goes
beyond FO. We also show ho@XPathreg can be captured by a parameter-free fragment of
transitive closure logic FO

Since these comparisons were done without taking datas/aite account, we next con-
sider FO that has the capability of comparing data valuespteée FG~). Although we show
that using standardPath data tests falls short of capturing FO), when same tests asRQDs
are used, the result again follows.

Finally, we establish the full hierarchy of vario@XPath fragments and variants and show
how they can be extended with conjunction, allowing us evemenexpressive power with
optimal efficiency.

7.1 The language and its many variants

We follow the standard way of defining XPath fragments [Bo@atk and Parys, 2011, Cal-
vanese et al., 2009, Figueira, 2010b, Gottlob et al., 20@5xM2005, ten Cate and Marx, 2007]
and introduce some variants@iaph XPath or GXPath, to be interpreted over graph databases.

138 Chapter 7. Graph XPath

As usual, XPath formulae are divided intath formulae producing sets of pairs of nodes, and
node testsproducing sets of nodes. Path formulae will be denoted tgriefrom the begin-
ning of the Greek alphabeti(B,...) and node formulae by letters from the end of the Greek
alphabet ¢, y,...).

Since we deal with data values, we need to deflat testspermitted in our formulas.
There will be three kinds of them.

1. Constant testsFor each data valuec€ D, we have two tests-c and+c. The intended
meaning is to test whether the data value in the current nqdal®to, or differs from,
constant.

The fragment ofsXPath that uses constant tests will be denoted3XPath(c).

2. Equality/inequality testsThese are typical XPath (in)equality tests of the fdom=)

and(a # B3), wherea andf3 are path expressions. The intended meaning is to check for
the existence of two paths, one satisfym@gnd the other satisfyin@, which end with
equal (resp., different) data values.

The appropriate fragment will be denoted®)Path(eq). If we have both constant tests
and equality tests, we denote resulting fragmentsXpath(c,eq).

3. Subexpression testIhese are used to test if a path or a subpath starts and ety

same or different data value.

The fragment in question is obtained by addiang anda_. to path expressions of our
language. These tests will be needed to provide a logicakkéor GXPath.

The corresponding fragment is denotedPath(~).

Next we define expressions GiXPath. As already mentioned, we look abre andreg-
ular versions of XPath. They both have node and path expressidode expressions in all
fragments are given by the grammar:

OW:=T | =0 [dAY [OVU [(a)

wherea is a path expression.

The path formulae of the two flavours GiXPath are given below. In both casesanges
overz.

Path expressions &tegular graphxPath, denoted byGXPatheg, are given by:

af:=el_|ala [[¢]|a-B|aup|aa’
Path expressions @ore graphXPath denoted byGXPathggre are given by:

aBi=e|_lala [a [a |[[¢]|aB|aup|a

7.1. The language and its many variants 139

We call this fragment “Core grapkPath”, since it is natural to view edge labels (and their
reverse) in data graphs as the single-step axes of the ustath>on trees. For instanca,
anda~ could be similar to “child” and “parent”. Thus, in our coraffment, we only allow
transitive closure over navigational single-step axess @ene in Core XPath on trees. Note
that we did not explicitly define the counterpart of node laests inGXPath node expressions
to avoid notational clutter, but all the results remain fifuge add them.

Finally, we consider another feature that was recently gged in the context of naviga-
tional languages on graphs (such as in SPARQL 1.1 [HarrisSsaborne, 2013]), namely
counters. The idea is to extend all grammars defining pathutare with new path expressions

a"m

for n,me N andn < m. Informally, this means that we have a path that consistofek
chunks, each satisfying, withn <k <m.
When counting is present in the language, we denote #d¥Path, e.g.,#GXPathcgre.
Given these path and node formulae, we can comixieathcore and GXPathreg With dif-
ferent flavours of data tests or counting, starting with jyunavigational fragments (neither
eq, hor ~ tests are allowed) and up to fragments allowing any comioinatf such tests. For
example #GXPathreg(c, eq) is defined by mutual recursion as follows:

op:=¢el_|ala [[¢][a-Blaup|a|a®|a™™

O, W:=-0[dAP[()| =c|#c|(a=p)[(a#P)

with ¢ ranging over constants, whi@&XPathreg(~) iS given by:

o.p:=e|_[ala [[¢][a-Blauplaja®|a=[oy
OWi=T [0 [dAW [¢VY | (a)

We define the semantics with respect to a data g@ph(V,E, p). The semantic§a]® of
a path expression is a set of pairs of vertices and the semantics of a node[tgst, is a set
of vertices. The definitions are given in Figure 7.1. In thefition, by R we mean thé-fold
composition of a binary relatioR, i.e.,RoRo...oR, with Roccurringk times.

Remark Note that each path expressiortan be transformed into a node test by the means
of (a) operator. In particular, we can test if a node hdssaiccessor by writing, for instance,
(b). To reduce the clutter when using such tests in path expressive shall often omit thg
braces and write e.@[b] instead ofaj(b)].

Basic expressiveness results Some expressions are readily definable with those we have.
For instance, Boolean operations) 3 and a — with the natural semantics are definable.
Indeed,a — B is definable asiU B, and intersection is definable with union and complement.
So when necessary, we shall use intersection and set difieia path expressions.

140

Chapter 7. Graph XPath

Path expressions
[e]® {(vv) |veV}
L]¢ {(vV) | (va,V) € E for somea}
[a]® {(vV) | (vaVv)€eE}
[a7]® {(vV) | (V,av) €E}
[a*]® = the reflexive transitive closure ¢&]¢
[a-B]® = [o]®o[B]®
[aUB]® = [a]®U[p]®
[a]® = VxV-—[a]®
[$]1° = {(wv) G | ve[$]°®}
[a™M]C = UL n([a]®)
[a-]¢ {(wv) e [a]®[p(v) =p(V)}
[o4]® {(wV) € [a]® [p(v) # p(V)}
Node tests
[()]® = m([a]®) ={v|3V (wV) € [a]°}
[T]® =V
[-¢]® = V—[o]°
[oAw]® = [o]°n [w]°
[ovw]® = [o]°U[w]°
[=c]® = {veV | p(v)=c}
[#c]® = {veV | p(v)#c}
[(a=B)]° = {veV | WV, V (wV)e[a]® (vV)e[B]%p(V)=p(V)}
[(@#B)]® = {veV | V,V (vwV)e[a]® (wV)e[B]p(V)#p(V)}

Figure 7.1: Semantics of Graph XPath expressions with respect to G = (V, E, p)

7.1. The language and its many variants 141

Counting expressiona™™ are definable too: they abbreviate--o - (aUE€)--- (aUE),
where we have a concatenatiomdimesa andm—ntimes(aUg). Thus, adding counters does
not influence expressivity of any of the fragments, since imas allow concatenation and
union. However, counting expressions can be exponentiadise succinct than their smallest
equivalent regular expressions (independent of whatterdm are represented in binary or
in unary) [Losemann and Martens, 2012]. We will exhibit aryuevaluation algorithm with
polynomial-time complexity even for such expressions witkinters represented in binary.

As another observation on the expressiveness of the lapgmage that we can define a
test(a = c), with the semanticgv | 3V (v,V) € [a]® andp(V) = c}, by using the expression
(a[=c]).

Another thing worth noting is that node expressions can limett in terms of path op-
erators. For examplé A Y is defined by the expressiofid] - [W]), while —¢ is defined by

([9]Ne).

Example 7.1.1. We next give a few examples@XPath expressions to illustrate what sort of
gueries one can ask using these languages.

1. The expressiota[b])* will simply give us all pairgx,y) of nodes that are connected by

BONE

——>o——>
X

a path of the following form:

<o—e
(en

That is, x and y are connected by ahlabelled path such that each node on the path
also has an outgoing b-labelled edge. (Nodes that are difitein the picture do not have
to be different in the graph.)

2. The expressiofaa“ # bc™) will give us all nodes x such that there are nodes y and z,
reachable by aaand bc respectively, with different data values. For example ia th
graph given in the following image the nodesand » will be selected by our query,

while x will not.

3. The expressio(a]=5| - (a]=5])*) N€) will extract all the nodes x such that there is a
cycle starting at x in which each edge is labelled by a and esmte has the data value

142 Chapter 7. Graph XPath

5. In particular the node x will have data value 5. Note thas #xample illustrates how
we can define loops usir@XPath.

To illustrate some more involved queries we come back to mwoductory example of a
movie database presented in Figure 2.3.

Example 7.1.2. 1. To find people with a finite Bacon number we simply use thg/que
e, = ((cast™ - cast)*[= Kevin Bacon)).

Similarly as in the example with path languages, the quarydrsesast edges checking
for collaborations and in the end makes sure that the actached is Kevin Bacon. Note
that this is a unary query, so we no longer have to return aold# information, such as
the node corresponding to Kevin Bacon, as we did when deuwlitigpath queries.

2. Using path negation we can also find actors who do not havaite fBacon number.
Such a query is of interest when we want to see if every actibeinlatabase does have
a Bacon number — we simply ask the query and check if the ariswenempty. The
guery is given by

e, = ((cast™ - cast)*[= Kevin Bacon|).

3. As mentioned in the introduction movie databases oftemwaearching through a spe-
cific genre, so for example we might want to find actors who hdirgte Bacon number,
but such that the collaboration is always established bytewring in movies and not
documentaries. This query is as follow:

e; = ((cast [type[= Movie]] - cast)*[= Kevin Bacon]).
This expression works in a similar way as the one for findirgy Blacon number, but

using the nesting capabilities GfXPath it also checks that the actors appear in a movie.

4. One might also be interested to find out if there are actdne Wwave a finite Bacon
number and the same age as Kevin Bacon. They can be retriesuegl the following
query:

e, = ((age ™ (cast™ - cast)*[= Kevin Bacon])_).

5. As a last example we might want to check if a movie or a dogtanehas at least two
actors starring in it. Such a query is defined by:

es = (cast # cast).

Here we simply check if there are twast edges leading from the movie such that the

actors names are different.

7.2. Query evaluation 143

Complement and positive fragments In standardXPath dialects on trees, complementation
operator is not included and one usually shows that languageclosed under negation. This
is no longer true for arbitrary graphs, due to the following.

Proposition 7.1.3. Path complementatioa is not definable irGXPathreg without complement
on path expressions.

The proof is an immediate consequence of the following alsgiem. Given a data graph
G, letV,...,Vy be sets of nodes of its (maximal) connected components (@&pect to
the edge relationhJ,cs Ea). Then a simple induction on the structure of the expressiamn
GXPathreg Without complement on path expressions shows that for equiessiorn, we have
[a]® C Ui<mVi x Vi. However, path complementati@anclearly violates this property.

In what follows, we consider fragments of our languagesrsttict complementation and
negation. There are two kinds of them, the first correspanttinthe well-studied notion of
positive XPath.

e Thepositive fragmentare obtained by removingd anda from the definitions of node

and path formulae. We use the supersasit to denote them, i.e., we WriteXPathPom

andGXPathfeg.

e The path-positive fragmentare obtained by removing from the definitions of path
formulae, but keeping-¢ in the definitions of node formulae. We use the superscript

path-pos to denote them, i.e., we writeXPathlam "**andGXPathha %S

7.2 Query evaluation

In this section we investigate the complexity of queryingmr databases using variants of
GXPath. We consider two problems. One iJQRY EVALUATION , which is essentially model
checking: we have a graph database, a query (i.e., a patessipm), and a pair of nodes, and
we want to check if the pair of nodes is in the query result.tThave deal with the following
decision problem.

PROBLEM: QUERY EVALUATION
INPUT: A graphG = (V,E),

a path expressioa, nodesv,V € V.
QUESTION: Is (v,V) € [a]®?

The second problem we consider i#€ERY COMPUTATION, Which actually computes the
result of a query and outputs it. Normally, when one dealb with expressions, one fixes a

144 Chapter 7. Graph XPath

so-calledcontext node and looks for all node¥ such thatv,V') satisfies the expression. We
deal with a slightly more general version here, where thangae a set of context nodes instead
of just a single one.

PROBLEM: QUERY COMPUTATION

INPUT: A graphG = (V,E), a path expressioa,
and a set of nodeSC V.

OuTpPuT: All V €V such that there existsvac S
with (v,V') € [a]C.

Note that in both problems we deal witbmbined complexifyas the query is a part of the
input.

For measuring complexity, we I18B| denote the size of the grapl¥,| the number of nodes
in G, and|a| (resp.,|¢|) denote the size of the path expresseofresp., node expressiap).
Note that when considering fragments with counting the sizihe counter if defined as the
number of bits representing it.

The main result of this section is that the combined complerimains in polynomial time
for all fragments we defined in Section 7.1. Not only that, thet exponents are low, ranging
from linear to cubic. Notice that for navigational fragm&nthe low (and even linear) com-
plexity should not come as a surprise. We noticed @éPathfa " "°%is essentially PDL, for
which global model checking is known to have linear-time ptexity [Alechina and Immer-
man, 2000, Cleaveland and Steffen, 1993]. Also, polynctitiad combined complexity results
are known for pure navigation@XPatheq from the PDL perspective as well [Lange, 2006].

Our main contribution is thus to establish the low combinethplexity bounds for frag-
ments that handle two new features we added on top of namigdtlanguagesdata value
comparisonsaandcounters The former does increase expressiveness; the latteneasiglre-
marked, does not, but it can make expressions exponentiahg succinct. Thus, some work
is needed to keep combined complexity polynomial when asrdre added.

We first present a general upper bound that shows that cothboraplexity of both prob-
lems is polynomial for the most expressive language we haggilar graph XPath with count-
ing, constant tests, and equality tests.

Theorem 7.2.1. Both QUERY EVALUATION and QUERY COMPUTATION problems for
#GXPathreg(c, €, ~) can be solved in polynomial time, specifically, i.e(|dd- |V[3).

Proof. Both problems can be solved in the required time by a dynansigramming algorithm
that processes the parse treedfi bottom-up fashion and computes, for every path subexpres
sion of a, the binary relatiorfB]€. Similarly, we compute, for every node subexpressjon

7.2. Query evaluation 145

of a, the set[¢]C. Clearly, if each such relation can be computed within t@{/ |3) (using
previously computed relations), both problems can be goWithin the required time. We
make one exception: we allo®(|V [2logm) time for computing[B™™]® from [B]C. This is
not problematic, since the size @™ is O(|B| + | logm|).

We discuss how to obtain the desired time bound. The algorighsimilar to an algorithm
used for evaluation regular expressions with counters aptgr (Theorem 3.4 in [Losemann
and Martens, 2012]).

The base cases for path expressions, that is, comp[fiffgwherep is one ofe, _, a, or
a~, are trivial. Similarly, the base cases for node expressitivat is, computing$]® where¢
is eitherT, =c, or #£c are trivial as well.

For the induction step we need to consider path expressfdhe éorm|[¢], B1- B2, B1U B2,

B, B*, B™™, B_, andB... Also, we need to consider node expressions of the fedmd Ay,
(B), (B1=B2), and (B # B2).

In the case of path expressions, the cd$es3: UB,, B, andP_ are trivial becausgdp]®
contains at mos\/ | elements andB]® at most|V |2 pairs. For example, fg8_ we can iterate
through[B]©, testing each of its pair@i,v) and putting it in[B_]® if and only if p(u) = p(v).

Computing[B*]® amounts to computing the reflexive-transitive closurg@jf which can
be done in timeV |2 by Warhsall's algorithm. Computinf3™™] within time O(|V [3logm) can
be done by fast squaring, as was done in Theorem 3.4 in [Losearad Martens, 2012]The
case[B]€ can be solved by first sorting the pairs frdf]® and then performing a single pass
over the sorted relation, which cosig|V |?log|V|) time.

In the case of node expressions the most interesting caséfiar B2) and (B1 # Bz).
However, computing (B; = B2)]® and [(B1 # B2)]® from [B1]€ and [B2]€ in time O(|V|?)
can be done as follows. FdB; = B,) we need to search if there exiaty,v) € [B1]¢ and
(V,v2) € [B2] © such thap(vy) = p(V). This can be tested in tim@(|V|3) similarly to how one
performs a sort-merge join. First, sort relati®nandf3, on the left attribute, which costs time
O(|V|?log|V|). Then, for each of th@/| possible values of the join attribute (in increasing
order), we can compute in tim@(|V|) the setsDy1 = {p(v1) | (%, v1) € [B1]®} and Dy =
{p(v2) | (v, v2) € [B2]®. Since bottD,; andD,, have at mosjV | elements, it can be tested in
time O(|V|?) if they have a common data value. The regifi; = B,)]€ contains allv such
that Dy N Dy2 # 0 and can therefore be computed in ti®¢V|®). The case(Py # Bo) is
similar. O

The algorithm for Theorem 7.2.1 uses cubic timéMin because it computes the relations
[B]© for larger and larger subexpressidhsf the given input expression. Therefore, the algo-
rithm uses steps that are at least as difficult as multiptinadf |V | x [V | matrices or computing

LComputing[B?]®, given[B]C, takes timeD(|V|2) and, with fast squaring, it cos&(logn) such operations to
compute[B"]€. Extending this tdp™™]C is straightforward.

146 Chapter 7. Graph XPath

the transitive-reflexive closure of a graph wjth nodes.

However, if one can avoid computing the relatidi§® for subexpressiong, the time
bound can be improved.

For the remainder of the section, we assume that there isianiiog on labels of edges and
that graphs are represented as adjacency lists such thanaabtain, for a given node the
outgoing edges or the incoming edges, sorted in increasihgr @f labels, in constant time.
(We note that the linear-time algorithm from [Alechina anadhherman, 2000] for PDL model
checking also assumes that adjacency lists are sorted follbwing result is immediate from
PDL model checking techniques:

Fact 7.2.2. Both QUERY EVALUATION and QUERY COMPUTATION problems for

GXPathf&"P*can be solved in linear time, i.e.,(@| - |G|).

Proof. Since global model checking for PDL is in linear time [Alechiand Immerman, 2000,
Cleaveland and Steffen, 1993], it is immediate thaEQY EVALUATION isintimeO(|a|-|G|).
From this, the same bound foru@RY COMPUTATION can also be derived. Given a query
and a sef, we can mark the nodes Bwith a special predicate that occurs howhere inVe
can then modify quergt and use the algorithm for global model checking for PDL toagbt
the required output of QERY COMPUTATION. O

It is straightforward to extend the algorithm of Fact 7.20Zttests, since these can be
treated similarly as edge labels.

Corollary 7.2.3. Both QUERY EVALUATION and QUERY COMPUTATION problems for

GXPathf&"P°{c) can be solved in linear time, i.e.,(@| - |G|).

7.3 Expressive power

When gauging the expressive power of query languages the coosnon yardstick is that
of FO [Abiteboul et al., 1995]. Indeed, first-order logic i€Mestablished as the core of all
relational database queries and it is often one of the gueryuage design goals to achieve
some sort of completeness with respect to a fragment of FOexample one of the governing
principles when refining the syntax of the XML query languadth [ten Cate and Marx,
2007, Kay, 2004] was to make it equivalent to FO over treethiagprovides a well established
base for adding new features, while keeping the languag@acinand easy to understand.

To this end, we will study the expressive power@fPath and its many dialects when
compared to first-order logic. We begin by showing that thiee doagmentGXPathggre With
no data value comparisons captures:F€milarly like its analogue (core XPath 2.0) does on
trees. The main difference here is that over treed &als full FO, while over graphs this is
not the case. After that we also show that for the regulanfierg an equivalent statement holds

7.3. Expressive power 147

for FO? enriched with binary transitive closure. Following that meve onto data fragments
and show that although standax&ath-like data tests fall short of the full power of FO with
data value comparisons, the equivalence can be obtaineliblra tests of the kind used in
RQDs.

It is important to note that here we compas&Path only to FO in order to pinpoint the
fragments which can be used as a logical kernel of a graplyipgdanguage. We will compare
GXPath with other graph languages in Chapter 9.

7.3.1 Expressiveness of navigational languages

Here we provide a detailed analysis of expressiveness fogatéonal features of dialects of
GXPath. To understand the expressive power of navigati@¥ath we will do two types of

comparisons:

e We compare them with FO, fragments and extensions. The angriage will capture
FO?®. This is similar to a capture result for trees [Marx, 2006k main difference is that
on graphs, unlike on trees, this falls short of full FO. Weogisovide a counterpart of
this result forGXPathreg, adding the transitive closure operator.

e We look at the analog of conditional XPath [Marx, 2005] whadptures FO over trees
and show that, in contrast, over graph databases, it caesxpueries that are not FO-
definable.

Comparisons with FO and relatives To compare expressiveness@{Path fragments with
first-order logic, we need to explain how to represent gragthlshses as FO structures. Since
all the formalisms can express reachability queries (&t ledth respect to a single label), we
view graphs as FO structures

G= <V7 (Eaa Ea*)aez>

whereE; = {(v,V) | (v,a,V) € E} andEg: is its reflexive-transitive closure.

Recall that F® stands for thek-variable fragment of FO, i.e., the set of all FO formulae
that use variables from a fixed set,...,x. As we mentioned, on trees, the core fragment
of XPath 2.0 was shown to capture BOWe now prove that the same remains true without

restriction to trees.
Theorem 7.3.1. GXPathcore = FO? with respect to both path queries and node tests.

Proof. To prove this we use a result of Tarski and Givant from [Taaski Givant, 1987] stating
that relation algebra with the badisof binary relations has the same expressive power as first
order logic with three variables over the signatref binary relations and equality.

148 Chapter 7. Graph XPath

As we will be using a slight modification of the result foundTarski and Givant, 1987] we
give precise formulation here. The proof of this versionhaf tesult can be found in [Andréka
et al., 2001] (see Theorem 1.9 and Theorem 1.10).

First we formalize relation algebras. L&t= {Ry,...,Ry} be a set of binary relation sym-
bols. The syntax of relation algebra oveis defined as all expressions built from base relations
in A using the operatorSJ,U,o,(-)‘, denoting union, complement, composition of relations
and reverse relation. We are also allowed to use an atomibaich denoting identity.

Our algebra is then interpreted over a structite= (V,RY,... R¥) where allRM are
binary relations ovey?. Interpretations of symbols,@,o,(-)‘ andld is the standard union,
complement (with respect ¥?), composition and reverse of binary relatiotd.is simply the
set of all(v,v) wherev € V. We will write (a,b) € RM, oraRb, when the paifa,b) belongs

to relationR defined ovel with relationsR; interpreted af.

Theorem 7.3.2([Andréka et al., 2001]) Let A= {Ry,...,Ry} be a set of binary relation
symbols.

e For every expression R in relation algebfa, U, (-),o,(-)~,1d) there is an FG formula
in two free variableshr(x,y), such that for every structure M (V,RY,...,R") we have

{(ab):aR"b} = {(a,b) : M = drlx/a y/b]}.

e Conversely, for every Fformulad(x,y), in two free variables, there exists a relation
algebra expression Rsuch that for any structure M- (V,RY,...,RM) we have

{(ab): M E¢[x/ay/b]} = {(ab) :aR}'b}.

Note that we view a graph databaSe= (V,E) as a structure over the alphabet of binary
relationsEy, E4+, Wwherea € . Then a graph database is interpreted as a model

M= (V,(EM EM):ae), where
Ea={(wV):(vaV)€E}

andEg is its reflexive transitive closure. Note that the Tarski#Bit result states something
stronger, namely that the equivalence will hold over anycstire, no matter i&* is interpreted
as the transitive closure afor not. This means that it will in particular hold on all theusttures
where it is, and those are our graph databases.

First we give a translation fror@XPathore into FO3. That is, for every path expression
e, we provide a formuld(x,y) in two free variables such that for, any graph datab@se
(V,E), we have[e]® = {(v,V) € G: M |= Fe[x/v,y/V]}, whereM = (V, (EM EM):a€ %) and
Ea={(vV): (vaV) € E} andEx its reflexive transitive closure. Similarly, for every node
expressionp, we define a formuléy (x) in one free variable. The definition is by simultaneous

induction on the structure @XPathcqre €XpPressions.

7.3. Expressive power 149

Base cases:
e e=athenFky(X,y) = Ea(X,y)
e e=a’ thenF(X,y) = Ea (X,Y)
e e=a thenFk(x,y) = Ea(y,X)
e e=(a)*thenFs(X,y) = Ex (Y, X)
e ¢ =T thenFe(X) =x=x.
Inductive cases:
o =[] theFe(X,y) = (x=Y) AFp(X)
o e=a-BthenFe(x,y) = Iz(Fa(X,2) A IX(X = ZA Fg(X,Y)))

e e=aUBthenFg(xy) =Fu(x,y) VFg(X,y)

& =~ thenFy (x) = ~Fy(¥
o & =AY thenFy(x) = Fy(X) A Fy(X)
o O = () thenFy(x) = IyF(Xy)
o 6= thenFe(x,y) = ~Fu(X,y).

The claim easily follows. Note that we have shown that ouresgions can be converted
into FOS over a fixed interpretation of relation symbols appearingunalphabet (that is when
Es+ = (Ea)*). The result by Tarski and Givant is stronger, since it hd@sany interpreta-
tion. Note that this does not invalidate our result, sinceane interested only in this fixed
interpretation of graph predicates.

To prove the equivalence GfXPathcore With FO? we now show that every relation algebra
expression has an equivalgbXPathqqre path expression.

First we show how to convert every relation algebra query ar equivalenGXPathegre
expression over graph databases. To be more precise, wetkabfor any relation algebra
expressiorR over the signaturéE,, Ex)acs there is a path expressiag of GXPathcoresuch
that for any graph databage= (V,E) it holds that[eg]® = {(a,b) € R™}. HereM is obtained
from G as before. In particular we assume that is the reflexive transitive closure &f. We
do this inductively on the structure of RA expressidhs

Base cases:

o If R=E;theneg=a.

150 Chapter 7. Graph XPath

o If R=E4; theneg = a*.
o If R=1d theneg =¢.

Inductive cases:
o If R=RiURythenegr = eg, Ueg,.
o If R=RioRythener =eg, - €R,.
e If R=S thenegr= (es)".

e If R=Stheneg =¢s.

To show the equivalence betweRr= S~ andeg = (es)~ we need the following claim.

Claim 7.3.3. For everyGXPathcore path expression e there is@XPathcqre €Xpression e such
that [e ¢ = {(v,V) : (V,V) € [€]®}, for every graph G.

The proof of this is just an easy induction on expressions. sifgply push the reverse
onto atomic statements. Note that this is the reason why wagtasimply drop the converse
operators from our syntax.

All the other equivalences follow from the definition and thductive hypothesis.

Now let (x,y) be an arbitraryr O3 formula. By Theorem 7.3.2 we know that there is a
relation algebra expressidy equivalent tap over all structures that interpréa, Ex- :ac Z}.

In particular it is true over all the structures whéig = (E;)*. By the previous paragraph we
know that there is &XPathcore EXpressioreg, equivalent taRy.

In particular this means that for every graph datatase(V, E) it holds that for the model
M= (V,(E4,Ea) : a€ %), derived fromG, we have the following:

{(ab):M [¢x/ay/b]} ={(ab): (ab) e RY}.

On the other hand, we also have:

[er,]° = {(a,b) : (a b) € RY'}.

Thus we conclude that
{(a,b) :M = d[x/a,y/b]} = [er,]

The previous part shows equivalence between path expnsssiwl formulas with two free
variables. To deal with formulas with a single free variable) we do the following. Define
F'(x,y) = x=yAF(x). Note thatF’ selects all pairgv,v) such that=(v) holds. Now find an
equivalent path expressian(we know we can do this by going through relation algebra) and
lete= (a). O

7.3. Expressive power 151

Not all results about the expressivenesxpBéth on trees extend to graphs. For instance,
on trees, the regular fragment with no negation on paths (he path-positive fragment) can
express all of FO [Marx, 2005]. This fails over graphGXPathreg fails to express even all
of FO? when restricted to its path-positive fragment (i.e, theifnent that still permits unary
negation).

Proposition 7.3.4. There exists a binarfFQ? query that is not definable iBXPathia P

Proof. The idea is to observe that path-positive fragmentsXf#ath cannot define the univer-
sal binary relation on an input graph. The query not definabxPathiay **Sis then the one
saying that there are at least two nodes in a given graph.

Formally, let@(x,y) = Ix3y(-x=y). Itis easy to see thdth]® = {(x,y) : (x,y) € V?} if
G = (V,E) has at least two nodes afig® = 0 otherwise. (Notice that the variablgsy in
are immediately “overwritten” by the existential quantfion.)

Consider the graph&; = ({v,V'},0) and G, = ({v},0). That is, we have no edges. It
follows that [W]® = {(v,V),(V,v)} and [W]® = 0. It can be shown by induction on the
structure of pathGXPathfa ***expressions that we either have tfiaf® = {(v,v), (V,V)}
and[a]® = {(v,v)}, or [a]® = 0 and[a]®2 = 0. Similarly for node expressions it can be

shown that eithef¢]®: = G; and[¢]®2 = G, or [¢] = 0 and[$]2 = 0. O

We now move taGXPatheg and relate it to a fragment of FOthe parameter-free fragment
of the transitive-closure logic. The language of*Féxtends the one of FO with a transitive
closure operator that can be applied to formulas with peécisvo free variables. That is, for
any FO formulaF (x,y), the formulaF*(x,y) is also an FO formula. The semantics is the
reflexive-transitive closure of the semanticsFof That is,G = F*(a,b) iff a=b or there is a
sequence of nodes= vy, Vs, ...,Vy, =bfor n> 0 such thaG = F (v;,Vi;1) whenever G<i < n.

By (FO")k we mean thek-variable fragment of FQ Note that when we deal with FO
and(FO*)K, we can view graphs as structures of the vocabulBR)acs, since all theE,s are
definable, and there is no reason to include them in the lgyegesplicitly.

Over trees, regular XPath is known to be equalf®@")3 [ten Cate, 2006]. The next
theorem shows that over graphs, these logics coincide as wel

Theorem 7.3.5. GXPathreg = (FO*)3.

Proof. The containment o XPathregin (FO*)3 is done by a routine translation.

To show the converse, we use techniques similar to those iprtof of Theorem 7.3.1: we
extend(FO*)2 and relation algebra equivalence to state that relatiogbatgwith the transitive
closure operator has equal expressive powéF@)3 over the class of all labeled graphs. For
this one can simply check that the inductive proof from [A¢ldr et al., 2001] can be extended
by adding two extra inductive clauses. Namely, when goingnfrelation algebra to Fowe

152 Chapter 7. Graph XPath

simply state that expressions of the foRhare equivalent t&5 (X, y), whereFg is the formula
equivalent taR. In the other direction we simply state tHat(x,y) is equivalent tqRe (x,y))*.
Here byRe (x,y) we denote the expression equivalenE{e,y), when the variables are used in
that particular order. After that one verifies that the cctmess proof of [Andréka et al., 2001]
applies. O

What about the relative expressive poweGXPathcore andGXPathreg? For positive frag-
ments, known results on trees (see [ten Cate and Marx, 200}y the following.

Corollary 7.3.6. GXPathfore C GXPathlesy.

We shall now see that the strict separation applies to fajlages. This is not completely
straightforward even thoughXPathqre iS equivalent to a fragment of FO, since the latter uses
the vocabulary with transitive closures. This makes it batw apply standard techniques,
such as locality, directly. We shall see how to establislas®on by taking a detour through
conditional XPath.

Conditional GXPath It was shown in [Marx, 2005] that to capture FO over XML trease
can useconditional XPath, which essentially adds the tempouatil operator That is, it
expands the core-XPatheg with (a[$])*, which checks that the tefii] is true on ara-labeled
path. Formally, its path formulae are given by:
a.p = e|_lala |a|a | (alp) | (@ [¢])"|[¢]|a-Blaup|T

We refer to this language a&xPathcong We now show that the FO capture result fails
rather dramatically over graphs: there are even posiiNBathcong queries not expressible in
FO.

Theorem 7.3.7. There is aGXPathlo, query not expressible iRO.

Note that the standard inexpressibility tools for FO, susHagality, cannot be applied
straightforwardly since the vocabulary of graphs alreaahtains all the transitive closurés:;
in fact this means that iGXPathfo., the query asking for transitive closures of base relations
is trivially definable, even though it is not definable in FGeptheEzs. So the way around
this is to combine locality with the composition method: vee locality to establish a winning
strategy for the duplicator in a game that does not involaeditive closures, and then use

composition to extend the winning strategy to handle ttasstlosures.

Proof. To prove this we will need several auxiliary results.

Let = = {a,b,0,1} be an alphabet of labels. We define a classf Z-labeled graphs as
follows.

Take any graplt = (V,E) over the singleton alphabéa} of labels. Fix two nodes andt
in G. Let G€(s,t) be the graph obtained frof@ as follows. First, it contains all the nodes and

7.3. Expressive power 153

edges of5. For every node # s,t in G we add a new nod# and an edgév, b, \°) to G€(s;t).
We also add two new nodes, andty, together with edge&s, 0,s) and(t,T,tp), coming intos
and leaving. These nodes and edges are added to distinguasidt in our graph. Finally, we
add one extra node calley and for every other node iB¢(s,t) we add two edges, one going
into A and the other returning fror to the same node, both labeladNow add thisG¢ (s;t)

to C. The modifications are illustrated in the following image.

Also defineC~ to be the class of graphs that are obtained from the graptisbiy removing
the nodeA and all the associated edges.
Now let the propertyP stand for

e t is reachable fronsvia a path labeled witkalb])*.

That is,t is reachable frons by a path that proceeds forwards dyabeled edges, but also has
to have & labeled edge leaving every internal node on the path.
To obtain the desired result we will first prove the followicigim.

Claim 7.3.8. The property P is not expressible inFO in vocabulary
{Ea, Ep, Eq, Er, Ea+, By, Eg+,Er+ } Over the classC. Here, as before, we assume that E
is the reflexive transitive closure of Hor ¢ € {a,b,0,1}.

To prove this claim we will use Hanf-locality and compogitiof games. For the proof we
use three lemmas.

In the first one, we use the standard notion okgghborhoodf an element in a structure,
and the notion of Hanf-locality. For details, see [Libki§Q2]. Specifically, for two graphs
G, G?, we writeG! 54 G2 if there is a bijectionf between nodes dB! and nodes 06?2 (in
particular, the sets of nodes must have the same cardinaiigh that the radiud-neighbor-
hoods of each nodein G* and f (v) in G? are isomorphic. The radiuneighborhood around
vis the substructure generated by all nodes reachablevflipna path (using all types of edges)
of length at mostl.

Locality is meaningless over structuresgnsince every two nodes are connected by a path
of length 2, so=, is isomorphism. This is why we get the result in several steps

154 Chapter 7. Graph XPath

Lemma 7.3.9. For every d> O there exist two graphs $zand G, as structures of the vocabu-
lary {Ea, Ep, Eg, Er}, in €~ such that G <4 G3 and G satisfies P, while &does not.

Proof. To see this take arbitrargt and let the graph&} and G5 be as in the following two
images. All the labels on the circles agthe incoming edges froms to thess are labeled
o, the outgoing edges from the totgs are labeled, and the edges from ths to the\’s are
labeledb.

b
Vo © W
Nt]
. S
X \Y;
\/2d+2 L . \})
Vagy1 7 20HL
) .
VP e, Vi Vad+2 -1/" Vags2
/b Y up ! b
Uy o -k\ 2d+2 1. - U7
/
u’b _/' Uogr1
2d+1 ,
U ¢ Yads2.-
ST
/b b
uy to Uxqgi2
1
Graph G
/b b
b 50 P Ug 2 up
20+2 1 \ f
' ° ' >,
\./S\'/ 'u/ Uy
\/2d+2 I . Yd42
) . LU
1
. \/1 Vod+2. . t o Uxg+2
/.V.\ ./ \./ \.
) ’ up l VI
b +
\/1 Vt2)d+2 to
Graph G3

Now let f : G} — G3 be the bijection defined by the node labels in the natural wagh node
gets mapped to the one with the same name in the other graphisiie seff (s) :=s, f(v;) :=
vi, thenf (V) := VP and similarly forv/, u;, etc.

To see thaG} =4 G3 we have to check\IdGé(c) = Nfg(f(c)) for everyc. But this is now
easily established, since tdeneighborhood of ang and f (c) will simply be extended chains
of lengthd aroundc and f(c). In particular, it is possible that they intersect theeighborhood

7.3. Expressive power 155

of eithersort, but never both. We thus conclude that they will always benmghic, giving
us the desired result. O

Now from Lemma 7.3.9 and Corollary 4.21 in [Libkin, 2004], it shows that Hanf-
locality with a sufficiently large radius implies the wingirstrategy for the duplicator in an
Ehrenfeucht-Fraissé game, we obtain the following.

Lemma 7.3.10. For every m> 0 there exists ¢> 0 so that C%j =m Gg.

As usual, by=p, we denote the fact that duplicator has a winning strategyhimaound
Ehrenfeucht-Fraissé game. This game is still played owrtstres in the vocabulary that does
not use transitive closures.

Now let G} and G3 be obtained fronG} and G3 by adding, as in the picture above, a
nodeA with a-edges to and from every other node. We view these graphsuasuses of the
vocabulary that has all the relatio&s andE,- for each of the four labelé we have. Next, we

show
Lemma 7.3.11.1f G} =, G3, thenG} =, G3.

The strategy is very simple: the duplicator plays by copyimg moves from the game
G(lj =m G§ as long as the spoiler does not play th@ode. If the spoiler plays th&-node in
one structure, the duplicator responds with Ahrode in the other. We now need to show that
this preserves all the relations. Clearly this strategggmees all the relations, among nodes
other than theA-node, simply by assumption. Moreover, sirlee = E, for ¢ # a, we have
preservation of the transitive closures other than tha,cdis well. So we need to prove that
the strategy preservéds;, but this is immediate since in both grapBsg is interpreted as the
total relation. This proves the lemma.

The claim now follows from the lemmas: assume tRat expressible in FO, over the
full vocabulary, by a formula of quantifier rank. Pick sufficiently larged to ensure that
Gl =n G3. ThenG] andG3 must agree ofP, but they clearly do not, since the extra paths
introduced in these graphs comparecqbandeg go via theA-node, which does not have a
b-successor.

Now to prove Theorem 7.3.7 consider a conditional graph XRapressioro(alb])*[t].
Over graphs as considered here it defines precisely thenydpeavhich, as just shown, is not
FO-expressible in the full vocabulary. O

We can now fulfill our promise and establish separation bet@XPathcore aNdGXPathyeg.
Since GXPathcqore € FO and we just saw a conditional (and thus regutaxXPath query not
expressible in FO, we have:

Corollary 7.3.12. GXPathcore & GXPathreg.

156 Chapter 7. Graph XPath

7.3.2 Expressiveness of data languages

We saw that for navigational features, core graph XPathucapt=G. The question is whether
this continues to be so in the presence of data tests. Fiesheed to explain how to describe
data graphs as FO-structures to talk about FO with data tests

Following the standard approach for data words and data [Ssgoufin, 2007], we do so
by adding a binary predicate for testing if two nodes holdghme data value. That is, a data
graph is then viewed as a struct@e-= (V, (Ea, Ea-)acs, ~) wherev ~ V iff p(v) =p(V). To be
clear that we deal with FO over that vocabulary, we shallexri®(~). If we want to talk about
constant data tests (i.e=¢), we make the language two-sorted, adding another domaifafa
values and using a separate set of constant symbols. Inabate shall refer to HO, ~).

It turns out that the equivalence with B®reaks when we consider XPath style data tests.

Theorem 7.3.13. & GXPathore(eq) C FO3(~);

e GXPatheore(c,eq) € FO3(c,~).

Proof sketch The first containment uses the translation inta® Bown in the proof of
Theorem 7.3.1. For the new data operators, we use the fopvifie = (a = 3) then

Fe(X) = 3y, 2(y ~ ZAFa(X,Y) A Jy(z=yAFg(x,Y)))

and likewise for the inequality comparison.

Translation of constants is self-evident.

To prove strictness we show that the ¥@Query F(x,y) = x ~ y is not definable in
GXPathreg(c,eq). Note thatF defines the set of all pairs of nodes carrying the same data
value. The proof of this is implicit in the proof of Propositi 7.3.14. O

Thus, the standard XPath data tests are insufficient foudagt FO® over data graphs.
This naturally leads to a question: what can be added to dsts tio capture the full power of
FO®? The answer, as it turns out, is quite simple: we need to wsedime sort of data value
tests as in RQDs.

Recall that these are defined by adding two expressions tgrémemar fora: one iso_,
the other isn.. Semantics, over data graphs, is

[a-]® = {(wV)e[a]®|p(v)=p(V)}
[04]¢ = {(wV)e[a]®|p(v) #p(V)}
In other words, we test whether data values at the beginmdgaathe end of a path are the
same, or different. As mentioned before, such an extensidenoted by-, i.e. we talk about
languagessXPath(~) (with the usual sub- and superscripts).
The first observation is that these tests indeed add to thessipeness of the languages.

Proposition 7.3.14. The path query a, for ac Z, is not definable irGXPatheg(c,eq).

7.3. Expressive power 157

Note that this querya_, is definable on trees by tl@XPathcore(eq) query[(e =a)]-a-[(e =
a)|. Thisis because the parent of a given node is unique. Howavegraphs this is not always
the case, and thus new equality tests add power.

Proof. Here we prove that even thou@XPatheg(c,eq) can test if a node has aasuccessor
with the same data value by the means of expres&eca a), which will return the sefv
V |3V €V and(v,V) € [a_]®}, it has no means of retrieving that specific successor.

We will first prove the result without constant tests.

To prove that. is not expressible iGXPathreg(eq) over graphs we will give two graplts;
andGy, such thafa_]®t # [a_] 2, but for everyGXPathreq(eq) queryewe have]e]t = [€]®2.

Both G; andG, will be the graph€g, that is the complete graphs with six vertices and with
data values 2,2,3,3,3 and 22,3, 3, 3,3, respectively, attached to the nodes. All the edges in
bothG; andG; are labelleda. The graph$s; andG, are pictured in the following image.

Ve Vg Ve Vs

7 <7
\/ \/

Vi V4 Vi

AN A

V3 V2

V4

V2 V3

Gy G2

It follows from the definitions thatvs, v3) € [a_]®, while (v, v3) ¢ [a~] 2. We conclude
that[a_]® # [a_] .

We now show that for angXPathreg(eq) querye we have[e]®t = [€]®2. In particular we
show the following:

e For any path querwy one of the following holds:
- [a]® =[a]® =0, or
- [a]® = [o]® = 1d(Gy), 0
- [01% = [a]
I

- [[(X]]Gl = [[G Gz — Gl — |d(Gl)

G2 = G;?, or

e For any node querg one of the following holds:

— [0]% =[¢]* =0, or
— [6]® = [6]% = Ga.

158 Chapter 7. Graph XPath

As beforeld (G;) stands for the s€f(x,x) : x € G1}. Note that since the sets of nodesGf
andG; are the same (and the graphs are not isomorphic because difffient data values),
we can write[¢]®2 = G; and other claims.

We prove this claim by induction on the structure of @XPatheq(eq) expressiore.

The base cases trivially follow. For the induction step awsthat our claim is true for the
expressions of lower complexity. We proceed by cases.

e If a = [¢] then by the inductive hypothesis we have two cases.

— Either [¢]® = [¢]®? = 0, in which casda]® = [a]®2 =0,
— Or [¢]® = [¢]®? = Gy, in which casda]® = [a]® = 1d(Gy).
e If a =0’ Up then the claim follows from the induction hypothesis andftw that the
set{0,G;2,G1%2 —1d(Gy),1d(Gy)} is closed under taking unions.
e If a=a’-p we proceed as follows.

Note first that[a]®: = 0 iff [a’]® = 0 or [B']® = 0 (this follows from the inductive
hypothesis about the structure of the answers, since forotmsr case the sets have
nonempty composition). This is how equivalent to the saniegoeue inG, and thus to
[a]® = 0.

If [a]® # 0 then we know that botHa’]® and [B']®* belong to {G;1? G2 —
Id(G1),1d(G1)}. The claim now simply follows from the inductive hypothesisd the
fact that the sefG12,G12 — 1d(Gy),1d(Gy)} is closed under composition of relations.

e If a = a’ we have four cases.

In case thafa’]®: = [a’]®2 = 0 we have[a]® = [a]®? = G,2.

In case thafa’]® = [a’]®2 = G1? — 1d(G;) we have[a]® = [a]® = 1d(Gy).

I

In case thafa’]®! = [a']®2 = G;2 we have[a]®: = [a]®2 = 0.
I
I

In case thafa’]®* = [a’]®? = 1d(G;) we have]a]® = [a]® = G;2 - 1d(Gy).

¢ If o = a’* we have the same situation as in the previous case. In gartize know that
transitive closures in each case will be the same.

If & =—¢ we have the following.

— In case thaf$/]® = [¢']%2 = G; we have[$]® = [¢]%2 = 0.
— In case thaf¢/]® = [¢']%? = 0 we have]$p]® = [$]% = G;.

If & = ¢’ Ay the claim easily follows.

If ¢ = (o) we consider the value dtx]C:.

7.3. Expressive power 159

— In case thafa]®: = [a] %2 = 0 we get[¢p]: = [$]%2 = 0.
— In case thafa]® = [a]®2 = G;2,1d(Gy), or G1? — 1d(Gy) we get[$p]Cr = [¢] %2 =
Gi.
e If ¢ = (a = PB) we proceed by cases, depending of the valufp@f: and[B]C:.
Note that if either equal® we get thaf|¢]® = [¢]®? = 0. There are now nine possible

cases remaining.

1. [a]® = [a]® =1d(Gy) and[B]* = [B]* = 1d(Gy) implies thaf$p]* = [¢] 2 =

Gs.

2. [a]® = [a]® = 1d(Gy) and[B]® = [B]®2 = G12 implies that[$]®* = [¢]®> =
G.

3. [a]® = [a]® = 1d(Gy) and[B]® = [B]®? = G1? — 1d(Gy) implies that[$p]Cr =
[6]%2 = Ga.

4. All the remaining cases have the same result.

e If ¢ = (a # B) we proceed by cases, depending of the valupdf: and[B]®:.

Note that if either equal® we get that[¢]® = [¢]%> = 0. Just as forla = B) we
have nine cases. It is easily verified that we hfpg®: = [¢]%? = G; for each case,
except wherfa]® = [a]® = 1d(G;) and [B]® = [B]®? = 1d(G;). In this case we get
(4] = [9]% = 0.

To extend the induction to work for constants, we assume onérary. Let thee be an
expression defining_. We exchange the data values 2 and 3 in our gr&ahand G, by any
two data values that do not appear as constangs The proof is now the same as in the case
without constants.

This completes the proof. O

With the extra power given to us by the equality tests, we eqture FO over data graphs.
Theorem 7.3.15.GXPatheore(~) = FO3(~).

Proof. We follow the technique of the proof of Theorem 7.3.1. All béttranslations used
there still apply. The proof that relation algebra is camedi in the languag&XPathcore(~)
is the same as without data values. We only have to add caomessthe new symbok-: if
R=~, thene=¢U(g)-.

For the other direction we have to show how to translate netv @epressionsi_ anda..
into FO}(~). This is done as follows: i€ = a_ thenFg(x,y) = Fq(X,y) AX ~y and likewise
for inequality. The equivalences easily follow. Now thedhem follows from the equivalence
of relation algebra and FQTarski and Givant, 1987]. O

160 Chapter 7. Graph XPath

By adopting the technique used in Theorem 7.3.5 it is stthighiard to see that the previ-
ous result extends ©XPathyeg(~).

Theorem 7.3.16.GXPathyeg(~) = (FO*)3(~).

As mentioned before, one could also allow constant testseifieinguage. It is then easy to
see that the equivalence extends to FO with constants.

Corollary 7.3.17. e GXPathggre(c,~) = FO(c,~).

7.4 Hierarchy of the fragments

By coupling the basic navigational languagessPathcore and GXPathreg — With various
possibilities of data tests, such as no data tests, conttars, XPath-style equality tests,
RQD equality tests, or all of them, we obtain sixteen langsaganging fromGXPathcgre
to GXPathreg(c,eq,~). Recall that adding counting does not affect expressignasgy the
complexity of query evaluation.

The question is then, how do these fragments compare to ¢gaet?o

First thing we note is that some of the fragments collapsend&lg from Theorem 7.3.15
we know that everyGXPathcore(eq) query can be expressed GXPathcore(~), and the same
holds for regular fragments using Theorem 7.3.16.

To perform such a transformation explicitly we simply needghow how to convert every
test of the form{a =) to one using only= comparisons fronGXPathcoe(~) and that the
same can be done for inequality. It is not difficult to see &watry node expression of the form
(a = B) is equivalent taGXPathcore(~) expressiona - (o~ -B)= -~ Ne), and similarly for.

Therefore we can conclude that any fragment where bgthnd ~ data tests are present
collapses to the one with only. For examplesXPathcere(eq, ~) is the same aSXPathgore(~)
and so on, bringing the number of possible fragments to wvelv

Next we establish the full hierarchy of the remaining fragitse

Theorem 7.4.1. The relative expressive power of graph XPath languages adth compar-

isons is as shown below:

7.4. Hierarchy of the fragments 161

GXPathreg(C, N)

GXPathreg(c,eq)
GXPathcore(C, N) GXPathreg(N)
GXPathgore(c, €q) GXPathyeg(eq)

prathcore(N)

GXPathcore(c) GXPathreg

GXPathcore(eq)

Here a line upwards means that the lower fragment is strictptained in the upper other,
while the lack of the line means that the fragments are incoaipe.

Proof. The result follows from Corollary 7.3.12 (for navigatidrieagments), the fact that
~ comparisons subsume usuébath-style tests, and the following two observations which
show thatc tests anceq or ~ tests are not mutually definable. Namely, take an alphabet
containing letter. Letc be a fixed data value. Then:

e There is NnaGXPathreg(~) expression equivalent to tt&XPathcore(c) queryq. := (= c).

e There is naGXPathreg(c) expression equivalent to ti&XPathcore(eq) queryQeq := (a#
a).

For the first item, simply take two single-node data gra@hsand G,, with G;'s single
node holding value, andG; holding a different value’. Hence,[q.]* selects the only node
of Gy, while [g.]®2 = 0. However, a straightforward induction on the structurexgfressions
shows that for evergXPathreg(~) querye we havele]t = [€] 2.

For the second item assume that there iS&Patheg(c) expressiorex equivalent tageg.
Take any three pairwise distinct data valxeg z that are different from all the constants ap-

pearing inexand letG; andG; b\(/el as below: Vi

V2 V3 V2 V3

Gl G2
One can show by straightforward induction GXPathreg(c) expression that use only con-
stants appearing iexthat[e]: = [€]®2. Thus,geq cannot be &XPathreg(c) €Xpression, since

[[qeq]]Gl # [[qeqﬂGz-

162 Chapter 7. Graph XPath

Note that this also shows thaGXPathcore & GXPatheore(c) and GXPatheore &
GXPatheore(€q). O

As shown in Proposition 7.1.3, the path positive and thetpesfragments are strictly
contained in the full language. When comparing variousigtapguages later in Chapter 9 we
will also show that the positive fragment can not expressnuehation (see Theorem 9.2.3).
Furthermore, when considering query containment probte@hapter 10 it will be important
to distinguish between fragments that use explicit indguabmparisons from the ones that
compare data values for equality only. A subfragment ef ragment using only equalities
(that is subexpressions of the formy. are not permitted) will be denoted by_, while the
corresponding subfragment okg fragment will be denoted byqg_. The following theorem
establishes the hierarchy of such fragments. It is impotanote here that in the absence of
path negation one can no longer simuledetests using the- tests. Note that in order to avoid

notational clutter we disregards constants in this corspari

Theorem 7.4.2. The relative expressive power @KPathcore fragments based on restricting
negation in navigational features or data comparisons igegibelow.

GXPathfore(eq_) GXPathfore(~—)
\ /

GXPathlo%(eq) GXPathPah PYeq_) GXPathPam P ~_) GXPathlore(~)
e RN
GXPathES}Q'pOS(eq) GXPathcore(eq—) GXPathcore(~=) prathggﬁg-pos(,v)

\
GXPathcore(eq) GXPathcore(~)

Here a line from one fragment to another signifies that theamfragment is contained in the
target one. An analogous set of results holdsGatPathyeg.

Proof. As just discussed, the positive fragments are strictlyaioet in the path-positive ones.
Furthermore, by Proposition 7.1.3 we know that the pathtipesfragments are strictly con-
tained in the full language allowing negation over paths.

From Theorems 7.3.15 and 7.3.13 we also get that when pattioegs present- frag-
ments subsume the ones wittptests.

To show thakeq_ fragment is contained in they we simply need to take a grajy with
two nodes holding the same data value, connected ba-labelled edge in both directions
and a graphs,, this time with two nodes holding different data values,iagannected by

7.5. Conjunctive Graph XPath queries 163

a-labelled edges. Both graphs also have self loops labalfedeach node. A straightforward
induction onGXPathcore(eq_) expressions shows that the result of any expression is the sa
on both graphs. However, thia # €) differentiates the two. The proof fer_ and~ is similar.

To see that with the presence of path negatiomtheragment can define.. observe that
o is equivalent tar— N a.

Also, Proposition 7.3.14 and the discussion before Theofgehl implies that
GXPathcore(€q-) is strictly contained irGXPathgore(~~). O

Note that some of the inclusions in Theorem 7.4.2 are notgutde be strict. We do
however conjecture that all of the unmarked inclusions radeed strict.

7.5 Conjunctive Graph XPath queries

In order to obtain a more practical language one often defingass of conjunctive queries

based on a well selected set of primitives [Abiteboul etl95]. Here we define the class of

conjunctiveGXPath queries and analyse query evaluation bounds induced bgxitéasion. In

particular we show that the complexity is the best possibleght of CRPQs.
ConjunctiveGXPath queries are defined as expression of the form:

Angz) = A aily)A AN wix), (7.1)

1<i<m 1<j<nt
wherem,m’ > 0, eacha; is a path expression, eadl) a node expression, arms a tuple of
variables among andy. A query with the headng) (i.e., no variables in the output) is called
aBooleanquery.

These queries extend their base atoms with conjunction,eisaw existential quantifica-
tion: variables that appear in the body but not in the head, {fariables irk andy but notz)
are assumed to be existentially quantified.

The semantics of a conjunctiv@xPath queryQ of the form (7.1) over a data grafgh=
(V,E,p) is defined as follows. Given a valuation: U, <j<m{%,¥i} UUi<j<m{Xj} =V, we
write (G,v) = Q if (v(x),v(yi)) is in [ai]®, for eachi = 1,...,m andv(x;) € [y;]®, for
j=1,....m. ThenQ(G) is defined as the set of all tuple$z) such thatG,v) =Q. If Qis
Boolean, we [eQ(G) be true if(G,v) = Q for somev (that is, as usual, the empty tuple models
the Boolean constant true, and the empty set models the &ootmstant false).

Example 7.5.1. Coming back to the example with actors and movies or doclariestthey
appear in (Figure 2.3), we can now ask for people who haveabolated both with Kevin
Bacon and Paul Erd6s. This query is defined by:

Q(X) = (X, (cast™ - cast)”[= Kevin Bacon],y) A (X, (cast™ - cast)*[= Paul Erdés], z).

164 Chapter 7. Graph XPath

Note that this query is expressible GXPath with no conjunction (by using intersection),
however, the syntax used by conjunctive queries is moreiwetuespecially when one needs
conjunction of three or more conditions. As we show in Se@i@, conjunction of four condi-
tions is no longer expressible in the base language.

If the database is further extended to include people whe lsawvritten papers, we could
also express query returning people with a finite ErdéseBanumber. For this the second
conjunct in the query Q would simply change(xp(author~ - author)*[= Erdés]|, z), where an
author edge connects each paper with one of its authors.

As before, we study data and combined complexity of the gegajuation problem, i.e.
checking, for a quer®, a data grapls and a tuple of nodeg, whetherv € Q(G) (for data
complexity the quer@ is fixed).

Theorem 7.5.2. e Data complexity for conjunctiveXPath queries is inPTIME.
e Combined complexity i P-complete.

The data complexity bound easily follows from query evabratbounds forGXPath
queries. For combined complexity we do the standard guebstaetk algorithms, using again
the fact that the language can be evaluated invieT The NP lower bound follows from the
result for CRPQs [Barcel6 et al., 2012b].

7.6 Summary

As we have seen in this chapter there are many flavours arahtanfGxPath, defined by the
set of navigational properties or data value tests they $alying them leads to a conclusion
that all of them posses several desirable properties. Nameéry evaluation is always in
PTiME, and several linear-time fragments can be isolated. Fumihiee adding conjunction
does not increase the complexity above that for CRPQs — thplest class of conjunctive
queries over graphs. Another desirable property is thelsiitypof use. Indeed, we have seen
through several examples that many interesting queriebeampressed in a clear and succinct
manner, avoiding cumbersome constructions such as theusedsn register automata or the
related classes of regular-like expressions. In the endawe &lso identified several subclasses
capturing natural FO fragments. From all of this we can amhelthatGXPath forms a good
basis for graph query languages and in particular, someneats should be considerer as the
logical core for any such language. To be more precise, wieveethat the following two
fragments should be considered as basic primitives whegrideg a graph language:

o GXPathia™Jc) — This language was shown to have linear time evaluation ihd s

retains a reasonable amount of expressive power. One oftfaive sides is the inability

7.6. Summary 165

to capture negation, thus making it strictly weaker tharf F@wever, the navigational
part is essentially PDL and therefore firmly rooted in logic.

e GXPathreg(c,eq,~) — While the complexity of evaluation here jumps to cubic, vaa ¢
restore the connection with FO enriched with data tests amahyp transitive closure.
Therefore, we strongly believe that this language, or sofmigsovariants, should be
considered as the logical kernel of any query language .

Chapter 8
Beyond graphs — TriAL

The Semantic Web and its underlying data model, RDF, arellystited as one of the key
applications of graph databases, but there is some misrbateveen them. Recall that the
standard model of graph databases [Angles and Gutierr@3, ¥bod, 2012] that dates back
to [Consens and Mendelzon, 1990, Cruz et al., 1987], is thdirected edge-labelled graphs,
i.e., pairsG = (V,E), whereV is a set of vertices (objects), afldis a set of labelled edges.
Each labelled edge is of the forfma, V'), wherev,V are nodes iV, andais a label from some
finite labelling alphabek. As such, they are the same as labelled transition systeetsass

a basic model in both hardware and software verification.plGdatabases, as we have seen
previously, can also store data associated with their n@ags information about each person
in a social network).

The model of RDF data is very similar, yet slightly differefihe basic concept istaple
(s, p,0), that consists of the subjestthe predicate, and the objeco, drawn from a domain
of uniform resource identifiers (URI's). Thus, the middlerekent need not come from a finite
alphabet, and may in addition play the role of a subject orlgaab in another triple. For in-
stance{(s, p,0),(p,s,0)} is a valid set of RDF triples, but in graph databases, it isossjble
to have two such edges.

To understand why this mismatch is a problem, consider dugiyraph data. Since graph
databases and RDF are represented as relations, relajimri#s can be applied to them. But
crucially, we may also query thepologyof a graph. Forinstance, many graph query languages
have, as their basic building blodlegular path queriesor RPQs [Cruz et al., 1987], that find
nodes reachable by a path whose label belongs to a reguiprdge.

We take the notion of reachability for granted in graph dasais, but what is the corre-
sponding notion for triples, where the middle element camesas the source and the target of
an edge? Then there are multiple possibilities, two of whiehillustrated below.

167

168 Chapter 8. Beyond graphs — TriAL

QueryReach_, looks for pairs(x,z) connected by paths of the following shape:

andReach; looks for the following connection pattern:

But can such patterns be defined by existing RDF query larggPa@®r can they be defined by
existing graph query languages under some graph encodiRpB?

To answer these questions, we need to understand whichatiavigl facilities are avail-
able for RDF data. A recent survey of graph database syst&ntdds, 2012] shows that, by
and large, they either offer support for triples, or they dapis and then can express proper
reachability queries. An attempt to add navigation to RDfgleages was made in [Pérez
et al., 2010], where a language called nSPARQL was definedkiyg SPARQL [Harris and
Seaborne, 2013, Pérez et al., 2009], the standard quenydgador RDF, and extending it with
a navigational mechanism provided hgsted regular expressiansThe evaluation of those
gueries uses essentially a graph encoding of RDF. As thinstg@oint of our investigation, we
show that there are natural reachability patterns fordsipsimilar to those shown above, that
cannotbe defined in graph encodings of RDF [Arenas and Pérez, 2&lig mested regular
expressions, nor in nNSPARQL itself.

Thus, navigational patterns over triples are beyond reébbth RDF languages and graph
query languages that work on encodings of RDF. The soluighen to design languages that
work directly on RDF triples, and have both relational andigational querying facilities,
just like graph query languages. Our goal, therefore, iglapagraph database techniques for
direct RDF querying.

A crucial property of a query languagedsure queries should return objects of the same
kind as their input. Closed languages, therefore, are ceitipoal: their operators can be ap-
plied to results of queries. Using graph languages for ROfesufrom non-compositionality:
for instance, RPQs return graphs rather than triples. Saavelsy defining a closed language
for triples. To understand its basic operations, we firsk laba language that has essentially
first-order expressivity, and then add navigational fesgur

We take relational algebra as the basic language. Cleaojggiion violates closure so
we throw it away. Selection and set operations, on the othed hare fine. The problematic
operation is Cartesian product:Tf T’ are sets of triples, theh x T’ is not a set of triples but
rather a set of 6-tuples. What do we do then? We shall neetiabdity in the language, and
for graphs, reachability is computed by iteratiogmpositionof relations. The composition

8.1. Graph databases and RDF 169

operation for binary relations preserves closure: a pay) is in the compositiorRo R of R
andR iff (x,z) € Rand(zy) € R for somez. So this is a join oR andR and it seems that
what we need is it analogue for triples.

But queriesReach_, andReach, demonstrate that there is no such thinghesreachability
for triples. In fact, we shall see that there is not even a ai@ogue of composition for triples.
So instead, we addll possible joins that keep the algebra closed. The resuléinguage is
called Triple Algebra denoted byfriAL. We then add an iteration mechanism to it, to enable
it to express reachability queries based on different jansl obtairRecursive Triple Algebra
TriAL*.

The algebrariAL* can express both reachability patterns above, as well aieqwee prove
to be inexpressible in NSPARQL. It has a declarative lang@gociated with it, a fragment of
Datalog. It has good query evaluation bounds: combined tmiity is (low-degree) polyno-
mial. Moreover, we exhibit a fragment with complexity of thelerO(|¢g|-|O|- |T|), whereeis
the queryQ s the set of objects in the database, @rid the set of triples. This is a very natural
fragment, as it restricts arbitrary recursive definitiomshtose essentially defining reachability
properties.

The model we use is slightly more general than just tripleslgécts and amounts to
combining triplestores as in, e.g., [Jena, 2012] with thrgsentation of objects used in the
Neo4j database [Cudré-Mauroux and Elnikety, 2011, Ned? 32 Each object participating
in a triple comes associated with a set of attributes. Atftelvalues are naturally drawn from
an infinite alphabet, thus following the usual approach apbs with data. Of course this can
be modelled via more triples, but the model we use is conediptcleaner and leads to a more
natural comparison with standard relational languagegatticular, we show thalriAL lives
between F@and FG (recall that F® refers to the fragment of First-Order Logic using okly
variables). In fact it contains FOis contained in F§ and is incomparable with Fand FQ.

A similar result holds foffriAL* and transitive closure logic.

It is also worthwhile mentioning that adding data values B Rriplestores leads to a more
natural representation of data, allowing us to describeataioeresource by its set of attributes.
This property also makes it easy to represent data graphBasiBcuments, allowing for data
values in either nodes or edges (or both). We will return iowhhen comparingriAL* to graph
languages in Chapter 9.

8.1 Graph databases and RDF

RDF databases RDF databases contain triples in which, unlike in graphlukgas, the mid-
dle component need not come from a fixed set of labels. Foynifalll is a countably infinite
domain of uniform resource identifiers (URI's), then an RBipl¢ is (s, p,0) € U x U x U,

170 Chapter 8. Beyond graphs — TriAL

part_of
NatExpress EastCoast Eurostar

part_of part_of part_of

Bus Op 1 TrainOp 1 Train Op 2

Figure 8.1: RDF graph storing information about cities and transpantises between them

wheres s referred to as the subjegt,as the predicate, aralas the object. An RDF graph is
just a collection of RDF triples. Here we deal wgtoundRDF documents [Pérez et al., 2010],
i.e., we do not consider blank nodes or literals in RDF doauméotherwise we need to deal
with disjoint domains, which complicates the presentgtion

Example 8.1.1. The RDF databasP in Figure 8.1 contains information about cities, modes
of transportation between them, and operators of thosdcssrv Each triple is represented
by an arrow from the subject to the object, with the arrowlfitdbeled with the predicate.
Examples of triples iD are Edi nburgh, Train Qo 1, London) and (frain O 1, part_of,
East Coast). For simplicity, we assume from now on that we can deterrimrgicitly whether

an object is a city or an operator. This can of course be mddeyeadding an additional
outgoing edge labeled ty from each city anadper at or from each service operator.

Graph Queries for RDF Navigational properties (e.g., reachability patterng) @mong the
most important functionalities of RDF query languages. Easv, typical RDF query lan-
guages, such as SPARQL, are in spirit relational language®xtend them with navigation,
as in [Pérez et al., 2010, Anyanwu and Sheth, 2003, LosemashiMartens, 2012], one typi-
cally uses features inspired by graph query languages. tNeless, such approaches have their

inherent limitations, as we explain here.

Looking again at the databaBein Figure 8.1, we see the main difference between graphs
and RDF: the majority of the edge labelsDnare also used as subjects or objects (i.e., nodes)
of other triples ofD. For instance, one can travel from Edinburgh to London bggisi train
service Train Op 1, but in this case the label itself is viewe@ node when we express the fact
that this operator is actually a part of EastCoast trains.

For RDF, one normally uses a modeltdplestoresthat is different from graph databases.
According to it, the database from Figure 8.1 is viewed asreatg relation:

8.1. Graph databases and RDF 171
Eurostar
@
(Levoser] %
Eurostar . <
transforming
t_of art_of e %
Par D to o(D) S N
Train Op 2 ANNNNNNNANAS ,o@
e_Train Op 2

RDF graphD

London ¢

Brussels
next

Transformed grapty(D)

Figure 8.2: Transforming part of the RDF database from Figure 8.1 intcaply database

St. Andrews | Bus Op 1 Edi nbur gh
Edinburgh | Train Op 1 London
London Train Qo 2 | Brussels
Bus Op 1 part _of Nat Expr ess
Train Op 1 part _of East Coast
Train O 2 part _of Eur ost ar
East Coast part _of Nat Expr ess

Suppose one wants to answer the following query:

Find pairs of citiegx,y) such that one can
Q: travel fromx toy using services operated by
the same company.

A query like this is likely to be relevant, for instance, whiategrating numerous trans-
port services into a single ticketing interface. In our epéenthe pair(Edi nbur gh,London)
belongs taQ(D), and one can also check th{&t . Andr ews,London) is in Q(D), since recur-
sively both operators are part of NatExpress (using thesitigity of part_of). However, the
pair (St. Andrews,Brussel s) does not belong tQ(D), since we can only travel that route if
we change companies, from NatExpress to Eurostar.

To enhance SPARQL with navigational properties, [Pére4.e2@10] added nested reg-
ular expressions to it, resulting in a language called nSPARIhe idea was to combine the
usual reachability patterns of graph query languages WwétxtPath mechanism of node tests.
However, nested regular expressions, which we saw eatiedefined for graphs, and not for
databases storing triples. Thus, they cannot be usedlgimer RDF databases; instead, one
needs to transform an RDF datab&s&to a graph first. An example of such transformation
D — o(D) was given in [Arenas and Pérez, 2011]; it is illustrated igufFe 8.2.

Formally, given an RDF documeit, the grapho(D) = (V,E) is a graph database over
alphabetz = {next node edge, whereV contains all resources from, and for each triple

172 Chapter 8. Beyond graphs — TriAL
(s,p,0) in D, the edge relatioiE contains edgeés,edge p), (p,node o) and(s,next o). This
transformation scheme is important in practical RDF ajggilims (it was shown to be crucial
for addressing the problem of interpreting RDFS featureébiwSPARQL [Pérez et al., 2010]).
At the same time, it is not sufficient for expressing simplacteability patterns like those in

queryQ:

Proposition 8.1.2. The query Q is not expressible by NREs over graph transfoomesd (-) of
ternary relations.

Proof. Consider the RDF documeny andD» consisting of the following triples:

GraphDys: GraphD»:
St Andrews Bus Cperator 1 | Edinburgh]
- - St Andrews Bus Cperator 1 | Edinburgh
Edi nbur gh Train Op 1 London - -
- - Edi nbur gh Train Op 3 London
Edi nbur gh Train Op 3 London - -
- - Edi nbur gh Train Op 1 Manchest er
Edi nbur gh Train Op 1 Manchest er -
- Newcast | e Train Op 1 London
Newcast | e Train Op 1 London -
- London Train Op 2 Brussel s
London Train Op 2 Brussel s
Bus Operator 1 part of Nat Expr ess
Bus Operator 1 part of Nat Expr ess -
- Train Op 1 part of East Coast
Train Op 1 part of East Coast -
- Train Op 2 part of Eur ost ar
Train Op 2 part of Eur ost ar
East Coast part of Nat Expr ess
East Coast part of Nat Expr ess

Essentially, grapb; is an extension of the RDF documédhin Figure 8.1, while grapb,
is the same abB; except that it does not contain the trigksli nbur gh, Train Op 1, London).
The relevant parts of our databases are illustrated in fleving image.

EastCoast EastCoast
= o

Train Op 1

Edinburgh

Manchester Newcastle

part_of

TrainOp 1

Edinburgh London

Train Op 3

Train Op 3

Part of RDF grapib; Part of RDF grapib,

The absence of this triple has severe implications witheetsip the quen@ of the state-
ment of the Proposition, since in particular the p@t Andrews, London) belongs to the
evaluation ofQ overD4, but it does not belong to the evaluation@bverD».

However, it is not difficult to check that the graph transla ofD; andD; are exactly the
same graph database(D1) = o(D2). We have included the relevant part of transformations

8.1. Graph databases and RDF 173

EastCoast
QOSZ’
part_of e
Manchester e 0%(9
Nogg

¢ [}

% y
Edinburgh e; ey
Q (4

® TrainOp3

Figure 8.3: Transforming part of the RDF databadg@sandD,

o(D1) anda(D») in Figure 8.3. It follows thaQ is not expressible in nested regular expres-
sions, since obviously the answer of all nested regularesgpons is the same owe(D;) and
o(Dy) (they are the same graph).

]

Thus, the most common RDF navigational mechanism cannoésa very natural prop-
erty, essentially due to the need to do so via a graph transkoon.

One might argue that this result is due to the shortcomings sppecific transformation
(however relevant to practical tasks it might be). So we aB&tvhappens in the native RDF
scenario. In particular, we would like to see what happertls thie language nSPARQL [Pérez
et al., 2010], which is a proper RDF query language exten8IRQL with navigation based
on nested regular expressions. But this language falls slmras it fails to express the simple
reachability quen@Q.

Theorem 8.1.3.The query Q above cannot be expressed in nNSPARQL.

Proof. The semantics of the nested regular expressions in the RBExtqin [Pérez et al.,
2010]) is given as follows, assuming a triple represematibRDF documents. For next, it
is the set{(v,V) | 3zE(v,z,V)}, the semantics of edge §v,V) | 3zE(v,V,2z)} and node is
{(v,V') | 3zE(z,v,V')}; for the rest of the operators it is the same as in the gragibdae case.
Thus, even though stated in an RDF context, this semantassentially given according to the
translationo(-), in the sense that the semantics of an NR&the same for all RDF documents
D andD’ such thato(D) = o(D’) . Hence the proof follows directly from Proposition 8.1.2
and the easy fact th& cannot be expressed in SPARQL. O

1The NREs defined in [Pérez et al., 2010] had additional piest such as next :: sp. These were added for
the purpose of allowing RDFS inference with NREs, but playaie in the general expressivity of nSPARQL in
our setting since we are dealing with arbitrary objects, hs the constructs in [Pérez et al., 2010] are limited to
RDFS predicates. Here we assume that primitives such as:j€xtwith e an arbitrary NRE, are not allowed. For
a discussion on how the proof extends in the case when theyesent see [Pérez et al., 2010]

174 Chapter 8. Beyond graphs — TriAL

The key reason for these limitations is that the navigati@tmanisms used in RDF lan-
guages are graph-based, when one really needs them tolbebiaiged.

Triplestore Databases To introduce proper triple-based navigational languagesfirst de-
fine a simple model of triplestores. Létbe a countably infinite set of objects, adtlbe a
countably infinite set of data values.

Definition 8.1.4. A triplestore databaseor just triplestore over D is a tuple T=
(O,Ey,...,En,p), where:

e O C Ois afinite set of objects,
e eachEC Ox Ox Qis aset of triples, and

e p: 0O — Dis afunction that assigns a data value to each object.

Often we have just a single ternary relatigrin a triplestore database (e.g., in the previ-
ously seen examples of representing RDF databases), it éinguages and results we state
here apply to multiple relations. The functigncould also mapD to tuples overD, and all
results remain true (one just us#X as the range of, as in the example below). We use the
functionp : O — D just to simplify notations.

Triplestores easily model RDF, and we will see later thay thedel data graphs. To further
illustrate the usefulness of adding data values to tripdeasnow show how they can be used
to model social networks. Consider a scenario where eacthase set of attributes attached
to her/his entity (in our example, name, email, and age)uag&lof attributes come from an
infinite domain of data values, while each user is uniquecdbed by the id value describing
one object in the model. Users form connections, also ledbedlith data (e.g., creation date
and type of the connection). Note that such social netwookdcsimply be viewed as graph
databases with multiple attributes and values attachekl tooedges and to the nodes (see
Section 2.1). A part of this network is presented in Figure 8.

In the triplestore representation of this netwatkis the set of all user and connection ids,
while the data value function assigns to each obje€taquintuple(name,email,dob,type,time)
of values, each with the natural domain. We use quintuplespiesent data values and assume
that each user entity will have null values for the last twataites, while a connection entity
will have nulls in the first three. Another way to go aroundtiviould be to have two different
data value assignments to the object attributes, one forolgects and another for connection
objects. To keep our language one sorted and compact we roghtef@ption presented here.
The triples thus are

0l75 c163 | 0122
0l75 c137 | 07521
07521 | c177 | 0122

8.2. An Algebra for RDF 175

c163

type: rival
created:
12-07-89
0175 \ 0122
name: Mario name: Donkey Kong
email: m@nes.com email: d@nes.com
age: 23 age: 117
type: type:
brother coworker
cl137 cl77
created: created:
11-11-83 12-07-89
07521
name: Luigi

email: |I@nes.com

age: 27

Figure 8.4: A social network graph

and the data values assignments funcpas:

p(ol75 = (Mario,m@nes.com,23, 1)
p(o122) = (Donkey Kong,d@nes.com,117, 1)
p(07521) = (Luigi,l@nes.com,27,, 1)

p(cl37) = (L,L,L,brother,11-11-83)
p(cl77) = (L,L,L,coworker,12—-07-89)
p(cl63) = (L,L,L,rival,12-07-89)

Thus, triplestores describe a simple data model that iscaighe in a wide range of scenar-
ios, including RDF, graph databases and social networks.

8.2 An Algebra for RDF

We saw that problems encountered while adapting graph éayeguto RDF are related to the
inherent limitations of the graph data model for represgnRDF data. Thus, one should work
directly with triples. But existing languages are eithesdrhon binary relations and fall short
of the power necessary for RDF querying, or are generalisakdt languages which are not
closed when it comes to querying RDF triples. Hence, we ndadguage that works directly
on triples, is closed, and has good query evaluation priegert

We now present such a language, based on relational algabtdptes. We start with a
plain version and then add recursive primitives that prevtte crucial functionality for han-
dling reachability properties.

176 Chapter 8. Beyond graphs — TriAL

The operations of the usual relational algebra are sefegtimjection, union, difference,
and cartesian product. Our language must rerdlaiged i.e., the result of each operation ought
to be a valid triplestore. This clearly rules out projecti@election and Boolean operations are
fine. Cartesian product, however, would create a relaticariof six, but instead we ugeins
that only keep three positions in the result.

Triple joins To see what kind of joins we need, let us first look at tioenpositionof two
relations. For binary relationS and S, their compositionSo S has all pairs(x,y) so that
(x,z) € Sand(zy) € S for somez Reachability with relatiorss is defined by recursively
applying composition:SU Soc SU SoSoSU.... So we need an analog of composition for
triples. To understand how it may look, we can vi@w S as thejoin of Sand S on the
condition that the 2nd component 8fequals the first o8, and the output consist of the
remaining components. We can write it as

12

sXs

2=1

Here we refer to the positions Bias 1 and 2, and to the positions3has 1 and 2, so the join
condition is 2= 1’ (written below the join symbol), and the output has posgidrand 2 This
suggests that our join operations on triples should be ofdim nggﬁdR/, whereR andR’
are tertiary relations, j,k € {1,2,3,1',2/,3'}, and cond is a condition (to be defined precisely
later).

But what is the most natural analog of relational compasioNote that to keep three
indexes amond1,2,3,1',2',3'}, we ought to project away three, meaning that two of them
will come from one argument, and one from the other. Any swiah ¢peration on triples is
bound to beasymmetricand thus cannot be viewed as a full analog of relational asitipn.

So what do we do? Our solution is to adlil such join operations. Formally, given two

tertiary relationdR andR, join operations are of the form

where

e i,jke{1,1,22,33},
e Ois a set of equalities and inequalities between element$,ii,2,2',3,3'} U O,
e is a set of equalities and inequalities between elements in

{p(1),p(1),p(2),p(2),p(3),p(3)}UD.

The semantics is defined as follow,0,0) is in the result of the join iff there are triples
(01,02,03) € Rand(0y,02,03) € R such that

8.2. An Algebra for RDF 177

e each condition fron® holds; that is, ifil = mis in 8, theno, = o, and ifl = o, whereo
is an object, is irb, theno, = o, and likewise for inequalities;

e each condition fromm holds; that is, ifp(l) = p(m) is in n, thenp(o) = p(on), and if
p(l) = d, whered is a data value, is in, thenp(o;) = d, and likewise for inequalities.

Triple Algebra ~ We now define the expressions of fhiéple Algebra or TriAL for short. It is
a restriction of relational algebra that guarantees ctgsie., the result of each expression is a
triplestore.

e Every relation name in a triplestore ig@AL expression.

e If eis aTriAL expressionf a set of equalities and inequalities oJdr, 2,3} UO, andn
is a set of equalities and inequalities o{ex(1),p(2),p(3)} U D, thenag ,(€) is aTriAL
expression.

e If &1, areTriAL expressions, then the following arg@AL expressions:

- aue;
- € — €&,
— elmiéfr’]kez, wherei, j,k,8,n as in the definition of the join above.

The semantics of the join operation has already been defifretisemantics of the Boolean
operations is the usual one. The semantics of the selectidefined in the same way as the
semantics of the join (in fact, the operator itself can berdefiin terms of joins): one just
chooses triplego;, 02, 03) satisfying botd andn).

Given a triplestore databa3e we writee(T) for the result of expressiomon T.

Note thate(T) is again a triplestore, and thTiSAL defines closed operations on triplestores.
This is important, for instance, when we require RDF quetdgsroduce RDF graphs as their
result (instead of arbitrary tuples of objects), as it iselam SPARQL via theCONSTRUCT
operator [Harris and Seaborne, 2013].

Example 8.2.1. To get some intuition about the Triple Algebra consider wiéofving TriAL
expression:

133

e=ENXE

=1
Indexes(1,2,3) refer to positions of the first triple, and indexéE,2',3') to positions of
the second triple in the join. Thus, for two triplég;,xo,x3) and (Xy, X, Xs), such that
X2 = Xy, expressione outputs the triple(xy,xs,x3). E.g., in the triplestore of Fig. 8.1,
(London, Train Qp 2, Brussel s) is joined with(Train Op 2, part_of , Eurostar), pro-
ducing(London, Eurostar, Brussel s); the full result is

178 Chapter 8. Beyond graphs — TriAL

St. Andrews | Nat Express | Edi nburgh
Edi nbur gh East Coast London
London Eur ost ar Brussel s

Thus,e computes travel information for pairs of European citiggetber with companies one
can use. It fails to take into account thzst Coast is a part ofNat Express. To add such
information to query results (and produce triples sucfedsnbur gh, Nat Expr ess, London)),
we usee = eU (ex2%2E).

Definable operations: intersection and compleméekg usual, the intersection operation
can be defined am Ne; = e X127, , 5 5 €. Note that using join and union, we can define
the setU of all triples (01,02,03) so that eacho; occurs in our triplestore databa3e For
instance, to collect all such triples so tlvatoccurs in the first position dR, ando,, 03 occur in
the 2nd and 3rd position & respectively, we would use the expressi@it2 3R) X123 R
Taking the union of all such expressions, gives us the cel&ti.

Using suchJ, we can define®, the complement of with respect to the active domain, as
U —e. In what follows, we regularly use intersection and commatrin our examples.

Adding Recursion One problem with Example 8.2.1 above is that it does not dechiiples
(cityj,service,cityy) so that relatiorR contains a tripledi t y;,servi ceg,Ci ty»), and there
is a chain, of some length, indicating thedr vi ceg is a part ofservi ce. The second ex-
pression in Example 8.2.1 only accounted for such pathsrajttel. To deal with paths of
arbitrary length, we need reachability, which relationglesira is well known to be incapable
of expressing. Thus, we need to add recursion to our language

To do so, we expandriAL with right andleft Kleene closuref any triple join DK

eﬂ
an expressioe, denoted age Mg’ﬁk)* for right, and(Mg’ﬁk e)* for left. These are defined as

over

(eX) = 0UeU eXe U (eXe)Xe U ...,

(Xe)* = 0UueU eXe U eX(eXe) U ...

We refer to the resulting algebra @gple Algebra with Recursioand denote it byriAL*.

When dealing with binary relations we do not have to distisiglbetween left and right
Kleene closures, since the composition operation for ginglations is associative. However,
as the following example shows, joins over triples are naessarily associative, which ex-
plains the need to make this distinction.

Example 8.2.2. Consider a triplestore databaseT = (O,E), with E =
{(a,b,c),(c,d,e),(d,e, f)}. The functionp is not relevant for this example. The expression

e =(ENX)

3=

8.2. An Algebra for RDF 179

computese; (T) =EU{(a,b,d),(ab,e)}, while

computes(T) =EU{(a,b,d)}.
Now we present several examples of queries one can ask bsirigiple Algebra.

Example 8.2.3.We refer now to reachability querié®ach_, andReach; from the introduc-
tion to Chapter 8. It can easily be checked that these areetkfin

12,3 1,23
(E X) and (X E)
3=1 1=2

respectively.

Next consider the query from Theorem 8.1.2. Graphicallyait be represented as follows:

That is, we are looking for pairs of cities such that one cametr from one to the other
using services operated by the same company. This querplisssed by

133 123
(E Xy Xy,

2=1" 3=12=2

133
Note that the interior joir(Ezbdl/)* computes all triplesx,y, z), such thaE(x,w,z) holds for

somew, andy is reachable fronmw using somee-path. The outer join now simply computes
the transitive closure of this relation, taking into accbotirat the service that witnesses the
connection between the cities is the same.

Another useful application of such a nested query can bedfanrworkflows tracking
provenance of some document. Indeed, there we might be#éer to find all versions of a
document that contain an error, but originate from an erem-version. We might also ask if
there is a path connecting those two documents where eatte aktsions referred to some
particular document — the likely culprit for the mistake.tire image above would represent
version with an errorx a valid version it originates from, arydhe document all of the versions

that lead to the one with an error refer to.

180 Chapter 8. Beyond graphs — TriAL

Remark 8. Here we give some remarks about notation and implicit assiomgpin the remain-
der of this chapter.

e We will often denote condition® and n as conjunction of equalities or inequalities
instead of sets. For example we willwrle= (1£3)A(2=2)for0={1#3,2=2'}.

¢ In the proofs we will usually handle only the case of the rilgene closurg RX)*.
The proofs for the left closure are completely symmetric.

e As usual in database theory, we only consider queries ttmtlamain-independent, and
therefore we loose no generality in assuming active domainasitics for FO formulas
and other similar formalisms.

8.3 A Declarative Language

Triple Algebra and its recursive versions @mecedurallanguages. In databases, we are used
to dealing with declarative languages. The most common aenexpressing queries that need
recursion is Datalog. It is one of the most studied databaseydanguages, and it has reap-
peared recently in numerous applications. One instandeofd its well documented success
in Web information extraction [Gottlob and Koch, 2004] ahére are numerous others. So it
seems natural to look for Datalog fragments to capture. and its recursive version.

Since Datalog works over relational vocabularies, we needxplain how to represent
triplestoresT. The schema of these representations consists of a terakatjon symbol
E(-,-,-) for each triplestore name i, plus a binary relation symbel(-,-). Each triplestore
databasd can be represented as an instahcef this schema in the standard way: the inter-
pretation of each relation nankein this instance corresponds to the triples in the triplesio
in T, and the interpretation ef contains all pairgx,y) of objects such thgs(x) = p(y), i.e. X
andy have the same data value. If the valuep afe tuples, we just use; relations testing that
theith components of tuples are the same, for g@atiis does not affect the results presented
below.

We start with a Datalog fragment capturimgAL. A TripleDatalog rule is of the form

SX) + Si(X1), S (%), ~(Y1,21)s---s~(Yns Zn), UL = V1,...,Um =V (8.1)
where

1. S § and$S are (not necessarily distinct) predicate symbols of atitpast 3;

2. all variables irx and each of;, z anduj, v; are contained ifX; or X;.

A TripleDatalog " rule is like the rule (8.1) but all equalities and predicatesept the head
predicateS, can appear negated. HipleDatalog " program[1 is a finite set ofTripleDatalog ™

8.3. A Declarative Language 181

rules. Such a prograi is non-recursivef there is an ordering, ..., ry of the rules ofl1 so
that the relation in the head ofdoes not occur in the body of any of the rutgswith j <i.

As is common with non-recursive programs, the semanticewoifecursiveTripleDatalog ™
programs is given by evaluating each of the rule§lpfaiccording to the ordem,...,ry of its
rules, and taking unions whenever two rules have the sawrgomein their head (see [Abiteboul
et al., 1995] for the precise definition). We are now readyrasent the first capturing result.

Proposition 8.3.1. TriAL is equivalent to nonrecursivéripleDatalog™ programs.

Proof. Let us first show the containment TiAL in non-recursivelripleDatalog™. We show
that for every expressiomone can construct a non-recursiVepleDatalog™ programlle such
that,e(T) = Me(I7), for all triplestore databasds

We define the translation by the following inductive constien, assumingins Ang and
Ans are special symbols that define the output of non-recuriygeDatalog™ programs.

e If eisjustatriplestore namig, thenl consists of the single rulengx,y,z) < E(x,y, 2).

o If eis e; Uey, thenlle consists of the union of the rules of the prograims andlMe,,
together with the ruleAngX) < Ang (X) andAngX) < Ang(X), where we assume that
Ang andAns are the predicates that define the outpuflgf andlTe,, respectively.

e If eis e — ey, thenll, consists of the union of the rules of the programs ande,,
together with the ruldngX) < Ang (X),~An$(X), where we assume thahg andAns
are the predicates that define the outpuftlgf andlle,, respectively.

o If eis elbdié‘jr’]kez, assume tha consists ofm conditions, and consists oh conditions.
ThenTl consists of the union of the rules of the prograimg andle,, together with

the rule

AngXi, Xj, X) < ANS (X1, X2, X3), AN (X4, X5, %),V (Y1,21), -,V (Yn, Zn),
Ul(:) #Vlr"vum(:) #va (82)

where for eaclp-th condition in of form a= b or a # b, we have thatu, = x; and
Vp =X (orup = 0if ais an objecbin O, and likewise fol), and for eactp-th condition

in © of form p(a) = p(b) or p(a) # p(b), we have thay, = X, andz, = x,, andV is
either~ or —~; and where we assume thahg andAns are the predicates that define
the output offlg, andll,, respectively.

e The case of selection goes along the same lines as the j@n cas

Clearly, this program is nonrecursive. Moreover, it isiiiio prove that this transition
satisfies our desired property.

182 Chapter 8. Beyond graphs — TriAL

Next we show the containment of non-recursivépleDatalog™ in TriAL. We show that for
every non-recursiv@ripleDatalog™ programll one can construct an expressignsuch that,
en(T) =N(ly), for all triplestore databasés

We assume thdil contains a single predicatensthat represents the answer of the query.
Also, without loss of generality we can assume that no rués ysedicatds, for some triple-
store namd, other than a rule of forr®(x,y,z) «+— E(x,y, z), for a predicaté® in the predicates
of N that does not appear in the head of any other rul@.in

We need some notation. The dependence graph isfa directed graph whose nodes are
the predicates af, and the edges capture the dependence relation of the atesliof1, i.e.,
there is an edge from predica®to predicateSif there is a rule i1 with Rin its head an®
in its body. Sincd1 is non-recursive, its dependency graph is acyclic. We ndimel¢heTriAL
expression in a recursive fashion, following its depenglegraph:

e Assume that all the rules ii that have predicat8in the head are of form

Sl Xpi Xel) < SL0G, X0, %8), Sy (Xa, X8, X8, (7)~(¥1,20), - (2)~(Yh, 2,

UY(#) = Vi, Un(#) =V (8.3)
for1<j<m, and wheresj andgj are (not necessarily distinct) predicate symbols of
arity at most 3 and all variables iQ;, %,i, % and each oj/ij, 41 and uﬂ(, vﬂ(are contained
in {x3,x5, X5, X}, X4, X5 1.

Then theTriAL expressiores is
i bi i
U eS_jL Ngi;qiyc eSjZ7
1<j<m

where8 contains an (in)equalita = b for each (in)equality, = Xy in the rule, anch!
contains an (in)equalitp(a) = p(b) for each predicate-(a,b) (or its negation) in the
rule. If either ofSi or Sﬁ appear negated in the rule, then just reple,‘gle‘or (esi)c or
(6g)"-
e TheTriAL expressiorep (for predicateP in rule P(x,y,z) «+ E(X,Y,2)) is justE; if these

variables appear in different order in the rule, we permugent via the selection operator

o.

It is now straightforward to verify that for every non-resive TripleDatalog™ program
N whose answer predicate Ansthe expressioreans is such thateans(T) = M(ly), for all
triplestore databasés. O

We next turn to the expressive power of recursive Triple BlfgelriAL*. To capture it,
we of course add recursion to Datalog rules, and impose @ctast that was previously used

8.3. A Declarative Language 183

in [Consens and Mendelzon, 1990]. ReachTripleDatalog™ programis a TripleDatalog™
program in which each recursive predic&tis the head of exactly two rules of the form:

SX) <+ RX
SX) « S(x1),R(),V(y1,2),---,V (¥ %)

(8.4)

where eaclV (yi, z) is one of the following:y; = z, ory; # z, or ~(y;,z), or ~~(y;,), and

R is a nonrecursive predicate of arity at most 3, or a recunsiedicate defined by a rule of
the form 8.4 that appears befof These rules essentially mimic the standard reachability
rules (for binary relation) in Datalog, and in addition or@dmpose equality and inequality
constraints, as well as data equality and inequality caimtt, along the paths.

Note that the negation iReachTripleDatalog™ programs isstratified The semantics of
these programs is the standard least-fixpoint semanticéelfdul et al., 1995]. A similarly
defined syntactic class, but over graph databases, raterriplestores, was shown to cap-
ture the expressive power of FO with the transitive closyrerator [Consens and Mendelzon,
1990Q]. In our case, we have a capturing resultTioxL*.

Theorem 8.3.2. The expressive power OfiAL* and ReachTripleDatalog™ programs is the
same.

Proof. Let us first show the containment ®fAL* in ReachTripleDatalog™. The proof goes
along the same lines as the proof of containmentrL in TripleDatalog™. We have to
show that for everyiriAL* expressiore there is aReachTripleDatalog ' programlle such that
e(T) = MNg(l7), for all triplestoresT .

The only difference from the construction in the proofTafAL in TripleDatalog™ is the
treatment of the construces= (e; Mgfﬁk)* ande = (Mie"fﬁkel)*. For the former construct (the
other one is symmetrical), assume that (\1<j<mPi(#) = di) andn = (A1<j<nP(Uj)(#) =

p(vj)). We letle be the union of all rules dflg,, plus rules

Angx,y,z) < Ans(xY;2)
ANgXi, Xj, %) < ANngX1,%2,X3),ANS (X4, Xs,Xs),
(_')N(Xplvxfh)?"'7(_')N(Xun7XVn)7Xp1(7é):XQ17"'7Xpm(7é):XQm7

whereAns is the answer predicate Df, . Notice that we have assumed for simplicity there
are no comparison with constants; these can be includedritramslation the straightforward
way. The proof thae(T) = Me(l1), for all triplestoresT now follows easily.

The proof of containment dReachTripleDatalog " in TriAL* also goes along the same lines
as the proof thaflripleDatalog " is contained inTriAL. The only difference is when creating
expressiores, for some recursive predicat® From the properties dReachTripleDatalog™

184 Chapter 8. Beyond graphs — TriAL

programs, we knov@is the head of exactly two rules of form

SX) « RX)
S(Xa: X0, %) < S(X1,%2,X3), R(Xa,X5,%6),V (Y1, 21),- -,V (Yn, Zn),
Ur(#) =Va,...,Un(#) = Vi,
1. Ris a nonrecursive predicate of arity at most 3,
2. variables, Xy, X; and each o, z andu;, v; are contained ifxy,...,Xs}, and

3. eachV(y;,z) is either~(y;,z) or =~(Vi,z)

We then letes be (er Mgﬁ’c)*, wheref contains the inequality(+#) = q for each predicate
Xp(#) = Xq in the rule above, or the respective comparison with constamor q belong to
O, andn contains the (in)equalitp(p)(#) = p(q) for each predicate-(xy, Xy) (respectively,
—~(Xp; Xg))-

Once again, it is straightforward to verify theins is such thateans(T) = MN(l7), for all
triplestoresT . O

We now give an example of a simple datalog program computiagjtiery from Theorem
8.1.3.

Example 8.3.3. The following ReachTripleDatalog™ program is equivalent to que from
Theorem 8.1.3. Note that the answer is computed in the @edins.

S(x1,X%2,X3) < E(X1,%2,X3)
S(X1,%5,%3) + S(X1,%2,X3), E(X2, %5, X5)
ANS(X1,X2,X3) <+ S(Xg,%2,X3)

ANS(X1,%2,%5) < ANS(Xy,X2,X3), S(X3,X2,X3)

Recall that this query can be writtenTiAL* asQ = ((EX32,%)* 223,)*. The predi-

cateSin the program computes the inner Kleene closure of the gudmje the predicate Ans
computes the outer closure.

8.4 Query Evaluation

In this section we analyze two versions of the query evadnagiroblems related to Triple
Algebra. We start with query evaluation, redefined herdfiad* queries.

Problem: QERYEVALUATION

Input: ATrAL* expressiore, a triplestorel
and a tuple(xg, X2, x3) of objects.

Question: 19xg,%2,X%3) € €(T)?

8.4. Query Evaluation 185

Many graph query languages (e.g., RP@XPath) have PTME upper bounds for this
problem, and the data complexity (i.e., whers assumed to be fixed) is generally in NL
(which cannot be improved, since the simplest reachahiligblem over graphs is already
NL-hard). We now show that the same upper bounds hold forlgebea, even with recursion.

Proposition 8.4.1. The problemQUERYEVALUATION is PTiIME-complete, and ifNL if the
algebra expression e is fixed.

Proof. The PTIME upper bound follows immediately from Theorem 8.4.2 belowl INFE-
hardness follows from the fact that evét{? query can be expressedinAL (see Section 8.6)
and the known result that evaluating @ueries is PTME-hard already whek = 3 [Vardi,
1995].

For the NL upper bound, the idea is to divide the expressiono all its subexpression,
corresponding to subtrees of the parsing tre¢.dtarting from the leaves until the root of the
parse tree o€, one can guess the relevant triples that will be withesdiiegpresence of the
query triple in the answer se(T).

Note that for this we only need to rememl@{ie|) triples —a number of fixed length. After
we have guessed a triple for each node in the parse treanfersimply check that they belong
to the result of applying the subexpression defined by thderaf the tree to our triplestore
T. Thus to check that the desired complexity bound holds we teshow that each of the
operations can be performed in NL, given any of the tripldss Tollows by an easy inductive
argument.

For example, ie = E; is one of the initial relations iff, we simply check that the guessed
triple is present in its table. Note that this can be done in NL

This is done in an analogous way for the expressions of tme ot e; Ue, ande=¢e; — e.

To see that the claim also holds for joins, note that one oaly/th check that join conditions
can be verified in NL. But this is a straightforward conseaqueenf the observation that for
conditions we use only comparisons of objects and their taes.

Finally, to see that the star opera(ﬂbdgfﬁk)* can be implemented in NL we simply do a
standard reachability argument for graphs. That is, sire@an trying to verify that a specific
triple (a, b, ¢) is in the answer to the star-join operator, we guess the segqubat verifies this.
We begin by a single triple iR (and we can check that it is there in NL by the induction
hypothesis) and guess each new tripleRinjoining it with the previous one, until we have
performed at mogfT | steps. O

Tractable evaluation (even with respect to combined coxitg)es practically a must when
dealing with very large and dynamic semi-structured dateb®aHowever, in order to make a
case for the practical applicability of our algebra, we needive more precise bounds for
query evaluation, rather than describe complexity claisegproblem belongs to. We now

186 Chapter 8. Beyond graphs — TriAL

show thafTriAL* expressions can be evaluated in what is essentially cub&with respect to
the data. Thus, in the rest of the section we focus on the @moloif actually computing the
whole relatione(T):

Problem: QERYCOMPUTATION
Input: A TriAL* expressiore and

a triplestore database.
Output: The relatiore(T)

We now analyze the complexity of (gRYCOMPUTATION. Following an assumption fre-
guently made in papers on graph database query evaluatiparicular, graph pattern match-
ing algorithms) as well as bounded variable relational legges (cf. [Fan et al., 2011, Fan
et al., 2010a, Gottlob et al., 2002]), we consideraaray representatiorfor triplestores. That
is, when representing a triplestofe= (O, Ey, .. .,Ey,p) with O={04,...,0,}, we assume that
each relatiorg is given by a three-dimensionalx n x n matrix, so that thejkth entry is set
to 1iff (0;,0j,0k) is in . Alternatively we can have a single matrix, where entrieflide sets
of indexes of relationg, that triples belong to. Furthermore we have a one-dimeakiamay
of sizen whoseith entry containg(o;). Using this representation we obtain the following
bounds.

Theorem 8.4.2. The problemQUERYCOMPUTATION can be solved in time

e O(|e|-|T|?) for THAL expressions,

e O(|g|-|T[3) for THAL* expressions.

Proof. The basic outline of the algorithm is as follows:
1. Build the parse tree for our expression.
2. Evaluate the subexpressions bottom-up.

Now to see that the algorithm meets the desired time boundsmmy have to show that
each step of evaluating a subexpression can be performede®(|T|?).

We prove this inductively on the structure of subexpression

As stated previously, we assume that the objects are santethat the triplestore is given
by its adjacency matriX with the property thaf [i, j, k] = 1 if and only if (0;,0j,0¢) € T. If
we are dealing with a triplestore that has more than oneioalate will assume that we have
access to each of threx n x n matrices representirig. In addition, to store data values we will
use another arrapV of size|O| havingDV[i] = p(0;), fori =1...n. In the end, our algorithm
computes, given an expressierand a triplestord the matrixRe such that(o;,0j,0x) € (T)

ff Refi, j,k] = 1.

8.4. Query Evaluation 187

If e=E;, the name of one of the initial triplestore matrices, weadsehave our answer, so
no computation is needed.

If e= R;UR, and we are given the matrix representatio®pandR; (that is the adjacency
matrix of the answer oR; on our triplestorel’) we simply computdR. as the union of these
two matrices. Note that this takes tirdg|T|).

If e=R;N R, we computeR; as the intersection of these two matrices. That is, for each
triple (i, j, k) we check ifRy]i, j, k] = Rafi, j,k] = 1. Note that this takes tim@(|T}|).

If e=R; — Rx we computeRe as the difference of the two matrices. That is for ech k)
we setRg[i, j,K| = 1if and only ifRy[i, j, k] = 1 andRy][i, j,k] = 0. The time required i©(|T|).

If e=0pRy and we are given the matrix fd®; we can computdR in time O(|¢||T|)
by traversing each tripl¢i, j, k), checking thatRii, j, k] = 1 and that the objects;,0; and
o satisfy the conditions specified ly Notice that each of these checks can be done|in
time usingT andDV, since the number of comparisonsdirhas a fixed upper bound, modulo
comparison with constants. The comparison with constartde done in tim¢e| because we
have to check (in)equality only with the constants that alttuappear ire.

Finally, in the case thaa=R; Mg’rj{"‘/ R, we can comput&. using the following algorithm:

Procedure 1Computing joins
Input: Matrix representation dR;, Ry

Output: Matrix Re representing
1: Let® andn’ be the conditions obtained frofan by removing comparisons with constants
2: Leta, be the conditions i®,n using constants
3: Filter Ry andR, according tax, B
4: fori=1—ndo

5: for j=1—ndo

6 for k=1—ndo
7 if Ryfi,j,k] =1then
8: forl =1—ndo
9 for m=1—ndo
10: forn=1—ndo
11: if Ry[l,m,n] = 1then
12: if (01,0j,0¢) and(o,0m,0n) satisfy the conditions i®',n’
thenRy[i’, J/,K] =1
13: elseRe[i’, j",K] =0

Note that lines 1-3 correspond to computing selectionsadpeand can therefore be per-
formed using the tim©(|e||T|) and reusing the matricéy andR,. It is straightforward to see

188 Chapter 8. Beyond graphs — TriAL

that the remaining of the algorithm works as intended byifgjrihe desirable triples. This is
performed inO(|T|?). Thus the whole join computation can be done in ti@(ET |2).

This concludes the first part of our theorem and we thus cdedlatTriAL query compu-
tation problem can be solved in tin@|€||T |?).

For the second part of the theorem we only have to show thét ac operation can be
computed in timeD(|T|3). To see this we consider the following algorithm, computihg

RS
answer set foe = (Ry Mg, ™)*

Procedure 2Computing stars
Input: Matrix representation dR;

Output: Matrix Re representing
1: Initialize Re: =Ry
2. fori=1—-n3do

3 ComputeRe := ReUReMg:rj]’ﬁw R,

First we note that the algorithm does indeed compute thecbanswer set. This follows
because the joining in our star process has to became satafem? steps, since this is the
maximum possible number of triples in a model witlelements. Note now that each join in
step 3 can be computed in tin®¥|T|?), thus giving us the total running time @f(n3- |T|?) =
o(TP).

Finally, note that left-joins can be computed in an analegoay. O

Note that this immediately gives the RE upper bound for Proposition 8.4.1.

One can examine the proofs of Proposition 8.3.1 and Theot8r2 8nd see that transla-
tions from Datalog into algebra are linear-time. Thus, weehie same bound for the query
computation problem, when we evaluate a Datalog prodraim place of an algebra expres-

sion.

Corollary 8.4.3. The problemQUERYCOMPUTATION for Datalog programd1 can be solved
in time
e O(|N|-|T|?) for TripleDatalog™ programs,

e O(|N|-|T3) for ReachTripleDatalog " programs.

8.5 Low-complexity fragments

Even though we have acceptable combined complexity of geemyputation, if the size of
is very large, one may prefer to lower it even further. We nowklat fragments ofriAL* for
which this is possible.

8.5. Low-complexity fragments 189

Relational fragments of TriAL In algorithms from Theorem 8.4.2, the main difficulty arises
from the presence of inequalities in join conditions. A matwestriction then is to look at a
fragmentTriAL= of TriAL in which all conditionsd andn used in joins can only use equalities.
This fragment allows us to lower tH&|? complexity, by replacing one of tha| factors by
|O|, the number of distinct objects.

Proposition 8.5.1. The QUERYCOMPUTATION problem forTriAL= expressions can be solved
intime Q(|e|- |O] - |T|).

Proof. To prove this we will use the close connection of positivgfr@nt ofTriAL= with FO*.
We establish this as follows. To each triplestdre= (O,Ey,...,E,,p) we associate aR O
structureMr = (O,Ey,...,En, ~), whereO is the set of objects appearingT Eg, ... ,E, are
just the representation of the triplestores, an@;,0,) holds iff p(01) = p(02) (they have the
same data value). In Lemma 8.5.2 we will then show that foh&&aeL= expressiore one
can compute, in tim©(|e|), an equivalent FO formulée true precisely for the triples ift
which satisfye overT.

Note that we can computd/r from T in linear time. To finish the proof we show in
Lemma 8.5.3 that eacRO* formula ¢ using relations that are at most ternary (in fact this
holds for relations of arity four as well, but is not relevémt our analysis) can be evaluated in
time O(|¢| - |O]*).

The result of Proposition 8.5.1 now follows, since we caretalr expressiom, transform
it into a formulade of FO* and evaluate it in time(|de| - |O]*) = O(|g| - |O| - |T]), since
IT| = |O® and|ge| = Oe)).

The proof of the two lemmas follows below. O

First we show that over triplestor@sAL= is contained in F&

Lemma 8.5.2. For everyTriAL= expression e one can construct an‘Formula ¢, such that
atriple (a,b,c) belongs to €T) if and only if Mt = ¢e(a, b, c).

Proof. The proof is done by induction. The base case wierk; for some 1< i < nis trivial,

and so are the cases whes: e, Uey, e=e; — & ande = 0g€1. The only interesting case is
ik

whene = elbd'e’fﬁ e.

i,j.k

eﬂ

elements in{1,1',2,2',3,3'} U O andn is a conjunction of equalities between elements in

As usual, we assume thatis e; X" e, where8 is a conjunction of equalities between

{p(1),p(1).p(2),p(2'),p(3),p(3)}. We need some terminology.
Let® =6, A B A B ABFABY, where

e 6, and6, contain only equalities between indexe§in2, 3} and{1’,2',3'}, respectively.

e 07 andBf contain only equalities where one element iiand the other is if1,2,3}
and{1',2',3'}, respectively.

190 Chapter 8. Beyond graphs — TriAL

e O, contains all the remaining equalities, i.e. those eqaaslith which one index is in
{1,2,3} and the other i{1’,2,3'}.

We also dividen = n, ANy AN in the same fashion (recall that for the sake of readabiligy w
assume no comparison between data values and constantaydigotwo sorted structures).
Notice that any two equalities of forin= j’ andi =K/, fori € {1,2,3} andj’ k' € {1,2/,3'}
can be replaced with= |’ and j’ = K, and likewise we can replade= k' and j = k' with

i = j andj =K. For this reason we assume tiat (andny) contain at most 3 equalities, and
no two equalities in them can mention the same element. &umibre, if6,, has two or more
equalities, then the join can be straightforwardly expedss FC, since now instead of the
six possible positions we only care about four -or threenefit. For this reason we only show
how to construct the formula wheék, has one or no equalities.

Finally, for a conjunction® of equalities between element ifil,1',2,2',3,3'}, we
let a(8) be the formulaAi_jcoX = Xj, for a conjunctionn of equalities of elements in
{p(1),p(1).p(2),p(2),p(3),p(3)}, let B(n) be the formulaigi)_p(j)en ~(%,X;), and for a
conjunctionB® of equalities between an object ihand an element ig1,1',2,2' 3,3’} we let
a(8°) = Ao—icec 0 =X

In order to construct formuléde, we distinguish 2 types of joins:

e Joins of forme= ¢ Mgfﬁkez where all ofi, j, k belong to eithe1,2,3} or {1',2',3'}.

Assume that, j,k belong to{1,2,3} (the other case is of course symmetrical). We first
consider the case in whidh, has no equalities, whilg, has three equalities. Moreover,
assume for the sake of readability thgat = (p(1) = p(1)) A (p(2) = p(2)) A (P(3) =
p(3)). We then let

Be(Xi, Xj, %) = e, (X1, X2, X3) A 0 (8r) A a(87) AB(Ne)A
3W<~(x1,w) A Tx (~(X2,X1) A Ixp(~(Xa, X2) De, (W, X, X2) A
o (B) X7, X, X3 — W, Xq, X2] A OL(BF) [Xar, X7, X — W, X1, X2] A

BN e Y X — w,xl,xﬂ)))

Where a formulap[x,y,z — X,y ,Z] is just the formulap in which we replace each
occurrence of variablesy, zfor X,y ,Z, respectively. For the case whég is nonempty,
notice here than any equality By, only makes our life easier, since it eliminates one
of the existential guesses we need in the above formula.h&unbre, ifn has less
equalities, then we just remove the correspondingredicates. This cover all other
possible cases & andny.

Let us illustrate this construction with an example.

8.5. Low-complexity fragments 191

123
M1:2Ap(2):p(2/)Ap(2’):p(3/)
P(2) = p(2) andn, = p(2) = p(3), all of the remaining formulas being empty. Then

Consider the expression= e; &. ThenB,is 1=2, ny is

we have:
be(X1,%2,X3) = Py (X1, X2,X3) A Xy = Xp A 3W<3x1(~(x1,x2)/\
(e, (W, X1, %2) A N(XLXZ))))
ie’fr’]kez where not all of, j, k belong to eithef1,2,3} or {1',2',3'}.
Assume for the sake of readability that 1, j = 2 andk = 3 (all of other cases are

e Joins of forme=¢g; X

completely symmetrical). We have again two possibilities.

(-) There are no equalities 8. Assume that;x = (p(1) = p(1)) A (p(2) = p(2')) A
(p(3) =p(3)) (we have already proved that there are at most 3 equalitig$,icases
with less equalities are treated along the same lines. Weldhe

de(X1,X2,X3) =
(Ixa(Dey (X1,%2,X3) AC(B) A (BF) AB(Ne)) A ~(Xa,Xz)) A IxXa <~(x1,x3) A3xa (
~(X2,%1) A §e, (X3, X1, X3) A (6) X7, X — X, Xa] A Q(6F) [Xy, Xy — X3, X1]A
B(ne) xe, X2 — X37X1])>

(-) There is a single equality iB. Assume for the sake of readability that 1, j = 2
andk = 3 (all of other cases are completely symmetrical). Notica thé, has the
equality 3= 3, then this is equivalent to the previous case with one etyuali,, but
with k = 3. Moreover, equalities iy involving 1 or 2 just make our life easier, so we
will also not take them into account here. We are thus lefbrie assumption th#t
contains the equality 3 1’ (the case where it contains insteaet 2’ is symmetrical)
Moreover, assume as well that = (p(1) = p(1')) A (p(2) = p(2)) A (p(3) = p(3))
(we have already proved that there are at most 3 equalitigg imnd from the form of
the formula it is clear that all other cases are treated aloeagame lines).

We then let
be(X1, X2, X3) =
Axy (cpel(xl,xz,xl/) AO(B7)[Xs — Xy] Aa(09)[X3 — Xu] AB(Ne)[Xs — Xu] A ~(Xg, X)) A
Ixg (~(X1,X2) A Bey (Xar, X1, X3) AXer = Xg A0 (B) [Xor — Xa] A0(6F) [Xor = Xq]A

B(nr)[x —>X1])>

192 Chapter 8. Beyond graphs — TriAL

Having established how to constrdg, it is now straightforward to show that it satisfies the
property of Lemma 8.5.2. It is also readily observed thatsike of formulad corresponding
toeis O(|e]). O

To finish the proof of Proposition 8.5.1 we show that*férmulas can be evaluated effi-
ciently.

Lemma 8.5.3. Let ¢ be an arbitrary formula using at most four variables. Ther #et of
all tuples that make true in M, with M as above (we omit the subscript T for the sake of
readability, since it is now clear), can be computed in tim@ - |O|%).

Proof. To see that this holds note that we can assume that our fosranlg use the connectives
-,V and the quantifies. Indeed, we can assume this since any formula using othetitjees
can be rewritten using the ones above with a constant blou-tige size of formula. In par-
ticular, our formulas in Lemma 8.5.2 use onilyin addition to these three logical connectives,
andA can be rewritten in terms of and—.

The desired algorithm works as follows.

1. Build a parse tree for the formuga

2. Compute the output relation(s) bottom-up using the tree.

To see that the algorithm works with the desired time boundnlg have to make sure
that each of the computation steps in 2 can be performed]@iffO|*). We have three cases
to consider, based on whether we are using negation, digjanor existential quantification.
Here we assume that we compute a majri@/), for each subformula of ¢. Note that, since
we use formulas with at most four free variables each masiixae of size at mo$0|* (i.e. we
are working with a four dimensional matrix). If the (sub)fala has only two free variables
the resulting matrix will, of course, be two dimensional.

First we consider the case of negation. That is, assume th&iawe a matrixp(M') and
we are evaluating a formuli= —. Then we simply build a matrix for th¢() by flipping
each bit in the matrix fofp(). This can clearly be done in tim@(|O|*) by traversing the
entire matrix.

Next, consider the case wheén= 3Ixy(x,y,z,w) and assume that we have the matrix for
W(X,Y,z,w). The existing matrix is now reduced to a three dimensionatirmwaith the value 1
in positioni, j,k if and only if there is anl such thatp()]l,i, j,k] = 1. Note that computing
this amounts to scanning the entire matrix for In the case when case only three free
variables we will need onl@(|O|®) time to computep ().

Finally, let d = W1(X,y,w) vV W2(X,y,zw). The cases wherp; and Y, have a different
number of free variables follows by symmetry. What we do fss€b compute a 4-D matrix

8.5. Low-complexity fragments 193

Y1 (M) by settingy (M)[i, j, k1] =1 iff g2(M)]i,],1] = 1. Note that this matrix can be
computed in timeD(|O[*). Next we compute the output matrix by putting 1 in each cekxenh
either) (M) or Yo(M) have 1. All the other cases can be performed symmetricallysbyg
the appropriate matrices and their projections.

This completes the proof of Lemma 8.5.3. O

Navigational fragments ~ To pose navigational queries, one needs the recursiveralgabthe
guestion is whether similar bounds can be obtained for megéulifragments offriAL*. Using
the ideas from the proof of Theorem 8.4.2 we immediately g@(@e] - |O| - | T |?) upper bound
for TriAL= with recursion. However, we can improve this result for tragfenteach TA™ that
extendsTriAL= with essentiallyreachabilityproperties, such as those used in RPQs and similar
query languages for graph databases.

To define it, we restrict the star operator to mimic the follogygraph database reachability
queries:

e the query “reachable by an arbitrary path”, expressedwyéff)*; and

e the query “reachable by a path labeled with the same elememtpressed by

123
(RN 5)"

These are the only applications of the Kleene star permitteeachTA™. For this fragment,
we have the same lower complexity bound.

Proposition 8.5.4. The problemQUERYCOMPUTATION for reachTA™ can be solved in time
O(lef- O] - [T]).

Proof. To show this we will use the algorithm presented in Proposi8.5.1. All of the op-
erations except the evaluation of Kleene star will be prafat in a same way as there. Note
that we can assume this since the algorithm in Lemma 8.5.®utes the subexpressions bot-
tom up using the matrices representing the output. Thus weisa it to compute answers to
subformulas, compose it with the method presented herealoae Kleene stars and proceed
with the algorithm from Lemma 8.5.3. To obtain the desirethplexity bound we only have
to show how to compute navigational operations in t@igO| - [T|).

That is, we show how to, given a matrix representation fotlaios R we compute matrix
representation fofRX3%)* and(RX3%5 ,)", respectively.

Let O = {o4,...,0n} be the set of object appearing in our triplestdre(The assumption
that they are ordered is standard when considering matpesentations). As input, we are
given a three dimensional matriXrepresenting the output of relatiéhwhen evaluated over
T. That is we haveo;,0j,0¢) € R(T) if and only if R[i, j, k] = 1. (Here we us® both to denote

the relationR and its matrix representation).

194 Chapter 8. Beyond graphs — TriAL

First we give a procedure that computes the ma#tpfor the expression

123\«
e=(RMX;%)"

Procedure 3Computinge = (RX%%3)*

Input: Matrix representation dR

Output: Matrix Me representing
1: Precomputing the reachability matf¥each:
2. fori=1—ndo
3 for j=1—ndo

4 fork=1—ndo

5: if R[i,k, j] =1then

6 Rreacrli, J] = 1

7: Compute the transitive closuR,, .,

®©

Compute the output matriMe:

fori=1—=ndo

©

10: for j=1—ndo

11: for k=1—ndo

12: if R[i,k, j] =1then

13: forl =1—ndo

14: if Racnlls1] = 1then
15: Meli, k1] =1

To show that the algorithm works correctly notice that steps 6 precompute the matrix
Rreach such thalReact(i, j] = 1 if and only if o; has and out edge ending dn (or equivalently
(0i,0,0¢) € T for someo). After this in step 7 we compute the transitive closig,., thus
obtaining all pairs of nodes reachable one from anothergusath of arbitrary label in the
graph representin@. Next in steps 8 to 15 we simply compute all the triples in thépat
matrix Me. To do so we observe that a p&a;, o) will belong to some triplgo;, 0k, 01) of the
output, if there isj such thai(o;,0x,0j) € T (line 12) ando, is reachable frono; (line 14).

To determine the complexity of the algorithm notice thapsté to 6 take time(|OJ%) =
O(|T|), while computing the transitive closure in step 7 can be dmsireg Warshall's algorithm
(see T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stetmpduction to Algorithms, The
MIT Press, 2003.) in tim®(|O[®) = O(|T|). Finally steps 8 to 15 take tin®(|O| - |T|), thus
giving us the desired time bound.

Next we show how to compute joins of the fo(mméffizzz,)* using a slight modification
of the algorithm above.

8.6. Expressive power 195

Procedure 4Computinge = (RX%23,)*

Input: Matrix representation dR
Output: Matrix Mg representing
1: fork=1—ndo
2. Precomputing the reachability mati .,

3 fori=1—ndo

4: for j=1—ndo

5 if R[i,k, j] =1then
6 Rreachli, j] =1

Compute the transitive closur¥, "
8: compute the output matriMe:
9 fori=1—ndo

10: for j=1—ndo

11: if R[i,k, j] =1then

12: for| =1—ndo

13: if R« [J,1] = 1then
14: Meli,k 1] =1

It is straightforward to see that the algorithm uses the sameto compute the output as
the algorithm in Procedure 3.

To show that it works correctly observe that we precomputeirmg,, ., for eachk, thus
checking reachability only for triples whose second nod® isSince the rest of the algorithm
works in the same way as the one in Procedure 3, we conclutiéhthaomputed answéle
representg correctly. O

8.6 Expressive power

In this section we compare the expressive powerRiafL with that of classical relational lan-
guages. As already mentioned, FO is one of the most commaibais yardsticks when it
comes to relational querying and close connections withetaiten one of the priorities in
query language design.

Here we will show that power dfiAL and its recursive variamtiAL* is precisely bounded
by well studied fragments of FO and transitive closure I0giCl [Gradel, 1991, Libkin, 2004].
In particular, we show thalriAL lives between F&and FQ, while being uncomparable to
FO* and FO, the inclusions here being strict. The intuitive reasontfiis is that while triple
joins can be simulated using six variables, at the same timedarrying more information in
their conditions than fits into five variables. An analogoesult holds forTriAL*, but this time

196 Chapter 8. Beyond graphs — TriAL

with TrCI3 throughTrCI®. We will also show that the fragment that allows no ineqiesitthat
is TriAL=, lies strictly between F&and FJ.

As usual, we say that a language is contained in a languagé if for every query inZ;
there is an equivalent query ifp. If in addition £, has a query not expressible i3, then £,
is strictly contained in‘,. The languages are equivalent if each is contained in thex.otthey
are incomparable if none is contained in the other.

To compareTriAL with relational languages, we use exactly the same reHlti@presen-
tation of triplestores as we did when we found Datalog fragimeapturingriAL and TriAL*.
That is, we compare the expressive poweldAL with that of First—Order Logic (FO) over
vocabulary(Ey, ..., Ep, ~).

SinceTriAL is a restriction of relational algebra, of course it is comd in FO. We do
a more detailed analysis based on the number of variablesallRbat FCf stands for FO
restricted tok variables only. To give an intuition why such restrictiong aelevant for us,
consider, for instance, the join operatier- EX5%>E. It can be expressed by the following
FOP formula: ¢ (xq1,Xg,X3) = IXeIxy I (E (X1, X2, X3) A E (X, X2, Xg') A Xp = Xz). This sug-
gests that we can simulate joins using only six variabled,this extends rather easily to the
whole algebra. One can furthermore show that the contaihimgmoper in this case.

What about fragments of FO using fewer variables? Clearlycarmot go below three
variables. It is not difficult to show thatiAL simulates FO, but the relationship with the 4
and 5 variable formalisms appears much more intricate, ngtlidy requires more involved
techniques. We can show the following.

Theorem 8.6.1.

e TrAL is strictly contained irfFQP.
e FO’is strictly contained inTriAL.

e TrAL is incomparable witiFO* and FO°.

The containment of F&in TriAL is proved by induction, and we use pebble games to show
that such containment is proper. For the last, more invopaat of the theorem, we first show

thatTriAL is not contained in F& Notice that the expressiagiven by
123

U De<] U, withe={i#jl|i,je{1,1,22,33},i#j},
is such that(T) is not empty if and only ifT has six different objects (recall thdtis the set
of all triples (01,02, 03) so that eaclo; occurs in a triple inT). It then follows thatfriAL is not
contained in FO (nor FG), cf. [Libkin, 2004]. To show that F®is not contained ifriAL, we
devise a game that characterizes expressibilityrisl_, and use this game to show thataL
cannot express the following F@ueryd(x,y, z):

(WX Y, W) AP(X,W,2) AP(W,Y, 2) AP(X,Y, 2)),

8.6. Expressive power 197

where
W(x,Y,2) = IW(E(x,W,y) AE(Y,W,2) AE(zW,X)).

The above result also shows ti@AL cannot express all conjunctive queries, since in particula
the queryd(x,y,z) is a conjunctive query. This is of course expected; thefiotuis thatTriAL
queries have limited memory and thus cannot express qusuies as the existence ofka
clique, for large values .

Next we give the full proof.

Proof of Theorem 8.6.1We split the proof into three parts, each corresponding ®afn
the claims of the theorem.

Part1 Letebe aTriAL expression. We construct an F@rmulade such thae(T) = de(I7),
for each triplestord . The proof is by induction.

e For the base case,éfcorresponds to a triplestore nafethende is E(X,Y, 2).

o If e=eUe, thende(X,Y,2) = de (X, Y,2) V de, (XY, 2), Which clearly is in FO since
existential variables withige, and¢e, can be renamed and reused.

o If e= € — €y, then¢e(X7 Y, Z) = ¢91(X7y7 Z) A _'¢92(X7 Y, Z)

o lfe=g Mgfﬁkez, thende(Xi, Xj, Xk) = IXuIxvIXaPe, (X1,X2,X3) A e, (X1, X2, X3) AO(B) A
B(n), whereu,v,w are the remaining elements that together wiith k complete
{1,1",2,2,3,3'}, a(B) contains the equality, = Xq Or X, = 0 for each equalityp = g or
p=o0inB,foroe Oandp,qe {1,1',2,2,3,3}, and likewise for inequalities, arf3(n)
contains atom-(Xp, Xq) for each equalityp(p) = p(q) in n, and likewise for inequalities
using atont~.

e Similarly, if e= ggne1 thende(X,y,z) = de, (X,¥,2) A (0) AB(N), wherea(8) andB(n)
are defined as in the previous bullet.

It is now straightforward to check the desired propertigsfand¢e.
That the containment is strict follows from Part 3 of the groo

Part2 To show that F@is contained inmriAL, one needs to show how to construct, for every
FO? formula, an equivalentriAL expressiorey such thaiey (T) = ¢(I7), for all triplestores
T.

The construction is done by induction on the formula.

Recall here that U is just a shorthand for the relation thatainsO?.

e For the base case, §f= E(x1,X2,X3) for some triplestore name theg is justE. How-
ever, in the general case whén= E(x;,X;,x), for each ofi, j,k in {1,2,3}, we let
ey = EXIKE. For the other base casegifis x; = xo, theney = 01-oU.

198 Chapter 8. Beyond graphs — TriAL

o If & =—¢1, theney =U — ey, (recall that we assume active domain semantics for FO
formula).

o If ¢ =3xP1(y), theney = e¢1Md7U, whered depends on the size ¢f i [y] = 3 then
d=i,j,K,if y=2thend =i, K, and ify=1thend =i, ' K.

o If & =01(Xy)Vd2(X,2), theney = ey, Ugy,. Notice here that we assume that variables
in X,y,z appear in the same order in bdllh and¢.,. If this is not the case then one can
only permute the variables by doing a join, as in the base case

We leave the proof thag ande, satisfy our desired properties, since it is easy to check.
The key idea is that we do not need projection in our algebsimalate FG queries, since we
know that they will have 3 free variables at the end, in theuatidn step we can just ignore
some of the positions in the triples.

To show that the containment is proper, consider the folgwproperty over triplestore
databases:

A triplestore databas€ has four different objects.

It is not difficult to construct &riAL expressiore such thate(T) is nonempty if and only

if T has four different objects. For example, one can use theesgjune = U Mé*z’?’u, where

B=(1#2ANL#HINLAV)AN2#AIJINR2AL)AN(B#£T).

On the other hand, I&; = (O3, Es, p) be the triplestore in whic®; = {a,b,c} andEz =
O3 x O3 x O3, and T4 = (Og4,E4,p’) be the triplestore in whicl®, = {a,b,c,d} andE4 =
O4 x O4 x O4. In addition we sep(a) = p(b) = p(c) =1 andp’ = puU{(d,1)}. Itis trivial
to show that these structures cannot be distinguished byfamula in the infinitary logic
£3,, [Libkin, 2004], since the duplicator always has a strateggrisure that the 3-pebble game
can be played forever in these structures (see e.g. [LiBKiD4]). Note that the standard game
will work here, since all the data values are the same, so dioeyot influence the winning
strategy of the duplicator. It follows that the expresséorannot be expressed in EQn fact,

not even inL3,).

Part3 For Part 3, we show thatiAL is incomparable with F®and FO.
We begin by showing that the followinGiAL query:

123
g&:=U XU, withe = N i #],
0 ije{1,231,2 3} i#]
cannot be expressed in EQand thus not in F6).
Note that this is a modification of the query from part 1 of thisof that simply states

that our triplestore has at least six objects. Now f&ke- (Os, Es, p) with Os = {a,b,c,d, e},

8.6. Expressive power 199

andEs = Os x Og x Os, wherep assigns the same data value to all element3sodind define
Og in an analogous way, but with six elements. It is a well knoaet fLibkin, 2004] that the
duplicator has a winning strategy in a 5-pebble game on tiwasstructures, so they can not be
distinguished by an FOformula. On the other hand our expressindoes distinguish them
and is thus not expressible in EO

Next we show that there is an E@xpression that cannot be expressed by ity query
(and thusTriAL cannot express neither full P@or FCP). In order to do that, we first need to
show that triple algebra expressions can be expressed \piitiaular extension of F¥) that
we call here F&join.

Formally, we construct F&join formulas from FG formulas, the usual operators of dis-
junction, conjunction, negation, existential and uniaérguantification, and the following join
operator: if$p1 and ¢, are formulas in F&join that use variablesq,xy,x3 and xy/, Xy, Xz
respectively,0 is a conjunction of equalities between indexegin1’,2,2'.3,3'} andn is a
conjunction of equalities between indexespifl),...,p(3'), then the formulap(x;, xj, %) =
$1(X1,X%2,X3) Mgfﬁk¢2(x1/,x2/,x3/) is a formula in FG-join that only uses variables;, Xj, X«
Furthermore, the number of variables in :F}Din formulas is restricted to 3, but note that for
the sake of counting variables the constitt;, X;, x) = ¢1(X1, X2, X3) Miéjﬁkq)z(Xl/,Xz/,Xg/) is
assumed to use only variabbgsx; andx.

The semantics of the join construct is defined in the same wdgralriple Algebra, and
the rest of the operators are defined in the same way as in R®ndtv not difficult to show
the following:

Lemma 8.6.2. Triple Algebra is contained iFO*-join.

In fact, one can actually show that both languages have the sapressive power, but for
the sake of this proof we will not bother. Continuing with fr@of, we now define a game that
characterizes expressibility in Bgoin.

Let J be the set of all the join symbols that we allowTiiAL. A recipe pfor FO?-join is
a tree of rank 2 (i.e., every node can have at most two chijdedreled with symbols from
alphabet{3,v} U 4, such that the following holds: If a nodeof p has two children, then it is
labeled with a symbol in J, and if a nodef p has one child, then it is labeled withor V.

For every such recipp, define thequantifier class Ip) inductively as follows:
e L(g) contains quantifier and join free formulae.

e If the root of p is labeled withQ € {3,V}, thenL(p) is the closure under conjunctions
and disjunctions of the clads(p) U{Qxd | ¢ € L(p')}, wherep' is the subtree op
whose root is the only child gb.

200 Chapter 8. Beyond graphs — TriAL

o If the root of pis labeled with a symbok in J, letp; and p, be the subtrees qf whose
roots are the first and the second childpfespectively. Theh(p) is the closure under
conjunctions and disjunctions of the class of all formufai@ Y, where¢ € L(p;) and

W e L(p2).

We now define the join game between two structures. This gaoweeds as in a typical 3-
pebble game (see [Libkin, 2004] for a precise explanatiexjept the following sets of moves
are available to the spoiler:

The join Mie*fﬁk move:

The spoiler picks a structure, and then splits the 3 pebhblésait structure into two sets of 3
pebbles, set 1 and set 2, with the condition that the sptisfiesthe join: If before the move
the first, second and third pebbles where in elemanitsandc, then the first, second and third
elements of each of the set of pebbles must be placed in elemgeh;, c; anday, by, ¢, such
that(a,b,c) = (ar,by,¢1) Miéfr’]k (ag,by,C2).

Duplicator must then split the pebbles in the other stracioto two sets of pebbles, in the
same fashion as the spoiler, with the split also satisfyiregconditions of the join, Spoiler then
picks either set 1 or set 2, and remove the other set of pefyblasboth structures.

A join gameon a pair of structures4, B), is played as the regular 3 pebble game, except
now the spoiler can use any numberomoves, forx in J. The winning conditions for both
players are the same as in the 3-pebble game. For every nrecpeC-join we also define
the L(p)-join game. This contains all join games in which the seqaesfonoves performed
by the spoiler are described by a path from the rogh td one of its leaves.

Let L be a class of F&join formulae and A and B structures of vocabuldy,~). We

write 4 < B if 4 = ¢ impliesB = ¢, for every sentencé € L.
Lemma 8.6.3. The following are equivalent:
e The duplicator has a winning strategy on allfy) join games.
e A=< p B

Before we prove this Lemma, we make the following crucialastaation: If, in a join game
a pebble has already been placed on elemaent4, then the remainder of the game can be
considered as a game with two pebbleg dna), until the first pebble is replaced somewhere
else, or a join move are performed. We call these gamesated

Proof. We prove the contrary: If there is a sentepoef classL(p) such thatZ |= ¢ but B (- ¢,
then the spoiler has a winning strategy for thg)-join game.

We prove this by induction on the height pf

The case whemp is empty is trivial.

8.6. Expressive power 201

Assume that Lemma holds for all recipes of heighaind letp be a recipe of height+ 1.
Furthermore, assume that there is a senténsech thatq |= ¢, but B [~ ¢. We will construct
a winning strategy for the spoiler. & is a boolean combinations of formulas, then the two
structures are distinguished by at least one of them. Wenhagel¢ft with the following cases:

e ¢ is of form 3Y(x), wherexis a tuple of at most two variables, agchas depth at most
k—1 and belongs tb(q), whereq is the subtree whose root is the single chilgofrhen
the spoiler can win as follows. In his first move he places atgbfe in elemena such
that(A4,a) = . No matter in which elemerii € B the duplicator places its pebble, we
know that(‘B,b) = W, and thus the spoiler has a winning strategy for the remaiofle
the truncated game.

e ¢ is of form Yy (x), in which case the strategy is analogous to the previous one

e {(ab,c)is of formd, X ¢, for someX in J (note thatk, b, c are interpreted as constants
of A and B). Thenp has two childrenp; and p,, both of height< k, and¢; € L(p1),
d2 € L(p2). SinceAa = ¢(a,b,c), yet B |~ ¢(a,b,c), spoiler can win by first placing
pebbles on elementgs b, c, and splitting pebbles placing them into séts, b, c;) and
(a2,by,c2) of elements in A such thaias, by, c1) X (a2,bz,¢2) = (a,b,c). Given that
B I~ ¢(a,b,c), then for every paifd;, ey, f1) and(d, &, f2) of elements in B such that
(dh,eq, f1) X (do, e, f2) = (a,b,c), it must be the case that eith@B [~ ¢1(dy, €1, f1) or
(B [~ ¢(dp, &2, f2). Depending on the move of the duplicator, spoiler choosessét
accordingly, and continues to win the truncated gaméra;, b, ¢;) and(B,d;, e, f;),
fori=21ori=2.

We now continue with the proof of the Theorem. Due to Lemmz38 &l that is left to do
is to show structures A and B such that the duplicator can wynj@n game, and yet they are
distinguished by an F&formula.

The structures are as follows:

Consider objects, b, ¢ plus objectss, . ..,dg andey,...,e.

e Structure A contain edge$a,e,b),(b,g,a),(a e,c),(c,,a),(b,g,c),(c,e,b), for
each 1<i <12, plus edgesa, &,d)), (dj,&,a), (b,&,d;),(d;,&,b),(c,&,d;),(dj,&,c)
foreachI<i<4and 1< j < 12.

e Structure B also has edgés, g,b),(b,&,a),(a e,c),(c,a,a),(b,e&,c),(ca,b), for
each 1<i < 3, plus edgesa, e,b), (b,&,a), (b, g,d;),(dj,&,b) and(a,&,d;), (d;,&,a)
for each 1< j < 3 and for each & i < 6; (a,&,c),(c,§,a),(dj,&,c),(c,&,d,)

202 Chapter 8. Beyond graphs — TriAL

and (a,g,d;),(dj,g,a) for each 4< j < 6 and for each 7< i < 9; and
(b,&,c),(c,&,b),(b,g,d;),(dj,a,b) plus(c,&,dj), (dj,&,c) for each 7< j <9 and for
each 10<i <12,

€ €

. . i=7...9,j=4... i=10...12/j=7...

i—1..12j=1...4 =790 =40 1=10. 42 =79
Structure A Structure B

It is not difficult to see that the duplicator has a winningstgy for the standard 3-pebble
games on this structure. If the three pebbles placed by thikesjglo not correspond with an
edge of the structure, the the duplicator just mimics theesaraves, the partial isomorphism
trivially holds. If the third pebble correspond to some ed§déorm (u,e,v), for u andv in
{a,b,c,ds,...,dg} and 1<i < 12 in A that is not in B, assume the pebble was last placed
in u (other two cases are symmetrical). Then the duplicator sxéedind a permutation
of the objects in A, such that(g) = g, 1(v) =V, 1(4) is isomorphic toA4 and the edge
(1(u),1(e),t(Vv)) Isin B, and place pebbles {n(u),1(&),1(v)), so that the partial isomorphism
still holds. For the remainder of the game, duplicator ast# dealing witht(2) instead of A.

Next, for thei, j, k-join move, assume that pebbles in structufeand B are in elements
a;,aj,ac andb;, bj, by, respectively. If spoiler divides first structure B duptmajust responds
with the same edges in A. Now if spoiler divides structure #oipebbles(a;,ay,as) and
(ar,ay,ay) satisfying the join condition, we have three cases:

e If none of (a;,a2,a3) and(ay,ay,ay) are edges in A then duplicator mimics the pebble
placement.

e If, say, only(a;,ap,a3) is an edge in A, then the duplicator proceeds like in the above
paragraph.

e Otherwise, if both(a;,a,a3) and(ay,ay,as) are edges in A, duplicator needs to find a
permutatiort of the objects in A such that7) is isomorphic to At(a) = &, 1(aj) =
aj, andt(ax) = ax; and edgest(a1),1(a2),T(ag)) and(t(as),T(as),1(as)) belong to B,
and respond with those pebbles. The partial isomorphiswially holds.

8.6. Expressive power 203

All that is left to show that this is a winning strategy for tHaplicator is to show that
there are always such permutations, no matter where arebiegs placed. This can be easily
shown with a lengthy and straightforward case by case asalys

From Lemma 8.6.3 we obtain that A and B agree on alfffn formulas. However, it is
not difficult to see that they do not agree to the following*F@mula (which is only true in
A):

¢ (x,y.2) = DAyIZEW(W(X, ¥, W) A P(X, W, 2) A P(WY, 2) AP(X,Y,Z) A
X#YAXFEZAXEWAY #ZAY #WAZF W),
where
W(x,y,z) = EIW(E(X,W,y) ANE(Y,W,x) AE(Y,w,2) AE(X,W,Y) A E(X,W,2) A E(Z,W,X)A
X£ZAXEYNY#2).

This shows that F®is not contained ifriAL, which completes the proof of Part 3. O

Expressivity of TriAL= TheTriAL queries we used to separate it from¥F® FO* make use of
inequalities in the join conditions. Thus, it is natural &kavhat happens when we restrict our
attention toTriAL=, the fragment that disallows inequalities in selectiond jmins. We saw in
Section 8.4 that this fragment appears to be more manageablens of query answering. This
suggests that fewer variables may be enough, as the numberiaibles is often indicative of
the complexity of query evaluation [Immerman and Kozen,9%ardi, 1995]. This is indeed
the case.

Theorem 8.6.4.
e FO® is strictly contained infriAL=.
e TrAL= is strictly contained irFO*.

Proof. The containment ofriAL= in FO* was shown in the proof of Proposition 8.5.1, and
thatTriAL= contains FO was already showed in the second part of the proof of Theotéri,8
since the translation used there does not make use of iréegiat joins.

That the containments are strict follows from the proof oédtem 8.6.1. O

Expressivity of the recursive algebra Next, we turn to the expressive powertaAL*. Since
the Kleene star essentially defines the transitive clostijgirooperators, it seems natural for
our study to compar&iAL* with Transitive Closure Logic, ofrCl.

Formally, TrCl is defined as an extension of FO with the following operatém (k,y, 2)
is a formula, wheréx] = |y] = n, andu,V are tuples of variables of the same lengttthen
[trcl zyd (X,Y,2)](u,V) is a formula whose free variables are those,in andv. The semantics

204 Chapter 8. Beyond graphs — TriAL

is as follows. For an instandeand an assignmeuwtfor variablesz, construct a grapks whose
nodes are elements Bf and edges contain paifs;,uy) so thatd(us, uy,c) holds inl. Then
| |= [trel gy (XY, €)] (& b) iff (& b) is in the transitive closure of this grajh
It is fairly easy to show thafriAL* is contained inTrCl; the question is whether one
can find analogs of Theorem 8.6.1 for fragmentsTef! using a limited number of vari-
ables. We denote byrCI* the restriction ofTrCl to k variables. Note that constructs of form
[trel ey (X,Y, Z)] (t1,t2) can be defined usin@y | + [tz 4 |2 variables, by reusing andt; in ¢.
Then we can show that the relationship betwaaalL* and TrCl mimics the results of
Theorem 8.6.1 for the case BfAL and FO.

Theorem 8.6.5.

e THAL* is strictly contained inlrCI°.
e TrCI3 is strictly contained irTriAL*.

e THAL* is incomparable withrrCl* and TrCI°.

Proof. We split the proof into three parts, one for each of the claims

Part 1 We begin by proving thatriAL* is strictly contained inTrCI®. To see thafiriAL* is
contained inTrCI® we use induction on the structure DfAL* expressions. Note that all the
cases, except for the Kleene closure of various joins wearseyrecisely the same translation
as in the proof of Theorem 8.6.1. What remains to prove isakptessions of the form

can be translated inférCI® expressions (the other join being completely symmetrical)

To see this, letbe(x,y,2) be aTrCl® formula equivalent tce. That is we have that
It = We(a,b,c) if and only if (a,b,c) € R(T), for any triplestoreT, with It the FO-structure
representing . We define the following formulgyy (X,y,7) in TrCI®:

lIJe(XJ,)/,Z,) \ ElX, y,Z (llJe(Xa ya Z) A [trCI X,y7Z7X’7y“7Z’¢(X>y>Z>X,>y,az,)](xa ya ZaX,>y,>Z,))

Whered (x,y,z X,y ,Z) is a formula such thaji(a,b,c,a,b',c’) holds inly iff there exists a
triple (a”,b”,c”) such thatpe(a”,b”,c”) holds and the join ofa, b,c) and(a’,b”,c”) produces
triple (a,1/,c). The definition of this formula iTrCI® is rather cumbersome, since it depends
on the position$, j, k of the join in question. We just give two examples, the resttegated in
the same way: For the expressign= (eX23)* we have thab(x,y,z X,y ,Z) isx=X Ay =
Yy A XY (We(X,Y,2) AWe(X,Y,Z)). As another example, i = (ex¥?:3)*, then¢ is just
We(X,Y,2) AWe(X, Y, Z).

8.6. Expressive power 205

Next we prove that)y is equivalent to expressia over all triplestores. For one direction,
let T be a triplestore database using a@aif objects, and assume that trigle b, c) belong
to €(T). Then from the semantics of the recursive operator, theresaquencea ., tm Of

triples inO® andpy, . .., pm of triples ine(T) such that; € e(T), andty,, 1 :tm M Pm. f m=1
this follows from the first part ofy. If m> 1, notice that, by definitionl; |: ¢(t1,tj+1) for
each 1< j < m. It follows thatlt = We. The other direction is analogous.

The fact that the containment is strict follows from Part 3t proof.

Part 2 Next we prove thaflrCI® is contained inTriAL*. We do this by induction ofrCI3
formulas. Note that all the cases, except for the case afitihaa closure operator, are exactly
the same as in the proof of Theorem 8.6.1. Next we show hovatsiate formulas of the form

P(X,Y,2) := [trclxyd (XY, 2)] (g, U2).

By the induction hypothesis there exists&#L* expressiorRy such that for any triplestore
T we havelt = ¢(a,b,c) iff (a,b,c) € Ry(T).
Consider now the following expressidiy;:

123

Ri=(Ry_ M)"

3=3N2=1

Observe now that a triple, b, ¢) will be contained irR(T) iff there is a sequence of triples
(a,by,c), (b1,by,c), (b2, bz, C),... (b, b, c) with the property that they all belong &, (T). But
this then means that the pda, b) belongs to the transitive closure of the relation defined by
d(x,y,c). Thatis we have thdg,b,c) € R(T) iff bis reachable froma using only edges defined
by ¢ (x.y,0).

We now proceed case by case, depending on the structurentf igrandu,. Since our

terms are only variables we have a total of nine cases.

e If u; =xandu, =y we defineRy, := R. Itis straightforward to see théh, b,c) € Ry(T)
iff 1T = W(a,b,c).

If uy =yandu, = xwe defineRy ;=R

If uy = xandu, = zwe defineRy := 0>_3R.

If uy =zandu, = x we defineRy := 01_3R.

If uy = xandu, = x we defineRy := g13R.

All of the other cases are symmetric.

206 Chapter 8. Beyond graphs — TriAL

This concludes the proof in the case whigrabove uses,y,z as variables. All of the
other cases are similar, e.g. when we have the forriudb ¢ (x,y,x)](x,y) the expression
(01-3Ry M%fl’?)* in place ofR will suffice (note that now we have only two free variables).

That the containment is strict follows from the commentshathieginning of the proof of
Part 3 below.

Part 3 We begin by showing thalriAL* is not contained infrCI* or TrCI°. In the proof of
Theorem 8.6.1 we show thatiAL, and thusTriAL* contain an expressioasuch thate(T) is
nonempty if and only ifT has 6 different objects. The proof then follows by two cleaki
results in finite model theory [Libkin, 2004]: (3 cannot be expressed by neithef,, not
£3,,, the infinitary logic restricted to 4 and 5 variables, reswety, and (2)TrCI* is contained
in £X,,

To see thaflrCl* is not contained inriAL (and thus that neitheFrCI®> not TrCI® are con-
tained inTriAL), we define an analog of the logic Bgbin used in the proof of Theorem 8.6.1.
The logic FG -join extends F&join with countably infinite disjunctions and conjunct®nf
formulas in FG3-join (of course the restriction on the variables still i&)ld Formally, every
FO3-join formula is in FG-join, and if all ¢; are formulas in F§-join using the same set of
at most 3 variables, fore S whereSis not necessarily finite, thep;csdi and\/,.sdi are
formulas in FG-join.

Notice that, by using these disjunctions, it is trivial tgeass the recursive star operator of
TriAL* with FO2-join. Thus, if two structures? and B are indistinguishable by Fjoin, then
so are they byriAL*.

On the other hand, using the techniques in [Libkin, 2004 itat difficult to see that, if two
structuresq and< are indistinguishable by F@join iff they are indistinguishable by Fgoin
(if the spoiler can win the join game ofi and B, then it can win the infinitary join game that
characterizes FDjoin).

It follows from the above observations, and the proof of The08.6.1, thalriAL* cannot
express the query

O (xy,2) = IAYFZEW(W(X, Y, W) A P(X, W, 2) A YWY, 2) AP(X,Y,Z)A
XA YAXFEZAXAEWNAY #ZAY #WAZFE W),
where
W(x,y,2) = EIW(E(X,W,y) ANE(Y,W,x) A E(Y,w,2) AE(X,W,Y) A E(X,W,2) A E(Z,W,X)A
X#ZAXEYNY#2).

used in the proof of Theorem 8.6.1. O

8.7. Summary 207

8.7 Summary

In this chapter we have seen that although graph query lgeguarm a good basis for nav-
igational querying of RDF documents, certain propertiethefmodel require a more general
approach. Indeed, nested queries such as the one from Ri@mp8sl.2 are often required in
applications such as data integration, provenance trgckinclustering, and the inherent in-
ability of graph languages to deal with them becomes someeftan issue. Coding triples as
graphs can be seen as one solution to this problem, howhigwitl not always work (without
incurring a significant computational cost) and more orgdanguages, tailored specifically
for RDF are required. To that end it is advantageous to razedghat reachability over graphs
—binary in its essence — differs significantly from reachighbover triples, where more general
form of navigation is needed.

To overcome this issue we have propo3edL andTriAL*, languages designed to operate
specifically over triples. Like relational algebra, takirgdations as input and producing rela-
tions as output, we designed our language to be closed. foheTriAL query will always
produce a valid triplestore, not taking us outside of thelisi model. Furthermore, the lan-
guage was shown to be efficient, highly expressive and alflaridle generalized reachability
queries that fall out of scope of graph languages or SPARQEe. [Anguage also has a tidy
declarative counterpart — a fragment of datalog calleédleDatalog ', and is strongly rooted
in logic. All of this seems to point to high potential applidity of the language, particularly
taking into consideration that most of the features, narjahs, which form the crux of the
language, have been implemented and optimized on all ofulrently available RDBMSs.
Of course, it remains to see if such systems can scalablyeimgahit the type of recursion we
require, and to test how such an implementation stacks stgainrently used RDF systems.

Part Il

Analysing the languages: Comparison

and Containment

209

Chapter 9

Comparing the languages

In this chapter we compare previously introduced query daggs in terms of expressive
power. In particular we will present the complete picturehofv the classes are related to
each other and also examine purely navigational power gfigi@nguages introduced in Part
II. Note that navigational fragments of path queries fronnt Paollapse to RPQs and their
relative expressiveness is well understood [Barceld, R013

As before, we will say that a languadeg is contained in a languagg if for every query
in £;1 there is an equivalent query ify. If in addition £, has a query not expressible iy,
then £, is strictly contained inZ,. The languages are equivalent if each is contained in the
other. They are incomparable if none is contained in therothe

We begin by comparing path languages to each other and shbtwetehgerarchy starting
with RQDs and ending with RDPQs, with the exception of RQVhjolr are, as established
earlier, orthogonal to all of those. We then move aBxPath and show that while the language
is more expressive thaRQDs, its inability to store data into variables makes it incanable
to other path languages. Note that here it also makes serstedy the expressive power of
purely navigational language and compare it to thatiREs and CRPQs, singe@XPath does
allow some, albeit limited, amount of conjunction. Finallye demonstrate hoWriAL* can be
used as a graph query language and show that, although itreeb&XPath, it still has the
same weakness of not being able to use variables, thus miakilgmparable to RDPQs and
other path formalisms that do have this functionality.

9.1 Path queries

From semantics of path queries in Chapter 4 it readily fafldhat a class of queries; is
subsumed by, if and only if the class of automata of expressions used tméefueries in
L, are more expressive than the ones definingTo that end it suffices to compare language
theoretic formalisms defining path queries to gauge théative expressive power. It is also

211

212 Chapter 9. Comparing the languages

easy to see that whether we consider languages over data wo/er data paths has no
impact on the final result (see Section 3.1).

Taking this into consideration, applying Theorem 6.6.1 iedimately implies the following
set of results.

Theorem 9.1.1. The following relations hold, wheré denotes that language on the left is
subsumed by the language on the right, but not vice versa.

e RQDsC RQBsC RQMs= RDPG.

e RQVs are incomparable in terms of expressive power with R(REBs , RQMs and
RDPGs.

9.2 Moving up the food chain

Here we compar&XPath to path languages introduced in Chapter 4 as well as to ivadit
navigational languages such as RPQs, CRPQs\®RiL. Note thatGXPath enriches RPQs
with new navigational abilities and it is therefore worthilgrexamining how navigational part
of the language fares when compared to other extensions QERP

GXPath and path languages ~ When comparing XPath with path languages we will consider
the regular fragment with- type data tests, since they subsume class{€akh-style tests.
While it is apparent from the definition @XPatheg(c, ~) that it containdRQDs, we can also
show that the containment is strict.

Proposition 9.2.1. The class of RQD queries is strictly containeddkPathyeg(c, ~).
Proof. To see that the containment is strict consider the follov@ixgpath query:
q= (alb])".

Note that this is also aNRE. To obtain a contradiction assume that there is S&Q@D Q,
equivalent tag. Now consider the following grap.

. V3
b

Vi e—> e V2

Data values are not important here so we do not list them@ttypli It is easily checked that
(v1,v2) € [q]®. By our assumption we also have tlfef,v2) € Qq(G). But sinceQq is anRQD
this means that there is some regular expression with ¢geglsuch thaQy = x S, y and:

9.2. Moving up the food chain 213

e There is a patht starting withv; and ending withs,, and

o A(T) belongs toL(gy).

However, the only path i connectingv; andv, is t= viaw. Consider now the grap®’
obtained fromG by removing the edgév,, b, vs). We now havevi,vs) ¢ [q]€, butt=viaw
is still a path inG’ with A(TT) € L(&q). This then implies thatvi, v2) € Qq(G'), a contradiction.

]

ComparingGXPath to more expressive path languages we can see that the dbilitse
variables makes them capable of expressing queries outsiddeeach ofGXPath. We also
show that the converse is true, as new navigational feaallms GXPath to define patterns not
captured by paths.

Proposition 9.2.2. GXPathyeg(c, ~) is incomparable in terms of expressive power with RQMs,
RQBs,RDP@s and RQV s.

Proof. It is easily seen that the example from Proposition 9.2.1bsansed to give &XPath
query not expressible by any of the path languages.

To prove the reverse we show ti@XPatheg(c,~) is contained in three variable infinitary
logic £3,, (with constants and data value comparisons). It is well kitoat this logic can
not define models that have at least four different eleméuiiltékin, 2004]. However, one can
readily check that such a query is expressible by any of thefpamalisms mentioned in this
theorem. We will give a full proof of this fact for a slightlyrenger class of queries in Theorem
9.3.8. This, together with Proposition 9.3.6, implies tlesiced result. O

Relative expressiveness of navigational fragments Our next goal is to compare the ex-
pressiveness of navigationaXPath fragments with that of traditional graph languages. We
start with nested regular expressignand after that look at path languages such as RPQs,
CRPQs, and relatives.

As expectedGXPathreg is strictly more expressive thawREsS. However, we show that
NREs do capture the positive fragment@KkPathyeg.

Theorem 9.2.3. GXPathfsy = NRE C GXPathia P

Proof. First we show thaNRE C GXPathyeg.

Using a straightforward inductive construction one canashow to convert a nested reg-
ular expression into an equivalent path expressioGX®athieg. Note that all the operations
can be written down verbatim, minus tfré expression whoséXPatheq equivalent is/(en)],
wheree, is an expression equivalent mo

Next we show thaGXPath¢ore queryq = aj—(b)] is not expressible by anyRE.

Consider the following data grapB.

214 Chapter 9. Comparing the languages

Itis easy to see thdt]® = 0. We now show thain]© # 0, for any nested regular expression
n. Thus we conclude that no equivalNRE exists.

In fact we show that for everi\RE n there exist nodes,xz,y1,Y2 € {v,V} such that
(X0, (V' X2), (Y1, V), (2, V) € [n] .

This can be shown by an easy induction on the structure of

We now show thaGXPathfa "= NRE.

We already know that nested regular expressions can bessggt@$ XPath queries. Ex-
amining the proof shows us that no negation is needed far this

To complete the proof we now show how to convert @¥Pathfe; expression into an
equivalent nested regular expression. More precisely,how ghat for any path expression
of our fragment there exists a nested regular expresgi@uch that for any grap we have
(x,y) € [a]€iff (x,y) € [na]®. Moreover, for any node expressi¢rwe define a nested regular
expressiomy such thai € [¢]C iff (x,x) € [ny]®. We do this by induction on the structure of

our GXPathfsy expressions.

Basis:
e e=athenng=a
e e=a thenne=a"
e e=¢thenng=¢
e e=T thenne=¢
Inductive step:
e e=[0] thenne = [Nny]
e e=0q-Bthenne=ny-Nng
e e=aUPBthenne =ny +ng
o e= ¢ AYthenne =¢g[ny] - [ny]
e e=¢ Vv thenne = g[ny + Ny

e e=(a) thenne = g[ngy].

It is easy to see the equivalence between defined expressions O

9.2. Moving up the food chain 215

We will now show that XPath-like formalisms are incompaeablith CRPQs and similar
queries in terms of their navigational expressiveness.sithele restrictionGXPathPeogs‘, is not
subsumed bYRPQs. In fact it is not even subsumed by unions of two-v&BPQs (which
allow navigation in both ways). On the other hag&RPQs are not subsumed by the strongest

of our navigational languagesXPatheg.

Theorem 9.2.4. CRPQs andsXPath fragments are incomparable:

e GXPathfy CRPQ (even stronger, there ar&XPathfsy queries not definable by
U2CRPQS);

e CRPQ Z GXPathreg.

Proof. Note that the first item follows from Theorem 9.2.3 and Theotein [Barcel6 et al.,
2012c].

To see that the second item holds we first show that for eB&Rath,eq expressiore there
exists anL3,, formulaFe equivalent to it. After that we give an example of a CRPQ thaidt
expressible in this logic using a standard multi-pebble ggmargument.

To be more precise we will be working with3,, formulas over the alphabgE, : ac 3}
(and with the equality symbol). All the relations are binagmd simply represent a la-
beled edge between two nodes. We will denote data graphsumsuses for this logic by
G = (V. (Ea)aca, =)

Now for every path expressianwe will define a formula/, (x,y) such that(v,V') € [a]®
iff G = Fq[x/v,y/V]. Likewise for a node expressiahwe define a formuldry(x) such that

ve [9]Ciff G = Fyx/V.

We do this by induction oG XPathreg €Xpressions.
Basis:

e a = athenFy(x,y) = Ea(x,y)

e 0 =a thenFy(xy) = Ea(y,X)

e a =¢cthenFy(Xx,y) =x=Yy

e ¢ =T thenFy(X) =x=X
Inductive step:

e 0’ =[] thenFy (X,y) =x=yAFy(X)

o o' =a-BthenFy(xy) =323y (y=zAFa(Xy)) AIX (x=ZAFg(X,y)))

e o' =aUBthenFy(xy) = Fa(X,y) VFg(Xy)

e o’ = a* then define

- ¢é (Xay) = FU(Xay)1

216 Chapter 9. Comparing the languages

rxy) =3z 3y (y=zAFa(xy)) A3X (x=zA 95 (X,Y)))
— Finally, setFy (X,Y) = Vnew 00 (X,Y)
o o/ =@ thenFy (X,y) = —Fu(X,Y)
o ¢/ = ¢ thenFy (x) = —Fy(X)
o O' = A thenFy (X) = Fy(X) A Fy(X)
o &' = (a) thenFy (X) = FyFu(x,Y).

It is straightforward to show that the translation has th&iréd property.
Next we define a binary CRPQ(x,y) that has n@XPatheg equivalent.

d(xy) = (X,ay) A(Xaz) A(Xaw)A
(y,a,X) A (z,a,x) A (W, a,X) A

(y,a,2) A (Y,a,w) A

Zay)A(way)A

Note thatd is stating that our graph has a complete subgraph of size four
Next we take two graph&; andG; as in the following figure.

a

a

o<——m>0
\Qkyf a a
a

[]
a

G1 C':‘2

Note thatG; is a complete graph of three vertices with all the edges ¢alzeandGs; is the
same, but with four vertices. It is straightforward to ses ${G;) = 0, while $(G5) # 0.

It is well known that no£2,, sentencd= can distinguish the two models (see, e.g., [Libkin,
2004]). This is due to the fact that that duplicator has a Wmigistrategy in an infinite 3-pebble
game on these graphs, simply by preserving equality of pebblements. That is for arfy
we haveG; |= F iff G, = F. Note that our result follows, since the aba¥BPQ selects the
entire graph or, and the empty graph d&;. This completes our proof. O

On the other hand, the positive fragment@X{Path.qre Can be captured by unions of two-
way CRPQs.

Proposition 9.2.5. GXPathlore C U2CRPQ.

9.3. Triple algebra and graph languages 217

Proof. From the previous theorem we know that there @®Q not expressible iGXPathreg.

On the other hand, for angXPathboe expressione we can construct an equivalent

U2CRPQ. That is, for any path expressianwe define aJ2CRPQ, namedyy (X,y), in two
free variablesx andy, such that for any graph databaBave have[a]® = Y, (G). Similarly

for any node expressiapwe define aU2CRPQ Yy (X). We do so by induction on the structure

of GXPathbgre eXpressions.

Basis:
e Fora = ¢ we havedy(X,y) := (X,€,Y).
e Fora =_we havapq(X,y) = Vaes (X a,y).
e Fora =awe havely(x,y) := (X,a,y).
e Fora =a we haveyq(x,y) == (x,a ,y).
e Fora = a* we haveyy(x,y) = (x,a",y).

*

e Fora =a " we havey(x,y) := (x,a ",y).
e Forp =T we haveyy(x) 1= Jy(x,&,y).
Inductive step:
e Fora = [¢] we haveu(x,Y) = (x.&,Y) AW (y).
e Fora=a’- we havey(x,y) := 3apu (x,2) A g (2Y).
e Fora =a’'Up’ we haveiy (x,y) := Wa (X,Y) V Pg (X, Y).
o Ford = ¢1Ad2 we haveyy (X) := Py, (X) A Yo, (X).
o Ford =1V d2 we haveyy(X) := Py, (X) V P, (X).
e Ford = () we haveyy (x) := Iya(X.y).

It is straightforward to show that the defined expressiorssguivalent. O

9.3 Triple algebra and graph languages

Although introduced as a querying mechanism for RDF Triples, TriAL* can also be used to
query graph databases. The goal of this section is to deratasow this can be achieved, both
when considering graphs with or without data values and eavghatTriAL* can be viewed as
a natural extension abXPath, allowing more involved types of queries and data testscesin
the language has not been studied in the graph context befereill start by comparing it to
traditional navigational languages and purely navigatidragments ofsXPath before moving
onto languages that handle data values.

218 Chapter 9. Comparing the languages

Navigational graph query languages and TriAL* Here we comparariAL* with a number
of established formalisms for graph databases such as NRE3s andconjunctiveregular
path queries (CRPQs). As our yardstick language for corspanve usesXPathreg Which is
essentially PDL [Harel et al., 2000]. Note that all of the igational languages we consider
here are designed to query the topology of a graph databasspagify various reachability
patterns between nodes. As such, they are naturally eqliyjih the star operator and to
make our comparison fair we will compare them wittAL* and not withTriAL.

SinceTriAL* is designed to query triplestores, we need to explain hownapare its power
with that of graph query languages. Given a graph dataBasé€V, E) over the alphabeX, we
define a triplestords = (O,E), with O =V UZ. Note that for now we deal with navigation;
later we shall also look at data values.

To compareTriAL* with binary graph queries in a graph query langu#@geve turnTriAL*
ternary querie€Q into binary by applying them 3(Q), i.e., keeping(s,0) from every triple
(s,p,0) returned byQ. Under these conventions, we say that a graph query langaoage
contained inTriAL* if for every binary querya € L there is aTriAL* expressione, so that
Ty 3(ey) anda are equivalent, and likewis@jiAL* is contained in a graph query languagéf
for every expressiorin TriAL* there is a binary querye € L that is equivalent tar 3(e). The
notions of being strictly contained and incomparable exierthe same way.

Alternatively, one can do comparisons using triplestomgesented as graph databases,
as in Proposition 8.1.2. Since here we study the abilityr@#fL* to serve as a graph query
language, the comparison explained above looks more habutan fact all the results remain
true even if we do the comparison over triplestores reptedeaas graph databases, as described
in Section 8.1.

We now show that alsXPathreg queries can be defined AL, but that there are certain
properties thatriAL* can define that lie beyond the reachGXPathyeg.

Theorem 9.3.1. GXPathyg is strictly contained inriAL*.

Proof. Assume thatGXPathreg uses a finite alphabet of labels. We show thabXPathyeg iS
contained inTriAL* by simultaneous induction on the structureGXPatheg €xpressions. If
we are dealing with a path expressiorwe will denote theTriAL* expression equivalent
by E4. Similarly when dealing with node expressi¢pnthe correspondingriAL* expression
will be denotedEy. Note that for the node expressignof GXPatheqg We consider thariAL*
expressiorEy to be its equivalent if the answer setfis the same as the answermf(E,)
over all graph databases and their triplestore represemsatrespectively.

Through the proof we will make use of the universal relatidrcontaining all possible
combinations of elements present in the model. We will alaieruse of the diagonal relation
D = U MU selecting all the triplega, a,a) with a e V.

9.3. Triple algebra and graph languages 219

Basis:
e a=athenEy = EX}2’E
e a=a thenE, = EX3*IE
e 0 =¢ethenEy = U MU
e ¢ = T thenEy =U X1H'U
Inductive step:
o o' = [¢] thenEq = Ey X111 Ey
o o =a-BthenEy = Ey X223 Ep
e 0’ =aUPthenEy(xy) = ExUEg
o o =a* thenEy = (Eq X323)*
e o' =0 thenEy = E§
e ¢’ =—¢ thenEy =E§ND
o ¢’ =pAdthenEy =EyNEy

e ¢/ = (a) thenEy = Eq X1 Eq.

It is straightforward to check that this translation worksimtended. For illustration, con-
sider the case whew' = a - 3. Our induction hypothesis is that we have two expressiBgs,
andEg such thata, b) is in the answer ta on Giff (a,c,b) € Eq(Tg), for somec and similarly
for B. Assume now thata, b) is in the answer ta’ on G. Then there i€ such that(a,c) is in
the answer tat and(c, b) in the answer t@®. But then(a, ¢/, c) € Eq(Tg) and(c,b', b) € Eg(Tg)
for somec’,b'. By the definition of join, we conclude théa, c’,b) € Ey(Tg). Note that all the
implications above were in fact equivalences, so we get fiposite direction as well. All of
the other cases follow similarly.

To show that the containment is strict recall that in Theo8e2¥ we proved thakXPathyeg
is contained ian;W Consider now the followingriAL expression:

wheredp = (1 £ AA#£YANAAV)ARAI)AQRAL)AB# V) A Nacsacicai # an
Naes v<i<z 1 # aandU is the universal relation. It follows easily that this exgs®n has an
nonempty answer set if and only if the original graph datalesd at least four different nodes.
It is well known that this query is not expressibleﬁﬁw, thus implying that the containment
is indeed strict. O

Recall from Theorem 9.2.3 thaixXPathreg SUDSUMENRES. Thus:

220 Chapter 9. Comparing the languages

Corollary 9.3.2.

e NRES are strictly contained ifTriAL*.

e RPQs are strictly contained ifriAL*.

Next we move to comparison with conjunctive queries. Hemstead of usual CRPQs
we will consider slightly more expressive conjunctNBEs (CNRES) [Barcel6 et al., 2013a].
Formally, these are expressions of the fapix) = Jy A";(% — Vi), where all variables
Xi,yi come fromx,y and eachg is aNRE. The semantics extends that MREs, with each
X — y; interpreted as the existence of a pattern between themdrdgnoted byg. We
compareTriAL* with these queries, and also witimionsof CNRES that use bounded number
of variables.

In order to do these comparisons we will rely on the fact ThialL* is subsumed by infini-
tary logic with six variables.

Lemma 9.3.3. TriAL* is contained in the infinitary Iogi(Lf?,’m.

Proof. What we mean by this is along the lines of the proof of TheorenlgPart 1), where
we compardriAL with first-order logic over the vocabulaf¥, ..., E,~).

That is to prove the lemma, we only have to show that‘tbgerator can be simulated in
this logic. To see this consider an arbitrary star-join @f thrm

Assume that we have abf,’w formulaF (x1,%2,X3) such thafl = F(a,b,c) if and only if
(a,b,c) € F(T). We first define the following formulas, 3. Consider the formul8. We then
let a be the conjunctions of formulag = X;, wheneveii = j is a conjunct in@ andx # X,
whenevet # | is a conjunct irB. Similarly for p(i) = p(j) in n we addx; ~ X; as a conjunct

in 3 and analogously fop(i) # p(j).
We now define the following formulas:

o Ry(X1,X2,X3) :=F(X1,%2,X3).

o Rnp1(X1,%2,%3) 1= IXa, X5, X6(Rn(X1, X2, X3) A A BAIX, X2, X3(Xa = X1 AXg = X2 A Xg =

X3 A F(X1,X2,X3)))

Finally setR(x1,X2,X3) := Vpnee Rn(X1, X2, X3).

It is straightforward to check that this formula defines theited relation over. A similar
formula can be defined for left-joins.

Note that we could have included constants to our compagisoth FO, but to keep the
language one-sorted we omit them from our presentatiors dt straightforward exercise to

9.3. Triple algebra and graph languages 221

check that all of the results would still hold true is they eatlowed. For example constant
comparisons of the form 2 a would be handled by adding the clauge= a as a conjunct to
the formulaa above. O

When comparingriAL* with CNREs we obtain the following.
Theorem 9.3.4.

e CNREs andriAL* are incomparable in terms of expressive power.

e Unions of CNRES that use only three variables are strictigtamed inTriAL*.

Proof. We begin by proving that full CNREs ar@iAL* are incomparable in terms of expres-
sive power.

The existence of a CNRE query not expressiblaiL* simply follows from the fact that
TriAL* is contained inLS,jw. The reason for this is that CNRESs can ask for a 7-clique, pgotp
not expressible iLg .

To see the reverse we will use a well know fact that CNREs areoaotonic class of
queries. That is for any two graph databaGeandG’ such thatG C G’ (that isG’ contains
all the nodes and edges @) and any CNREj we have thatu,v) is in the answer tg on G
implies that(u,v) is in the answer tg on G’ as well.

Next considefriAL expression

123 123

e:=(EMXU) l’fﬁ u,
with ¢ = Apes 1 # b, 3 # b. When interpreted over (a translation into a triplestofeacgraph
databases, this expression returns all pairs of nodes thatraseconnected by am-labeled
edge. (Formally we will return all the triplas v, w such thatu andw are not connected by an
a-labeled edge. The extra join just handles the specifics ofranslation of a graph database
into a triplestore). Suppose now that there is a CNRIEfining the aforementioned query.
Consider the following two graphs.

a
b m
Ve oV Ve (V4
G G

The nodegv,V) will be in the answer to our query over the grah Using the mono-
tonicity of CNREs and the fact th& is contained infG’ we conclude thafv,V') is also in the
answer to our query ové®’. Note that this is a contradiction since we assumeddleatracts
all pairs of nodes not connected by atabeled path.

This concludes the proof of part one of our Theorem.

222 Chapter 9. Comparing the languages

Next we show that UCNRES using only three distinct varialaless contained inriAL*.
Observe first that for any NREthere is dlriAL* expressiorEe equivalent toe over all data
graphs (Corollary 9.3.2). We will now show that any CNRE thsts precisely three variables
is definable usingriAL. To see this, consider the following example. Ebe the following
CNRE:

Q(X,Y,2) == (X.e1,Y) A (Z €,Y) A (Y, €3,Y) A (Y, €4,X).

It is easy to check that the followinmiAL expression:

123 123 132 123 212 123 312
(((Tey JU) P (Tey X U)) P (Tey)LU)), P4 (Tes KU,

whereTg is theTriAL equivalent ofg, is equivalent taQ over all graph databases.

Notice that here we have to output all the triplesy,z) satisfying the condition of our
conjunctive query. For this we first join eadl with the universal relation and arrange the
nodes potentially appearing in the answer in the right orBler example, when dealing with
(x,€1,y) we defineT, X3%2U, where we put the nodes appearinginin the correct order. At
the end we simply join all the resulting relation in a way thegserves the designated objects.
Here we have to take care that we force equality only on theotdbjused in the conjunctions
involved up to now.

It is straightforward to extend this construction to the tngsneral case of an arbitrary
number of conjuncts with various arrangement of variables.

Finally, sinceTriAL expressions are closed under union we get that UCNREs with on
three variables are containedTiAL*. That the containment is proper follows from the first

part of the proof. O

By observing that the expressions separating CNREs fiast* are CRPQs, and that
CNREs are more expressive than CRPQs and C2RPQS [Barcelp2eti2c] we obtain:

Corollary 9.3.5.

e CRPQs andriAL* are incomparable in terms of expressive power.

e Unions of C2RPQs and CRPQs that use only three variablesteothys contained in
TriAL*.

Data values in TriAL* Until now we have compared our algebra with purely navigetio
formalisms. Triple stores do have data values, howevercandhus model any graph database.
That is, for any graph databa&= (V,E,p) we can define a triplestorg; = (O,E,p) with

O =V UZ. Note that nodes corresponding to labels have no data vassigned in our model.
This is not an obstacle and can in fact be used to model grapbates that have data values
on both the nodes and the edges.

9.3. Triple algebra and graph languages 223

To compareGXPathreg(c, ~) With TriAL*, we use the same convention as for navigational
languages.

Proposition 9.3.6. GXPathyeg(c, ~) is strictly contained irTriAL*.

Proof. The proof here follows the same lines as the one of Theorerh. B&cause of this we
only have to show how to define an equival@iaL* expression for any of the newly added
data operators iGXPathreg(c, ~).

. 11,1
e For$ = (a = p) we defineEy = Eq4 Ml:l’,p(S):p(f%’) =
, 11,1
® FOI’(]) = <(} 7& B> we def|neE¢ = Ea M1:1/7p(3>7ép(3/) EB
1 11 9
o Fora’=o- we defineEy = Eq X7 | 5 Eq

- _ B 123
Fora’ = a, we defineEw = EaP)) Ea

For¢ = (= c), with c a constant, we puy = U X

1,11
1=1p(1)

_.U, whereU is the universal
relation introduced previously.

It is again straightforward to see that the described tediosls works as desired.

To show that the containment is strict we use a similar amgbrea when proving Theorem
9.3.1. We first notice that the proof of Theorem 9.2.4 canle®s extended to show that
GXPathyeg(c,~) is subsumed by.3 ,(~), the infinitary three variable logic with data value
tests. Here the only addition to the logic is the ability te éermulas of the fornx ~ y that are
true if and only ifx andy have the same data value.

More formally, we will represent a data gra@h= (V,E, p) as aF O structureG = (V, (Ej :
ac),~)with Ea={(vV):(vaV) € E}. Itis straightforward to see that with this interpre-
tation we havesXPathyeg(~) C LS,@(N). Constants can be added in a straightforward way.

Itis also easy to see that the 3-pebble game [Libkin, 20044;£q0(~) follows the intended
semantics when interpreted over data graphs. (Note thajahwe works over any class of
structures, but over data graphs only relations are edgémes and the data value comparison.)

We can now play the 3-pebble game over the 3-clique graphrendt-tlique graph [Libkin,
2004] where all data values are the same. The same winnigiggyrfor the duplicator as in
the game with no data values will still work, so we concludat th? ,,(~) can not distinguish
the two models.

Consider now the followingriAL expression:

123
u Xu,
¢
where¢ = (1£2)A(1#£)AL £L)ARAA(2#AV)AB#T) A Aaesacical # N
Naes v<i<zi # aandU is the universal relation. It follows easily that this exgs®n has
different answer on the two models (since it asks for fouied#nt nodes in the original graph
database). This finishes our proof. O

224 Chapter 9. Comparing the languages

This also implies thatriAL* subsume&fQDs.
Corollary 9.3.7. The class of RQD queries is strictly containedriiiL*.
Finally, we compardariAL* with path languages that use variables to store data.

Proposition 9.3.8. TriAL* is incomparable in terms of expressive power VRIDP (s, RQMs,
RQBs and RQVs.

Proof. We begin by showing thaRQMs are not contained imiAL*. To see this recall from
Lemma 9.3.3 thatriAL* is subsumed by infinitary Iogiﬁgm.
Next we observe that for any RQMs can define a property not expressiblecf,,. For
this consider the following regular expression with memory
&= xla[xf] %

€ni1 ::en-a[xf/\xf/\---/\x.if] I Xnr1.
Since no node can have more than one data value attacheldwigdhat the answer to the

query posted by the expressienis nonempty if and only if the graph database has at least
different elements.

It is well known [Libkin, 2004] thatZ; ,, can not define a query stating that the model has
at leastn+ 1 element. SincariAL* is contained incg , the desired result follows from the
fact thate; is nonempty only on the graphs with at least 7 elements. ®@bs®w that the
expressions used here are in fact regular expressions iniding and it is easily checked that
the same language can be defined by variable automata.

To show that there ar@&iAL* queries outside of reach of path languages from Chapter
4, recall thatTriAL* subsumessXPathyeg(c,~) (Theorem 9.3.1) and the later already has the
required property (Proposition 9.2.2). O

9.4 The complete picture

Having compared data graph languages we can see that diffdga manipulation abilities
not only make the complexity of query evaluation signifidamlifferent, but also have a big
impact on the type of queries they are capable of expressingexample the ability to use
variables allows path languages to express queries outbttie scope of navigationally richer
languages likesXPath and TriAL*, which do come with the ability to manipulate objects as
e.g. logic does, but only using a fixed amount of variables.tl@nother hand the ability of
graph languages to express various navigational pattéasepthem outside of reach of any
path language, since these languages can not go beyond RRt@@driability to specify how
nodes in the graph are connected. Furthermore, we canisBtabétrict hierarchy amongst
path languages, starting witRQDs and ending with RDPQs and their expression equivalent
RQMs, with the exception dRQVs. In fact, we saw that the somewhat unnatural capability of

9.4. The complete picture 225

variable automata to reason about paths non-locally makedass oRQV queries orthogonal
to all other languages introduced in previous chapters. ramy of all of the results is given

in Figure 9.1.

TrHAL*
9’ RQVs
GXPathyeg(c,eq, ~)
)}

RODs ¢ ROB ¢ RQMs = RDPQs
Figure 9.1: Comparison of data graph languages. Lack of a (C + =)* labelled path between

two languages signifies that they are incomparable.

Chapter 10

Query containment

The goal of this chapter is to initiate the study of staticlgsia aspects of graph query lan-
guages. In what follows we will concentrate on the query ammhent problem, which is the
problem of deciding, given two queries in some graph languadnether the answer set of the
first query is contained in the answer set of the second oneididg query containment is a
fundamental problem in database theory, and is relevameiral complex database tasks such
as data integration [Lenzerini, 2002], query optimisafidhiteboul et al., 1995], view defini-
tion and maintenance [Gupta and Mumick, 1995], and quernyerisg using views [Calvanese
et al., 2001].

The importance of this problem has motivated sustainedarelsdor relational query lan-
guages (see e.g. [Abiteboul et al., 1995]), XML query lanpsa(see e.g. [Schwentick, 2004])
and even extensions of RPQs and other graph query languBge=[06 et al., 2012b, Barceld
etal., 2011,Calvanese et al., 2000, Florescu et al., 199 .overall conclusion is that contain-
ment is generally undecidable for first order logic and otfimilar formalisms (see e.g. [Abite-
boul et al., 1995]), but becomes decidable if we restrictuerigs with little or no negation.
For example, containment of conjunctive queries is NP-detapwhile containment of RPQs,
2-way RPQs and nested regular expressions iBAB&complete. For CRPQs it jumps to
ExPSPACE-complete.

While much is known about the containment of above mentiodedses of queries,
containment for languages with data value comparisons hbshk®en looked at recently
in [Kostylev et al., 2014]. Here we extend that work to induall of the query classes in-
troduced in the previous sections. In what follows we prityaoncentrate on containment,
but the techniques used can easily be adapted to deal wign sitmilar problems, such as
satisfiability or equivalence of queries.

We start by considering path languages introduced in Chdptidere all of the languages
can be shown to have undecidable containment if the fulllagg is considered, however we
do isolate several decidable fragments. These are ggnelddined by only allowing queries

227

228 Chapter 10. Query containment

to test if two data values are equal and not if they are differSubclasses defined by such a
restriction will be shown to have decidable query containineith complexity of the problem
ranging from P 8ACE for RQDs to EXPSPACE for RQMs and register automata.

Next we investigate the impact of the inverse operator ortatoment of queries. Re-
markably, while adding this operator carries no extra cdiajmmnal cost with respect to query
evaluation, it does make a big difference for containmemnt@v even the subclass that allows
only positive data comparisons has undecidable query iconést problem.

Having studied path languages we now turn our attentionaplgfanguages. Namely, we
considerGXPath and its various dialects. Even though the language was stmWwave good
computational properties and close connections with |aglieen containment is considered the
story is quite different: here even the navigational fraghtleat uses no data value comparisons
has undecidable containment problem.

The reason for the undecidability 6iXPath is the presence of a powerful negation operator
that allows complementation of binary relations. We shwat ff one excludes such negation
from the language, then containment becomes decidableTimE-complete). As mentioned
before, this language is close to propositional dynamicl@@DL), whose containment is also
known to be XPTIME-complete [Harel et al., 2000].

Note that so far we only discussed navigatio@alPath fragments. In fact, we will mostly
concentrate on fragments GiXPatheg. When data fragments are considered there are still
many questions opened and we only present some undedgabgults that follow from re-
sults about navigational fragments or some of the classes €hapter 4. The picture is fur-
ther complicated if we consider core fragments, where mokinaata theoretic techniques
fail [Martens, 2006] and new approaches have to be develophkd situation here is in fact
quite similar to the well studied case of XML static analyaisere even after several years
some of the problems remain unanswered [Benedikt and Kd®8,Benedikt et al., 2008],
and the ones that have been solved usually require vergatdritechniques that cannot be
applied in the graph scenario (see e.g. [David et al., 2018aM and Suciu, 2004]).

Overall, we see that when containment is considered, that&h is quite different for
languages handling both topology and data than it is forttearl languages allowing only
navigational queries. While for the latter containmentdaeyally decidable, we show that for
the languages considered here the problem resembles behatirelational algebra, where
containment is undecidable for the full language, but waripestrictions on the use of nega-
tion lead to decidable fragments. Hence, the existenceabfverld relational systems which
deal with similar problems, demonstrates that undecidluit high complexity should not be
viewed as an insurmountable obstacle for practical useeofaiiguages studied here, but as a
foundation for further research.

To establish the notation we now define the query containmertiem formally.

10.1. Containment of path queries 229

Query containment A queryq; is containedin a queryq, (written g, C ¢p) if for each data
graphG overZ and? we have that every tuple in the answergfis also in the answer tqp.
The querieg; andg, areequivalent(written q; = @) iff they produce the same answer set for
every data grapks.

The containment and equivalence are at the core of many statilysis tasks, such as
query optimisation. All the classes of queries consider@ lare closed under union, so these
two problems are easily interreduciblg; = q iff ¢q; andg, contains each other, ang C g
iff gpUQg2 = qe. That is why here we concentrate just on the first and consiaefollowing
decision problem parametrized by a class of quaties

CONTAINMENT (Q)

Input: Queriesy; andg, from Q.

Question: Isg; contained ingp?

Recall that for RPQs query conatinment is equivalent todagg containment [Calvanese
et al., 2003]. In particular, if we have two RP@s= X — y and g, = X —2 y, with e1,&
regular expressions, thep is contained ity if and only if the language of; is contained in
the language o&. From this fact we obtain that containment of RPQs i®ARS-complete,
following the classic result that containment of regulgpressions is PS\CE-complete. Since
all of the classes of queries studied here are extensionP@ERthis establishes a lower bound
for containment of any of these classes.

Note that for NRQs antlREs defining them, the above claim no longer holds, since they
do not define languages, but graph patterns. We will see #thtlanguages and graph lan-
guages introduced in Part | and Part I, respectively, exkile same behaviour, thus further
exemplifying the fundamental differences between themteNloat although we could infer
that query containment for graph queries is the same agpatatainment, the containment
of patterns is not a standard language theoretic probletmerowe study it in isolation.

Remark 9. When studying static analysis of a query language that dedls data values
it is usual to disregard constants [Segoufin, 2007, Figue2@10b] as they often make the
presentation more notation heavy. Therefore in the langaagpnsidered in this Chapter we
will assume that data values are only compared to each otirdirf)equality and not compared
to constants.

10.1 Containment of path queries

We begin our study of the query containment by examining thblpm for classes of path lan-
guages introduced in Part I. Note that throughout this seaise graph semantics introduced
in Section 5.1, as opposed to the usual path semantics frapt&h4. This will make some

230 Chapter 10. Query containment

of the notation less cumbersome, particularly when conisigewo-way queries. It will also
allow us to have a uniform treatment of both one-way and tvag-gueries, as well as path and
graph queries.

It is important to remark that, as discussed in Section 5tenwsing graph semantics we
will often abuse the notation and identify the expressidimdey the query with the query itself.
Therefore we will often use e.g. regular expressida denote both the que = x —» y and
the expression itself. This, however, should cause no saias it will always be clear from
the context if we are using the query, or the expression defiihi

10.1.1 Containment of RQMs

We start by examining the containment problem for RQM quserfes mentioned in the intro-
duction to this chapter, for path languages query contamriseequivalent to language con-
tainment. It is readily checked that this holds for RQMs a#i.we

Lemma 10.1.1.Given two RQMs g= x N yand ¢ = x LN y, where ¢ and & are regular
expressions with memory, it holds that@ q, iff L(e1) C L(ep).

Note that in the proposition aboeg C . is defined on data graphs, hate;) and £(ey)
are sets of data paths.

We now turn to the containment problem for RQMs. Unfortulyats the following theo-
rem shows, the power that RQMs gain through their data méatipn mechanism comes with
a high price for static analysis tasks.

Theorem 10.1.2.The problemCONTAINMENT (RQMS) is undecidable.

This fact follows from Proposition 10.1.1 and the undecilitgbof the containment prob-
lem for regular expressions with memory (Corollary 6.2.7).

The theorem above naturally leads to question of findingdddxte subclasses. It is known
that testing containment of an expression using at most egister in an expression using at
most two registers is decidable [Neven et al., 2004]. This@gch appears to be too restrictive,
and thus we concentrate insteadpmsitive RQMsi.e. those RQMs, that use only atoms of the
form x= in the conditions. In [Tal, 1999] it was shown that the comba&nt of positive RQMs
is decidable, but no complexity bounds were given. The ¥alg theorem fills this gap.

Theorem 10.1.3.The problemCONTAINMENT (positive RQM3 is EXPSPACE-complete.

Proof. To prove the upper bound we will rely on the equivalence of RLAWd register au-
tomata. For hardness we do a reduction from acceptanceepnofif a Turing machine that
works in EXPSPACE. We start with the upper bound.

10.1. Containment of path queries 231

Upper bound. To prove this we will need some auxiliary definitions andrigi

It will be more convenient to show the upper bound for regiatdomata over data paths.
Recall that these were defined in Section 4.1.

It was shown in Proposition 4.2.3 that for every R@\ne can construct in polynomial
time a register data path automatdnsuch that£(e) = £(A4). Let thene; ande, be RQMs.
To show thate; C e, we can, by Lemma 10.1.1, show instead thée;) C L(e2). Moreover,
by the aforementioned equivalence with automata, it suffioeshow that(A4;) C £(A4») for
the automated; and.4, equivalent tog; andey.

The reminder of the proof is devoted to showing that suchsifatiproblem belongs to
EXPSPACE, assuming bott#; and.4, use only equalities in the conditions.

Let 4; and 4, be two register automata that only use equalities in theitiond, such that
L(4;) € L(A). Then there is a data path= dia;dha, - - - andn;1 that belongs to(4;) but
it does not belong ta(A4;). Further, there is an accepting rurthat associates to each data
valued; in w a change of configuration, going from a configuration of thenf@2i — 1,qg,A) to
one of the form(2i,q,\").

Setw! = w andt! = 1. Starting fromi = 2 up toi = n+ 1, we repeatedly perform the
following operations onv, increasing.

Letw—1 andt'~! be the resulting data path and accepting run after perfayihiai — 1-th
operation, and assume that; changes from a configuratidi2i — 1,9,A) to (2i,d,\’). If all
data values in the image of are also in the image of, then letw' =w ! andt =t~ 1.
Otherwise, assume thdt,...,d’ are in the image ok but not ofA’. Then letp?,...,pf be
fresh, new data values. Construdtas follows. For each = 1,...,¢, replace all appearances
of d! in wi_1, only after position — 2 of w1, with the data valug!. Moreover, construct
T by replacing as weltl?,....d’ with pl,...,p’ in all the register values of the remaining
configurations, from positioni2- 1 onwards.

For the automatort;, data patiw € £(.4;) and runt witnessing the acceptancewflet us
denote byu,; the resulting data path"* after performing all transformations above, and by
Ows the resulting run™1. Note that the constructed run remains a valid run, sofhaccepts
as well the pathu, ;. Moreover, the following can be shown abayt; (the proof follows from
the construction): if there are positiofs and j» of uy; such that bothj; and j, contain the
same data value, then such data value is present in at leaségister in all configurations of
Oy Starting from positionj; and ending in positions.

Moreover, since the automato®y does not accept/, we have that it does not accepjy.
This follows simply because we are only using automata wvgjtradities, and our transformation
actually introduce additional inequalities on the dataigalof paths. From the above facts we
obtain the following claim.

232 Chapter 10. Query containment

Claim 10.1.4. Given automat&d; and 4,, we have that’(4;) C L(4) if and only if there is
a data path we £(A4;), accepted by rum, such that . belongs ta£(4;) but does not belong
to L(/‘le).

All that remains now is to show that the existence of such a gath can be decided in
EXPSPACE.

Let now 43 = (Qq,q?,F1,A9,81) and 4, = (Q2,09, F2,A9,8,). Furthermore, assume that
REG, andREG are all possible assignments of registerglirand 4., respectively (obviously
these are infinite sets).

Consider the following transition system. Its states@yex RE G, x 2%2*REG_ The initial
state is(q2,A9), {(d3,A9)}, the set of final states are all those states that containteaistg
and do not contain any state i (i.e. if at any point we are in a final state, we know that a
given data path is accepted 8y but it is not accepted by,).

The transition is defined as follows: there is a transitiontween state
(e M), {(GB.AD), ... (B, AD)} and state (ch,\p), {(a2,N2),..., (A5 N3)} by letter
a or data valued if one can go from(qi,A1) to (¢y,A}) using d; over a or d, and
{5 ND), ., (T NY is the set of all states that are reachable from any state in
{(g3,A3), ..., (cB,AD)}, usingd, anda or d.

Now, obviously the size of this transition system is infinitéowever, we proceed as fol-
lows.

We guess, symbol by symbol, the data path and its runoy,;, and only pick those moves
in the transition system wheg andA1 move as ino,;. Then by the properties af,; and
Owr We know that any statégs, A1), {(g3,A3),...,(d5,A3)} can be simplified into a state in
which all values in\},..., A} that are not in\; are mapped to a single fresh valde This is
because such data values will never appear agaig-inand thus from the equality point it is
just as good as any data value which is different to all theareimg values iruy;.

But we can do even better, as here it suffices to store onlyghaaence classes of the
registers, i.e. whether the registers store, at any givémt,pihe same data value as in other
register, or a different one. If the next symbol we are gugssorresponds to a data value
that was in one of the registers df, then we guess, instead of the particular data value, the
following information "the incoming data value is the onerstl in registex”. The system then
updates the equivalence classes according to the registens the contrary, the incoming data
value is a data value different from alf, we just guess "the incoming data value is not stored
in any register”, and then updates the information as before

Thus, for our simulation ofz; it suffices to store, at any given point, the equivalencesclas
formed by the registers iff;, and to simulate all possible runs @ we need to store, besides
the equivalence classes of its registers, a pointer indgathether it is storing a value also
stored in a register ofl;, or whether it is storing a data value not currently storeciir(that

10.1. Containment of path queries 233

will never show up again in our data path). This amounts tda td Q; x 2/l x 2Q2x2%2
states, which is doubly exponential iy and 4»,. We can therefore decide whether there is
a valid run fo this system (that ends in a final state) usingaadstrd on-the-fly EPSPACE
algorithm.

Hardness. The proof of ExPSPACE-hardness is by reduction from the complement of the
acceptance problem of a Turing machine.

LetL be a language that belongs ta#SPACE over some alphabét, M be a deterministic
Turing machine that decidésin ExPSPACE, andw be a word (plain, without data values) over
. Next we show how to construct RQMSande (in polynomial time in the size o and
w) such that(€) C L(e) if and only if M does not accept the input By Proposition 10.1.1
this is enough for the proof of the hardness.

Let M = (Q,l,q0,{0as},0), whereQ = {dp,...,qs } is the set of stated; is the tape al-
phabet, containing the distinguished blank synialy andqgy, are the unique initial and final
states, and: (Q\ {ds}) xI' = Q x I x {L,R} is the transition function. Notice, that without
loss of generality we assume that no transition is defineth@mique final statg;. SinceM
decidesl in EXPSPACE, there exists a polynomid (which does not depend am) such that
M decidesw using space'2 wheren = P(|w|). Let alsow = apay - - - a.

In what follows we will slightly abuse the notation. Namedty; alphabeth = {by,..., by}
of symbols, we denote by the safi¢he regular expressiafip; U - - - Ubp).

LetZ = {#&,%,A}Ul U (I x Q) be the alphabet of the constructing expressigrand

Let (i) denote the binary representation of the numitees a data path on labels # such
that its data values represent the string representatioasoé binary number. That is, the data
pathd.#d,_1#...#d; such thatd,d,_1d; is precisely the string representationias a binary
number. For examplép) is the data patiio#)"~10, and(2) is the data patli0#)"~21#0.

We represent configurations of the Turing machine by dataspsdtisfying

OrUr=Q)d & (WHIuUr=xQ)d & (2T UTlx=xQ)d &
(2"—1)(TU(T xQ))d&d%d, (10.1)

whered stands for any data value. Intuitively, the data pdths(1), (2), (2" —1) indicate each
of the 2" cells of M, and the symbol following such a data path represents eitieecontent
of the cell (which means that the head does not point heraheocontent of the cell plus the
state ofM (if M is pointing at that particular cell at a given point of the gartation).

Since every configuration o¥/ can be represented as a data path of form (10.1), a run of
M on the inputw can be seen as a sequence (i.e. concatenation) of data padhs ¢10.1).

234 Chapter 10. Query containment

The idea of the reduction is the following. The expressois such that it accepts all data
paths in each of which every data value is equal to one of thetfilo data values of the path.
Without loss of generality we can then denote the first dalizevaf each of these data paths by
0 and the second data value by 1. In turn, the expressgirall represent all those data paths
that belong taZ(€) that are either not valid concatenations of paths of form1(l@r that the
sequence of configurations is not a valid rumdéfon inputw (in both cases, followed by some
initialisation). This way, if there is a valid run fa¥ onw, we have that there is a data path in
L(€) thatis notinL(e), i.e. L(€) £ L(e).

Formally, the first of these expressiogiss defined as following:

€ = Ix ALy (A JUAY D (EXTUZy)"

We split the definition of the second expression into sixga# e’ Uet Ue?ueluet Ue®, such
that

- €% describes all data paths that use a single data value (heféao);
- e describes all data paths that are not concatenations of pafbrm (10.1);

- € describes all data paths that, even if they are concatesatibpaths of form (10.1),
some of them do not represent valid configurationstr

- € describes data paths in which the first configuration doesowectly describe the
initial configuration ofM on inputw;

- &* describes those data paths in which the last sub path of fbdri) does not represent
an accepting configuration 6¥;

- e describes data paths that contain two consecutive sub péftisn (10.1) that repre-
sent configurations faf which, however, do not agree @n

Expressiore? is straightforward to define. Next we give the remaining ones

Expressioret. Most of this expression is not really related to data valbes instead can
be defined by an NFA in a standard way (see [Barcel6 et al.,[0MBecorem 6). The only
interesting part is the one which accepts all data pathsavittonfiguration” in which “cells”
are concatenated not in the only proper order, fi@jrto (2" — 1). To do this we include @'
the a disjunction of the following expressions:

- the expressions
IX ALY AT (#H)NE\ (%)) (#x])" ",
WX ALY AZ#Hy™])NE\ %)) (#Yy)"
which look for two data paths of forn0) within one configuration, and likewise for
(2"-1);

10.1. Containment of path queries 235

- the expressions

IXALY. AT % #Xx]) #y=] =*, foreach0<i<n-—1,
IXALY. AT #X](#y) (TU(T xQ))%Z*, foreachO<i<n—1,

which look for a configuration starting with something diat from (0), and likewise
ending with something different frof2" — 1);

- the expression
IXALY AT #H I (TU(T x Q) &#" 1#x™] 2%,
looking for a configuration where an even number follows veitiother even number;

- the expressions

IXALY AT ## x| #72#x] (TU(T x Q) &# #y"|# 13, 0<i<n-2
IXALY AT ##y= | #2#x | (TU(T x Q) &# #x |# 12", 0<i<n-2
looking for a configuration where an even number follows withumber where some of

the digits are different from the onces in the previous nun(ecept the last).

Note that last 2 cases cover all configurations in which ewesitipn numbers are not
followed by their successors. It is also possible, but rathienbersome and lengthy, to define
expressions which cover the even—odd cases. We omit sudtitidefj and refer the reader
to [Barcel6 et al., 2013b] for very similar constructions.

Expressiore?. Similarly to the next expressiors ande?, it can be described with standard
NFAs. In particular,e? is the union of expressions stating the following:

- between two symbols % there is no symbollihx Q), which means that in some con-
figuration the machine dos not point to any cell;

- between two neighbouring symbols % there are two symbo(§ in Q), which means
that the machine is pointing at two cells.

Expressiore?. It is the union of expressions stating the following:

- the first configuration does not contain the initial statéhia first position of the tape,
reading the first symbol of the input;

- the followingk — 1 cells do not contain the remainder of the input;

- any of the remaining cells does not contain the blank symbol

Expressiore®. It can be dfined in the similar way &2,

Expressiore®. It is defined as the union of the following expressions:

236 Chapter 10. Query containment

- a cell not pointed by the head changed its content from onéiguation to the subse-
quent one:

U Ix ALY AT #] x #s| Xn_1.#] x0.a(Z\ {%})* %

aclr

(Z\{%})" #xq [#Dg | s] ((M\ {ah) U ((M\{a}) x Q) 7,

a configuration which is not final features a pairlinc Q for which no transition is
defined

U > (a,0)Z* %z,
{(a,9)|5(g,a) is not defined

the change of state does not agree With

> (2,0) (Z\{%})" % (Z\ {%})" (I x (Q\{d'})) Z";

{(a0)l5(q.a)=(&,q ,{L,R})}

the symbol written in a given step does not agree With

U IXALY AT #] X #8, X1 #1%0.(3,0) (Z\ {%})* %
{(a,q)\G(q,a):(a’,q’,{L,R})}

(Z\{9%}) #Dq 1 #dg | s] (M\{a}) 27

the movement of the head does not agree with

U IXALY.AN T #] X #8L X 1#] %.(8,0) (Z\ {%})" %
{(a,a)[3(g,a)=(a',d,R)}

(\{9})" #p | 4G | sHlx | a & (€U (#'T (2\ {%))")) %,

U IXALY AT #] 3 #8 X0_1 #]%0.(2,0) (2 {%})" %
{(a,a)[3(0,a)=(a',q,L)}

(U ((Z\{%})"#'T &)) #ix |4 | Xy | .

With these definitions in hand, it is now straightforward how that£(€¢') C L(e) if and
only if M does not accept on input. This finishes the proof of thex®SpPACE lower bound.
O

10.1. Containment of path queries 237

The previous proof relies on the fact that the set of vargbieed in our queries is un-
bounded. Carefully checking the proof reveals the follayworollary. Heren-bounded posi-
tive RQMgrefers to the class of positive RQMs which can use at mastriables (that is they
are defined using conditions frogy, for a fixedk).

Corollary 10.1.5. Let n be a natural number. The probl€BONTAINMENT (n-bounded posi-
tive RQMSg is PSPACE-complete.

Hence, positive RQMs are a natural subclass of RQMs withddébte query containment.
However, when comparing the complexity with the one for RR@ssee that allowing positive
data test comparisons results in an exponential jump. lfoll@ving section we will see that
positive RQDs form a class of queries with complexity of thatainment problem matching
that of RPQs.

10.1.2 Containment of RQDs

Similarly as for RQMs, we can show an analogue of Propositidri.1, thus reducing query
containment to language containment.

Proposition 10.1.6. Given two RQDs gj= X — y and @ = X —2» y, it holds that g C @ iff
L(er) C L(&).

RQDs were originally introduced as a restriction of RQMg #1goys much better query
evaluation properties. In light of this result, one mighdcahope for good behaviour when
query containment is considered. Surprisingly, the follmxtheorem shows that this is not the
case.

Theorem 10.1.7.The problemCONTAINMENT (RQD9 is undecidable.

Proof. We will in fact prove a stronger result stating that the ursedity problem for regular
expressions with equality , defined below, is undecidabkt.2[D]* denote the set of all data
paths over the alphab&tand set of data valueb.

UNIVERSALITY OF REWES
Input: A REWEe.
Qestion: DoesL(e) = Z[D]*?

The undecidability of this problem immediately impliesttgazen regular expressions with
equality e; and ey, checking whethet (e;) C L(ey) is undecidable. The latter then implies
undecidability of query containment over graphs by Prapmsil0.1.6.

The proof of undecidability of universality problem for RQ¥ similar to the proof of the
universality of register automata in [Neven et al., 2004je Teduction is fronfPost correspon-
dence problem (PCRhich is well-known to be undecidable.

238 Chapter 10. Query containment

An instance of PCRs a set of pairs of words

{(ug,v1),..-, (Un,Vn) }, (10.2)

over a finite alphabdt. A solutionfor an instance is a sequencky, ..., ky of numbers from

{1,...,n} such thauy, - -- U, = Vi, - - V- The question is whether an instance has a solution.
Throughout the reduction we will use the following notatifor every data pattw =

diagdy...ac10k. Let REV(w) be the reversal of, that is REWw) = dkak_1 ... dhaid;. Also,

let Proj(w) be its projection to the labels, i.e. the wad .. ax_;.

Let $,# be two special symbols not i letX’ =T U{$,#}, and letz =T U{$}. A solution
Ki, ..., km Oof @ PCP instance of the form (10.2) can be encoded as a data pa#tREV(w,)
overZ, where

Wi = 0 &1 aldl e agldgl $C2 a£1+ld€1+l T a@1+fzd€1+£2 """

$Cm Ay 4oty 14200 oty 1 Bl by Dy i

Wo = 0 $gq byfi---by, Ty, $92 by fegra-boyge, fogie, -
$Gm byttt a1 Forre b a1 Py Foy s

such that’s andb’s are labels fronk, c's, g's, d’s, f’s, and 0 are data values, and, for a shortcut
£ =101+ ---+¥fm, the following conditions hold:

(C1) the symbol # appears only once;
(C2) Proj(wy) € (BupU---USun)*;
(C3) Proj(wy) € ($v1U---Uvp)*;
(C4) the data valueg’s andd;’s are pairwise different;
(C5) the data valueg's and fi’'s are pairwise different;
(C6) ¢ =01 andcm = gm;
(C7) di = f1 andd, = fy;
(C8) foreach,je {1,...,m—1}if ¢ =g; thenci;1 = gj11;
(C9) foreach,je {1,...,—1},if d = fj thendi 1 = fjq;
(C10) for each,j e {1,...,¢},if di = fj, thena = b;;
(C11) foreach,j e {1,...,m},if ¢ = gj, then

@yt tligt1 b5 Oy 0,10 Do) €1

10.1. Containment of path queries 239

Note that e.g. Conditions (C4—C6, C8) forces the sequencis @i w; to be equal to the
sequence of's in wo.

It is straightforward to show that there exists a solutiohg® PCP instanckif and only
if there exists a data path of the fom#REV(w,) overZ’ that satisfies Conditions (C1-C11)
above. Data pathv; is meant to encode thepart of| andw, the v-part. The idea is that
the equalityc; = gi codes a positiork; in a solution by a unique data value, and in (C11) it
is checked that the pair on this position belong$.t@\lso, d’'s and f's code the actual pairs
(ui,vi) in 1 and since we check thdis equalf’s in Conditions (C4—C9) and that the letter after
eachd equals the corresponding one before the appropfiateCondition (C10). Note that we
require data pathw, to be reversed in order to nest equality tests accordingetsemantics of
REWEs.

We now construct a REWEoverZ' that accepts a data pathsuch that it is either not of
the formw;#REV(ws,), or at least one of the Conditions (C1-C11) above is notfsadisThus,
if eis universal (i.e. accepts all data paths) then in partictiare is no data path coding a
solution to the PCP instance, and, hence there is no soloyidself. The REWEeis obtained
by taking the union of the following, using the usual shortdor the expressiob; + ... +by
over any alphabet = {by,...,bp}:

- REWES recognising the negations of Conditions (C1-C3)clvban be written as stan-
dard regular expressions without equality tests;

- the REWE
(z*$(rz*$):z* U z*$rr*(z*r):)#z*,
which recognises the negation of (C4); here the left patt fihds equal’s, while the

right one finds equall's; note that for equatls we take care that we don't incidentally
compare with some;

- a REWE which recognises the negation of (C5), which is vémnjlar to the previous
one, but takes into account thaj is reversed;

- the REWE
$(Z).$ U TH(CHT)85

which recognises the negation of (C6); note, that here wehgstact thatw, is reversed,
so in particularg; appears as the second last data value (and right before #iebfin
which is covered by the left disjunct; similarty, is the value after the last $ iy, so
after that we can only advance by mean$ dfefore reaching # and then we proceed in
Ws to the first $ in front of whiclgy, is located:;

- a REWE which recognises the negation of (C7), which is vémjlar to the previous
one;

240 Chapter 10. Query containment

- the REWE
S S(M$(THE*$) LT7$) -7,
which recognises the negation of (C8);

- REWESs which recognise the negation of (C9-11), which arg siilar to the previous
one.

It is straightforward to see that the PCP instahbas no solution if and only if. (e) = X[D]*.
This concludes our proof of Theorem 10.1.7. O

This naturally opens the search for subclasses of RQDs witlddble containment prob-
lem. Similarly to positive RQMs, one can consider the claspasitive RQDsi.e. RQDs
where subexpressions of the foen are not allowed. Note that if we apply the procedure
described in Proposition 4.4.2 to a positive RQD we end up wipositive RQM. Hence, we
again have a strict containment of the corresponding dasssd from Theorem 10.1.3 we
conclude that containment of positive RQDs is decidableiariEkPSPACE. However, it was
shown in [Kostylev et al., 2014] that we can perform evendseth fact, the best possible in
light of the P$ACE lower bound for plain RPQs.

Theorem 10.1.8([Kostylev et al., 2014]) The problemCONTAINMENT (positive RQD% is
P Seacecomplete.

Using the results about containment of RQDs and RQMs we candelduce the following
about RQBs.

Corollary 10.1.9. Query containment is undecidable for the class of RQB gselidecomes
decidable if we disallow testing for inequalities in comnatis.

Here undecidability follows from Theorem 10.1.7 and thd fhat RQBs subsume RQDs.
That the positive fragent is decidable is a consequence @drEim 10.1.3.

10.1.3 Impact of inverse on containment

The classic result by Calvanese et al. [Calvanese et al3]2ates that one can add the in-
verse operator to RPQs and maintain not only the same coityplEfixquery evaluation, but
also the same complexity of query containment. Since adidiveyses to RQMs and RQDs
does not affect the complexity of query evaluation this gigehope that it will also not affect
the complexity of containment of 2RQMs and 2RQDs. Of coubsethe results of previous
sections, containment is undecidable when full languagesansidered. Unfortunately, as we
show next, decidability for positive RQMs does not propadattheir two-way variant.

10.1. Containment of path queries 241

The class opositive2RQMs is defined as the subclass of 2RQMs that use only consliti
built from atoms of the formx= (but notx”). Note that for 2RQMs we can no longer use
language containment to check for query containment [@ais@ et al., 2003]. Indeed, it might
be tempting to do the same as we did for Proposition 5.1.3yeahgce containment checking
of two-way queries to containment of the same queries, lBweidl as one-way queries over
the extended alphabet containing symbmisfor eacha € ~. However, this does not imply
that queries are contained, because labels of the éorgan also symbolise going backwards
(for example, quena is contained iraa a, but they are not contained when viewed as regular
expressions over the extended alphabet). This leads toltbaing result.

Theorem 10.1.10.The problemCONTAINMENT (positive 2RQM$% is undecidable.

Proof. The proof is by reduction from the problem of non-emptindsgeterministic, stateless
2-way 3-head automata, which was shown to be undecidab¥aig|et al., 2008].

Formally, adeterministic stateless 2-way 3-head automdtnDS23A over a finite alpha-
betrl is given by a transition partial functiah: = x ¥ x & — {-1,0,1}3, wherez =T U {F, -},
the latter symbols assumed not to bd inThese automata accept language of words of form
F o -, with o a word ovell”. The automaton starts with its 3 heads reading-tegmbol of just
beforeo, moves its heads according &—1 denotes “move one cell back”, 0—"no move”,
and 1—"move one cell forward”), and acceptsf at any step of computation over this word
all 3 heads point at the symbal

Let 4 be a DS23A. We now construct 2RQMsande overZ such that the language &f
is empty if and only if¢’ C e.

The definition of¢ is as follows:

é = B,

As expected, the definition @&is much more intricate. But before it we present a crucial

claim.

Claim 10.1.11. Let € be the RPQ defined as above, and let e be a 2RQM. Thereés and
only if there exists a graph (corresponding to a data path w with start and end nodes u and
v (see Figure 5.2), respectively, such thatv) € [€]% but (u,v) ¢ [€]®w.

Proof. The if direction is obvious, so we only show the only if diiect Assume then that
€ C e. Then there is a grap@® and a pair(u/,V) of nodes inG such that(u,v) ¢ [€]°
but (U/,V) ¢ [€]®. Consider a data patw which is a projection of labels and data values
of a path inG witnessinge’. Then let us consider the grah, corresponding tav, with
start and end nodasandv, respectively. Clearly(u,v) € [€]®. Now assume for the sake
of contradiction thatu,v) € [e]®*. By examining the definition of 2RQMs one immediately

242 Chapter 10. Query containment

obtains that(u,v) € [€]®, which results in a contradiction. This implies thatv) ¢ [€],
which was to be shown. O

Next we continue with the definition af The idea is the following. Sincé is deter-
ministic, if 4 accepts some word then there exists a single run that leads to this acceptance.
We can take advantage of this determinism, and codeaathcomputations of2 that end up
failing at some point. This way, if there is a data path witloeesponding data graph accepted
by €, which is not accepted bg; then the language ol is nonempty, a2 really accepts this
word.

The definition ofeis split into three parts as follows:

€ = €gqUe€rashU Enotdef

Intuitively, e.q accepts all graphs corresponding to data paths that havedwal data
values (data values shall be used as placeholders for tligopsewf the heads of1, as will
be explained shortly)eashcorresponds to data paths for which the computatiof ofashes,
andengigef COrresponds to all data paths for which the computatiofl ehds up in a position
that is not defined.

The parteqq is straightforward to define. For definitions of the othettpaf e we first need
to describe the 2RQM, 54, that simulates the computation afon its input.

For each(a, b, c) in 22 for which 8 is defined, assume thata, b, c) = (ty,t2,t3), where each
tj is either—1, 0 or 1. Then leg,) be the following expression:

@) F2bla@) F2pelb(Z7)" F 2pg]e
() F Pl ()" F 2l (27)" F 2 g] rs,

where, as usuak, stands for the union of all symbols in the alphabgX~ stands for the union
of inverses of all symbols i, and for each, 1 <i < 3,

27 1%, if ti=—1,
=< g, if t =0,
21X, if tj=1.

Having this construction in hands, let

*

Balid = #lIX1lX.lXs. U €ab,c)
(ab,c) s.t. 8(a,b,c) is defined

This expression, so far, describes valid computationspugpime step. In order to make
sure that we represent all words not acceptedibye need to accept all words in which this

10.1. Containment of path queries 243

route of valid computation leads to either a crash (by moweimigof the word), or to a transition
that is not defined.

Specifically, to describe that a run goes out from the contipmapace, we define

€rash = &alid (U (((Z)*[XI_] -) U (z*[xlz] al))) :
i=123

Furthermore, for eacta, b, c) such tha®(a,b,c) is not defined, excegtd,,-) (because
this is the final step of an accepting computation), define

@by = () FZPqla@)" FZpelb(Z7) F g]lc

and then

€hotdef = ©valid U €.(a,b,c)
(a,b,c) s.t. 8(a,b,c) is not defined, anda,b,c)#(-,4,)

It is now straightforward to show that the languagefis nonempty if and only if there
exists a grapl@,, corresponding to a data pathwith start and end nodasandv, respectively,

such that(u,v) € [€]% but (u,v) ¢ [e]®. Application of Claim 10.1.11 finishes the proof of
the theorem. O

This negative result comes as a surprise, and it poses aajuestwhether the containment
problem is at least decidable for positive 2RQDs. We leaigeghestion for future work.

10.1.4 Containment of Variable automata

It is known that the language containment problem for VVFAsridecidable [Grumberg et al.,
2010a]. Since query containment for RQVs is equivalent mglege containment of un-
derlying VFAs it readily follows that the problem of checlinfor two RQVsQq,Q; if
Q1(G) € Q2(G), for every data grapls, is undecidable too. Thus we get that:

Proposition 10.1.12.The problemCONTAINMENT (RQVS) is undecidable.

As mentioned previously to obtain decidable language @amgant one has to restrict to
deterministic VFAs (see Fact 6.5.7). These then give agiasstibclass dRQVs with decidable
query containment.

Proposition 10.1.13.The containment problem for queries postedibterministicVFAs is in
CONP.

244 Chapter 10. Query containment

10.2 GXPath and its many fragments

In this section we study the containment problem for variivagments ofGXPath. As men-
tioned previously, here we can no longer reduce containmatgraphs to containment over
data paths as we did for RQMs and RQDs in Lemmas 10.1.1 andb1da4 see this consider
e.g. GXPath queryalb*]c. This query will select all nodes connected by a path latelie
with the intermediate node having an arbitrary sequenceutgfoing b-labelled edges. The
pattern described by this query is illustrated in the follogvimage.

Q
— <
(o
oy

o
0

<.eo

Figure 10.1: A pattern forGXPath querya[(b*)]c.

Itis straightforward to see that such a query is not satilsfiab words, while it is on graphs.
From this it readily follows that containment over graphf$etls from containment over words.

We begin our study by considering navigational fragment&XPatheg first, moving to
extensions allowing data value tests later on.

10.2.1 Containment of navigational languages

Analysing the expressive power GiXPathg reveals that this class of queries is equivalent to
the extension of first order logic with three variables §F®ith the transitive closure operator
(see Theorem 7.3.5). It is well known that satisfiability @¥formulas is undecidable over
arbitrary (possibly infinite) graphs, and it is folklore tssame that this bound is maintained
for finite graphs studied here. Since containment is a manergé problem than satisfiability
we immediately obtain undecidability f@XPathreg. As we could not find a formal proof of
the aforementioned result about finite satisfiabilityr@? in the literature, we include a self
contained proof below.

Theorem 10.2.1.The CONTAINMENT (GXPathreg) problem is undecidable.

The proof shows that even satisfiability problem @tPath,q formulas is undecidable. To
obtain this result we give a reduction from a variation dhgl problem from [Gurevich and
Koryakov, 1972]. In particular we use the fact that the$gling, Of all finite sets of tiles that
can not tile the positive plane, and the Sgtioq, Of all finite sets of tiles that can tile the plane
periodically, are recursively inseparable.

10.2. GXPath and its many fragments 245

Following the ideas from [Goldblatt and Jackson, 2012], inentshow how to construct,
for each finite set of tile§", aGXPath,eg Node formulay; such that satisfiability of implies
thatZ” can tile the positive plane, while the fact thatcan tile the plane periodically implies
thaty, is satisfiable. Note that this shows that theSet {¢ | 3G s.t. [$]© # 0} contains the
set{ys | 7 € Speriod} and is disjoint from{ys | 7" € Snotiling }- The fact thatSnotiing @and.Speriod
are recursively inseparable then implies tBatan not be recursive, so satisfiability, and thus
containment, oGXPathyeg queries is undecidable.

To define the formulg; we rely heavily on the fact thabXPathreg can force loops in a
graph, thus allowing us to check that tiles are placed ctiyrand that the tiling can proceed
from any point in the plane.

We now give the full proof.

Proof. The proof follows the main lines of the proof of undecidabilof PDL with extras
from [Goldblatt and Jackson, 2012]. To deduce undecidgbile do a reduction from a variant
of the tiling problem shown to be undecidable in [Gurevickl &woryakov, 1972] and [Borger
et al., 1997].

First we define the terminology needed to state the probleigely.

A finite set of tileds a collection7 = {Ty,...,Tx} of square tilestogether with twceedge
relations~ and~y. The fact thafl; ~, Tj means that the tild; can be placed to the right of
the tileT; in a horizontal row, whil€T; ~, Tj means thal; can be placed beloW; in a vertical
column.

A tiling of the non-negative gridN x N is a function fromt : N x N — 7 such that for all
N

- t(i,j) ~nt(i+1,)) and,

- t(i,) ~vt(i, j+ 1),

Tilings of integer gridZ x Z are defined analogously. We say that a set of tiles can tile
7 x 7, periodically if there is a tiling o x Zn, for some positive integersandm that can be
used to tile the entire grid by repeating this segment botticadly and horizontally. One can
imagine this tiling as forming a torus since the bottom row ba "glued" to the top one and
the same for left and right edge of this finite grid.

Let now Syetiing denote the set of all finite sets of tiles that canttile N x N and letSyeriod
be the set of all finite sets of tiles that can file< Z periodically.

To prove undecideability we will use the following fact.

Fact 10.2.2. ([Gurevich and Koryakov, 1972, Borger et al., 19978ets Ktiing and Seriod
are recursively inseparable. In particular there is no resive set S such thap&iod € S and

Snotiling NS=0.

246 Chapter 10. Query containment

Fix the finite alphabet of edge labels= {U,D,L,R a}. In what followsU is meant to
interpret "up”,D "down", L "left" and R "right", while a will be used to code the tiles. Note
that we can work with only{U,R,a}, since we can usd ~ instead ofD ansR™ instead ofL,
but we opted for the extended alphabet to make the formukierda understand.

Let now 7 = {Ty,..., Tk} be a finite set of tiles. Far=1...k definea; = (a N¢). In
what follows a; is meant to denote the placement of the Tileat some position in the grid.
E.g.(aaan€) will denote the placement of the tilg and so on.

We also define the following node formulas ®KPath that will be used throughout the
proof. First, for every path formul@ we define

loop(B) := (Bre) A—~(BNE).

This formula extracts all nodasfrom the graph that have an outgoifigpath and such that
every such path ends attself. It is easy to check that for any graph datab@se

[loop(B)]® ={ve G| (IV)s.t (vV) € [B]® and(W) if (vV) € [B]® thenv=V}.
Second, for every path expressi@and every node tegtwe define the following formula:

when (B, ¢) = ~(B[¢])-

The intended meaning of this node formula is to extract allesy from a graph such after
everyB-path starting inv ends with a node belonging f¢]®. Again, it is easy to check that
for any graph databa<e:

[when(B,9)]€ = {ve G| (W) if (vV) e [B]° thenV e [$]C}.

Associated with the set of tileg we define the formulgs; = y1 A vo.

To define our formulg; we need to be able to force a "square” at any position in ouemod
both in a clockwise and in anticlockwise direction. This @nd by the means of formula
squar e which is defined as the conjunction of the following two folamsi

clockwise = loop(U-D) A when(U,loop(R-L)) A when(U-R/loop(D-U))
A when(U-R-D,loop(L-R)) A loop(U-R-D-L),

anticlockwise := loop(R-L) A when(Rloop(U-D)) A when(R-U,loop(L-R))
A when(R-U-L,loop(D-U)) A loop(R-U-L-D).
Intuitively cl ockwi se allows us to define a square starting at some point in our gaagh

going "up”, then "right", then "down" and finally "left", fishing at the same point. It also
forces the point to be able to complete the square whenetasiain outgoing "up" arrow.

10.2. GXPath and its many fragments 247

Similarly ant i ¢l ockwi se forces a square starting with "right" and completing it inodiwvious
way.

Now y; simply states that we can make a square at any point:
y1 :=when(U*, when(R",square)).

Formulay; is going to be responsible for forcing a tiling and is definedtnFirst, let
a= "\ ar A (o= A\-aj).
i=1..k i=1..k j#i

Note thata simply states that precisely omg is true. Here and in the remainder of the
proof we use the node formufa— as a shorthand ford v .

Next for each, defineB; as the disjunction of all thej such thafT; ~, Tj. That isp; is a
disjunction of all the tiles that can be placed to the righthef tilei. Similarly, defineB' to be
the disjunction of albij such thaff; ~ Tj.

Now letti | e be the formula denoting that a tile is placed correctly inghid. Formally:

tile:=an /\ (o — (when(R B) Awhen(U,p!))).
i=1.k

Finally define

Y2 :=when(U*,when(R"tile)).

We now show how to deduce the wanted reduction. More formedighow that the s€t |
3G s.t. [¢]© # 0} contains the sefys | T € Speriod} @and is disjoint from{y; | 7 € Snotiling }-
Note that Fact 10.2.2 implies théd | 3G s.t. [$]© # 0} can not be recursive.

First we show that ify] € # 0 for some grapl@, then can tile the positive plankl x N.
Take any nodeg € [y7]€. By y1 the propositiorsquar e has to be true & o, S0 in particular
| oop(U - D) is true. This means that there is a point which we lahgl that can be reached
from ag o by anU-labelled edge. (Note that we can also get fragn to ag o by andD-labelled
edge.) Now sincehen (U, oop(R-L)) is also true afg o, there must be a node which we label
ap 1, reached by aR-labelled edge fronag ;1 (and with the correspondinig-labelled edge in
the other direction). Again, this time using the fact thiz¢n(U - R,1 oop(D-U)) is true atag o,
we get a node labelled o, connected t@; 1 by anD-labelled edge (and with dd-labelled
edge connecting it back withy 1). Next, we use the fact thahen(U - R-D,l oop(L - R)) is
true atago to get a nodey to the left ofay o. Finally, sincel oop(U -R-D-L) is true atagp,
it must be thag, = ao 0. Again we note that each edge has a dual edge with the apgi@pri
label, connecting the node in reverse direction.

Similarly, sincesquar e is true ata; 1 (as we can reach it fromy o by traversingJ and then
R-labelled edge), we can also find poiais, a; » anday 1 in an analogous way. This process is
illustrated by the following image (note that we do not cldhat nodes j are in fact mutually
distinct nodes from our model).

248 Chapter 10. Query containment

ao,0 aio

Note now that sincequar e is also true atg 1, thenags must satisfyant i cl ockwi se.
Since goingR and therlJ from ag; takes us tay » and sinceshen(R-U,l oop(L-R)) is true
atag 1, there is some node which we latagl,, that is reached by traversing brlabelled edge
fromay . Note that this also implies that there is Rilabelled edge fronag» to a; ». Again,
sincewhen(R-U -L,l oop(D-U)) is true atag; andag, can be reached big-U - L we have
that there is a poirﬁi{l1 connected t@p > by anD-labelled edge (and in the other direction by
anU-labelled one). But now sinca 1 also satisfiesoop(R-U -L-D) anday ; is reached from
ao1 by a path labelledR-U -L - D,we have thas ; = ap1. Thus we can draw a square starting
in ap,1, going in anticlockwise direction. This is illustrated metfollowing image.

Qo2 L a2 R a2

o—O0—>0

We now note that with each edge there is a corresponding edbe bther direction with
the appropriate label (e.g.andR). To see this observe that in eag,o we have thatoop(U -D)
is true. This means that there is @redge fromag o to ap1 and also arD-edge fromag 1 to
ago and analogously for all other edges.

In particular there is aiR-edge fromago to a; 9, SO we can also complete the clockwise
square started af g and continuing throughy ; anday ;. This is done by the means of formula
cl ockw se.

It is straightforward to see that this process can be coatiriar any number of steps, start-
ing from the main diagonal and completing the squares ali@vdiagonal in an anticlockwise
direction, while completing the ones below the diagonal iclackwise direction. Thus we
showed that we can force a square grid by our formula.

Define nowt(i, j) = T, whereq, is the unique formula of the fornte! N¢) that is true at
any pointg; j by means ofy,. Note thaty, also forces the tiling to be proper, since the formula
tileassures thatthe titéi+ 1, j) andt(i, j + 1) can only come from the set of tiles compatible
with t(i, j) in the appropriate direction.

10.2. GXPath and its many fragments 249

Thus we have shown that if formulg- is satisfiable, thery” can tile the positive plane
N x N. This implies that the s€tp | 3G s.t. [[¢]}G # 0} is disjoint fromSytiling-

On the other hand, suppose thBt= {Ty,...,Tx} can tile the plane periodically, that is
it can tile the torusZ, x Zm, for some integersm andm. Lett be the tiling functiort : Z,, x
Zm — ‘T that witnesses this periodic tiling. We define the graphlokgeG containing at most
(n+1)-(m+ 1)+ (k— 2) nodes and satisfying; as follows.

First, let

V={ag;:i=1..,n+landj=1,....m+1}U{T,..., T}
Next add the following edges to our graph.

1. For vertical edges:

-fori=1..n+1andj=1...mput anU-edge betweem ; anda; ;1 and an
D-labelled one in the other direction;

- fori=1...n+1 put anU-labelled edge betweem .1 anda; ; and anD-labelled
one in the other direction.

2. Analogously for horizontal edges:

-fori=1...nandj=1...m+ 1 put anR-edge betweem, ; anda;; 1 and anL-
labelled one in the other direction;

- for j =1...m+ 1 put anR-labelled edge betweem 1 ; anda; j and anL-labelled
one in the other direction.

Also, defineT,, T3, ..., Tx to form ana-labelled chain. That is we add aredge between;
andTi 1, fori=2,...k— 1.

Next, for eachs; j ,wherei # n+1 andj # m+1 letT, be the unique tile given by the tiling
t(i,j). If | =1 we add ara-edge froma ; to itself. If | > 1 we add ara-labelled edge from
a; j to T, and another-labelled edge fronT; to & ;. This will allow us to satisfy the formula
a; = (@ Ne) as illustrated in the following image.

TZaTS aT4 aTS
[J [] [] []

250 Chapter 10. Query containment

Finally, fori =n+1andj#m+1letT =t(1,]) and define the outgoing-edges from
ant1,j to T, and fromT, as above. Similarly, for # n+1 andj = m+ 1 do the same for
T =t(i,1). Lastly, repeat the procedure faf; 1 my1 andT; =t(1,1).

Consider now formulay,;. Note that we can reach any point by uslhgandR transitions,
so we have to check thatuar e is true at any point. But this is straightforward to checkgsi
our graphG is a simple finite grid that folds onto itself (that is from bgmoint on the edge
we can continue in the appropriate direction). The factyphé true follows from the fact that
t is a periodic tiling. Namely, at any point in the gra@h precisely onea; is true (note that
we require thea-path to loop over the node, so only one such path exists bganstruction).
After that, anyR orU step we take will take us to a node where the appropfater Bl is true
sincet is a tiling.

This shows that the s&= {¢ | 3G s.t. [$]€ # 0} contains the sefys | T € Speriod}. AS
mentioned above, Fact 10.2.2 implies that the set of abfsatle GXPath node formulass, is
not recursive.

In particular this implies that query containment f8KPath is not decidable, since the
latter would entail recursivity of the s8&tby simply checking does the containmépf C [T
hold.

Thus we proved that query containment aXPath is undecidable, even with a fixed al-
phabet> of edge labels. O

Note that the previous theorem also implies undecidallityuery containment fofriAL*,
since the language was shown to con@kPath in Section 9.3.

Corollary 10.2.3. Query containment fofriAL* is undecidable.

Due to the before mentioned connectiorGafPath to PDL, we have a result on satisfiability
of PDL with negation over finite models.

Corollary 10.2.4. The satisfiability problem for PDL with negation on paths ilacidable
over finite models, even in the absence of propositionabies.

In fact, by carefully examining the proof, one can check thatuse of negation is quite
limited and that we only use intersection and the fact tlPath,eq can define the set of all
pairs of mutually different nodes via the expresstoWWe are hoping that further adaptations
of the proof could lead to solving the well know open probleftimite satisfiablity for PDL
formulas with intersection [Goller et al., 2009].

As in the previous sections, we have the following questiohat are the restrictions on
GXPathreg that make containment decidable? The most natural caedidae of course the
ones that forbid negation. Since we have two forms of negatime on node formulas and
another on path formulas, we consider bakPathfey andGXPathPSéh'pos, the positive naviga-
tional fragments oG XPath.

10.2. GXPath and its many fragments 251

Note that, as opposed to the classes from previous sectieng/ord “positive” refers here
to restrictions of navigational properties, and not of datmipulation abilities.
Using the equivalence @XPathfsy andNRES (see Theorem 9.2.3) we can use the result

on containment oRNREs from [Reutter, 2013a] to obtain the following.

Proposition 10.2.5([Reutter, 2013a]) The decision probleMCONTAINMENT (GXPathPé)g is
P Seace-complete.

Exploiting connections with PDL, we obtain the followingstdt for GXPathfgy oS

Theorem 10.2.6. The decision problemCONTAINMENT (GXPathfa %y is ExPTIME-

complete.

Proof. To show the upper bound we first prove that the problem of geentainment for

GXPathia P path formulas can be polynomially reduced to the problematitability of

GXPathPS‘éh'posnode formulas. The idea is similar to the one used in [ten &adelutz, 2009]
to show that the two problems are inter-reducibleXpath queries on trees.

Leta andp be twoGXPathfa " "*Spath formulas and Idt denote the alphabet of all symbols
occurring ina andp plus one additional symbdi. It is straightforward to see that éf is not
contained inB3, then there is a grapB witnessing this non-containment that uses labels from
I only. (The idea here is that only labels appearingiiand3 are relevant, and all the other
labels can be replaced by the new label.)

Let nowl" :=T x {0,1}. That is,["’ contains copies of each label decorated with either O
or 1. We definen’ as a formula obtained from by replacing each occurrence of a lahdly
(a,0)U(a,1) and likewise fo3’. Finally, letout be the formuld J,.r(a,1). We show thatr

is contained irf if and only if the formula

¢ := (a’[out [) A ~(B[out])

is not satisfiablé.

Assume first thatt is not contained if8. Then there is a grap@ and two nodes,V € G
such that(v,v) € [a], but (v,V) ¢ [B]®. As mentioned above, we can assume, without the
loss of generality, tha® uses only labels frofi. Define nowG' to be a’ labelled graph where
each labeh is replaced bya,0). In addition, we also add a loop fromto V' labelled(b,1).
SinceV is the only node with an outgoing edge whose label has seaamg@nent equal to 1
we get thaw € [¢]€, as required.

On the other hand, assume tipas satisfiable. LeG’ be any graph such that therevis G’
with ve [¢]€. Let G be a graph obtained fro®’ be replacing every edge labell¢d, 0) or
(a,1) by a (note that thé-edges can be thrown away, since neithenor 3 can access them).

INote that here we are writing e.[;t] instead off(a)], when checking that a node has an outgairpath.

252 Chapter 10. Query containment

Sincev e [¢]€, there is some’ € G’ such that(v,V) e [a’[out €. Itis then straightforward
to see thatv,V) € [a]®. On the other hand, if we had théatV') is in [B]€, then we would
also get thatv,Vv') e [B'[out]|, (sincev must have an outgoing edge with second component
equal to 1 to satisfy’[out]), which contradicts the fact thate [¢]€. Thusa is not contained
in B, as required. (Note that it could still be the case that](a)]® andv < [(B)]®, but we are
interested in binary containment.)

We have thus shown that query containmentGaiPathl " ***path formulas is polynomi-
ally reducible to (un)satisfiability of node formulas of te@me language. Using this and the

fact thatGXxPathiay **Sis contained in PDL (in facBXPathfa " "°%is the same as PDL without

variables) we can use the decision procedure for PDL to sekRathfa " "**query contain-
ment. Since the former is inXPTIME (see [Harel et al., 2000], Theorem 8.4), we obtain the

desired result.

The lower bound follows from adapting knowrkxETIME-complete results regarding the
satisfiability of PDL versions close tePath (see e.g. Section 4.4 of [Alechina et al., 2003];
or Theorem 8.4 in [Harel et al., 2000]). These results pregauctions from the acceptance
problem of a Turing machine that decides a languagexrTEME. The only difficulty in the
adaptation of these proofs is dealing with a bounded alghab®e the natural adaptation of
these results would result in a reduction needing an unkEmliatphabet. But this can be done
by coding the symbols of the alphabet as binary strings—bbunded length but now using
a bounded alphabet—as it is repeatedly done in [Barcel6.,e2@l3b] (see the ¥ SPACE
hardness proof). For example dfcontains 4 characters, then we treat them as strings 00, 01,
10 and 11. O

10.2.2 Containment with data values

We will now consider how data value tests affect containnoéi@xPath queries. Recall from
Chapter 7 that these are either of the famm, a.., with a being a path expression, ¢n =
B), (o # B) (as mentioned previously here we will disregard constaritkg first type of tests
is denoted with~, while the second is denoted withy. These can again be coupled with
positive navigational features restricting negation inleor path formulas, giving rise to six
different fragments, ranging fro@xPathfeg(eq) to GXPathreg(~).

To examine their containment problem, notice first that isvghown in Chapter 9, that
evenGXPathfey(~) contains RQDs. Theorem 10.1.7 then implies that containrerall of
the fragments with- tests is undecidable. From Theorem 10.2.1 we also get wtetlity of

GXPathreg(eq). We summarise these results in the following corollary.
Corollary 10.2.7. The problems

- CONTAINMENT (GXPathfeg(~)),

10.2. GXPath and its many fragments 253

- CONTAINMENT (GXPathf&"°Y~)) and
- CONTAINMENT (GXPathreg(~))
- CONTAINMENT (GXPathreg(eq))

are undecidable.

The next step in the search for decidable fragmen@x#fath would be to restrict data tests
to equality only (i.e. forbid subexpressions of the faxpand similarly foreq tests). Note that
these were already introduced in Section 7.4. Here wewust denote fragments using only
o_ tests anceg_ for fragments using onlya = 3). From Theorem 10.2.1 we already know
that containment foGXPathreg(~) With such restriction is undecidable. However, results for
similar fragments of RQDs give some hope that containmané fp GXPathfa P°{~_) and
GXPathfeg(~~) With such restrictions might be decidable. We summarisevkn@sults in the
following image. Note that the fragments are positioned imay that reflects their relative

expressive power (see Section 7.4).

GXPathfeg(eq_) GXPathfsg(~—)

N e

GXPathfeg(eq) GXPathfa *Yeq_) GXPathfa P*Y~_) -
GxPathfgy " Teq) _—>_\-

Figure 10.2: Containment problem for GXPathey fragments with data value tests. Red colour

indicates undecidability. Grey colour indicates that the status of containment problem is still

unknown.

10.2.3 Coming back to the core

When traditionalXPath over trees is considered, negative results about quergiconent, can
often be surpassed [Schwentick, 2004, Figueira, 2010bg4$tyicting attention to the core frag-
ment allowing Kleene star to range only over basic navigati@axes. It therefore makes sense
to see how this restriction is reflected over graphs wheremalthy ofGXPathqre fragments,
analogous to the one from Figure 10.2 exists.

254 Chapter 10. Query containment

By carefully examining the proof of Theorem 10.2.1 we cantbaeall of the expressions
used there in fact belong ®@XPathcere, therefore implying undecidability of all fragments
using negation both on node and path formulas. In the foligWfigure we summarise the
known results about containment of core fragmentSxiPath with various data tests.

GXPathBore(eq_) GXPathBore(~—)

GXPathlo(eq) prathé’gﬁ';'p“(eq) GXPathé’S‘ﬁg'miN:) GXPathGore(~)

GXPathPahP%e) GXPathBa T~)

\

Figure 10.3: Containment problem for GXPathgqe fragments with data value tests. Red colour

indicates undecidability. Grey colour indicates that the status of containment problem is still

unknown.

Here we see that, similarly as withXPatheq there are still many unresolved questions
and a further study into the problem is warranted. Note thtt eore fragments, even when
navigation alone is considered, we can no longer rely ordstatools from automata theory or
formal languages, since the expressive power is severgliyated. This makes the fragments
more likely to have decidable containment problem, but dagch for correct bounds seems to
be a challenging task in the same manner as it waXmath over trees [Figueira, 2010b].

10.3 Summary of containment results

After conducting an initial study of query containment foaim classes of queries for graphs
with data, we conclude that the picture here is quite diffefeom the one for traditional
navigational languages. In particular, there is a sharfrasnbetween RPQs or CRPQs, where
containment is decidable, and any of the known extensionRPRthat handle data values.
Undecidability for the class of RQMs comes as not a surpdse,to high complexity of query
evaluation and powerful data manipulation mechanism, lethawve seen that even classes with
good query evaluation properties can have undecidablaiconént.

The presence of inequality tests seems to be one of the maijactbrs here, although
the ability to define complex navigational patterns can leagndecidability as well. Thus, it

10.3. Summary of containment results 255

Data comparision§ RQD RQM || 2RQD | 2RQM || GxPathisi~) | GxPathfE P(~) | GXPathreg(~) |
none PSPACE-C PSPACECH PSPACE-C* EXPTIME-C und.
full und. und. und. und. und. und. und.
positive PSPAcEC | EXPSPACEC ? und. ? ? und.

Table 10.1: Complexity of containment of data graph queries. Some etabave synonyms,
not given for clarity: i.e. RQDs and RQMs with no data comgainis are RPQs. Results, known
before, are marked with *, “-¢” stands for “complete”.

seems that to obtain decidable fragments one has to liraittaih to purely positive subclasses.
The situation further complicates in the presence of ivefgerator. We summarise results for
main classes of queries in Table 10.1.

All of this shows that, although most of graph query langsaaye already well established,
there is still some fine tuning needed to define languagesdeitirable static analysis prop-
erties. While results on query containment are well undedsfor path queries introduced in
Chapter 4, there are still some gaps when it comes to graglhidaes. In particular, we would
like to fully understand the containment problem for albfireents ofGXPath. Some results in
previous sections give us hope that decidability could hainkd for positive fragments using
only equality tests and for core fragments.

In particular, the decidability of containment for equektonly versions oGXPathPé’g‘ and

GXPathPféh'posis still open. Furthermore, the picture for classes thategsdata tests is also
not well understood (Figure 10.2), and for core fragmentshaxe only started to scratch the
surface (Figure 10.3). Another valid line of research i atspurse decidable fragments of
TriAL, where some initial work was done, albeit for much more ietstl languages [Rudolph
and Krotzsch, 2013].

All of this shows that query containment for graph languagesmises to be a fruitful
direction for future research, hopefully leading to depeh@nt of many new techniques as was

the case with XML [Figueira, 2010b].

Part IV

Wrapping up

257

Chapter 11

Conclusions and future work

Historically querying graph data was done in two completsparate ways: either one would
query the raw data residing in the graph while completelyegjarding how the data is con-
nected, or one would query only the topology of the modeleweining intricate patterns
connecting the data, but not doing any reasoning on the k& iThe main objective of this
dissertation was to explore principles of good query laggudesign that combines these two
modes of querying. Namely, we propose languages that, iti@udo being able to ask ques-
tions about the underlying topology of the model, also altowletermine how the actual data
changes while navigating the graph.

In order to do so we study how adding various data manipulatatures and mixing
them with navigational capabilities of the language at haffdcts the complexity of main
reasoning tasks and how it relates to the expressive powtbiednguage. In this thesis we
proposed two classes of languages: path languages and lgraptages, based on the set of
basic navigational features they allow. Path languagesndxthe basic RPQs with different
data manipulation capabilities and here we see that eftigieheach one of them, as well as
their expressive power, is closely related to the natureatd tests we allow. Although naviga-
tionally quite simple (namely they can describe only pathdjen extended with the ability to
store and compare data values, they become a powerful lgadaareasoning about graphs.
This power comes with a price though, as the complexity ofyjaealuation is relatively high
(although no worse than for traditional relational langeggand basic static aspects of the lan-
guage, such as containment or satisfiability, quickly bezomdecidable. Restrictions are, of
course, possible, but quite often the natural restrictdmaot amount to any gain in efficiency,
and cutting out the ability to store data in variables, whdkading to highly efficient languages,
results in somewhat limited expressive power. This is, ofse, a fact one has to deal with, as
even the basic matching of equal data values, such as thesedaruwell known grep expres-
sions from Unix operating systems, results in intractabl@plexity of query evaluation.

Graph languages on the other hand try to avoid this diffichityallowing only simple

259

260 Chapter 11. Conclusions and future work

data value tests that were proven to be relevant in the coafexML (recall that our main
graph languageGXPath, is based on the XML query languag@ath), while at the same time
allowing more intricate navigational patterns lying odesiof scope of path languages. Since
the language is highly efficient (namely query evaluatioahgays tractable), and since both
the navigational and data manipulation abilities it allowesre shown to be of interest to many
practitioners, we believe that certain features of thigjlemge should be considered as a basic
building block of any practical graph language. Some uderaiever, simply need the ability
to store the data and check how it changes along the path tsertopath languages will have
a greater appeal, despite the higher complexity. Anotheguage,TriAL, that we introduced
to query RDF documents, could be used to overcome this igstie@nly to a certain extent,
since it offers a bit more memory storage th@xiPath and comes with only a slightly higher
complexity of the query evaluation problem. However, as vgeubs in the next section, it
seems that users have to pick from one brand of languagher e#th or graph, based on the
type of queries they intend to ask and the availability of patational resources.

As one of the main goals of this study is to be able to pinpoispecific set of primitives
that a query language should posses in order to meet usdremguts, in Section 11.1 we
discuss how to chose the appropriate language and how sintice can be balanced in terms
of expressivity and efficiency. We conclude with some diget for future work in Section
11.2.

11.1 Choosing the right language

Having studied how various data and navigational featuffestahe ability of the language to

express relevant queries, as well as how they influenceeeftigi we come to a conclusion that
there are no clear winners when it comes to choosing a platitanguage, if the context is

not known. Indeed, as some groups of practitioners will @acertain set of functionalities

above others, they will consider a language allowing thesetfonalities better suited for

their purposes, thus making it a worthy candidate for thaitipular goal, while others might

dismiss it on grounds of high complexity, or the inabilitydrpress the type of queries they
find relevant. Because of this we can not bring one of the megpdanguages forward as
the language for graphs with data, however, we can point to geodidates when a specific
capability is required. Below we provide some recommendatiof a suitable language if the
user has a specific goal in mind.

Navigational queries In the past the main focus of graph languages has been ogvigtyi
information about how the data is connected and not abouadheal data. And while most
modern systems now also include some sort of data handlipgbdéay, navigational query-

11.1. Choosing the right language 261

ing still forms the core of many languages, and they are aftexd to ask strictly navigational
queries. If the users main concern are such queries themgveeato the question of which
language to use is quite clear — itdXPath or some of its many fragments or variants. Indeed,
considering all of the languages proposed both here aneiredearch literature, it is difficult
to find one that is both as expressive and as efficient in tefmsery answering. On top of
that, the language is closely connected to logic, both FCPapId, and is capable of expressing
queries outside of the scope of most previous recommemdafiwith the sole exception of
extended RPQs [Barcel6 et al., 2012b], which are incompatalt XPath, but also much less
efficient). Therefore, as far as navigational queries aresidered it seems th&XPath pro-
vides good balance between expressive power and efficiencgteould be strongly considered
as a core of any purely navigational language. Some of tliesssome with respect to query
evaluation, as it is not currently known if evaluation aigans forGXPath can be parallelized.
We leave this interesting question as one of the directionguture research. We would also
like to note that from the point of view of static analysis taaguage fares somewhat worse
than its competitors, but this is to be expected with such kipressivity. Note that even then
the most natural restrictions, still more powerful thanpheviously proposed languages, again
regain good algorithmic properties of query containmert satisfiability. Overall we believe
that, despite these minor difficulties which one still hagvercome even with much simpler
languagesGXPath can be recommended as the navigational standard for graphs.

Hybrid languages Although navigational queries are important in and of thelwes, the
true power of the graph data model lies in its ability to mixigation and the data. However,
since this dissertation is a first detailed study of langadpat allow such mixing, it is still not
clear as to which language should be chosen above all othefeed, it seems that different
requirements call for different design principles to belegapto the language, all of them with
their strengths and weaknesses, but that no entirely umifgrproach can be taken. This is,
of course, not so unusual for an area in its infancy and hdlgefith the maturation of the
field it will become apparent how particular data manipolatiasks can be pruned to establish
a good querying basis that can be added to the navigationabfihe language. In the mean
time, we provided several good options, that can, as we sksoext, be used to meet specific
requirements that a group of users might impose.

Languages with memory ~ When memory usage is required, for example to ask queries
that propagate data (in)equality along the path connettmgiata points, it seems thRQMs
are the way to go. Not only do these queries have high expeegsiwer matching that of
register automata, but their syntax is also clear and eanifgrstandable. Furthermore, they
can easily be extended to allow backward navigation anduoatipn, making them a desirable
candidate for the user to chose. Of course, if strict scopifeg that mimic the use of variables

262 Chapter 11. Conclusions and future work

in usual programming languages are required, then we tuRQBs, where, with a small hit
to expressive power, we still retain all of the desirableperties ofRQMs. On the other hand,
if we only need to use memory to match same data items in neiliiigations we can use
variable automata, or some of their restrictions. In alll@fse cases the proposed language
has a great deal of expressive power when it comes to datgpuation, allowing us to store
and compare data values as one would in any common programamiguage, although their
navigational base does not extend beyond that of ordinal®<RFhe price we have to pay
for this expressive power comes in terms of high complexitpasic algorithmic tasks such
as query evaluation and query containment. The evaluatiolgm is P ®ACE-complete for
RQMs andRQBs and it is well known that the best we can do with such approagn if we
remove several capabilities from models such as variatitareata, iSNP (see [Aho, 1990]).

Highly efficient languages To overcome the issue of high complexity we first introduced
the class oRQDs. These queries, although still being able to express nmesesting proper-
ties of graphs, are somewhat limited, and as we showed, damslbhe same bounds for query
evaluation even for the navigationally much richer languafiGXPath. Furthermore, although
the data tests used @XPath are based on the same idea as the onBJBs, combining them
with the ability to define patterns and not only paths (as éndfise 0RQDs), allows us to sub-
sumeXPath-style data tests that have been tried and tested by XMLipom&rs. Finally, the
language has a very clean logical core —namely it is equitéteg FO*)3(~), the three variable
fragment of first-order logic with binary transitive closuand data value comparisons. All of
this leads to the conclusion that when high efficiency is Bb@XPath with data value com-
parisons seems to be the most likely candidate to pick. Is@w&orth emphasizing again that,
in addition to being able to define data tests that were shovine tuseful in practice, we also
get the best possible language in terms of navigationalfestand all of that basically for free
— the complexity does not change much even when compared @s Rfat do not deal with
data values. Of course, if the users require memory, theytnfiigd the language somewhat
lacking, but as theoretical results tell us, to use memaglyr (Theorem 4.2.7), or even in a
severely restricted way (Theorem 4.5.6), we have to pay tice pn terms of efficiency (after
all, if expressing a certain property MP-hard it isSNP-hard and there is no way around this
fact). Overall,GXPath seems to be a strong candidate when high efficiency is retjaimd in
the future research we would like to address the questioawélelizability of the evaluation
algorithms for the language, or in the case the problem isiBdhard (here we use the usual
complexity assumption that N&€ PTIME), to find fragments that make evaluation easier.

What to do when graph languages fail Finally, when the users require a language for query-
ing a slightly more general model of RDF, we argued that tinguage of choice should be
TriAL. Here one can, of course, use various graph languages, asue@esssfully done in the

11.2. Where to go from here 263

past (for exampl&REs form the navigational basis of n-SPARQL [Pérez et al., 204/bile
the latest standard of the SPARQL query language for RDFaigagation CRPQs [Harris and
Seaborne, 2013]). Another graph language that can be sagefs for this isGXPath and
particularly its conjunctive version, as it allows slighthore varied queries tha¥iREs. How-
ever, as we showed in Chapter 8, applying graph language®EovRll have some inherent
limitations linked to it, as it disregards the fact that edlgeels in RDF are nodes themselves.
To overcome this issue we introduced the languagé., geared exclusively towards the RDF
data model and allowing users to express many propertiefialmutside of the scope of graph
languages. The language also retains good evaluation bamtlits datalog counterpart pro-
vides us with an intuitive declarative syntax for the langgiathus making it a good choice of
a theoretical basis for querying RDF documents.

11.2 Where to go from here

This thesis initiated the study of query languages for gragpih data, and while many questions
are already resolved, there are still several questionsiréng opened and, as with any area
that is just beginning, many possible directions for futtgsearch. We would like to finish by
briefly naming a few of them:

Practical issues The theoretical study that we undertook here enabled usterdime the
practical potential of a query language. The next logicgp $$ to efficiently implement these
languages using the algorithms and reasoning procedurelewedoped and test how they be-
have in practice where the optimal theoretical solutionhiigt always be what the users need.
While doing these practical experiments we hope to intesdttt graph database vendors and
suggest which features of a graph language are best suitéitkfo specific goals and how to
implement such features. The problem with the existingesyst such as [Dex, 2013, Neo4j,
2013, InfiniteGraph, 2013], is that the syntax and sematiiasthey use is not precisely de-
fined, which makes it difficult to understand where the masnés that practitioners face when
using such products originate from. On top of that, mostesystfail to express many impor-
tant graph queries that mix topological properties and.d&ftaat we hope to produce is a good
library of procedures that vendors could use to efficientiplement various features needed
in practice.

Note that this is a difficult and challenging task which prees to lead to many new inter-
esting research topics, such as the issue of storing angiimgdgraph data, and particularly its

performance on massively parallelizable systems.

Additional features ~ We have already explored how some basic add-ons, such aseave
and conjunctive queries, affect the language. There arepufse, many other features that

264 Chapter 11. Conclusions and future work

come into play when languages are applied, such as aggregatallowing more freedom in
manipulating the attribute data. For example we could camptiing values for substrings, or
do arithmetical operations over integers. It would themefoe interesting to look how adding
such features can be accommodated into the languages waesptbm this thesis. What we
also hope to achieve is a syntax that would be more attratgivesers who require multiple
attributes per node (or edge). There are various optiorisptieaent themselves here, as our
languages are readily extendible to support this funcligpnéut some careful examination of
actual requirements by various groups of users is needeetéomine which syntax is better
suited for such a language.

Using languages in different scenarios Connected to the practical considerations above
we would also like to explore how our languages can be usedvinapplication domains that
require navigational and data patterns to be detected iarttierlying model.

The first area we would like to tackle is querying of the SerneaWteb, where SPARQL
seems to be the current language of choice. What we proptestiizy if a more "lightweight"
language, namely the conjunctive version@{Path would do the trick. We already know
that from a theoretical point of view evaluation is more édint in this language and there are
several important queries that SPARQL can not express thhdanguage can. Of course, our
language also does not capture all of SPARQL, and it woultefbee be interesting to see if
conjunctiveGXPath is sufficient to express most queries that are of interestdctitioners.

The second area we had in mind is querying data and workflowepeoce. Here one
typically stores information about how data is created aondifred and sometimes it is useful
to have the ability to track the origins of such data. For epanif a bug is found in a large
software project it is important to locate the library, oe timodification of code, that led to
this bug. One language that naturally lends itself to sudriga isTriAL and we are hoping
to see how its implementations fare in practice, espectlhsidering the fact that the queries
such as the one above are often outside the reach of langiagese currently used to extract
information about such data.

Static analysis ~ When considering static properties of our languages we lynfioused on
containment, but there are several other important guestio consider here. For example
to optimize queries one often uses equivalence and satiitfiab often crucial for checking
consistency of documents. It would therefore be intergdtinexplore these properties for the
languages we proposed in previous chapters. On top of kigaig &ire also many open questions
relating to containment, particularly when various fragiseof GXPath are considered, all of
these promising to form a fruitful direction for future reseh.

11.2. Where to go from here 265

Incomplete information Finally, it would be interesting to see how missing and ineom
plete data impacts graph languages. To an extent this pnolies been previously addressed
in [Reutter, 2013b, Barceld et al., 2014], however, therly ovigational aspects of graph

languages were taken into account, and data values were@nsidered. The situation when

data values are present (or, as we are dealing with incoenjifgirmation, missing) seems to

complicate the issue quite considerably and promises tbrhahy intricate problems that need
to be tackled.

Bibliography

[Abiteboul et al., 1999] Abiteboul, S., Buneman, P., andi®ub. (1999). Data on the Web:
From Relations to Semistructured Data and XMllorgan Kauffman.

[Abiteboul et al., 1995] Abiteboul, S., Hull, R., and Vian¥, (1995). Foundations of
Databases Addison-Wesley.

[Abiteboul et al., 1997] Abiteboul, S., Quass, D., McHugh, Widom, J., and Wiener, J.
(1997). The LOREL query language for semistructured ddtaernational Journal on
Digital Libraries, 1(1):68—88.

[Abiteboul and Vianu, 1999] Abiteboul, S. and Vianu, V. (899 Regular path queries with
constraints.J. Comput. Syst. S¢B(58):428-452.

[Aho, 1990] Aho, A. V. (1990). Handbook of Theoretical Computer Scienchapter Algo-
rithms for finding patterns in strings. MIT Press.

[Alechina et al., 2003] Alechina, N., Demri, S., and de Rijkk (2003). A modal perspective
on path constraints]. Log. Comput.13(6):939-956.

[Alechina and Immerman, 2000] Alechina, N. and Immerman(2900). Reachability logic:
An efficient fragment of transitive closure logicogic Journal of the IGPL8(3):325-337.

[Amer-Yahia et al., 2009] Amer-Yahia, S., Lakshmanan, L.SV, and Yu, C. (2009). So-
cialScope: Enabling Information Discovery on Social Cohtites. InNCIDR.

[Anand et al., 2010] Anand, M. K., Bowers, S., and LudascBer(2010). Techniques for
efficiently querying scientific workflow provenance graphsEDBT, pages 287-298.

[Andréka et al., 2001] Andréka, H., Németi, I., and Sain2D{1). Handbook of Philosophi-
cal Logig volume 2, chapter Algebraic logic. Springer, 2 edition.

[Angles, 2012] Angles, R. (2012). A comparison of currergmr database models. I@DE
Workshopspages 171-177.

[Angles and Gutierrez, 2008] Angles, R. and Gutierrez, ©08). Survey of graph database
models.ACM Computing Surveyd0(1).

[Anyanwu and Sheth, 2003] Anyanwu, K. and Sheth, A. (20q8)Queries: enabling query-
ing for semantic associations on the semantic welll2th International World Wide Web
Conference (WWWpages 690-699.

[Arenas and Pérez, 2011] Arenas, M. and Pérez, J. (2011)ryipgesemantic web data with
SPARQL. InPODS pages 305-316.

267

268 Bibliography

[Bachman, 1973] Bachman, C. W. (1973). The Programmer aigybtav. ACM Turing Award
lecture.Communications of the ACM6(11):653-658.

[Barcel6, 2013] Barcelo, P. (2013). Querying graph databasn32th ACM Symposium on
Principles of Database Systems (PODS)

[Barcelo6 et al., 2012a] Barceld, P., Figueira, D., and LibKi. (2012a). Graph logics with
rational relations and the generalized intersection robln27th Annual IEEE Symposium
on Logic in Computer Science (LICS)

[Barcelo et al., 2012b] Barceld, P., Libkin, L., Lin, A. Wn&Wood, P. T. (2012b). Expressive
languages for path queries over graph-structured deial TODS 38(4).

[Barcel6 et al., 2011] Barcel6, P., Libkin, L., and Reutter(2011). Querying graph patterns.
In 30th ACM Symposium on Principles of Database Systems (P@B&)s 199-210.

[Barcelo et al., 2014] Barcelo, P., Libkin, L., and Reutter(2014). Querying regular graph
patterns.Journal of the ACM61(1).

[Barcelo et al., 2012c] Barceld, P., Pérez, J., and Reukt¢2012c). Relative expressiveness
of nested regular expressions. AMW, pages 180-195.

[Barcelo6 et al., 2013a] Barceld, P., Pérez, J., and Relitter,(2013a). Schema mappings and
data exchange for graph databasedCIDT.

[Barcel6 et al., 2013b] Barceld, P., Reutter, J. L., and Lipk. (2013b). Parameterized regu-
lar expressions and their languag@$fieor. Comput. Sgid74:21-45.

[Benedikt et al., 2008] Benedikt, M., Fan, W., and Geert$2608). Xpath satisfiability in the
presence of dtdslournal of the ACM55(2).

[Benedikt and Koch, 2008] Benedikt, M. and Koch, C. (2008pa¥ leashedACM Comput-
ing Surveys (CSURJ1(1).

[Bienvenu et al., 2013] Bienvenu, M., Ortiz, M., and Simkiv,(2013). Conjunctive regular
path queries in lightweight description logics. IICAL

[Bojanczyk, 2010] Bojanczyk, M. (2010). Automata for datards and data trees. RTA

[Bojanczyk et al., 2011] Bojanczyk, M., David, C., Muschol., Schwentick, T., and
Segoufin, L. (2011). Two-variable logic on words with da#&CM TOCL, 12(4).

[Bojanczyk and Lasota, 2010] Bojanczyk, M. and Lasota, 81(. An extension of data
automata that captures XPath. 26th Annual IEEE Symposium on Logic in Computer
Science (LICS)ages 243-252.

[Bojanczyk et al., 2009] Bojanczyk, M., Muscholl, A., Schutiek, T., and Segoufin, L.
(2009). Two-variable logic on data trees and XML reasoniraurnal of the ACM56(3).

[Bojanczyk and Parys, 2011] Bojanczyk, M. and Parys, P. 120Kpath evaluation in linear
time. J. ACM 58(4).

[Borger et al., 1997] Borger, E., Graedel, E., and GureViti{1997). The Classical Decision
Problem Perspectives in Mathematical Logics. Springer-verlag.

Bibliography 269

[Bouajjani et al., 2003] Bouajjani, A., Habermehl, P., andyy] R. (2003). Automatic verifi-
cation of recursive procedures with one integer param@teeoretical Computer Science
295.

[Bouyer et al., 2001] Bouyer, P., Petit, A., and Thérien, ZDQ1). An algebraic characteriza-
tion of data and timed languages. DONCUR pages 248-261.

[Calvanese et al., 2000] Calvanese, D., De Giacomo, G.,dr@rizM., and Vardi, M. (2000).
Containment of conjunctive regular path queries with isgerin7th International Confer-
ence on Principles of Knowledge Representation and Reag@KiR) pages 176-185.

[Calvanese et al., 2003] Calvanese, D., De Giacomo, G.,dr@nizM., and Vardi, M. (2003).
Reasoning on regular path queridé¢CM SIGMOD Record32(4):83-92.

[Calvanese et al., 2009] Calvanese, D., De Giacomo, G.,dranizM., and Vardi, M. (2009).
An automata-theoretic approach to regular XPattDBPL, pages 18-35.

[Calvanese et al., 2001] Calvanese, D., De Giacomo, G., drériz M., and Vardi, M. Y.
(2001). View-based query answering and query containmest gemistructured data. In
DBPL, pages 40-61.

[Cassidy, 2003] Cassidy, S. (2003). Generalizing XPathdioected graphs. IrfExtreme
Markup Languages

[Chandra and Merlin, 1977] Chandra, A. and Merlin, P. (197@ptimal implementation of
conjunctive queries in relational data basesSTOC pages 77-90.

[Cleaveland and Steffen, 1993] Cleaveland, R. and SteBei(1993). A linear-time model-
checking algorithm for the alternation-free modal mu-ohls. Formal Methods in System
Design 2(2):121-147.

[Consens and Mendelzon, 1990] Consens, M. and Mendelzgd,980). Graphlog: A visual
formalism for real life recursion. I18th ACM Symposium on Principles of Database Systems
(PODS) pages 404-416.

[Consens and Mendelzon, 1989] Consens, M. P. and Mendefzo®, (1989). Expressing
structural hypertext queries in graphlog. Hypertext pages 269-292.

[Cruz et al., 1987] Cruz, |., Mendelzon, A., and Wood, P. (@98 graphical query language
supporting recursion. IACM Special Interest Group on Management of Data 1987 Annual
Conference (SIGMOD)ages 323-330.

[Cudré-Mauroux and Elnikety, 2011] Cudré-Mauroux, P. afdkety, S. (2011). Graph data
management systems for new application domam4.DB, 4(12):1510-1511.

[David et al., 2013] David, C., Gheerbrant, A., Libkin, LncaMartens, W. (2013). Contain-
ment of pattern-based queries over data treefCIT, pages 201-212.

[Demri and Lazt, 2009] Demri, S. and Lazj R. (2009). Ltl with the freeze quantifier and
register automataACM TOCL, 10(3).

[Demri et al., 2007] Demri, S., Lagj R., and Nowak, D. (2007). On the freeze quantifier in
constraint Itl: Decidability and complexitynformation and Computatiqr205(1):2—24.

270 Bibliography

[Deutsch and Tannen, 2001] Deutsch, A. and Tannen, V. (200pjimization properties for
classes of conjunctive regular path queries. 8th International Workshop on Database
Programming Languages (DBPLpages 21-39.

[Dex, 2013] Dex (2013). DEX query language, Sparsity Tettgies. http://www.sparsity-
technologies.com/dex.php.

[Dey et al., 2013] Dey, S. C., Cuevas-Vicenttin, V., Kéhigr, Gribkoff, E., Wang, M., and
Ludascher, B. (2013). On implementing provenance-awarelae path queries with rela-
tional query engines. IEDBT/ICDT Workshopgages 214-223.

[Fan, 2012] Fan, W. (2012). Graph pattern matching reviseddcial network analysis. In
ICDT, pages 8-21.

[Fan et al., 2010a] Fan, W., Li, J., Ma, S., Tang, N., and W{2910a). Graph pattern match-
ing: from intractable to polynomial timeProceedings of the VLDB Endowment (PVLDB)
3(1):264-275.

[Fan etal., 2011] Fan, W., Li, J., Ma, S., Tang, N., and Wu2@1(1). Adding regular expres-
sions to graph reachability and pattern queries21th International Conference on Data
Engineering (ICDE)pages 39-50.

[Fan et al., 2010b] Fan, W,, Li, J., Ma, S., Wang, H., and Wu(2010b). Homomorphism
revisited for graph matchingProceedings of the VLDB Endowment (PVLD®(1):1161—
1172.

[Fernandez et al., 2000] Fernandez, M. F., Florescu, D.yLAavY., and Suciu, D. (2000).
Declarative specification of web sites with strudél.DB J, 9(1):38-55.

[Figueira, 2009] Figueira, D. (2009). Satisfiability of doward XPath with data equality
tests. In28th ACM Symposium on Principles of Database Systems (P@B&)s 197—-206.

[Figueira, 2010a] Figueira, D. (2010a). Forward-XPath artended register automata on
data-trees. INCDT, pages 231-241.

[Figueira, 2010b] Figueira, D. (2010blReasoning on words and trees with daRhD thesis,
ENS de Cachan.

[Figueira and Segoufin, 2009] Figueira, D. and Segoufin, Q092. Future-looking logics on
data words and trees. Rroceedings of the 34th International Symposium on Mathieaia
Foundations of Computer Science (MFCS’08)lume 5734 ol ecture Notes in Computer
Sciencepages 331-343. Springer.

[Figueira and Segoufin, 2011] Figueira, D. and Segoufin, Q113. Bottom-up automata on
data trees and vertical XPath. 28th Annual Symposium on Theoretical Aspects of Com-
puter Science (STACS)ages 93-104.

[Fletcher et al., 2011] Fletcher, G. H. L., Gyssens, M., deirs, D., Van den Bussche, J.,
Van Gucht, D., Vansummeren, S., and Wu, Y. (2011). Relatyeessive power of naviga-
tional querying on graphs. ICDT, pages 197-207.

[Fletcher et al., 2012] Fletcher, G. H. L., Gyssens, M., ders, D., Van den Bussche, J.,
Van Gucht, D., Vansummeren, S., and Wu, Y. (2012). The imphtransitive closure on
the boolean expressiveness of navigational query languagegraphs. IrF0lKS pages
124-143.

Bibliography 271

[Florescu et al., 1998] Florescu, D., Levy, A. Y., and Su@u(1998). Query containment for
conjunctive gueries with regular expressionsPBDS pages 139-148.

[Fortune et al., 1980] Fortune, S., Hopcroft, J., and Wyllig1980). The directed homeomor-
phism problem.Theoretical Computer Sciencd0):111-121.

[Freydenberg and Schweikardt, 2011] Freydenberg, D. ahav&g&ardt, N. (2011). Expres-
siveness and static analysis of extended conjunctive aegaith queries. [bth Alberto
Mendelzon International Workshop on Foundations of Datandgement (AMW)

[Glaister and Shallit, 1996] Glaister, I. and Shallit, 96). A lower bound technique for the
size of nondeterministic finite automataformation Processing Letter§9(2):75-77.

[Goldblatt and Jackson, 2012] Goldblatt, R. and Jacksor(2B2). Well structured program
equivalence is highly undecidabl&CM Trans. Comput. Log13(3).

[Goller et al., 2009] Goller, S., Lohrey, M., and Lutz, C. (&). PdI with intersection and
converse: satisfiability and infinite-state model checkihgSymb. Log.74(1):279-314.

[Gottlob et al., 2002] Gottlob, G., Gradel, E., and Veith,(B002). Datalog lite: a deductive
query language with linear time model checki®gCM TOCL, 3(1):42-79.

[Gottlob and Koch, 2004] Gottlob, G. and Koch, C. (2004). Mdit datalog and the expres-
sive power of languages for web information extractionACM, 51(1):74-113.

[Gottlob et al., 2005] Gottlob, G., Koch, C., and Pichler,(R005). Efficient algorithms for
processing XPath querieACM Trans. Database SysB0(2):444—491.

[Gradel, 1991] Gréadel, E. (1991). On transitive closurédo¢n CSL, pages 149-163.

[Gremlin, 2013] Gremlin (2013). Gremlin Language.
https://github.com/tinkerpop/gremlin/wiki.

[Grumberg et al., 2010a] Grumberg, O., Kupferman, O., aneir$iald, S. (2010a). Variable
automata over infinite alphabets. Rroceedings of the 4th International Conference on
Language and Automata Theory and Applications (LApAyes 561-572.

[Grumberg et al., 2010b] Grumberg, O., Kupferman, O., aneirsfald, S. (2010b). Variable
automata over infinite alphabets. Manuscript.

[Gupta and Mumick, 1995] Gupta, A. and Mumick, I. S. (1995)iMenance of materialized
views: Problems, techniques, and applicatidB$EE Data Eng. Bull. 18(2):3-18.

[Gurevich and Koryakov, 1972] Gurevich, Y. and Koryakov(1972). Remarks on berger's
paper on the domino problersiberian Math. Journal

[Gutierrez et al., 2011] Gutierrez, C., Hurtado, C., Merdal A. O., , and Pérez, J. (2011).
Foundations of semantic web databasedournal of Computer and System Sciences
77(3):520-541.

[Gyssens et al., 1994] Gyssens, M., Paredaens, J., Van dsstigy J., and Van Gucht, D.
(1994). A graph-oriented object database motleEE Trans. Knowl. Data Eng6(4):572—
586.

[Harel et al., 2000] Harel, D., Kozen, D., and Tiuryn, J. (@QMynamic Logic MIT Press.

272 Bibliography

[Harris and Seaborne, 2013] Harris, S. and Seaborne, A3{26PARQL 1.1 query language.
W3C recommendatiorht t p: / / www. w3. or g/ TR/ spar gl 11- query/ .

[Hopcroft and Ullman, 1979] Hopcroft, J. E. and Ullman, J.(D979). Introduction to Au-
tomata Theory, Languages and Computatiéwldison-Wesley Publishing Company.

[Immerman and Kozen, 1989] Immerman, N. and Kozen, D. (1989efinability with
bounded number of bound variabld&NDC, 83(2):121-139.

[InfiniteGraph, 2013] InfiniteGraph (2013). Infinitegrapklease 3.1 by objectivity inc.
http://ww. objectivity.conlinfinitegraph.

[loannidis et al., 2011] loannidis, Y. E., Vayanou, M., Cgiou, T., latropoulou, K., Karvou-
nis, M., Katifori, V., Kyriakidi, M., Manola, N., Mouzakidi, A., Stamatogiannakis, L.,
and Triantafyllidi, M. L. (2011). Profiling attitudes for monalized information provision.
IEEE Data Eng. Bull. 34(2):35-40.

[Jena, 2012] Jena (2012). The Apache Jena Manual. httyi@/gpache.org.

[Jones, 1975] Jones, N. (1975). Space-bounded redugibilitong combinatorial problems.
Journal of Computer and System Sciende88-75.

[Kaminski and Francez, 1994] Kaminski, M. and Francez, N09d). Finite memory au-
tomata.Theoretical Computer SciencE34(2):329-363.

[Kaminski and Tan, 2006] Kaminski, M. and Tan, T. (2006). Reg expressions for lan-
guages over infinite alphabetsundamenta Informaticaé9(3):301-318.

[Kaminski and Tan, 2008] Kaminski, M. and Tan, T. (2008). deutomata over infinite al-
phabets. IrPillars of Computer Scien¢pages 386—423.

[Kay, 2004] Kay, M. (2004)XPath 2.0 Programmer’s Referendé/rox.

[Klyne and Carroll, 2004] Klyne, G. and Carroll, J. J. (2004RDF concepts and abstract
syntax, W3C recommendation.

[Kostylev et al., 2014] Kostylev, E. V., Reutter, J. L., andy&, D. (2014). Containment of
data graph queries. [fo appear in ICDT

[Lange, 2006] Lange, M. (2006). Model checking proposkgilodlynamic logic with all extras.
J. Applied Logi¢4(1):39—-49.

[Lenzerini, 2002] Lenzerini, M. (2002). Data integratiamtheoretical perspective. FODS
pages 233-246.

[Leser, 2005] Leser, U. (2005). A query language for biataginetworks. Bioinformatics
21(2):ii33—ii39.

[Libkin, 2004] Libkin, L. (2004).Elements of Finite Model Theargpringer.

[Libkin et al., 2013a] Libkin, L., Martens, W., and Vrgp D. (2013a). Querying Graph
Databases with XPath. ICDT.

[Libkin et al., 2013b] Libkin, L., Reutter, J. L., and VrgopD. (2013b). TriAL for rdf: Adapt-
ing graph query languages for rdf data.A®DS

Bibliography 273

[Libkin et al., 2013c] Libkin, L., Tan, T., and Vrgp D. (2013c). Regular expressions with
binding over data words for querying graph database®LMh.

[Libkin and Vrgct, 2012a] Libkin, L. and Vrg6, D. (2012a). Regular expressions for data
words. INLPAR pages 274-288.

[Libkin and Vrgct, 2012b] Libkin, L. and Vrg6, D. (2012b). Regular Path Queries on Graphs
with Data. InICDT, pages 74-85.

[Losemann and Martens, 2012] Losemann, K. and Martens, WL22 The complexity of
evaluating path expressions in SPARQLR®DS pages 101-112.

[Martens, 2006] Martens, W. (2006)Static Analysis of XML Transformation and Schema
Languages PhD thesis, Universiteit Hasselt.

[Marx, 2003] Marx, M. (2003). Xpath and modal logics of findag's. INTABLEAUX pages
150-164.

[Marx, 2005] Marx, M. (2005). Conditional XPattACM Trans. Database Sys80(4):929—
959.

[Mendelzon and Wood, 1995] Mendelzon, A. and Wood, P. (1995nding regular simple
paths in graph databaseSIAM Journal on Computing4(6):1235-1258.

[Miklau and Suciu, 2004] Miklau, G. and Suciu, D. (2004). @nment and equivalence for
a fragment of XPathJ. ACM 51(1):2-45.

[Milo et al., 2002] Milo, R., Shen-Orr, S., ltzkovitz, S., Klatan, N., Chklovskii, D., and
Alon, U. (2002). Network motifs: simple building blocks obmplex networks.Science
298(5594):824-827.

[Neo4j, 2013] Neo4j (2013). Neodj, The graph datab&sep: / / www. neo4j . or g/ .

[Neven, 2002] Neven, F. (2002). Automata theory for XML @®shers. SIGMOD Record
31(3):39-46.

[Neven et al., 2004] Neven, F., Schwentick, T., and Vian2004). Finite state machines for
strings over infinite alphabet&aCM Trans. Comput. Log5(3):403—-435.

[Olken, 2003] Olken, F. (2003). Graph data management fdecudar biology. 7(1):75-78.

[Papadimitriou, 1993] Papadimitriou, C. H. (1998pomputational ComplexityAddison Wes-
ley.

[Pérez et al., 2009] Pérez, J., Arenas, M., and Gutierre@@9). Semantics and complexity
of spargl. ACM Transactions on Database SysteB3).

[Pérez et al., 2010] Pérez, J., Arenas, M., and Gutierre@2@1.0). nSPARQL: A navigational
language for RDFJournal of Web Semantic8(4):255-270.

[Reutter, 2013a] Reutter, J. L. (2013a). Containment ofatksegular expressions. CoRR
abs/1304.2637.

[Reutter, 2013b] Reutter, J. L. (2013b)araph Patterns: Structure, Query Answering and
Applications in Schema Mappings and Formal Language The®D thesis, School of
INformatics, University of Edinburgh.

274 Bibliography

[Ronen and Shmueli, 2009] Ronen, R. and Shmueli, O. (2008I: & language for querying
and creating data in social networks.286th International Conference on Data Engineering
(ICDE), pages 1595-1602.

[Rudolph and Krétzsch, 2013] Rudolph, S. and Krétzsch, M1@. Flag & check: data
access with monadically defined queriesPI@DS pages 151-162.

[Sakamoto and Ikeda, 2000] Sakamoto, H. and lkeda, D. (200@ractability of decision
problems for finite-memory automat@iheor. Comput. Sgi231(2):297-308.

[San Martin and Gutierrez, 2009] San Martin, M. and Guten€. (2009). Representing,
querying and transforming social networks with rdf/spatgl6th European Semantic Web
Conference (ESW(Cpages 293-307.

[Schwentick, 2004] Schwentick, T. (2004). Xpath query eimhent. SIGMOD Record
33(1):101-109.

[Segoufin, 2006] Segoufin, L. (2006). Automata and logicsvords and trees over an infinite
alphabet. ICSL, pages 41-57.

[Segoufin, 2007] Segoufin, L. (2007). Static analysis of XMbqessing with data values.
SIGMOD Record36(1):31-38.

[Sipser, 1997] Sipser, M. (1997ntroduction to the Theory of ComputatioRWS Publishing.

[Tal, 1999] Tal, A. (1999). Decidability of inclusion for ifitation based automata. Master’s
thesis, Department of Computer Science, Technion - Israituite of Technology.

[Tarski and Givant, 1987] Tarski, A. and Givant, S. (198A.Formalization of Set Theory
Without Variables AMS.

[ten Cate, 2006] ten Cate, B. (2006). The expressivity oftKRath transitive closure. I&5th
ACM Symposium on Principles of Database Systems (PQiaggs 328—-337.

[ten Cate and Lutz, 2009] ten Cate, B. and Lutz, C. (2009). ddmplexity of query contain-
ment in expressive fragments of XPath 2J@urnal of the ACM56(6).

[ten Cate and Marx, 2007] ten Cate, B. and Marx, M. (2007). idktional XPath: calculus
and algebraSigmod Record36(2):19-26.

[Van den Bussche and Vossen, 1993] Van den Bussche, J. asdrnyds. (1993). An exten-
sion of path expressions to simplify navigation in objegented queries. IIDOOD, pages
267-282.

[Vardi, 1982] Vardi, M. Y. (1982). The complexity of relatial query languages. I8TOC
pages 137-146.

[Vardi, 1995] Vardi, M. Y. (1995). On the complexity of bourdtvariable queries. IRODS
pages 266-276.

[W3C Consortium, 2013] W3C Consortium (2013). Semantic w&be w3c consortium’s
vision of the web of linked dateht t p: / / www. W3. or g/ st andar ds/ semant i cweb/ .

[Wood, 2012] Wood, P. (2012). Query languages for graphbdetes. Sigmod Record
41(1):50-60.

Bibliography 275

[Xpath, 1999] Xpath (1999). XML Path Language (XPath). ww@&.org/TR/xpath.

[Xpath 2.0, 2010] Xpath 2.0 (2010). XML Path Language (XP&tD (Second Edition).
www.w3.0rg/TR/xpath20.

[Yang et al., 2008] Yang, L., Dang, Z., and Ibarra, O. H. (2008n stateless automata and p
systemslinternational Journal of Foundations of Computer Sciert®(5):1259-1276.

FO*, 150

TriAL, 175
TriAL=, 187
TrCl, 194, 201
c, 132
GXPathggng, 151
#GXPathgore, 133
GXPathggre, 132
#GXPath, 133
GXPath, 132

GXPathPaih-Pos

GXPathfay " PoS
reachTA™, 191
GXPathreg, 132
~, 132
TripleDatalog ', 178
eq, 132

2RPQ, 15

2RQB, 76

2RQD, 76

2RQM, 73

136
136

C2RPQ, 16
ConditionalGXPath, 151
Conditions, 35
ConjunctiveGXPath, 162
Conjunctive queries, 78

CRDPQ, 78

CRQB, 78

CRQD, 78

CRQM, 78

CRQV, 78
Conjunctive regular path queries, 15
CoreGXPath, 132
CRPQ, 15

Data graph, 10
Data path, 14
Data words, 86

GraphXPath, 132
Graph databasegee alsdata graph
Graph languages, 20

Index

Ground RDF document, 168
Join, 174

Language containment, 87
Left Kleene closure, 176

Membership, 87

Navigational languages, 10
Nested path query, 17
Nested regular expressions, 17
Node expressions, 132

Node formulas, 132

Node tests, 132
Nonemptiness, 87
NPQ, 17
NRE, 17

Parameter-free Transitive-closure logic, 150

Path, 14

Path expressions, 132
Path formulas, 132

Path languages, 20

Path-positiveGXPath, 136

PositiveGXPath, 136

Query answeringsee alsdQuery evaluation

Query containment, 227
Query evaluation, 18

RDF triple, 168

RDPQ, 37

Register automata, 35
over data words, 89

Register automata with variables, 80

RegularGXPath, 132

Regular data path query, 37

Regular expressions with binding, 50
over data words, 103

Regular expressions with equality, 56
over data words, 115

Regular expressions with memory, 40
over data words, 94

276

INDEX

Regular path queries, 14

Regular queries with binding, 52
Regular queries with data tests, 59
Regular queries with memory, 45
Regular queries with variables, 66
Relation algebra, 147

REM, 94

REWB, 103

REWE, 115

right Kleene closure, 176

RPQ, 14

RQB, 52

RQD, 59

RQM, 45

RQV, 66

semipath, 16

Transitive closure logic, 194, 201

Triple Algebra, 175

Triple join, 174

Triplestore, 172

Two-way regular path queries, 15

Two-way regular queries with binding, 76
Two-way regular queries with data tests, 76
Two-way regular queries with memory, 73

Universality, 87
URI, 168

Variable automata, 64
over data words, 123

varRA, 80

VFA, 64

277

