
TriAL for RDF:
Adapting Graph Query Languages for RDF Data

Leonid Libkin
University of Edinburgh

Juan Reutter
University of Edinburgh

Domagoj Vrgoč
University of Edinburgh

ABSTRACT

Querying RDF data is viewed as one of the main appli-
cations of graph query languages, and yet the standard
model of graph databases – essentially labeled graphs –
is different from the triples-based model of RDF. While
encodings of RDF databases into graph data exist, we
show that even the most natural ones are bound to lose
some functionality when used in conjunction with graph
query languages. The solution is to work directly with
triples, but then many properties taken for granted in
the graph database context (e.g., reachability) lose their
natural meaning.

Our goal is to introduce languages that work directly
over triples and are closed, i.e., they produce sets of
triples, rather than graphs. Our basic language is called
TriAL, or Triple Algebra: it guarantees closure prop-
erties by replacing the product with a family of join
operations. We extend TriAL with recursion, and ex-
plain why such an extension is more intricate for triples
than for graphs. We present a declarative language,
namely a fragment of datalog, capturing the recursive
algebra. For both languages, the combined complexity
of query evaluation is given by low-degree polynomials.
We compare our languages with relational languages,
such as finite-variable logics, and previously studied
graph query languages such as adaptations of XPath,
regular path queries, and nested regular expressions;
many of these languages are subsumed by the recur-
sive triple algebra. We also provide examples of the
usefulness of TriAL in querying graph, RDF, and social
networks data.

1. Introduction

Graph data management is currently one of the most

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X­XXXXX­XX­X/XX/XX ...$5.00.

active research topics in the database community, fueled
by the adoption of graph models in new application
domains, such as social networks, bioinformatics and
astronomic databases, and projects such as the Web of
Data and the Semantic Web. There are many proposals
for graph query languages; we now understand many
issues related to query evaluation over graphs, and there
are multiple vendors offering graph database products,
see [2, 3, 14, 34] for surveys.

The Semantic Web and its underlying data model,
RDF, are usually cited as one of the key applications of
graph databases, but there is some mismatch between
them. The standard model of graph databases [2, 34]
that dates back to [12, 13], is that of directed edge-
labeled graphs, i.e., pairs G = (V,E), where V is a set
of vertices (objects), and E is a set of labeled edges.
Each labeled edge is of the form (v, a, v′), where v, v′

are nodes in V , and a is a label from some finite la-
beling alphabet Σ. As such, they are the same as la-
beled transition systems used as a basic model in both
hardware and software verification. Graph databases of
course can store data associated with their nodes (e.g.,
information about each person in a social network).

The model of RDF data is very similar, yet slightly
different. The basic concept is a triple (s, p, o), that
consists of the subject s, the predicate p, and the object
o, drawn from a domain of uniform resource identifiers
(URI’s). Thus, the middle element need not come from
a finite alphabet, and may in addition play the role of
a subject or an object in another triple. For instance,
{(s, p, o), (p, s, o′)} is a valid set of RDF triples, but in
graph databases, it is impossible to have two such edges.

To understand why this mismatch is a problem, con-
sider querying graph data. Since graph databases and
RDF are represented as relations, relational queries can
be applied to them. But crucially, we may also query
the topology of a graph. For instance, many graph query
languages have, as their basic building block, regular
path queries, or RPQs [13], that find nodes reachable
by a path whose label belongs to a regular language.

We take the notion of reachability for granted in graph
databases, but what is the corresponding notion for
triples, where the middle element can serve as the source
and the target of an edge? Then there are multiple pos-

1

sibilities, two of which are illustrated below.

Query Reach→ looks for pairs (x, z) connected by paths
of the following shape:

x z
· · ·

and Reach1 looks for the following connection pattern:

· · ·

x

z

But can such patterns be defined by existing RDF query
languages? Or can they be defined by existing graph
query languages under some graph encoding of RDF?

To answer these, we need to understand which navi-
gational facilities are available for RDF data. A re-
cent survey of graph database systems [3] shows that,
by and large, they either offer support for triples, or
they do graphs and then can express proper reacha-
bility queries. An attempt to add navigation to RDF
languages was made in [31], where a language called
nSPARQL was defined by taking SPARQL [20, 30],
the standard query language for RDF, and extending
it with a navigational mechanism provided by nested
regular expressions. These are essentially regular path
queries with XPath-inspired node tests. The evaluation
of those uses essentially a graph encoding of RDF. As
the starting point of our investigation, we show that
there are natural reachability patterns for triples, sim-
ilar to those shown above, that cannot be defined in
graph encodings of RDF [5] using nested regular ex-
pressions, nor in nSPARQL itself.

Thus, navigational patterns over triples are beyond
reach of both RDF languages and graph query lan-
guages that work on encodings of RDF. The solu-
tion is then to design languages that work directly on
RDF triples, and have both relational and navigational
querying facilities, just like graph query languages. Our
goal, therefore, is to adapt graph database techniques
for direct RDF querying.

A crucial property of a query language is closure:
queries should return objects of the same kind as
their input. Closed languages, therefore, are compo-
sitional: their operators can be applied to results of
queries. Using graph languages for RDF suffers from
non-compositionality: for instance, RPQs return graphs
rather than triples. So we start by defining a closed lan-
guage for triples. To understand its basic operations, we
first look at a language that has essentially first-order
expressivity, and then add navigational features.

We take relational algebra as the basic language.
Clearly projection violates closure so we throw it away.

Selection and set operations, on the other hand, are
fine. The problematic operation is Cartesian product: if
T, T ′ are sets of triples, then T×T ′ is not a set of triples
but rather a set of 6-tuples. What do we do then? We
shall need reachability in the language, and for graphs,
reachability is computed by iterating composition of re-
lations. The composition operation for binary relations
preserves closure: a pair (x, y) is in the composition
R ◦ R′ of R and R′ iff (x, z) ∈ R and (z, y) ∈ R′ for
some z. So this is a join of R and R′ and it seems that
what we need is it analog for triples.

But queries Reach→ and Reach1 demonstrate that there
is no such thing as the reachability for triples. In fact, we
shall see that there is not even a nice symmetric ana-
log of composition for triples. So instead, we add all
possible joins that keep the algebra closed. The result-
ing language is called Triple Algebra, denoted by TriAL.
We then add an iteration mechanism to it, to enable it
to express reachability queries based on different joins,
and obtain Recursive Triple Algebra TriAL

∗.

The algebra TriAL∗ can express both reachability pat-
terns above, as well as queries we prove to be inexpress-
ible in nSPARQL. It has a declarative language asso-
ciated with it, namely a fragment of Datalog. It has
good query evaluation bounds: combined complexity
is polynomial, given by low-degree polynomials. More-
over, we exhibit a fragment with complexity of the order
O(|e| · |O| · |T |), where e is the query, O is the set of ob-
jects, and T is the set of triples. This is a very natural
fragment, as it restricts arbitrary recursive definitions
to those essentially defining reachability properties.

The model we use is slightly more general than just
triples of objects and amounts to combining triplestores
as in, e.g., [22] with the representation of objects used in
the Neo4j database [14, 29]. Each object participating
in a triple comes associated with a set of attributes. Of
course this can be modeled via more triples, but the
model we use is conceptually cleaner and leads to a
more natural comparison with other query languages.

The first of those comparisons is with relational query-
ing. We show that TriAL lives between FO3 and FO6

(recall that FOk refers to the fragment of First-Order
Logic using only k variables). In fact it contains FO3,
is contained in FO6, and is incomparable with FO4 and
FO5. A similar results holds for TriAL

∗ and transitive
closure logic.

On the graph querying side, we show that the naviga-
tional power of TriAL∗ subsumes that of both regular
path queries and nested regular expressions. In fact it
subsumes a version of graph XPath recently proposed
for graph databases [25]. We also compare it with con-
junctive RPQs [12] and some of their extensions studied
in [10, 11]. When it comes to graphs with data held in
their nodes, we show that TriAL∗ continues to subsume
some of the formalisms proposed in that context, such
as graph XPath expanded with node tests and some
types of regular expressions with data values [26, 25].

2

This shows that TriAL∗ is an expressive language that
subsumes a number of well known relational and graph
formalisms, that permits navigational queries not ex-
pressible on graph encodings of RDF or in nSPARQL,
and that has good query evaluation properties.

Organization In Section 2 we review graph and RDF
databases, and describe our model. We also show that
some natural navigational queries over triples cannot be
expressed in languages such as nSPARQL. In Section 3
we define TriAL and TriAL∗ and study their expressive-
ness. In Section 4 we give a declarative language cap-
turing TriAL∗. In Section 5 we study query evaluation,
and in Sections 6.1 and 6.2 we study our languages in
connection with relational and graph querying. Due to
space limitations, complete proofs are in the appendix.

2. Graph Databases and RDF

2.1 Basic Definitions

Graph databases. We now review some standard
definitions (see, e.g., [2, 11, 34]). A graph database
is just a finite edge-labeled graph in which each node
has a data value attached. Formally, let N be a count-
ably infinite set of node ids, Σ a finite alphabet and D
a countably infinite set of data values. Then a graph
database over Σ is a triple G = (V,E, ρ), where V ⊂ N
is a finite set of nodes, E ⊆ V × Σ × V is a set of la-
beled edges, and ρ : V → D is a function assigning a
data value to each node. Each edge is a triple (u, a, v),
whose interpretation is an a-labeled edge from u to v.
When Σ is clear from the context, we shall simply speak
of a graph database. If we work with graph databases
that make no use of data values, we write G = (V,E)
and disregard the function ρ.

A path π from u0 to um in G is a sequence (u0, a0, u1),
(u1, a1, u2), · · · , (um−1, am−1, um), for some m > 0,
where each (ui, ai, ui+1), for i < m, is an edge in
E. The label of π, denoted by λ(π), is the word
a0 · · · am−1 ∈ Σ∗.

Regular path queries. Typical navigational lan-
guages for querying graph databases use regular path
queries, or RPQs [13] as the basic building block. An

RPQ is an expression x
L
→ y, where x and y are vari-

ables and L is a regular language over Σ. Given a graph
database G = (V,E) over Σ, it defines pairs of nodes
(u, v) such that there is a path π from u to v with
λ(π) ∈ L.

Nested regular expressions. These expressions, ab-
breviated as NRE, over a finite alphabet Σ, extend ordi-
nary regular expressions with the nesting operator (es-
sentially the node test of XPath) and inverses [8, 31].
Formally they are defined as follows:

e := ε | a | a− | e · e | e∗ | e+ e | [e], a ∈ Σ.

An NRE defines, over a graph G = (V,E), a bi-
nary relation on V . The semantics of ε is the diag-
onal {(u, u) | u ∈ V }; the semantics of a is the set
{(u, v) | (u, a, v) ∈ E} of a-labeled edges, and a− de-
fines {(u, v) | (v, a, u) ∈ E}. Operations ·, +, and
∗ denote composition, union, and transitive closure of
binary relations. Finally, the node test [e] defines pairs
(u, u) so that (u, v) is in the result of e for some v ∈ V .

RDF databases. RDF databases contain triples in
which, unlike in graph databases, the middle compo-
nent need not come from a fixed set of labels. For-
mally, if U is a countably infinite domains of uni-
form resource identifiers (URI’s), then an RDF triple
is (s, p, o) ∈ U ×U ×U, where s is referred to as the
subject, p as the predicate, and o as the object. An
RDF graph is just a collection of RDF triples. Here we
deal with ground RDF documents [31], i.e., we do not
consider blank nodes or literals in RDF documents.

Example 1. The RDF database D in Figure 1 contains
information about cities, modes of transportation be-
tween them, and operators of those services. Each triple
is represented by an arrow from the subject to the ob-
ject, with the arrow itself labeled with the predicate.
Examples of triples in D are (Edinburgh, Train Op 1,
London) and (Train Op 1, part_of, EastCoast).

2.2 Graph Queries for RDF

Navigational properties (e.g., reachability patterns), are
among the most important functionalities of RDF query
languages. However, typical RDF query languages,
such as SPARQL, are in spirit relational languages. To
extend them with navigation, as in [31, 4, 28], one typ-
ically uses features inspired by graph query languages,
surveyed briefly earlier. Nonetheless, such approaches
have their inherent limitations, as we explain here.

Looking again at the database D in Figure 1, we see the
main difference between graphs and RDF: the majority
of the edge labels in D are also used as subjects or
objects (i.e., nodes) of other triples of D. For instance,
one can travel from Edinburgh to London by using a
train service Train Op 1, but in this case the label itself
is viewed as a node when we express the fact that this
operator is actually a part of EastCoast trains.

For RDF, one normally uses a model of triplestores that
is different from graph databases. According to it, the
database from Figure 1 is viewed as a ternary relation:

St. Andrews Bus Op 1 Edinburgh

Edinburgh Train Op 1 London

London Train Op 2 Brussels

Bus Op 1 part_of NatExpress

Train Op 1 part_of EastCoast

Train Op 2 part_of Eurostar

EastCoast part_of NatExpress

3

St. Andrews Edinburgh London Brussels

Bus Op 1 Train Op 1

NatExpress EastCoast

Train Op 2

Eurostar

part ofpart of

part of

part of

Figure 1: RDF graph storing information about cities and transport services between them

Suppose one wants to answer the following query:

Find pairs of cities (x, y) such that one can
Q : travel from x to y using services operated by

the same company.

A query like this is likely to be relevant, for instance,
when integrating numerous transport services into a
single ticketing interface. In our example, the pair
(Edinburgh, London) belongs to Q(D), and one can also
check that (St. Andrews, London) is in Q(D), since re-
cursively both operators are part of NatExpress (us-
ing the transitivity of part of). However, the pair
(St. Andrews, Brussels) does not belong to Q(D),
since we can only travel that route if we change compa-
nies, from NatExpress to Eurostar.

To enhance SPARQL with navigational properties, [31]
added nested regular expressions to it, resulting in a
language called nSPARQL. The idea was to combine
the usual reachability patterns of graph query languages
with the XPath mechanism of node tests. However,
nested regular expressions, which we saw earlier, are
defined for graphs, and not for databases storing triples.
Thus, they cannot be used directly over RDF databases;
instead, one needs to transform an RDF database D
into a graph first. An example of such transformation
D → σ(D) was given in [5]; it is illustrated in Figure 2.

Formally, given an RDF document D, the graph
σ(D) = (V,E) is a graph database over alphabet
Σ = {next, node, edge}, where V contains all resources
from D, and for each triple (s, p, o) in D, the edge
relation E contains edges (s, edge, p), (p, node, o) and
(s, next, o). This transformation scheme is important
in practical RDF applications (it was shown to be cru-
cial for addressing the problem of interpreting RDFS
features within SPARQL [31]). At the same time, it is
not sufficient for expressing simple reachability patterns
like those in query Q:

Proposition 1. The query Q is not expressible by NREs
over graph transformations σ(·) of ternary relations.

Thus, the most common RDF navigational mechanism
cannot express a very natural property, essentially due
to the need to do so via a graph transformation.

One might argue that this result is due to the short-
comings of a specific transformation (however relevant

to practical tasks it might be). So we ask what happens
in the native RDF scenario. In particular, we would
like to see what happens with the language nSPARQL
[31], which is a proper RDF query language extending
SPARQL with navigation based on nested regular ex-
pressions. But this language falls short too, as it fails
to express the simple reachability query Q.

Theorem 1. The query Q above cannot be expressed in
nSPARQL.

The key reason for these limitations is that the navi-
gation mechanisms used in RDF languages are graph-
based, when one really needs them to be triple-based.

2.3 Triplestore Databases

To introduce proper triple-based navigational lan-
guages, we first define a simple model of triplestores,
and show its usefulness in another application area of
graph databases, namely social networks.

Let O be a countably infinite set of objects, and D be
a countably infinite set of data values.

Definition 1. A triplestore database, or just triplestore
over D is a tuple T = (O,E1, . . . , En, ρ), where:

• O ⊂ O is a finite set of objects,

• each Ei ⊆ O ×O ×O is a set of triples, and

• ρ : O → D is a function that assigns a data value
to each object.

Often we have just a single ternary relationE in a triple-
store database (e.g., in the previously seen examples of
representing RDF databases), but all the languages and
results we state here apply to multiple relations. The
function assigning data values could also map O to tu-
ples over D, and all results remain true (one just uses
Dk as the range of ρ, as in the example below). We use
the function ρ : O → D just to simplify notations.

Triplestores easily model RDF, and we will see later
that they model graph databases. As the last example,
we now show how they can be used to model social
networks. Consider a scenario where each user has a set
of attributes attached to her/his entity (in our example,
name, email, and age). Values of attributes come from

4

London Brussels

Train Op 2

Eurostar

RDF graph D

part of

next

ed
ge

node

n
e
x
t

ed
ge

n
od

e

London Brussels

Train Op 2

part of

Eurostar

Transformed graph σ(D)

transforming
D to σ(D)

Figure 2: Transforming part of the RDF database from Figure 1 into a graph database

an infinite domain of data values, while each user is
uniquely described by the id value describing one object
in the model. Users form connections, also labeled with
data (e.g., creation date and type of the connection). A
part of this network is presented in the following image.

name: Mario
email: m@nes.com
age: 23

name: Luigi
email: l@nes.com
age: 27

name: Donkey Kong
email: d@nes.com
age: 117

type:
brother

created:
11-11-83

type:
coworker

created:
12-07-89

type:
rival

created:
12-07-89

o7521

o175 o122

c163

c137 c177

In the triplestore representation of this network, O is
the set of all user and connection ids, while the data
value function assigns to each object in O a quintu-
ple (name,email,dob,type,time) of values, each with the
natural domain. We use quintuples to represent data
values and assume that each user entity will have null
values for the last two attributes, while a connection
entity will have nulls in the first three. The triples thus
are

o175 c163 o122

o175 c137 o7521

o7521 c177 o122

and the data values assignments function ρ is:

ρ(o175) = (Mario,m@nes.com,23,⊥,⊥)
ρ(o122) = (Donkey Kong,d@nes.com,117,⊥,⊥)
ρ(o7521) = (Luigi,l@nes.com,27,⊥,⊥)
ρ(c137) = (⊥,⊥,⊥,brother,11–11–83)
ρ(c177) = (⊥,⊥,⊥,coworker,12–07–89)
ρ(c163) = (⊥,⊥,⊥,rival,12–07–89)

Thus, triplestores describe a simple data model that is
applicable in a wide range of scenarios, including RDF,
graph databases and social networks.

3. An Algebra for RDF

We saw that the problems one encounters while adapt-
ing graph query languages to RDF are not dependent
of any particular transformation from triples to graphs.
Instead, they are related to the inherent limitations of
the graph data model for representing RDF data. Thus,
one should work directly with triples. But existing lan-
guages are either based on binary relations and fall short
of the power necessary for RDF querying, or are gen-
eral relational languages which are not closed when it
comes to querying RDF triples. Hence, we need a lan-
guage that works directly on triples, is closed, and has
good query evaluation properties.

We now present such a language, based on relational
algebra for triples. We start with a plain version and
then add recursive primitives that provide the crucial
functionality for handling reachability properties.

The operations of the usual relational algebra are selec-
tion, projection, union, difference, and cartesian prod-
uct. Our language must remain closed, i.e., the result
of each operation ought to be a valid triplestore. This
clearly rules out projection. Selection and Boolean op-
erations are fine. Cartesian product, on the other hand
would create a relation of arity six, but instead one can
use joins that only keep three positions in the result.

Triple joins. To see what kind of joins we need, let us
first look at the composition of two relations. For bi-
nary relations S and S′, their composition S ◦S′ has all
pairs (x, y) so that (x, z) ∈ S and (z, y) ∈ S′ for some
z. Reachability with relation S is defined by recursively
applying composition: S ∪ S ◦ S ∪ S ◦ S ◦ S ∪ So
we need an analog of composition for triples. To under-
stand how it may look, we can view S ◦ S′ as the join
of S and S′ on the condition that the 2nd component
of S equals the first of S′, and the output consist of the
remaining components. We can write it as

S
1,2′

✶
2=1′

S′

Here we refer to the positions in S as 1 and 2, and to the
positions in S′ as 1′ and 2′, so the join condition is 2 = 1′

(written below the join symbol), and the output has po-

5

sitions 1 and 2′. This suggests that our join operations

on triples should be of the form R✶
i,j,k
condR

′, where R
and R′ are tertiary relations, i, j, k ∈ {1, 2, 3, 1′, 2′, 3′},
and cond is a condition (to be defined precisely later).

But what is the most natural analog of relational com-
position? Note that to keep three indexes among
{1, 2, 3, 1′, 2′, 3′}, we ought to project away three, mean-
ing that two of them will come from one argument, and
one from the other. Any such join operation on triples
is bound to be asymmetric, and thus cannot be viewed
as a full analog of relational composition.

So what do we do? Our solution is to add all such join
operations. Formally, given two tertiary relations R and
R′, join operations are of the form

R
i,j,k

✶
θ,η

R′,

where

• i, j, k ∈ {1, 1′, 2, 2′, 3, 3′},

• θ is a set of equalities and inequalities between
elements in {1, 1′, 2, 2′, 3, 3′} ∪ O,

• η is a set of equalities and inequalities between
elements in {ρ(1), ρ(1′), ρ(2), ρ(2′), ρ(3), ρ(3′)}∪D.

The semantics is defined as follows: (oi, oj , ok) is in the
result of the join iff there are triples (o1, o2, o3) ∈ R and
(o1′ , o2′ , o3′) ∈ R′ such that

• each condition from θ holds; that is, if l = m is in
θ, then ol = om, and if l = o, where o is an object,
is in θ, then ol = o, and likewise for inequalities;

• each condition from η holds; that is, if ρ(l) = ρ(m)
is in η, then ρ(ol) = ρ(om), and if ρ(l) = d, where d
is a data value, is in η, then ρ(ol) = d, and likewise
for inequalities.

Triple Algebra. We now define the expressions of
the Triple Algebra, or TriAL for short. It is a restriction
of relational algebra that guarantees closure, i.e., the
result of each expression is a triplestore.

• Every relation name in a triplestore is a TriAL ex-
pression.

• If e is a TriAL expression, θ a set of equalities and
inequalities over {1, 2, 3} ∪ O, and η is a set of
equalities and inequalities over {ρ(1), ρ(2), ρ(3)}∪
D, then σθ,η(e) is a TriAL expression.

• If e1, e2 are TriAL expressions, then the following
are TriAL expressions:

– e1 ∪ e2;

– e1 − e2;

– e1✶
i,j,k
θ,η e2, where i, j, k, θ, η as in the defini-

tion of the join above.

The semantics of the join operation has already been
defined. The semantics of the Boolean operations is the
usual one. The semantics of the selection is defined in
the same way as the semantics of the join (in fact, the
operator itself can be defined in terms of joins): one
just chooses triples (o1, o2, o3) satisfying both θ and η.

Given a triplestore database T , we write e(T) for the
result of expression e on T .

Example 2. To get some intuition about the Triple Al-
gebra consider the following TriAL expression:

e = E
1,3′,3

✶
2=1′

E

Indexes (1, 2, 3) refer to positions of the first triple,
and indexes (1′, 2′, 3′) to positions of the second triple
in the join. Thus, for two triples (x1, x2, x3) and
(x1′ , x2′ , x3′), such that x2 = x1′ , expression e out-
puts the triple (x1, x3′ , x3). E.g., in the triplestore
of Fig. 1, (London, Train Op 2, Brussels) is joined
with (Train Op 2, part_of, Eurostar), producing
(London, Eurostar, Brussels); the full result is

St. Andrews NatExpress Edinburgh

Edinburgh EastCoast London

London Eurostar Brussels

Thus, e computes travel information for pairs of
European cities together with companies one can
use. It fails to take into account that EastCoast

is a part of NatExpress. To add such informa-
tion to query results (and produce triples such as
(Edinburgh, NatExpress, London)), we use e′ = e ∪

(e✶1,3′,3
2=1′ E).

Definable operations: intersection and complement. As
usual, the intersection operation can be defined as e1 ∩
e2 = e1✶

1,2,3
1=1′,2=2′,3=3′ e2. Note that using join and

union, we can define the set U of all triples (o1, o2, o3)
so that each oi occurs in our triplestore database T .
For instance, to collect all such triples so that o1 occurs
in the first position of R, and o2, o3 occur in the 2nd
and 3rd position of R′ respectively, we would use the
expression (R✶1,2′,3R′)✶1,2,3′ R′. Taking the union of
all such expressions, gives us the relation U .

Using such U , we can define ec, the complement of e,
as U − e. In what follows, we regularly use intersection
and complement in our examples.

Adding Recursion. One problem with Exam-
ple 2 above is that it does not include triples
(city1,service,city2) so that relation R contains a
triple (city1,service0,city2), and there is a chain,
of some length, indicating that service0 is a part of
service. The second expression in Example 2 only ac-
counted for such paths of length 1. To deal with paths
of arbitrary length, we need reachability, which rela-
tional algebra is well known to be incapable of express-
ing. Thus, we need to add recursion to our language.

6

To do so, we expand TriAL with right and left Kleene

closure of any triple join ✶
i,j,k
θ,η over an expression e,

denoted as (e ✶
i,j,k
θ,η)∗ for right, and (✶i,j,k

θ,η e)∗ for
left. These are defined as

(e ✶)∗ = ∅ ∪ e ∪ e ✶ e ∪ (e ✶ e) ✶ e ∪ . . . ,

(✶ e)∗ = ∅ ∪ e ∪ e ✶ e ∪ e ✶ (e ✶ e) ∪ . . .

We refer to the resulting algebra as Triple Algebra with
Recursion and denote it by TriAL∗.

When dealing with binary relations we do not have to
distinguish between left and right Kleene closures, since
the composition operation for binary relations is asso-
ciative. However, as the following example shows, joins
over triples are not necessarily associative, which ex-
plains the need to make this distinction.

Example 3. Consider a triplestore database T =
(O,E), with E = {(a, b, c), (c, d, e), (d, e, f)}. The func-
tion ρ is not relevant for this example. The expression

e1 = (E
1,2,2′

✶
3=1′

)∗

computes e1(T) = E ∪ {(a, b, d), (a, b, e)}, while

e2 = (
1,2,2′

✶
3=1′

E)∗

computes e2(T) = E ∪ {(a, b, d)}.

Now we present several examples of queries one can ask
using the Triple Algebra.

Example 4. We refer now to reachability queries
Reach→ and Reach1 from the introduction. It can easily
be checked that these are defined by

(E
1,2,3′

✶
3=1′

)∗ and (
1′,2′,3

✶
1=2′

E)∗

respectively.

Next consider the query from Theorem 1. Graphically,
it can be represented as follows:

· ·
· · · ·· ·
·

x

y

z
· · ·

That is, we are looking for pairs of cities such that one
can travel from one to the other using services operated
by the same company. This query is expressed by

((E
1,3′,3

✶
2=1′

)∗
1,2,3′

✶
3=1′,2=2′

)∗.

Note that the interior join (E
1,3′,3

✶
2=1′

)∗ computes all triples

(x, y, z), such that E(x,w, z) holds for some w, and y
is reachable from w using some E-path. The outer join
now simply computes the transitive closure of this rela-
tion, taking into account that the service that witnesses
the connection between the cities is the same.

4. A Declarative Language

Triple Algebra and its recursive versions are procedural
languages. In databases, we are used to dealing with
declarative languages. The most common one for ex-
pressing queries that need recursion is Datalog. It is one
of the most studied database query languages, and it
has reappeared recently in numerous applications. One
instance of this is its well documented success in Web
information extraction [17] and there are numerous oth-
ers. So it seems natural to look for Datalog fragments
to capture TriAL and its recursive version.

Since Datalog works over relational vocabularies, we
need to explain how to represent triplestores T . The
schema of these representations consists of a ternary
relation symbol E(·, ·, ·) for each triplestore name in
T , plus a binary relation symbol ∼(·, ·). Each triple-
store database T can be represented as an instance IT
of this schema in the standard way: the interpretation
of each relation name E in this instance corresponds to
the triples in the triplestore E in T , and the interpre-
tation of ∼ contains all pairs (x, y) of objects such that
ρ(x) = ρ(y), i.e. x and y have the same data value.
If the values of ρ are tuples, we just use ∼i relations
testing that the ith components of tuples are the same,
for each i; this does not affect the results here at all.

We start with a Datalog fragment capturing TriAL. A
TripleDatalog rule is of the form

S(x̄) ← S1(x̄1), S2(x̄2),

∼(y1, z1), . . . ,∼(yn, zn), u1 = v1, . . . , um = vm (1)

where

1. S, S1 and S2 are (not necessarily distinct) predi-
cate symbols of arity at most 3;

2. all variables in x̄ and each of yi, zi and uj, vj are
contained in x̄1 or x̄2.

A TripleDatalog
¬ rule is like the rule (1) but all equal-

ities and predicates, except the head predicate S, can
appear negated. A TripleDatalog¬ program Π is a finite
set of TripleDatalog¬ rules. Such a program Π is non-
recursive if there is an ordering r1, . . . , rk of the rules of
Π so that the relation in the head of ri does not occur
in the body of any of the rules rj , with j ≤ i.

As is common with non-recursive programs, the seman-
tics of nonrecursive TripleDatalog¬ programs is given by
evaluating each of the rules of Π, according to the order

7

r1, . . . , rk of its rules, and taking unions whenever two
rules have the same relation in their head (see [1] for
the precise definition). We are now ready to present
the first capturing result.

Proposition 2. TriAL is equivalent to nonrecursive
TripleDatalog¬ programs.

We next turn to the expressive power of recursive Triple
Algebra TriAL∗. To capture it, we of course add re-
cursion to Datalog rules, and impose a restriction that
was previously used in [12]. A ReachTripleDatalog¬ pro-
gram is a TripleDatalog¬ program in which each recur-
sive predicate S is the head of exactly two rules of the
form:

S(x̄) ← R(x̄)

S(x̄) ← S(x̄1), R(x̄2), V (y1, z1), . . . , V (yk, zk)

where each V (yi, zi) is one of the following: yi = zi, or
yi 6= zi, or ∼(yi, zi), or ¬∼(yi, zi), and R is a nonrecur-
sive predicate of arity at most 3. These rules essentially
mimic the standard reachability rules (for binary rela-
tion) in Datalog, and in addition one can impose equal-
ity and inequality constraints, as well as data equality
and inequality constraints, along the paths.

The semantics of these programs is the standard least-
fixpoint semantics [1]. A similarly defined syntactic
class, but over graph databases, rather than triple-
stores, was shown to capture the expressive power of
FO with the transitive closure operator [12]. In our
case, we have a capturing result for TriAL∗.

Theorem 2. The expressive power of TriAL∗ and
ReachTripleDatalog

¬ programs is the same.

5. Query Evaluation

In this section we analyze the query evaluation prob-
lems related to Triple Algebra. We split the problems
into two: the query evaluation problem and the query
computation problem. The query evaluation problem
is to check if a given tuple is in the result of a query
(as is standard in the study of complexity of database
queries, especially when one wants to know which com-
plexity classes they belong to). The query computation
problem is to produce the output e(T) for an expression
e and a triplestore database T .

We start with the following problem.

Problem: QueryEvaluation
Input: A TriAL

∗ expression e, a triplestore T
and a tuple (x1, x2, x3) of objects.

Question: Is (x1, x2, x3) ∈ e(T)?

Many graph query languages (e.g., RPQs) have Ptime
upper bounds for this problem, and the data complex-
ity (i.e., when e is assumed to be fixed) is generally

in NLogspace (which cannot be improved, since the
simplest reachability problem over graphs is already
NLogspace-hard). We now show that the same up-
per bounds hold for our algebra, even with recursion.

Proposition 3. The problem QueryEvaluation is
Ptime-complete, and in NLogspace if the algebra ex-
pression e is fixed.

Tractable evaluation (even with respect to combined
complexity) is practically a must when dealing with
very large and dynamic semi-structured databases.
However, in order to make a case for the practical ap-
plicability of our algebra, we need to give more precise
bounds for query evaluation, rather than describe com-
plexity classes the problem belongs to. We now show
that TriAL∗ expressions can be evaluated in what is es-
sentially cubic time with respect to the data. Thus,
in the rest of the section we focus on the problem of
actually computing the whole relation e(T):

Problem: QueryComputation
Input: A TriAL∗ expression e and

a triplestore database T .
Output: The relation e(T)

We now analyze the complexity of QueryComputa-
tion. Following an assumption frequently made in
papers discussing graph database query evaluation (in
particular, graph pattern matching algorithms) as well
as bounded variable relational languages (cf. [16, 15,
18]), we consider an array representation for triple-
stores. That is, when representing a triplestore T =
(O,E1, . . . , Em, ρ) with O = {o1, . . . , on}, we assume
that each relation El is given by a three-dimensional
n× n× n matrix, so that the ijkth entry is set to 1 iff
(oi, oj , ok) is in El. Alternatively we can have a single
matrix, where entries include sets of indexes of relations
El that triples belong to. Furthermore we have a one-
dimensional array of size n whose ith entry contains
ρ(oi). Using this representation we obtain the following
bounds.

Theorem 3. The problem QueryComputation can be
solved in time

• O(|e| · |T |2) for TriAL expressions,

• O(|e| · |T |3) for TriAL
∗ expressions.

One can examine the proofs of Proposition 2 and The-
orem 2 and see that translations from Datalog into al-
gebra are linear-time. Thus, we have the same bound
for the query computation problem, when we evaluate
a Datalog program Π in place of an algebra expression.

Corollary 1. The problem QueryComputation for
Datalog programs Π can be solved in time

• O(|Π| · |T |2) for TripleDatalog¬ programs,

• O(|Π| · |T |3) for ReachTripleDatalog¬ programs.

8

Lower-complexity fragments. We have acceptable
combined complexity of query computation, given by
low-degree polynomials. If the size of T is very large,
however, one may prefer to lower the complexity fur-
ther. We now look at fragments of TriAL∗ that permit
such algorithms.

In algorithms from Theorem 3, the main difficulty arises
from the presence of inequalities in join conditions. A
natural restriction then is to look at a fragment of TriAL
in which all conditions θ and η used in a join are now
only allowed to use equalities. We call this fragment
TriAL=. This fragment allows us to lower the |T |2 com-
plexity, by replacing one of the |T | factors by |O|, the
number of distinct objects.

Proposition 4. The QueryComputation problem for
TriAL= expressions can be solved in time O(|e|·|O|·|T |).

To to pose navigational queries, one needs the recursive
algebra, so the question is whether similar bounds can
be obtained for meaningful fragments of TriAL∗. Using
the ideas from the proof of Theorem 3 we immediately
get an O(|e| · |O| · |T |2) upper bound for TriAL= with
recursion. However, we can improve this result for the
fragment that extends TriAL= with essentially reachabil-
ity properties, such as those used in RPQs and CRPQs
in graph databases. We call it reachTA=.

To define it, we restrict the star operator to mimic the
following graph database reachability queries:

• the query “reachable by an arbitrary path”, ex-

pressed by (R✶
1,2,3′

3=1′)∗; and

• the query “reachable by a path labeled with the

same element”, expressed by (R✶
1,2,3′

3=1′,2=2′)
∗.

These are the only applications of the Kleene star per-
mitted in reachTA=. For this fragment, we have the
same lower complexity bound.

Proposition 5. The problem QueryComputation for
reachTA= can be solved in time O(|e| · |O| · |T |).

6. Triple Algebra and Relational Languages

In this section we compare the expressive power of our
algebras with relational languages. As usual, we say
that a language L1 is contained in a language L2 if for
every query in L1 there is an equivalent query in L2.
If in addition L2 has a query not expressible in L1,
then L1 is strictly contained in L2. The languages are
equivalent if each is contained in the other. They are
incomparable if none is contained in the other.

6.1 Triple Algebra as a Relational language

To compare TriAL with relational languages, we use ex-
actly the same relational representation of triplestores

as we did when we found Datalog fragments capturing
TriAL and TriAL∗. That is, we compare the expressive
power of TriAL with that of First–Order Logic (FO)
over vocabulary 〈E1, . . . , En,∼〉. Given an FO formula
ϕ over such a vocabulary and an instance I, we write
ϕ(I) for the result of evaluation of ϕ over I, i.e., the set
of all tuples of objects ā of size |x̄| such that I |= ϕ(ā).

Since TriAL is a restriction of relational algebra, of
course it is contained in FO. We do a more detailed
analysis based on the number of variables. Recall that
FOk stands for FO restricted to k variables only. To
give an intuition why such restrictions are relevant
for us, consider, for instance, the join operation e =

E✶
1,3′,3
2=2′ E. It can be expressed by the following FO6

formula: ϕ(x1, x3′ , x3) = ∃x2∃x1′∃x2′
(

E(x1, x2, x3) ∧

E(x1′ , x2′ , x3′) ∧ x2 = x2′
)

. This suggests that we can
simulate joins using only six variables, and this extends
rather easily to the whole algebra. One can furthermore
show that the containment is proper in this case.

What about fragments of FO using fewer variables?
Clearly we cannot go below three variables. It is not
difficult to show that TriAL simulates FO3, but the re-
lationship with the 4 and 5 variable formalisms appears
much more intricate, and its study requires more in-
volved techniques. We can show the following.

Theorem 4.

• TriAL is strictly contained in FO6.

• FO3 is strictly contained in TriAL.

• TriAL is incomparable with FO4 and FO5.

The containment of FO3 in TriAL is proved by induc-
tion, and we use pebble games to show that such con-
tainment is proper. For the last, more involved part of
the theorem, we first show that TriAL is not contained
in FO5. Notice that the expression e given by

U
1,2,3

✶
θ
U, with θ = {i 6= j | i, j ∈ {1, 1′, 2, 2′, 3, 3′}, i < j},

is such that e(T) is not empty if and only if T has six
different objects (recall that U is the set of all triples
(o1, o2, o3) so that each oi occurs in a triple in T). It
then follows that TriAL is not contained in FO5 (nor
FO4), cf. [24]. To show that FO4 is not contained in
TriAL, we devise a game that characterizes expressibility
of TriAL, and use this game to show that TriAL cannot
express the following FO4 query ϕ(x, y, z):

∃w
(

ψ(x, y, w) ∧ ψ(x,w, z) ∧ ψ(w, y, z) ∧ ψ(x, y, z)
)

,

where

ψ(x, y, z) = ∃w
(

E(x,w, y) ∧ E(y, w, z) ∧E(z, w, x)
)

.

Expressivity of TriAL
=. The TriAL queries we used to

separate it from FO5 or FO4 make use of inequalities
in the join conditions. Thus, it is natural to ask what
happens when we restrict our attention to TriAL

=, the

9

fragment that disallows inequalities in selections and
joins. We saw in Section 5 that this fragment appears to
be more manageable in terms of query answering. This
suggests that fewer variables may be enough, as the
number of variables is often indicative of the complexity
of query evaluation [21, 33]. This is indeed the case.

Theorem 5.

• FO3 is strictly contained in TriAL
=.

• TriAL= is strictly contained in FO4.

Next, we turn to the expressive power of TriAL∗. Since
the Kleene star essentially defines the transitive closure
of join operators, it seems natural for our study to com-
pare TriAL∗ with Transitive Closure Logic, or TrCl.

Formally, TrCl is defined as an extension of FO with
the following operator. If ϕ(x̄, ȳ, z̄) is a formula, where
|x̄| = |ȳ| = n, and t̄1, t̄2 are tuples of length n, then
[trclx̄,ȳϕ(x̄, ȳ, z̄)](t̄1, t̄2) is a formula whose free vari-
ables are z̄, t̄1 and t̄2. To define the semantics, as-
sume that we have an instance I and values ā, b̄ and
c̄ for t̄1, t̄2 and z̄. Build a graph G over In whose
edges are {(ū1, ū2) | I |= ϕ(ū1, ū2, c̄)}. Then I |=
[trclx̄,ȳϕ(x̄, ȳ, c̄)](ā, b̄) iff b̄ can be reached from ā in G.

It is fairly easy to show that TriAL∗ is contained in
TrCl; the interesting question is whether one can find
analogs of Theorem 4 for fragments of TrCl using a lim-
ited number of variables. We denote by TrClk the re-
striction of TrCl to k variables. Note that constructs
of form [trclx̄,ȳϕ(x̄, ȳ, z̄)](t̄1, t̄2) can be defined using
|t̄1|+ |t̄2|+ |z̄| variables, by reusing t̄1 and t̄2 in ϕ.

Then we can show that the relationship between TriAL∗

and TrCl mimics the results of Theorem 4 for the case
of TriAL and FO.

Theorem 6.

• TriAL∗ is strictly contained in TrCl6.

• TrCl3 is strictly contained in TriAL∗.

• TriAL∗ is incomparable with TrCl4 and TrCl5.

6.2 Triple Algebra as a Graph Language

The goal of this section is to demonstrate the usefulness
of TriAL∗ in the context of graph databases. In par-
ticular we show how to use TriAL∗ for querying graph
databases, both with and without data values, and com-
pare it in terms of expressiveness with several well es-
tablished graph database query languages.

6.2.1 Navigational graph query languages

We compare TriAL
∗ with a number of established for-

malisms for graph databases such as NREs, RPQs and
CRPQs. As our yardstick language for comparison we
use a recently proposed version of XPath, adapted for

graph querying [25]. Its navigational fragment, used
now, is essentially Propositional Dynamic Logic (PDL)
[19] with negation on paths; below we also expand it
with data tests when we deal with graphs whose nodes
hold data values. These languages are designed to query
the topology of a graph database and specify various
reachability patterns between nodes. As such, they are
naturally equipped with the star operator and to make
our comparison fair we will compare them with TriAL∗.

The navigational language used now is called GXPath;
its formulae are split into node tests, returning sets of
nodes and path expressions, returning sets of pairs of
nodes. Node tests are given by the following grammar:

ϕ, ψ := ⊤ | ¬ϕ | ϕ ∧ ψ |ϕ ∨ ψ | 〈α〉

where α is a path expression.

The path formulae of of GXPath are given below. Here
a ranges over the labeling alphabet Σ.

α, β := ε | a | a− | [ϕ] | α · β | α ∪ β | α | α∗.

The semantics is standard, and follows the usual se-
mantics of PDL or XPath languages. Given a graph
G = (V,E), ⊤ returns V , and 〈α〉 returns v ∈ V so that
(v, v′) is in the semantics of α for some v′ ∈ V . The
semantics of Boolean operators is standard. For path
formulae, ε returns {(v, v) | v ∈ V }, a returns {(v, v′) |
(v, a, v′) ∈ E} and a− returns {(v′, v) | (v, a, v′) ∈ E}.
Expressions α · β, α∪ β, α, and α∗ denote relation com-
position, union, complement, and transitive closure. Fi-
nally [ϕ] denotes the set of pairs (v, v) so that v is in
the semantics of ϕ.

Since TriAL
∗ is designed to query triplestores, we need

to explain how to compare its power with that of graph
query languages. Given a graph database G = (V,E)
over the alphabet Σ, we define a triplestore TG =
(O,E), with O = V ∪ Σ. Note that for now we deal
with navigation; later we shall also look at data values.

To compare TriAL∗ with binary graph queries in a graph
query language L, we turn TriAL∗ ternary queries Q
into binary by applying the π1,3(Q), i.e., keeping (s, o)
from every triple (s, p, o) returned by Q. Under these
conventions, we say that a graph query language L is
contained in TriAL∗ if for every binary query α ∈ L
there is a TriAL

∗ expression eα so that π1,3(eα) and
α are equivalent, and likewise, TriAL∗ is contained in
a graph query language L if for every expression e in
TriAL

∗ there is a binary query αe ∈ L that is equivalent
to π1,3(e). The notions of being strictly contained and
incomparable extend in the same way.

Alternatively, one can do comparisons using triplestores
represented as graph databases, as in Proposition 1.
Since here we study the ability of TriAL∗ to serve as a
graph query language, the comparison explained above
looks more natural, but in fact all the results remain
true even if we do the comparison over triplestores rep-
resented as graph databases, as described in Section 2.

10

We now show that all GXPath queries can be defined in
TriAL∗, but that there are certain properties that TriAL∗

can define that lie beyond the reach of GXPath.

Theorem 7. GXPath is strictly contained in TriAL∗.

We prove this by using the equivalence of GXPath with
the 3-variable fragment of reachability logic FO∗ [32],
shown in [25].

To compare TriAL∗ with common graph languages such
as NREs and RPQs we observe that NREs can be
thought of as path expressions of GXPath that do not
use complement and where nesting is replaced with
[〈α〉]. RPQs do not even need nesting. Thus:

Corollary 2.

• NREs are strictly contained in TriAL∗.

• RPQs are strictly contained in TriAL∗.

It is common in graph databases to consider queries
that are closed under conjunction and existential quan-
tification, such as CRPQs [13, 34], C2RPQs [10] and
CNREs [9]. The latter are expressions ϕ(x̄) =

∃ȳ
∧n
i=1(xi

ei−→ yi), where all variables xi, yi come from
x̄, ȳ and each ei is a NRE. The semantics extends that of

NREs, with each xi
ei−→ yi interpreted as the existence

of a path between them that is denoted by ei. We com-
pare TriAL∗ with these queries, and also with unions of
CNREs that use bounded number of variables.

Theorem 8.

• CNREs and TriAL
∗ are incomparable in terms of

expressive power.

• Unions of CNREs that use only three variables are
strictly contained in TriAL

∗.

By observing that the expressions separating CNREs
from TriAL∗ are CRPQs, and that CNREs are more
expressive than CRPQs and C2RPQS [8] we obtain:

Corollary 3.

• CRPQs and TriAL∗ are incomparable in terms of
expressive power.

• Unions of C2RPQs and CRPQs that use only three
variables are strictly contained in TriAL∗.

There are further extensions, such as extended CRPQs,
where paths witnessing RPQs can be named and com-
pared for relationships between them, defined as regular
or even rational relations [6, 7]. We leave the compari-
son with these languages as future work.

6.2.2 Query languages for graphs with data

Until now we have compared our algebra with purely
navigational formalisms. Triple stores do have data val-
ues, however, and can thus model any graph database.

That is, for any graph database G = (V,E, ρ) we can
define a triplestore TG = (O,E, ρ) with O = V ∪ Σ.
Note that nodes corresponding to labels have no data
values assigned in our model. This is not an obstacle
and can in fact be used to model graph databases that
have data values on both the nodes and the edges.

We provide a comparison to an extension of GXPath
with data value comparisons. The language, denoted
by GXPath(∼), presented first in [25], is given by the
following grammars for node and path formulae:

ϕ, ψ := ⊤|〈α = β〉 | 〈α 6= β〉 | ¬ϕ | ϕ ∧ ψ |ϕ ∨ ψ | 〈α〉

α, β := ε | a | a− | [ϕ] | α · β | α ∪ β | α | α∗ | α= | α6=.

The semantics of additional expressions is as follows:
αθ returns those pairs (v, v′) returned by α for which
ρ(v) θ ρ(v′), for θ ∈ {=, 6=}, and 〈α θ β〉 returns nodes
v such that there are pairs (v, vα) and (v, vβ) returned
by α and β and ρ(vα) θ ρ(vβ). The former addition
corresponds to the notion of regular expressions with
equality [25], and the latter to standard XPath data-
value comparisons.

To compare GXPath(∼) with TriAL∗, we use the same
convention as for data value-free languages. Connec-
tions of GXPath(∼) with a 3-variable reachability logic
and the proof of Theorem 4 show:

Corollary 4. GXPath(∼) is strictly contained in TriAL∗.

This also implies that TriAL∗ subsumes an extension of
RPQs based on regular expressions with equality [26],
which can test for (in)equality of data values at the
beginning and the end of paths.

Another formalism proposed for querying graph
databases with data values is that of register automata
[23]. In general, these work over data words, i.e., words
over both a finite alphabet and an infinite set of data
values. RPQs defined by register automata find pairs of
nodes connected by a path accepted by such automata.
We refer to [26, 23] for precise definitions, and state the
comparison result below.

Proposition 6. TriAL∗ is incomparable in terms of ex-
pressive power with register automata.

This follows since register automata can define proper-
ties not expressible with six variables, but on the other
hand are not closed under complement.

7. Conclusions and Future Work

While graph database query mechanisms have been pro-
moted as a useful tool for querying RDF data, most of
these approaches view RDF as a graph database. Al-
though inherently similar, the two models do have sig-
nificant differences. We showed that some very natural
navigational queries for RDF cannot be expressed with

11

graph-based navigational mechanisms. The solution is
then to use proper triple-based models and languages.

We introduced such a model, that combines the usual
idea of triplestores used in many RDF implementations,
with that of graphs with data, and proposed an alge-
bra for that model. It comes in two flavors, a non-
recursive algebra TriAL and a recursive one TriAL∗. We
also provided Datalog-based declarative languages cap-
turing these. We studied the query evaluation problem,
as well as the expressivity of the languages, comparing
them with both relational and graph query languages.
They subsume many known formalisms, such as regu-
lar path queries, nested regular expressions, and XPath
adaptations for graph databases.

There are several future directions we would like to pur-
sue. First, there are other ways of restricting joins to
keep the language closed with respect to the arity of the
relations, namely use semi-joins instead. Such restric-
tions are closely related to the guarded fragment of FO
[27], which enjoys better properties than the full FO.
Although some of the properties crucial for our goals
cannot be expressed solely with semijoins, we believe
the exact connection ought to be investigated.

Our algebras deal with triples, but we can define similar
algebras for n-tuples, for any fixed n. If n = 2, we
get the standard relation algebra, which is known to
capture FO3. For n = 3, we saw that the algebra can
be described in terms of finite-variable fragments, but
there is no exact correspondence like for n = 2. We
would like to see what the connection is for arbitrary n.

On the more practical side, we want to pursue two di-
rections. One is to provide a deeper insight into the con-
nection of our languages and nSPARQL, which seems to
be the current choice for expressing navigational RDF
queries. Another direction is to see how possible imple-
mentations of TriAL∗ stack up against currently used
systems. In this respect we would like to test if com-
mercial RDBMSs can scalably implement the type of
recursion we require, or whether augmenting one of the
existing open-source triplestore systems will result in a
more efficient evaluation when recursion is added.

8. References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] R. Angles and C. Gutierrez. Survey of graph database
models. ACM Computing Surveys, 40(1), 2008.

[3] R. Angles. A comparison of current graph database models.
In ICDE Workshops, pages 171–177, 2012.

[4] K. Anyanwu and A. Sheth. ρ-Queries: Enabling querying
for semantic associations on the Semantic Web. In
WWW’03, pages 690–699.

[5] M. Arenas and J. Pérez. Querying semantic web data with
SPARQL. In PODS, pages 305–316, 2011.

[6] P. Barceló, L. Libkin, A.W. Lin, and P. Wood. Expressive
languages for path queries over graph-structured data.
ACM TODS 38(4) (2012).

[7] P. Barceló, D. Figueira, and L. Libkin. Graph logics with
rational relations and the generalized intersection problem.
In LICS’12, pages 115–124.

[8] P. Barceló, J. Pérez, and J. L. Reutter. Relative
expressiveness of nested regular expressions. In AMW’12,
pages 180–195.

[9] P. Barceló, J. Pérez, and J. L. Reutter. Schema mappings
and data exchange for graph databases. In ICDT’13.

[10] D. Calvanese, G. De Giacomo, M. Lenzerini, and M.Y.
Vardi. Containment of conjunctive regular path queries
with inverse. In KR’2000, pages 176–185.

[11] D. Calvanese, G. De Giacomo, M. Lenzerini, and M.Y.
Vardi. Rewriting of regular expressions and regular path
queries. JCSS, 64(3):443–465, 2002.

[12] M. Consens, A. Mendelzon. GraphLog: a visual formalism
for real life recursion. In PODS’90, pages 404–416.

[13] I. Cruz, A.O. Mendelzon, and P. Wood. A graphical query
language supporting recursion. In SIGMOD’87, pages
323–330.

[14] P. Cudré-Mauroux and S. Elnikety. Graph data
management systems for new application domains.
PVLDB, 4(12):1510–1511, 2011.

[15] W. Fan, J. Li, S. Ma, N. Tang, and Y. Wu. Adding regular
expressions to graph reachability and pattern queries. In
ICDE, pages 39–50, 2011.

[16] W. Fan, J. Li, S. Ma, N. Tang, and Y. Wu. Graph pattern
matching: from intractable to polynomial time. PVLDB,
3(1):264–275, 2010.

[17] G. Gottlob and C. Koch. Monadic datalog and the
expressive power of languages for web information
extraction. J. ACM, 51(1):74–113, 2004.

[18] G. Gottlob, E. Grädel, and H. Veith. Datalog LITE: a
deductive query language with linear time model checking.
ACM TOCL, 3(1):42–79, 2002.

[19] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT
Press, 2000.

[20] S. Harris et al. SPARQL 1.1 Query Language.
http://www.w3.org/TR/sparql11-query.

[21] N. Immerman, D. Kozen. Definability with Bounded
Number of Bound Variables. IANDC, 83(2):121-139 (1989).

[22] The Apache Jena Manual. http://jena.apache.org.

[23] M. Kaminski and N. Francez. Finite memory automata.
TCS, 134(2):329–363, 1994.

[24] L. Libkin. Elements of Finite Model Theory. Springer,
2004.

[25] L. Libkin, W. Martens, and D. Vrgoč. Querying graph
databases with XPath. In ICDT, 2013.

[26] L. Libkin and D. Vrgoč. Regular path queries on graphs
with data. In ICDT’12, pages 74–85.

[27] D. Leinders, M. Marx, J. Tyszkiewicz and J. Van den
Bussche. The semijoin algebra and the guarded fragment.
Logic, Language and Information, 14(3), 331–343, 2009.

[28] K. Losemann and W. Martens. The complexity of
evaluating path expressions in SPARQL. In PODS’12,
pages 101–112.

[29] The Neo4j Manual. http://docs.neo4j.org.

[30] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
complexity of SPARQL. ACM TODS, 34(3), 2009.

[31] J. Pérez, M. Arenas, C. Gutierrez. nSPARQL: A
navigational language for RDF. J. Web Sem., 8(4):255–270,
2010.

[32] B. ten Cate. The expressivity of XPath with transitive
closure. In PODS, pages 328–337, 2006.

[33] M. Vardi. On the complexity of bounded-variable queries.
In PODS’95, pages 266–276.

[34] P. Wood. Query languages for graph databases. Sigmod
Record, 41(1):50–60, 2012.

12

APPENDIX

Proofs

Remark 1: Throughout the appendix we will often denote conditions θ and η as conjunction of equalities or
inequalities instead of sets. For example we will write θ = (1 6= 3′) ∧ (2 = 2′) for θ = {1 6= 3′, 2 = 2′}.

Remark 2: In the proofs we will usually handle only the case of the right Kleene closure (R✶)∗. The proofs for
the left closure are completely symmetric.

Remark 3: As usual in database theory, we only consider queries that are domain-independent, and therefore we
loose no generality in assuming active domain semantics for FO formulas and other similar formalisms.

Proof of Proposition 1

Consider the RDF documents D1 and D2 consisting of the following triples:

Graph D1: Graph D2:

St Andrews Bus Operator 1 Edinburgh

Edinburgh Train Op 1 London

Edinburgh Train Op 3 London

Edinburgh Train Op 1 Manchester

Newcastle Train Op 1 London

London Train Op 2 Brussels

Bus Operator 1 part of NatExpress

Train Op 1 part of EastCoast

Train Op 2 part of Eurostar

EastCoast part of NatExpress

St Andrews Bus Operator 1 Edinburgh

Edinburgh Train Op 3 London

Edinburgh Train Op 1 Manchester

Newcastle Train Op 1 London

London Train Op 2 Brussels

Bus Operator 1 part of NatExpress

Train Op 1 part of EastCoast

Train Op 2 part of Eurostar

EastCoast part of NatExpress

Essentially, graph D1 is an extension of the RDF document D in Figure 1, while graph D2 is the same as D1 except
that it does not contain the triple (Edinburgh, Train Op 1 , London). The relevant parts of our databases are
illustrated in the following image.

Edinburgh London

Train Op 1

Train Op 3

NewcastleManchester

EastCoast

Part of RDF graph D1

part of

Edinburgh London

Train Op 1

Train Op 3

NewcastleManchester

EastCoast

Part of RDF graph D2

part of

The absence of this triple has severe implications with respect to the query Q of the statement of the Proposition,
since in particular the pair (St Andrews, London) belongs to the evaluation of Q over D1, but it does not belong to
the evaluation of Q over D2.

However, it is not difficult to check that the graph translations of D1 and D2 are exactly the same graph database:
σ(D1) = σ(D2). We have included the relevant part of transformations σ(D1) and σ(D2) in Figure 3. It follows
that Q is not expressible in nested regular expressions, since obviously the answer of all nested regular expressions
is the same over σ(D1) and σ(D2) (they are the same graph).

13

next

ed
ge

node

edge no
de

n
e
x
t

ed
ge

n
od

e

node

n
ex

t

n
ex

t

ed
ge

Edinburgh London

TrainOp1

TrainOp3

part of

EastCoast

Manchester

Newcastle

Figure 3: Transforming part of the RDF databases D1 and D2

Proof of Theorem 1

The semantics of the nested regular expressions in the RDF context (in [31]) is given as follows, assuming a triple
representation of RDF documents. For next, it is the set {(v, v′) | ∃zE(v, z, v′)}, the semantics of edge is {(v, v′) |
∃zE(v, v′, z)} and node is {(v, v′) | ∃zE(z, v, v′)}; for the rest of the operators it is the same as in the graph
database case. Thus, even though stated in an RDF context, this semantics is essentially given according to the
translation σ(·), in the sense that the semantics of an NRE e is the same for all RDF documents D and D′ such that
σ(D) = σ(D′) 1. Hence the proof follows directly from Proposition 1 and the easy fact that Q cannot be expressed
in SPARQL.

Proof of Proposition 2

Let us first show the containment of TriAL in non-recursive TripleDatalog¬. We show that for every expression e one
can construct a non-recursive TripleDatalog¬ program Πe such that, e(T) = Πe(IT), for all triplestore databases T .

We define the translation by the following inductive construction, assuming Ans, Ans1 and Ans2 are special symbols
that define the output of non-recursive TripleDatalog¬ programs.

• If e is just a triplestore name E, then Πe consists of the single rule Ans(x, y, z)← E(x, y, z).

• If e is e1 ∪ e2, then Πe consists of the union of the rules of the programs Πe1 and Πe2 , together with the rules
Ans(x̄) ← Ans1(x̄) and Ans(x̄) ← Ans2(x̄), where we assume that Ans1 and Ans2 are the predicates that
define the output of Πe and Πe, respectively.

• If e is e1 − e2, then Πe consists of the union of the rules of the programs Πe1 and Πe2 , together with the rule
Ans(x̄)← Ans1(x̄),¬Ans2(x̄), where we assume that Ans1 and Ans2 are the predicates that define the output
of Πe1 and Πe2 , respectively.

• If e is e1✶
i,j,k
θ,η e2, assume that θ consists of m conditions, and η consists of n conditions. Then Πe consists of

the union of the rules of the programs Πe1 and Πe2 , together with the rule

Ans(xi, xj , xk)← Ans1(x1, x2, x3), Ans2(x4, x5, x6), V (y1, z1), . . . , V (yn, zn), u1(=) 6= v1, . . . , um(=) 6= vm,

where for each p-th condition in θ of form a = b or a 6= b, we have that up = xa and vp = xb (or up = o if a
is an object o in O, and likewise for b), and for each p-th condition in θ of form ρ(a) = ρ(b) or ρ(a) 6= ρ(b), we
have that yp = xa and zp = xb, and V is either ∼ or ¬∼; and where we assume that Ans1 and Ans2 are the
predicates that define the output of Πe1 and Πe2 , respectively.

• The case of selection goes along the same lines as the join case.

Clearly, this program is nonrecursive. Moreover, it is trivial to prove that this transition satisfies our desired property.

1The NRE’s defined in [31] had additional primitives, such as next :: sp. These were added for the purpose of allowing
RDFS inference with NREs, but play no role in the general expressivity of nSPARQL in our setting since we are dealing with
arbitrary objects, whereas the constructs in [31] are limited to RDFS predicates.

14

Next we show the containment of non-recursive TripleDatalog¬ in TriAL. We show that for every non-recursive
TripleDatalog¬ program Π one can construct an expression eΠ such that, eΠ(T) = Π(IT), for all triplestore databases
T .

We assume that Π contains a single predicate Ans that represents the answer of the query. Also, without loss of
generality we can assume that no rule uses predicate E, for some triplestore name E, other than a rule of form
P (x, y, z)← E(x, y, z), for a predicate P in the predicates of Π that does not appear in the head of any other rule
in Π.

We need some notation. The dependence graph of Π is a directed graph whose nodes are the predicates of π, and
the edges capture the dependence relation of the predicates of Π, i.e., there is an edge from predicate R to predicate
S if there is a rule in Π with R in its head and S in its body. Since Π is non-recursive, its dependency graph is
acyclic. We now define the TriAL expression in a recursive fashion, following its dependency graph:

• Assume that all the rules in Π that have predicate S in the head are of form

S(xaj , xbj , xcj) ← S
j
1(x

j
1, x

j
2, x

j
3), S

j
2(x

j
4, x

j
5, x

j
6), (¬)∼(y

j
1, z

j
1), . . . , (¬)∼(y

j
n, z

j
n), u

j
1(6=) = v

j
1, . . . , u

j
m(6=) = vjm

for 1 ≤ j ≤ m, and where Sj1 and Sj2 are (not necessarily distinct) predicate symbols of arity at most 3 and all

variables in xaj , xbj , xcj and each of yji , z
j
i and ujk, v

j
k are contained in {xj1, x

j
2, x

j
3, x

j
4, x

j
5, x

j
6}.

Then the TriAL expression eS is

⋃

1≤j≤m

e
S

j

1

✶
aj ,bj ,cj

θj,ηj
e
S

j

2

,

where θ contains an (in)equality a = b for each (in)equality xa = xb in the rule, and ηj contains an (in)equality

ρ(a) = ρ(b) for each predicate ∼(a, b) (or its negation) in the rule. If either of Sj1 or Sj2 appear negated in the
rule, then just replace e

S
j

1

for (e
S

j

1

)c or (e
S

j

2

)c.

• The TriAL expression eP (for predicate P in rule P (x, y, z)← E(x, y, z)) is just E; if these variables appear in
different order in the rule, we permute them via the selection operator σ.

It is now straightforward to verify that for every non-recursive TripleDatalog¬ program Π whose answer predicate is
Ans the expression eAns is such that, eAns(T) = Π(IT), for all triplestore databases T .

Proof of Theorem 2

Let us first show the containment of TriAL∗ in ReachTripleDatalog¬. The proof goes along the same lines as the
proof of containment of TriAL in TripleDatalog¬. We have to show that for every TriAL∗ expression e there is a
ReachTripleDatalog¬ program Πe such that e(T) = Πe(IT), for all triplestores T .

The only difference from the construction in the proof of TriAL in TripleDatalog¬ is the treatment of the constructs

e = (e1✶
i,j,k
θ,η)∗ and e = (✶i,j,k

θ,η e1)
∗. For the former construct (the other one is symmetrical), assume that

θ = (
∧

1≤i≤m pi(6=) = qi) and η = (
∧

1≤j≤n ρ(uj)(6=) = ρ(vj)). We let Πe be the union of all rules of Πe1 ,
plus rules

Ans(x, y, z) ← Ans1(x, y, z)

Ans(xi, xj , xk) ← Ans(x1, x2, x3), Ans1(x4, x5, x6),

(¬)∼(xp1 , xq1), . . . , (¬)∼(xun
, xvn), xp1(6=) = xq1 , . . . , xpm(6=) = xqm ,

where Ans1 is the answer predicate of Πe1 . Notice that we have assumed for simplicity there are no comparison
with constants; these can be included in our translation the straightforward way. The proof that e(T) = Πe(IT), for
all triplestores T now follows easily.

The proof of containment of ReachTripleDatalog
¬ in TriAL

∗ also goes along the same lines as the proof that
TripleDatalog¬ is contained in TriAL. The only difference is when creating expression eS , for some recursive predicate
S. From the properties of ReachTripleDatalog¬ programs, we know S is the head of exactly two rules of form

S(x̄) ← R(x̄)

S(xa, xb, xc) ← S(x1, x2, x3), R(x4, x5, x6), V (y1, z1), . . . , V (yn, zn), u1(6=) = v1, . . . , um(6=) = vm,

1. R is a nonrecursive predicate of arity at most 3,

15

2. variables xa, xb, xc and each of yi, zi and uj , vj are contained in {x1, . . . , x6}, and

3. each V (yi, zi) is either ∼(yi, zi) or ¬∼(yi, zi)

We then let eS be (eR✶
a,b,c
θ,η)∗, where θ contains the inequality p(6=) = q for each predicate xp(6=) = xq in the rule

above, or the respective comparison with constant if p or q belong toO, and η contains the (in)equality ρ(p)(6=) = ρ(q)
for each predicate ∼(xp, xq) (respectively, ¬∼(xp, xq)).

Once again, it is straightforward to verify that eAns is such that, eAns(T) = Π(IT), for all triplestores T .

Proof of Proposition 3

The Ptime upper bound follows immediately from Theorem 3 below. Ptime-hardness follows from the fact that
every TriAL query can be expressed in FO6 (see Section 6) and the known result that evaluating FOk queries is
Ptime-hard already when k = 3 [33].

For the NLogspace upper bound, the idea is to divide the expression e into all its subexpression, corresponding to
subtrees of the parsing tree of ϕ. Starting from the leaves until the root of the parse tree of e, one can guess the
relevant triples that will be witnessing the presence of the query triple in the answer set e(T).

Note that for this we only need to remember O(|e|) triples – a number of fixed length. After we have guessed a triple
for each node in the parse tree for e we simply check that they belong to the result of applying the subexpression
defined by that node of the tree to our triplestore T . Thus to check that the desired complexity bound holds we
need to show that each of the operations can be performed in NLogspace, given any of the triples. This follows by
an easy inductive argument.

For example, if e = Ei is one of the initial relations in T , we simply check that the guessed triple is present in its
table. Note that this can be done in NLogspace.

This is done in an analogous way for the expressions of the form e = e1 ∪ e2 and e = e1 − e2. To see that the claim
also holds for joins, note that one only has to check that join conditions can be verified in NLogspace. But this is
a straightforward consequence of the observation that for conditions we use only comparisons of objects and their
data values.

Finally, to see that the star operator (R✶
i,j,k
θ,η)∗ can be implemented in NLogspace we simply do a standard

reachability argument for graphs. That is, since we are trying to verify that a specific triple (a, b, c) is in the answer
to the star-join operator, we guess the sequence that verifies this. We begin by a single triple in R (and we can
check that it is there in NLogspace by the induction hypothesis) and guess each new triple in R, joining it with
the previous one, until we have performed at most |T | steps.

Proof of Theorem 3

The basic outline of the algorithm is as follows:

1. Build the parse tree for our expression.

2. Evaluate the subexpressions bottom-up.

Now to see that the algorithm meets the desired time bounds we simply have to show that each step of evaluating
a subexpression can be performed in time O(|T |2).

We prove this inductively on the structure of subexpression e.

As stated previously, we assume that the objects are sorted and that the triplestore is given by its adjacency matrix
T with the property that T [i, j, k] = 1 if and only if (oi, oj , ok) ∈ T . If we are dealing with a triplestore that has more
than one relation we will assume that we assume to have access to each of the n×n×n matrices representing Ei. In
addition, to store data values we will use another array DV of size |O| having DV [i] = ρ(oi), for i = 1 . . . n. In the
end, our algorithm computes, given an expression e and a triplestore T the matrix Re such that (oi, oj , ok) ∈ e(T)
iff Re[i, j, k] = 1.

If e = Ei, the name of one of the initial triplestore matrices, we already have our answer, so no computation is
needed.

If e = R1 ∪R2 and we are given the matrix representation of R1 and R2 (that is the adjacency matrix of the answer
of Ri on our triplestore T) we simply compute Re as the union of these two matrices. Note that this takes time

16

O(|T |).

If e = R1 ∩R2 we compute Re as the intersection of these two matrices. That is, for each triple (i, j, k) we check if
R1[i, j, k] = R2[i, j, k] = 1. Note that this takes time O(|T |).

If e = R1 −R2 we compute Re as the difference of the two matrices. That is for each (i, j, k) we set Re[i, j, k] = 1 if
and only if R1[i, j, k] = 1 and R2[i, j, k] = 0. The time required is O(|T |).

If e = σϕR1 and we are given the matrix for R1 we can compute Re in time O(|e||T |) by traversing each triple
(i, j, k), checking that R1[i, j, k] = 1 and that the objects oi, oj and ok satisfy the conditions specified by ϕ. Notice
that each of these checks can be done in |e| time using T and DV , since the number of comparisons in ϕ has a fixed
upper bound, modulo comparison with constants. The comparison with constants can be done in time |e| because
we have to check (in)equality only with the constants that actually appear in e.

Finally, in the case that e = R1✶
i′,j′,k′

θ,η R2 we can compute Re using the following algorithm:

Procedure 1 Computing joins

Input: Matrix representation of R1, R2

Output: Matrix Re representing e
1: Let θ′ and η′ be the conditions obtained from θ, η by removing comparisons with constants
2: Let α, β be the conditions in θ, η using constants
3: Filter R1 and R2 according to α, β
4: for i = 1→ n do
5: for j = 1→ n do
6: for k = 1→ n do
7: if R1[i, j, k] = 1 then
8: for l = 1→ n do
9: for m = 1→ n do

10: for n = 1→ n do
11: if R2[l,m, n] = 1 then
12: if (oi, oj , ok) and (ol, om, on) satisfy the conditions in θ′, η′ then Re[i

′, j′, k′] = 1
13: else Re[i

′, j′, k′] = 0

Note that lines 1–3 correspond to computing selections operator and can therefore be performed using the time
O(|e||T |) and reusing the matrices R1 and R2. It is straightforward to see that the remaining of the algorithm works
as intended by joining the desirable triples. This is performed in O(|T |2). Thus the whole join computation can be
done in time O(|T |2).
This concludes the first part of our theorem and we thus conclude that TriAL query computation problem can be
solved in time O(|e||T |2).
For the second part of the theorem we only have to show that each star operation can be computed in time O(|T |3).

To see this we consider the following algorithm, computing the answer set for e = (R1✶
i′,j′,k′

θ,η)∗

Procedure 2 Computing stars

Input: Matrix representation of R1

Output: Matrix Re representing e
1: Initialize Re := R1

2: for i = 1→ n3 do
3: Compute Re := Re ∪Re✶

i′,j′,k′

θ,η R1

First we note that the algorithm does indeed compute the correct answer set. This follows because the joining in
our star process has to became saturated after n3 steps, since this is the maximum possible number of triples in a
model with n elements. Note now that each join in step 3 can be computed in time O(|T |2), thus giving us the total
running time of O(n3 · |T |2) = O(|T |3).
Finally, note that left-joins can be computed in an analogous way.

Proof of Proposition 4

To prove this we will use the close connection of positive fragment of TriAL= with FO4. We establish this as follows.
To each triplestore T = (O,E1, . . . , En, ρ) we associate an FO structure MT = (O,E1, . . . , En,∼), where O is
the set of objects appearing in T , E1, . . . , En are just the representation of the triplestores, and ∼(o1, o2) holds iff

17

ρ(o1) = ρ(o2) (they have the same data value).

Then we can show

Lemma 1. For every TriAL= expression e one can construct an FO4 formula ϕe such that a triple (a, b, c) belongs to
e(T) if and only ifMT |= ϕe(a, b, c).

Proof. The proof is done by induction. The base case when e = Ei for some 1 ≤ i ≤ n is trivial, and so are the

cases when e = e1 ∪ e2, e = e1 − e2 and e = σθ,ηe1. The only interesting case is when e = e1✶
i,j,k
θ,η e2.

As usual, we assume that e is e1✶
i,j,k
θ,η e2, where θ is a conjunction of equalities between elements in {1, 1′, 2, 2′, 3, 3′}∪

O and η is a conjunction of equalities between elements in {ρ(1), ρ(1′).ρ(2), ρ(2′), ρ(3), ρ(3′)}. We need some termi-
nology.

Let θ = θℓ ∧ θr ∧ θ✶ ∧ θcℓ ∧ θ
c
r, where

• θℓ and θr contain only equalities between indexes in {1, 2, 3} and {1′, 2′, 3′}, respectively.

• θcℓ and θ
c
r contain only equalities where one element is inO and the other is in {1, 2, 3} and {1′, 2′, 3′}, respectively.

• θ✶ contains all the remaining equalities, i.e. those equalities in which one index is in {1, 2, 3} and the other in
{1′, 2′, 3′}.

We also divide η = ηℓ ∧ ηr ∧ η✶ in the same fashion (recall that for the sake of readability we assume no comparison
between data values and constants, two avoid two sorted structures). Notice that any two equalities of form i = j′

and i = k′, for i ∈ {1, 2, 3} and j′, k′ ∈ {1′, 2′, 3′} can be replaced with i = j′ and j′ = k′, and likewise we can
replace i = k′ and j = k′ with i = j and j = k′. For this reason we assume that θ✶ (and η✶) contain at most 3
inequalities, and no two inequalities in them can mention the same element. Furthermore, if θ✶ has two or more
equalities, then the join can be straightforwardly expressed in FO4, since now instead of the six possible positions
we only care about four -or three-of them. For this reason we only show how to construct the formula when θ✶ has
one or no equalities.

Finally, for a conjunction θ of equalities between element in {1, 1′, 2, 2′, 3, 3′}, we let α(θ) be the formula
∧

i=j∈θ xi = xj , for a conjunction η of equalities of elements in {ρ(1), ρ(1′).ρ(2), ρ(2′), ρ(3), ρ(3′)}, let β(η) be

the formula
∧

ρ(i)=ρ(j)∈η ∼(xi, xj), and for a conjunction θc of equalities between an object in O and an element in

{1, 1′, 2, 2′, 3, 3′} we let α(θc) =
∧

o=i∈θc o = xi.

In order to construct formula ϕe, we distinguish 2 types of joins:

• Joins of form e = e1✶
i,j,k
θ,η e2 where all of i, j, k belong to either {1, 2, 3} or {1′, 2′, 3′}.

Assume that i, j, k belong to {1, 2, 3} (the other case is of course symmetrical). We first consider the case in
which θ✶ has no equalities, while η✶ has three equalities. Moreover, assume for the sake of readability that
η✶ = (ρ(1) = ρ(1′)) ∧ (ρ(2) = ρ(2′)) ∧ (ρ(3) = ρ(3′)). We then let

ϕe(xi, xj , xk) = ϕe1(x1, x2, x3) ∧ α(θℓ) ∧ α(θ
c
ℓ) ∧ β(ηℓ)∧

∃w

(

∼(x1, w) ∧ ∃x1
(

∼(x2, x1) ∧ ∃x2(∼(x3, x2)ϕe2 (w, x1, x2)∧

α(θr)[x1′ , x2′ , x3′ → w, x1, x2] ∧ α(θ
c
r)[x1′ , x2′ , x3′ → w, x1, x2] ∧ β(ηr)[x1′ , x2′ , x3′ → w, x1, x2])

)

)

Where a formula ψ[x, y, z → x′, y′, z′] is just the formula ψ in which we replace each occurrence of variables
x, y, z for x′, y′, z′, respectively. For the case when θ✶ is nonempty, notice here than any equality in θ✶ only
makes our life easier, since it eliminates one of the existential guesses we need in the above formula. Furthermore,
if η✶ has less equalities, then we just remove the corresponding ∼ predicates. This cover all other possible cases
of θ✶ and η✶.

Let us illustrate this construction with an example.

Example 5. Consider the expression e = e1✶
1,2,3
1=2∧ρ(2)=ρ(2′)∧ρ(2′)=ρ(3′) e2. Then θℓ is 1 = 2, η✶ is ρ(2) = ρ(2′)

and ηr = ρ(2′) = ρ(3′), all of the remaining formulas being empty. Then we have:

ϕe(x1, x2, x3) = ϕe1(x1, x2, x3) ∧ x1 = x2 ∧ ∃w

(

∃x1
(

∼(x1, x2) ∧ ∃x2(ϕe2 (w, x1, x2) ∧ ∼(x1, x2))
)

)

18

• Joins of form e = e1✶
i,j,k
θ,η e2 where not all of i, j, k belong to either {1, 2, 3} or {1′, 2′, 3′}. Assume for the sake

of readability that i = 1, j = 2 and k = 3′ (all of other cases are completely symmetrical). We have again two
possibilities.

(-) There are no equalities in θ✶. Assume that η✶ = (ρ(1) = ρ(1′)) ∧ (ρ(2) = ρ(2′)) ∧ (ρ(3) = ρ(3′)) (we have
already proved that there are at most 3 equalities in η′), cases with less equalities are treated along the same
lines. We then let

ϕe(x1, x2, x3′) =

(

∃x3(ϕe1 (x1, x2, x3) ∧ α(θℓ) ∧ α(θ
c
ℓ) ∧ β(ηℓ)) ∧ ∼(x3, x3′)

)

∧ ∃x3

(

∼(x1, x3) ∧ ∃x1
(

∼(x2, x1) ∧ ϕe2(x3, x1, x3′) ∧ α(θr)[x1′ , x2′ → x3, x1] ∧ α(θ
c
r)[x1′ , x2′ → x3, x1] ∧ β(ηr)[x1′ , x2′ → x3, x1]

)

)

(-) There is a single equality in θ✶. Assume for the sake of readability that i = 1, j = 2 and k = 3′ (all of
other cases are completely symmetrical). Notice that if θ✶ has the equality 3 = 3′, then this is equivalent to the
previous case with one equality in θ✶, but with k = 3. Moreover, equalities in θ✶ involving 1 or 2 just make
our life easier, so we will also not take them into account here. We are thus left with the assumption that θ✶
contains the equality 3 = 1′ (the case where it contains instead 3 = 2′ is symmetrical)

Moreover, assume as well that η✶ = (ρ(1) = ρ(1′)) ∧ (ρ(2) = ρ(2′)) ∧ (ρ(3) = ρ(3′)) (we have already proved
that there are at most 3 equalities in η✶, and from the form of the formula it is clear that all other cases are
treated along the same lines).

We then let

ϕe(x1, x2, x3′) =

∃x1′

(

ϕe1 (x1, x2, x1′) ∧ α(θℓ)[x3 → x1′] ∧ α(θ
c
ℓ)[x3 → x1′] ∧ β(ηℓ)[x3 → x1′] ∧ ∼(x1, x1′) ∧

∃x1
(

∼(x1, x2) ∧ ϕe2(x1′ , x1, x3′) ∧ x1′ = x3′ ∧ α(θr)[x2′ → x1] ∧ α(θ
c
r)[x2′ → x1] ∧ β(ηr)[x2′ → x1]

)

)

Having established how to construct ϕe, it is now straightforward to show that it satisfies the property of the
Lemma.

We now continue with the proof of the Proposition. Note that we can compute MT from T in linear time. Addi-
tionally, observe that the size ofMT , when defined as a size of its encoding (see [24]) is linear in T . Also, observe
that the formula ϕe corresponding to e is of size O(|e|).

To finish the proof we show that each FO4 formula ϕ using relations that are at most ternary (in fact this holds for
relations of arity four as well, but is not relevant for our analysis) can be evaluated in time O(|F | · |O|4).

Lemma 2. Let ϕ be an arbitrary formula using at most four variables. Then the set of all tuples that make ϕ true
inM, withM as above (we omit the subscript T for the sake of readability, since it is now clear), can be computed
in time O(|F | · |O|4).

Proof. To see that this holds note that we can assume that our formulas only use the connectives ¬,∨ and the
quantifier ∃. Indeed, we can assume this since any formula using other quantifiers can be rewritten using the ones
above with a constant blow-up in the size of formula. In particular, our formulas in Lemma 1 use only ∧ in addition
to these three logical connectives, and ∧ can be rewritten in terms of ∨ and ¬.

The desired algorithm works as follows.

1. Build a parse tree for the formula ϕ.

2. Compute the output relation(s) bottom-up using the tree.

To see that the algorithm works with the desired time bound we only have to make sure that each of the computation
steps in 2 can be performed in time O(|O|4). We have three cases to consider, based on whether we are using negation,
disjunction, or existential quantification. Here we assume that we compute a matrix ψ(M), for each subformula ψ
of ϕ. Note that, since we use formulas with at most four free variables each matrix can be of size at most |O|4 (i.e.

19

we are working with a four dimensional matrix). If the (sub)formula has only two free variables the resulting matrix
will, of course, be two dimensional.

First we consider the case of negation. That is, assume that we have a matrix ψ(M) and we are evaluating a formula
ϕ = ¬ψ. Then we simply build a matrix for the ϕ(M) by flipping each bit in the matrix for ψ(M). This can clearly
be done in time O(|O|4) by traversing the entire matrix.

Next, consider the case when ϕ = ∃xψ(x, y, z, w) and assume that we have the matrix for ψ(x, y, z, w). The existing
matrix is now reduced to a three dimensional matrix with the value 1 in position i, j, k if and only if there is an l
such that ψ(M)[l, i, j, k] = 1. Note that computing this amounts to scanning the entire matrix for ψ. In the case
when ψ case only three free variables we will need only O(|O|3) time to compute ϕ(M).

Finally, let ϕ = ψ1(x, y, w) ∨ ψ2(x, y, z, w). The cases when ψ1 and ψ2 have a different number of free variables
follows by symmetry. What we do first is to compute a 4-D matrix ψ′

1(M) by setting ψ′
1(M)[i, j, k, l] = 1 iff

ψ1(M)[i, j, l] = 1. Note that this matrix can be computed in time O(|O|4). Next we compute the output matrix by
putting 1 in each cell where either ψ′

1(M) or ψ2(M) have 1. All the other cases can be performed symmetrically by
using the appropriate matrices and their projections.

This completes the proof of our lemma.

The result of Proposition 4 now follows, since we can take our expression e, transform it into a formula ϕe of FO4

and evaluate it in time O(|ϕe| · |O|4) = O(|e| · |O| · |T |), since |T | = |O|3 and |ϕe| = O(|e|).

Proof of Proposition 5

To show this we will use the algorithm presented in Proposition 4. All of the operations except the evaluation
of Kleene star will be preformed in a same way as there. Note that we can assume this since the algorithm in
Lemma 2 computes the subexpressions bottom up using the matrices representing the output. Thus we can use it to
compute answers to subformulas, compose it with the method presented here to evaluate Kleene stars and proceed
with the algorithm from Lemma 2. To obtain the desired complexity bound we only have to show how to compute
navigational operations in time O(|O| · |T |).

That is, we show how to, given a matrix representation for a relation R we compute matrix representation for

(R✶
1,2,3′

3=1′)∗ and (R✶
1,2,3′

3=1′,2=2′)
∗, respectively.

Let O = {o1, . . . , on} be the set of object appearing in our triplestore T . (The assumption that they are ordered is
standard when considering matrix representations). As input, we are given a three dimensional matrix R representing
the output of relation R when evaluated over T . That is we have (oi, oj , ok) ∈ R(T) if and only if R[i, j, k] = 1.
(Here we use R both to denote the relation R and its matrix representation).

First we give a procedure that computes the matrix Me for the expression

e = (R✶1,2,3′

3=1′)∗.

Procedure 3 Computing e = (R✶
1,2,3′

3=1′)∗

Input: Matrix representation of R
Output: Matrix Me representing e
1: Precomputing the reachability matrix Rreach:
2: for i = 1→ n do
3: for j = 1→ n do
4: for k = 1→ n do
5: if R[i, k, j] = 1 then
6: Rreach[i, j] = 1

7: Compute the transitive closure R∗
reach

8: Compute the output matrix Me:
9: for i = 1→ n do

10: for j = 1→ n do
11: for k = 1→ n do
12: if R[i, k, j] = 1 then
13: for l = 1→ n do
14: if R∗

reach[j, l] = 1 then

20

15: Me[i, k, l] = 1

To show that the algorithm works correctly notice that steps 1 to 6 precompute the matrix Rreach such that
Rreach[i, j] = 1 if and only if oi has and out edge ending in oj (or equivalently (oi, o, ok) ∈ T for some o). After
this in step 7 we compute the transitive closure R∗

reach thus obtaining all pairs of nodes reachable one from another
using path of arbitrary label in the graph representing T . Next in steps 8 to 15 we simply compute all the triples in
the output matrix Me. To do so we observe that a pair (oi, ok) will belong to some triple (oi, ok, ol) of the output,
if there is j such that (oi, ok, oj) ∈ T (line 12) and ol is reachable from oj (line 14).
To determine the complexity of the algorithm notice that steps 1 to 6 take time O(|O|3) = O(|T |), while computing
the transitive closure in step 7 can be done using Warshall’s algorithm (see T. H. Cormen, C. E. Leiserson, R. L.
Rivest and C. Stein, Introduction to Algorithms, The MIT Press, 2003.) in time O(|O|3) = O(|T |). Finally steps 8
to 15 take time O(|O| · |T |), thus giving us the desired time bound.

Next we show how to compute joins of the form (R✶
1,2,3′

3=1′,2=2′)
∗ using a slight modification of the algorithm above.

Procedure 4 Computing e = (R✶
1,2,3′

3=1′,2=2′)
∗

Input: Matrix representation of R
Output: Matrix Me representing e
1: for k = 1→ n do
2: Precomputing the reachability matrix Rkreach:
3: for i = 1→ n do
4: for j = 1→ n do
5: if R[i, k, j] = 1 then
6: Rreach[i, j] = 1

7: Compute the transitive closure Rkreach
∗

8: compute the output matrix Me:
9: for i = 1→ n do

10: for j = 1→ n do
11: if R[i, k, j] = 1 then
12: for l = 1→ n do
13: if Rkreach

∗
[j, l] = 1 then

14: Me[i, k, l] = 1

It is straightforward to see that the algorithm uses the same time to compute the output as the algorithm in
Procedure 1.
To show that it works correctly observe that we precompute matrix Rkreach for each k, thus checking reachability only
for triples whose second node is ok. Since the rest of the algorithm works in the same way as the one in Procedure
1, we conclude that the computed answer Me represents e correctly.
The case when the number of labels is fixed now follows by observing that the values for the loops defined by k in
both algorithms come from a set of constant length.

Proof of Theorem 4

We begin with Part 1.

Let e be a TriAL expression. We construct an FO6 formula ϕe such that e(T) = ϕe(IT), for each triplestore T . The
proof is by induction.

• For the base case, if e corresponds to a triplestore name E, then ϕe is E(x, y, z).

• If e = e1 ∪ e2, then ϕe(x, y, z) = ϕe1 (x, y, z) ∨ ϕe2(x, y, z), which clearly is in FO6 since existential variables
within ϕe1 and ϕe2 can be renamed and reused.

• If e = e1 − e2, then ϕe(x, y, z) = ϕe1(x, y, z) ∧ ¬ϕe2 (x, y, z)

• If e = e1✶
i,j,k
θ,η e2, then ϕe(xi, xj , xk) = ∃xu∃xv∃xwϕe1(x1, x2, x3)∧ϕe2 (x1′ , x2′ , x3′)∧α(θ)∧β(η), where u, v, w

are the remaining elements that together with i, j, k complete {1, 1′, 2, 2′, 3, 3′}, α(θ) contains the equality
xp = xq or xp = o for each equality p = q or p = o in θ, for o ∈ O and p, q ∈ {1, 1′, 2, 2′, 3, 3′}, and likewise for
inequalities, and β(η) contains atom ∼(xp, xq) for each equality ρ(p) = ρ(q) in η, and likewise for inequalities
using atom ¬∼.

• Similarly, if e = σθ,ηe1 then ϕe(x, y, z) = ϕe1(x, y, z) ∧ α(θ) ∧ β(η), where α(θ) and β(η) are defined as in the
previous bullet.

21

It is now straightforward to check the desired properties for e and ϕe.

That the containment is strict follows from Part 3 of the proof.

Next we move onto Part 2

To show that FO3 is contained in TriAL, one needs to show how to construct, for every FO3 formula ϕ, an equivalent
TriAL expression eϕ such that eϕ(T) = ϕ(IT), for all triplestores T .

The construction is done by induction on the formula.

Recall here that U is just a shorthand for the relation that contains O3.

• For the base case, if ϕ = E(x1, x2, x3) for some triplestore name then eϕ is just E. However, in the general case
when ϕ = E(xi, xj , xk), for each of i, j, k in {1, 2, 3}, we let eϕ = E✶i,j,k E. For the other base case, if ϕ is
x1 = x2, then eϕ = σ1=2U .

• If ϕ = ¬ϕ1, then eϕ = U − eϕ1
(recall that we assume active domain semantics for FO formula).

• If ϕ = ∃xϕ1(ȳ), then eϕ = eϕ1
✶d̄ U , where d̄ depends on the size of ȳ: if |ȳ| = 3 then d̄ = i, j, k′, if ȳ = 2 then

d̄ = i, j′, k′, and if ȳ = 1 then d̄ = i′, j′, k′.

• If ϕ = ϕ1(x̄, ȳ) ∨ ϕ2(x̄, z̄), then eϕ = eϕ1
∪ eϕ2

. Notice here that we assume that variables in x̄, ȳ, z̄ appear in
the same order in both ϕ1 and ϕ2. If this is not the case then one can only permute the variables by doing a
join, as in the base case.

We leave the proof that ϕ and eϕ satisfy our desired properties, since it is easy to check. The key idea is that we
do not need projection in our algebra to simulate FO3 queries, since we know that they will have 3 free variables at
the end, in the induction step we can just ignore some of the positions in the triples.

To show that the containment is proper, consider the following property over triplestore databases:

A triplestore database T has four different objects.

It is not difficult to construct a TriAL expression e such that e(T) is nonempty if and only if T has four different

objects. For example, one can use the expression e = U ✶
1,2,3
θ U , where θ = (1 6= 2) ∧ (1 6= 3) ∧ (1 6= 1′) ∧ (2 6=

3) ∧ (2 6= 1′) ∧ (3 6= 1′).

On the other hand, let T3 = (O3, E3, ρ) be the triplestore in which O3 = {a, b, c} and E3 = O3 × O3 × O3,
and T4 = (O4, E4, ρ

′) be the triplestore in which O4 = {a, b, c, d} and E4 = O4 × O4 × O4. In addition we set
ρ(a) = ρ(b) = ρ(c) = 1 and ρ′ = ρ ∪ {(d, 1)}. It is trivial to show that these structures cannot be distinguished by
any formula in the infinitary logic L3∞ω [24], since the duplicator always has a strategy to ensure that the 3-pebble
game can be played forever in these structures (see e.g. [24]). Note that the standard game will work here, since
all the data values are the same, so they do not influence the winning strategy of the duplicator. It follows that the
expression e cannot be expressed in FO3 (in fact, not even in L3∞3).

For Part 3, we show that TriAL is incomparable with FO4 and FO5.

We begin by showing that the following TriAL query:

e6 := U
1,2,3

✶
θ
U, with θ =

∧

i,j∈{1,2,3,1′,2′,3′},i6=j

i 6= j,

cannot be expressed in FO5 (and thus not in FO4).

Note that this is a modification of the query from part 1 of this proof that simply states that our triplestore has at
least six objects. Now take T5 = (O5, E5, ρ) with O5 = {a, b, c, d, e}, and E5 = O5 × O5 × O5, where ρ assigns the
same data value to all elements of O5 and define O6 in an analogous way, but with six elements. It is a well known
fact [24] that the duplicator has a winning strategy in a 5-pebble game on these two structures, so they can not
be distinguished by an FO5 formula. On the other hand our expression e6 does distinguish them and is thus not
expressible in FO5.

22

Next we show that there is an FO4 expression that cannot be expressed by any TriAL query (and thus TriAL cannot
express neither full FO5 nor FO6. In order to do that, we first need to show that triple algebra expressions can be
expressed with a particular extension of FO3, that we call here FO3-join.

Formally, we construct FO3-join formulas from FO3 formulas, the usual operators of disjunction, conjunction,
negation, existential and universal quantification, and the following join operator: if ϕ1 and ϕ2 are formulas
in FO3-join that use variables x1, x2, x3 and x1′ , x2′ , x3′ respectively, θ is a conjunction of equalities between in-
dexes in {1, 1′, 2′2′, 3, 3′} and η is a conjunction of equalities between indexes in ρ(1), . . . , ρ(3′), then the formula

ϕ(xi, xj , xk) = ϕ1(x1, x2, x3)✶
i,j,k
θ,η ϕ2(x1′ , x2′ , x3′) is a formula in FO3-join that only uses variables xi, xj , xk. Fur-

thermore, the number of variables in FO3-join formulas is restricted to 3, but note that for the sake of counting

variables the construct ϕ(xi, xj , xk) = ϕ1(x1, x2, x3)✶
i,j,k
θ,η ϕ2(x1′ , x2′ , x3′) is assumed to use only variables xi, xj

and xk.

The semantics of the join construct is defined in the same way than Triple Algebra, and the rest of the operators is
defined in the same way as FO. It is now not difficult to show the following:

Lemma 3. Triple Algebra is contained in FO3-join.

In fact, one can actually show that both languages have the same expressive power, but for the sake of this proof
we will not bother. Continuing with the proof, we now define a game that characterizes expressibility in FO3-join.

Let J be the set of all the join symbols that we allow in TriAL. A recipe p for FO3-join is a tree of rank 2 (i.e., every
node can have at most two children) labeled with symbols from alphabet {∃, ∀} ∪ J , such that the following holds:
If a node n of p has two children, then it labeled with a symbol in J, and if a node n of p has one children, then it
is labeled with ∃ or ∀.

For every such recipe p, define the quantifier class L(p) inductively as follows:

• L(ε) contains quantifier and join free formulae.

• If the root of p is labeled with Q ∈ {∃, ∀}, then L(p) is the closure under conjunctions and disjunctions of the
class L(p′) ∪ {Qxϕ | ϕ ∈ L(p′)}, where p′ is the subtree of p whose root is the only child of p.

• If the root of p is labeled with a symbol ✶ in J, let p1 and p2 be the subtrees of p whose root are the first and
second children of p, respectively. Then L(p) is the closure under conjunctions and disjunctions of the class of
all formulae ϕ ✶ ψ, where ϕ ∈ L(p1) and ψ ∈ L(p2).

We now define the join game between two structures. This game proceeds as in a typical 3-pebble game (see [24]
for a precise explanation), except the following sets of moves are available to the spoiler:

The join ✶
i,j,k
θ,η move:

The spoiler picks a structure, and then splits the 3 pebbles in that structure into two sets of 3 pebbles, set 1 and set
2, with the condition that the split satisfies the join: If before the move the first, second and third pebbles where in
elements a, b and c, then the first, second and third elements of each of the set of pebbles must be placed in elements

a1, b2, c1 and a2, b2, c2 such that (a, b, c) = (a1, b1, c1)✶
i,j,k
θ,η (a2, b2, c2).

Duplicator must then split the pebbles in the other structure into two sets of pebbles, in the same fashion as the
spoiler, with the split also satisfying the conditions of the join, Spoiler then picks either set 1 or set 2, and remove
the other set of pebbles from both structures.

A join game on a pair of structures (A,B), is played as the regular 3 pebble game, except now the spoiler can use
any number of ✶ moves, for ✶ in J. The winning conditions for both players are the same as in the 3-pebble game.
For every recipe p of FO3-join we also define the L(p)-join game. This contains all join games in which the sequence
of moves performed by the spoiler are described by a path from the root of p to one of its leaves.

Let L be a class of FO3-join formulae and A and B structures of vocabulary 〈E,∼〉. We write A �L B if A |= ϕ
implies B |= ϕ, for every sentence ϕ ∈ L.

Lemma 4. The following are equivalent:

• The duplicator has a winning strategy on all L(p) join games.

• A �L(p) B

23

Before we prove this Lemma, we make the following crucial observation: If, in a join game a pebble has already been
placed on element a ∈ A, then the remainder of the game can be considered as a game with two pebbles on (A, a),
until the first pebble is replaced somewhere else, or a join move are performed. We call these games truncated.

Proof of Lemma 4. We prove the contrary: If there is a sentence ϕ of class L(p) such that A |= ϕ but B 6|= ϕ,
then the spoiler has a winning strategy for the L(p)-join game.

We prove this by induction on the height of p.

The case when p is empty is trivial.

Assume that Lemma holds for all recipes of height k, and let p be a recipe of height k + 1. Furthermore, assume
that there is a sentence ϕ such that A |= ϕ, but B 6|= ϕ. We will construct a winning strategy for the spoiler. If ϕ is
a boolean combinations of formulas, then the two structures are distinguished by at least one of them. We are thus
left with the following cases:

• ϕ is of form ∃ψ(x̄), where x̄ is a tuple of at most two variables, and ψ has depth at most k − 1 and belongs to
L(q), where q is the subtree whose root is the single child of p. Then the spoiler can win as follows. In his first
move he places one pebble in element a such that (A, a) |= ψ. No matter in which element b ∈ B the duplicator
places its pebble, we know that (B, b) 6|= ψ, and thus the spoiler has a winning strategy for the remainder of the
truncated game.

• ϕ is of form ∀ψ(x̄), in which case the strategy is analogous to the previous one

• ϕ(a, b, c) is of form ϕ1 ✶ ϕ2, for some ✶ in J (note that a, b, c are interpreted as constants of A and B). Then p has
two children p1 and p2, both of height ≤ k, and ϕ1 ∈ L(p1), ϕ2 ∈ L(p2). Since A |= ϕ(a, b, c), yet B 6|= ϕ(a, b, c),
spoiler can win by first placing pebbles on elements a, b, c, and splitting pebbles placing them into sets (a1, b1, c1)
and (a2, b2, c2) of elements in A such that (a1, b1, c1) ✶ (a2, b2, c2) = (a, b, c). Given that B 6|= ϕ(a, b, c), then for
every pair (d1, e1, f1) and (d2, e2, f2) of elements in B such that (d1, e1, f1) ✶ (d2, e2, f2) = (a, b, c), it must be
the case that either (B 6|= ϕ1(d1, e1, f1) or (B 6|= ϕ(d2, e2, f2). Depending on the move of the duplicator, spoiler
chooses the set accordingly, and continues to win the truncated game on (A, ai, bi, ci) and (B, di, ei, fi), for i = 1
or i = 2.

We now continue with the proof of the Theorem. Due to Lemma 4, all that is left to do is to show structures A and
B such that the duplicator can win any join game, and yet they are distinguished by an FO4 formula.

The structures are as follows:

Consider objects a, b, c plus objects d1, . . . , d9 and e1, . . . , e12.

• Structure A contain edges (a, ei, b), (b, ei, a), (a, ei, c), (c, ei, a), (b, ei, c), (c, ei, b), for each 1 ≤ i ≤ 12, plus edges
(a, ei, dj), (dj , ei, a), (b, ei, dj), (dj , ei, b), (c, ei, dj), (dj , ei, c) for each 1 ≤ i ≤ 4 and 1 ≤ j ≤ 12.

• Structure B also has edges (a, ei, b), (b, ei, a), (a, ei, c), (c, ei, a), (b, ei, c), (c, ei, b), for each 1 ≤ i ≤ 3, plus edges
(a, ei, b), (b, ei, a), (b, ei, dj), (dj , ei, b) and (a, ei, dj), (dj , ei, a) for each 1 ≤ j ≤ 3 and for each 4 ≤ i ≤ 6;
(a, ei, c), (c, ei, a), (dj , ei, c), (c, ei, dj) and (a, ei, dj), (dj , ei, a) for each 4 ≤ j ≤ 6 and for each 7 ≤ i ≤ 9; and
(b, ei, c), (c, ei, b), (b, ei, dj), (dj , ei, b) plus (c, ei, dj), (dj , ei, c) for each 7 ≤ j ≤ 9 and for each 10 ≤ i ≤ 12.

24

a b

c

dj

ei

ei ei

ei

ei ei

i = 1 . . . 12, j = 1 . . . 4
Structure A

a b

c

ei

ei ei

i = 1 . . . 3

a

c

dj

ei

ei

ei

ei

i = 4 . . . 6, j = 1 . . . 3

b

c

dj

ei

ei

ei

i = 7 . . . 9, j = 4 . . . 6

a b

dj

ei

ei ei

i = 10 . . . 12, j = 7 . . . 9

Structure B

It is not difficult to see that the duplicator has a winning strategy for the standard 3-pebble games on this structure.
If the three pebbles placed by the spoiler do not correspond with an edge of the structure, the the duplicator just
mimics the same moves, the partial isomorphism trivially holds. If the third pebble correspond to some edge of form
(u, ei, v), for u and v in {a, b, c, d1, . . . , d9} and 1 ≤ i ≤ 12 in A that is not in B, assume the pebble was last placed
in u (other two cases are symmetrical). Then the duplicator needs to find a permutation τ of the objects in A, such
that τ(ei) = ei, τ(v) = v, τ(A) is isomorphic to A and the edge (τ(u), τ(ei), τ(v)) is in B, and place pebbles in
(τ(u), τ(ei), τ(v)), so that the partial isomorphism still holds. For the remainder of the game, duplicator acts as if
dealing with τ(A) instead of A.

Next, for the i, j, k-join move, assume that pebbles in structures A and B are in elements ai, aj , ak and bi, bj, bk,
respectively. If spoiler divides first structure B duplicator just responds with the same edges in A. Now if spoiler
divides structure A into pebbles (a1, a2, a3) and (a1′ , a2′ , a3′) satisfying the join condition, we have three cases:

• If none of (a1, a2, a3) and (a1′ , a2′ , a3′) are edges in A then duplicator mimics the pebble placement.

• If, say, only (a1, a2, a3) is an edge in A, then the duplicator proceeds like in the above paragraph.

• Otherwise, if both (a1, a2, a3) and (a1′ , a2′ , a3′) are edges in A, duplicator needs to find a permutation τ of
the objects in A such that τ(A) is isomorphic to A; τ(ai) = ai, τ(aj) = aj , and τ(ak) = ak; and edges
(τ(a1), τ(a2), τ(a3)) and (τ(a4), τ(a5), τ(a6)) belong to B, and respond with those pebbles. The partial isomor-
phisms trivially holds.

All that is left to show that this is a winning strategy for the duplicator is to show that there are always such
permutations, no matter where are the pebbles placed. This can be easily shown with a lengthy and straightforward
case by case analysis.

From Lemma 4 we obtain that A and B agree on all FO3-join formulas. However, it is not difficult to see that they
do not agree to the following FO4 formula (which is only true in A):

ϕ(x, y, z) =
∃x∃y∃z∃w

(

ψ(x, y, w) ∧ ψ(x,w, z) ∧ ψ(w, y, z) ∧ ψ(x, y, z) ∧ x 6= y ∧ x 6= z ∧ x 6= w ∧ y 6= z ∧ y 6= w ∧ z 6= w
)

,
where

ψ(x, y, z) = ∃w
(

E(x,w, y) ∧ E(y, w, x) ∧ E(y, w, z) ∧ E(x,w, y) ∧ E(x,w, z) ∧ E(z, w, x) ∧ x 6= z ∧ x 6= y ∧ y 6= z
)

.

This shows that FO4 is not contained in TriAL.

25

Proof of Theorem 5

The containment of TriAL= in FO4 was shown in the proof of Proposition 4, and that TriAL= contains FO3 was
already showed in the second part of the proof of Theorem 4, since the translation used there does not make use of
inequalities in joins.

That the containments are strict follows from the proof of Theorem 4.

Proof of Theorem 6

Part 1

We begin by proving that TriAL∗ is strictly contained in TrCl6. To see that TriAL∗ is contained in TrCl6 we use
induction on the structure of TriAL∗ expressions. Note that all the cases, except for the Kleene closure of various
joins we use, are precisely the same translation as in the proof of Theorem 4. What remains to prove is that
expressions of the form

e′ := (e
i,j,k

✶
θ,η

)∗

can be translated into TrCl6 expressions (the other join being completely symmetrical).

To see this, let ψe(x, y, z) be a TrCl6 formula equivalent to e. That is we have that IT |= ψe(a, b, c) if and only if
(a, b, c) ∈ R(T), for any triplestore T , with IT the FO-structure representing T . We define the following formula
ψe′ (x

′, y′, z′) in TrCl6:

ψe(x
′, y′, z′) ∨ ∃x, y, z

(

ψe(x, y, z) ∧ [trclx,y,z,x′,y′,z′ϕ(x, y, z, x
′, y′, z′)](x, y, z, x′, y′, z′)

)

Where ϕ(x, y, z, x′, y′, z′) is a formula such that ϕ(a, b, c, a′, b′, c′) holds in IT iff there exists a triple (a′′, b′′, c′′)
such that ψe(a

′′, b′′, c′′) holds and the join of (a, b, c) and (a′′, b′′, c′′) produces triple (a′, b′, c′). The definition of
this formula in TrCl6 is rather cumbersome, since it depends on the positions i, j, k of the join in question. We
just give two examples, the rest are treated in the same way: For the expression e′ = (e✶1,2,3′)∗, we have that

ϕ(x, y, z, x′, y′, z′) is x = x′ ∧ y = y′ ∧ ∃x′∃y′
(

ψe(x, y, z) ∧ ψe(x′, y′, z′)
)

. As another example, if e′ = (e✶1′,2′,3′)∗,
then ϕ is just ψe(x, y, z) ∧ ψe(x′, y′, z′).

Next we prove that ψe′ is equivalent to expression e′ over all triplestores. For one direction, let T be a triplestore
database using a set O of objects, and assume that triple (a, b, c) belong to e′(T). Then from the semantics of
the recursive operator, there are sequences t1, . . . , tm of triples in O3 and p1, . . . , pm of triples in e(T) such that

t1 ∈ e(T), and tm+1 = tm

i,j,k

✶
θ,η

pm. If m = 1 this follows from the first part of ψe′ . If m > 1, notice that, by definition,

IT |= ϕ(tj , tj+1) for each 1 ≤ j < m. It follows that IT |= ψe′ . The other direction is analogous.

The fact that the containment is strict follows from Part 3.

Part 2

Next we prove that TrCl3 is contained in TriAL∗. We do this by induction on TrCl3 formulas. Note that all the cases,
except for the case of transitive closure operator, are exactly the same as in the proof of Theorem 4. Next we show
how to translate formulas of the form

ψ(x, y, z) := [trclx,yϕ(x, y, z)](u1, u2).

By the induction hypothesis there exists a TriAL∗ expressionRϕ such that for any triplestore T we have IT |= ϕ(a, b, c)
iff (a, b, c) ∈ Rϕ(T).

Consider now the following expression Rψ:

R := (Rϕ

1,2′,3

✶
3=3′∧2=1′

)∗.

Observe now that a triple (a, b, c) will be contained in R(T) iff there is a sequence of triples
(a, b1, c), (b1, b2, c), (b2, b3, c), . . . (bk, b, c) with the property that they all belong to Rϕ(T). But this then means

26

that the pair (a, b) belongs to the transitive closure of the relation defined by ϕ(x, y, c). That is we have that
(a, b, c) ∈ R(T) iff b is reachable from a using only edges defined by ϕ(x, y, c).

We now proceed case by case, depending on the structure of terms u1 and u2. Since our terms are only variables we
have a total of nine cases.

• If u1 = x and u2 = y we define Rψ := R. It is straightforward to see that (a, b, c) ∈ Rψ(T) iff IT |= ψ(a, b, c).

• If u1 = y and u2 = x we define Rψ := R.

• If u1 = x and u2 = z we define Rψ := σ2=3R.

• If u1 = z and u2 = x we define Rψ := σ1=3R.

• If u1 = x and u2 = x we define Rψ := σ1=2R.

• All of the other cases are symmetric.

This concludes the proof in the case when ϕ above uses x, y, z as variables. All of the other cases are similar, e.g.

when we have the formula [trclx,yϕ(x, y, x)](x, y) the expression (σ1=3Rϕ✶
1,2′,3
2=1′)∗ in place of R will suffice (note

that now we have only two free variables).

That the containment is strict follows from the comments at the beginning of the proof of Part 3 below.

Part 3

We begin by showing that TriAL∗ is not contained in TrCl4 or TrCl5. In the proof of Theorem 4 we show that TriAL,
and thus TriAL∗ contain an expression e such that e(T) is nonempty if and only if T has 6 different objects. The
proof then follows by two classical results in finite model theory [24]: (1) e cannot be expressed by neither L4∞ω not
L5∞ω , the infinitary logic restricted to 4 and 5 variables, respectively, and (2) TrClk is contained in Lk∞ω

To see that TrCl4 is not contained in TriAL (and thus that neither TrCl5 not TrCl6 are contained in TriAL), we define
an analog of the logic FO3-join used in the proof of Theorem 4. The logic FO3

∞-join extends FO3-join with countably
infinite disjunctions and conjunctions of formulas in FO3-join (of course the restriction on the variables still holds).
Formally, every FO3-join formula is in FO3

∞-join, and if all ϕi are formulas in FO3
∞-join using the same set of at

most 3 variables, for i ∈ S, where S is not necessarily finite, then
∧

i∈S ϕi and
∨

i∈S ϕi are formulas in FO3
∞-join.

Notice that, by using these disjunctions, it is trivial to express the recursive star operator of TriAL∗ with FO3
∞-join.

Thus, if two structures A and B are indistinguishable by FO3
∞-join, then so are they by TriAL∗.

On the other hand, using the techniques in [24] it is not difficult to see that, if two structures A and B are
indistinguishable by FO3

∞-join iff they are indistinguishable by FO3-join (if the spoiler can win the join game on A
and B, then it can win the infinitary join game that characterizes FO3

∞-join).

It follows from the above observations, and the proof of Theorem 4, that TriAL∗ cannot express the query

ϕ(x, y, z) =
∃x∃y∃z∃w

(

ψ(x, y, w) ∧ ψ(x,w, z) ∧ ψ(w, y, z) ∧ ψ(x, y, z) ∧ x 6= y ∧ x 6= z ∧ x 6= w ∧ y 6= z ∧ y 6= w ∧ z 6= w
)

,
where

ψ(x, y, z) = ∃w
(

E(x,w, y) ∧ E(y, w, x) ∧ E(y, w, z) ∧ E(x,w, y) ∧ E(x,w, z) ∧ E(z, w, x) ∧ x 6= z ∧ x 6= y ∧ y 6= z
)

.

used in the proof of Theorem 4.

Lemma 5

The following lemma will be used several time in what follows.

Lemma 5. TriAL∗ is contained in the infinitary logic L6∞,ω.

What we mean by this is along the lines of the proof of Theorem 4, where we compare TriAL with first-order logic
over the vocabulary (E1, . . . , El,∼).

That is to prove the lemma, we only have to show that the ∗ operator can be simulated in this logic. To see this
consider an arbitrary star-join of the form

R = (F
i′,j′,k′

✶
θ,η

)∗.

27

Assume that we have an L6∞,ω formula F (x1, x2, x3) such that T |= F (a, b, c) if and only if (a, b, c) ∈ F (T). We first
define the following formulas α, β. Consider the formula θ. We then let α be the conjunctions of formulas xi = xj ,
whenever i = j is a conjunct in θ and xi 6= xj , whenever i 6= j is a conjunct in θ. Similarly for ρ(i) = ρ(j) in η we
add xi ∼ xj as a conjunct in β and analogously for ρ(i) 6= ρ(j).

We now define the following formulas:

• R1(x1, x2, x3) := F (x1, x2, x3).

• Rn+1(x1, x2, x3) := ∃x4, x5, x6(Rn(x1, x2, x3)∧α∧ β ∧ ∃x1, x2, x3(x4 = x1 ∧ x5 = x2 ∧ x6 = x3 ∧F (x1, x2, x3)))

Finally set R(x1, x2, x3) :=
∨

n∈ω Rn(x1, x2, x3).

It is straightforward to check that this formula defines the desired relation over T . A similar formula can be defined
for left-joins.

Note that we could have included constants to our comparisons with FO, but to keep the language one-sorted we
omit them from our presentation. It is a straightforward exercise to check that all of the results would still hold true
is they were allowed. For example constant comparisons of the form 2 = a would be handled by adding the clause
x2 = a as a conjunct to the formula α above.

Proof of Theorem 7

Assume that GXPath uses a finite alphabet Σ of labels. We show that GXPath is contained in TriAL∗ by simultaneous
induction on the structure of GXPath expressions. If we are dealing with a path expression α we will denote the
TriAL∗ expression equivalent to α by Eα. Similarly when dealing with node expression ϕ, the corresponding TriAL∗

expression will be denoted Eϕ. Note that for the node expression ϕ of GXPath we consider the TriAL∗ expression
Eϕ to be its equivalent if the answer set of ϕ is the same as the answer of π1(Eϕ) over all graph databases and their
triplestore representations, respectively.

Through the proof we will make use of the universal relation U containing all possible combinations of elements
present in the model. We will also make use of the diagonal relation D = U ✶

1,1,1
1=1 U selecting all the triples (a, a, a)

with a ∈ V .

Basis:

• α = a then Eα = E✶
1,2,3
2=a E

• α = a− then Eα = E✶
3,2,1
2=a E

• α = ε then Eα = U ✶
1,1,1
1=1 U

• ϕ = ⊤ then Eϕ = U ✶
1,1,1
1=1 U

Inductive step:

• α′ = [ϕ] then Eα′ = Eϕ✶
1,1,1
1=1 Eϕ

• α′ = α · β then Eα′ = Eα✶
1,2,3′

3=1′ Eβ
• α′ = α ∪ β then Eα′(x, y) = Eα ∪ Eβ

• α′ = α∗ then Eα′ = (Eα✶
1,2,3′

3=1′)∗

• α′ = α then Eα′ = Ecα
• ϕ′ = ¬ϕ then Eϕ′ = Ecϕ ∩D

• ϕ′ = ϕ ∧ ϕ then Eϕ′ = Eϕ ∩ Eψ

• ϕ′ = 〈α〉 then Eϕ′ = Eα✶
1,1,1
1=1 Eα.

It is straightforward to check that this translation works as intended. For illustration, consider the case when
α′ = α · β. Our induction hypothesis is that we have two expressions, Eα and Eβ such that (a, b) is in the answer
to α on G iff (a, c, b) ∈ Eα(TG), for some c and similarly for β. Assume now that (a, b) is in the answer to α′ on G.
Then there is c such that (a, c) is in the answer to α and (c, b) in the answer to β. But then (a, c′, c) ∈ Eα(TG) and
(c, b′, b) ∈ Eβ(TG) for some c′, b′. By the definition of join, we conclude that (a, c′, b) ∈ Eα′(TG). Note that all the
implications above were in fact equivalences, so we get the opposite direction as well. All of the other cases follow
similarly.

To prove that the containment is strict observe first that in [25], Theorem 4.3, GXPath was shown to be equivalent
to (FO∗)3, the three-variable fragment of FO with binary transitive closure [32]. Consider now the following TriAL

28

expression:

U
1,2,3

✶
ϕ
U,

where ϕ = (1 6= 2) ∧ (1 6= 3) ∧ (1 6= 1′) ∧ (2 6= 3) ∧ (2 6= 1′) ∧ (3 6= 1′) ∧
∧

a∈Σ,1≤i≤3 i 6= a ∧
∧

a∈Σ,1′≤i≤3′ i 6= a and
U and U is the universal relation. It follows easily that this expression has an nonempty answer set if and only if
the original graph database had at least four different nodes. It is well known that this query is not expressible in
L3∞,ω . Since (FO∗)3 is contained in L3∞,ω we obtain the desired separation result.

Proof of Theorem 8

We begin by proving that full CNREs and TriAL
∗ are incomparable in terms of expressive power.

The existence of a CNRE query not expressible by TriAL∗ simply follows from the fact that TriAL∗ is contained in
L6∞,ω . The reason for this is that CNREs can ask for a 7-clique, a property not expressible in L6∞,ω .

To see the reverse we will use a well know fact that CNREs are a monotonic class of queries. That is for any two
graph databases G and G′ such that G ⊆ G′ (that is G′ contains all the nodes and edges of G) and any CNRE q we
have that (u, v) is in the answer to q on G implies that (u, v) is in the answer to q on G′ as well.

Next consider TriAL expression

e := (E
1,2,3

✶
2=a

U)c
1,2,3

✶
ϕ
U,

with ϕ =
∧

b∈Σ 1 6= b, 3 6= b. When interpreted over (a translation into a triplestore of) a graph database G,
this expression returns all pairs of nodes that are not connected by an a-labeled edge. (Formally we will return
all the triples u, v, w such that u and w are not connected by an a-labeled edge. The extra join just handles the
specifics of our translation of a graph database into a triplestore). Suppose now that there is a CNRE q defining the
aforementioned query.

Consider the following two graphs.

b
v v′

G

a

b
v v′

G′

The nodes (v, v′) will be in the answer to our query over the graph G. Using the monotonicity of CNREs and the
fact that G is contained in G′ we conclude that (v, v′) is also in the answer to our query over G′. Note that this is
a contradiction since we assumed that q extracts all pairs of nodes not connected by an a-labeled path.

This concludes the proof of part one of our Theorem.

Next we show that UCNREs using only three distinct variables are contained in TriAL∗. Observe first that for any
NRE e there is a TriAL∗ expression Ee equivalent to e over all data graphs (Corollary 2). We will now show that
any CNRE that uses precisely three variables is definable using TriAL. To see this, consider the following example.
Let Q be the following CNRE:

Q(x, y, z) := (x, e1, y) ∧ (z, e2, y) ∧ (y, e3, y) ∧ (y, e4, x).

It is easy to check that the following TriAL expression:

(((Te1

1,2,3

✶
1=1

U)
1,2,3

✶
2=2′

(Te2

1,3,2

✶
1=1

U))
1,2,3

✶
2=2′

(Te3

2,1,2

✶
1=3

U))
1,2,3

✶
2=2′,1=1′

(Te3

3,1,2

✶
1=1

U),

where Tei is the TriAL equivalent of ei, is equivalent to Q over all graph databases.

Notice that here we have to output all the triples (x, y, z) satisfying the condition of our conjunctive query. For this
we first join each Tei with the universal relation and arrange the nodes potentially appearing in the answer in the

29

right order. For example, when dealing with (x, e1, y) we define Te1 ✶
1,2,3
1=1 U , where we put the nodes appearing in

Te1 in the correct order. At the end we simply join all the resulting relation in a way that preserves the designated
objects. Here we have to take care that we force equality only on the objects used in the conjunctions involved up
to now.

It is straightforward to extend this construction to the most general case of an arbitrary number of conjuncts with
various arrangement of variables.

Finally, since TriAL expressions are closed under union we get that UCNREs with only three variables are contained
in TriAL∗. That the containment is proper it follows from the first part of the proof.

Proof of Corollary 4

The proof here follows the same lines as the one of Theorem 7. Because of this we only have to show how to define
an equivalent TriAL∗ expression for any of the newly added data operators in GXPath(∼).

• For ϕ = 〈α = β〉 we define Eϕ = Eα✶
1,1,1
1=1′,ρ(3)=ρ(3′)Eβ

• For ϕ = 〈α 6= β〉 we define Eϕ = Eα✶
1,1,1
1=1′,ρ(3) 6=ρ(3′)Eβ

• For α′ = α= we define Eα′ = Eα✶
1,2,3
ρ(1)=ρ(3) Eα

• For α′ = α6= we define Eα′ = Eα✶
1,2,3
ρ(1) 6=ρ(3) Eα

It is again straightforward to see that the described translations works as desired.

To show that the containment is strict we use a similar approach as when proving Theorem 7. We first notice that
by combining the proofs of Theorems 4.3 and 6.2 from [25] one can show that GXPath(∼) is contained in (FO∗)3(∼).
Here by (FO∗)3(∼) we denote the three variable fragment of FO∗ enriched with the data value comparison operator
∼ that, when interpreted on data graphs, states if two nodes have the same data value. That is the formula x ∼ y
will be true if and only if x and y have the same data value.

More formally, we will represent a data graph G = (V,E, ρ) as a FO structure G = (V, (Ea : a ∈ Σ),∼) with Ea =
{(v, v′) : (v, a, v′) ∈ E}. It is straightforward to see that with this interpretation we have GXPath(∼) ⊆ (FO∗)3(∼).

It is also straightforward to see that the 3-pebble game [24] for L3∞,ω(∼) follows the intended semantics when
interpreted over data graphs. (Note that the game works over any class of structures, but over data graphs only
relations are edge relations and the data value comparison.)

We can now play the 3-pebble game over the 3-clique graph and the 4-clique graph [24] where all data values are
the same. The same winning strategy for the duplicator as in the game with no data values will still work, so we
conclude that L3∞,ω(∼) can not distinguish the two models.

Consider now the following TriAL expression:

U
1,2,3

✶
ϕ
U,

where ϕ = (1 6= 2) ∧ (1 6= 3) ∧ (1 6= 1′) ∧ (2 6= 3) ∧ (2 6= 1′) ∧ (3 6= 1′) ∧
∧

a∈Σ,1≤i≤3 i 6= a ∧
∧

a∈Σ,1′≤i≤3′ i 6= a and U

is the universal relation. It follows easily that this expression has different answer on the two models (since it asks
for four different nodes in the original graph database). This finishes our proof.

Proof of Proposition 6

We begin by showing that register automata are not contained in TriAL∗. To see this observe that it is straightforward
to show that TriAL∗ is contained in the infinitary logic L6∞,ω. This can be shown by a straightforward inductive
translation.

Next we observe that for any n register automata can define a property not expressible in Ln∞,ω . For this consider
the following regular expression with memory, shown in [26] to be equivalent to register automata:

e2 :=↓ x1a[x
6=
1] ↓ x2

en+1 := en · a[x
6=
1 ∧ x

6=
2 ∧ · · · ∧ x

6=
n] ↓ xn+1.

30

Since no node can have more than one data value attached it follows that the answer to the query posted by the
expression en is nonempty if and only if the graph database has at least n different elements.

It is well known [24] that Ln∞,ω can not define a query stating that the model has at least n + 1 element. Since

TriAL∗ is contained in L6∞,ω the desired result follows from the fact that e7 is nonempty only on the graphs with at
least 7 elements.

Next we prove that certain TriAL
∗ queries are not definable using register automata. To do so recall that register

automata, when used as a graph query language, simply retrieve all nodes connected by a path whose label (i.e. the
data word [26] it defines) belongs to the language of the automaton.

Consider now the query that returns all pairs of nodes such that there is no a-labeled edge between them. This
query is easily seen not to be definable using register automata. Indeed, if it were, we could take any graph that has
a nonempty answer set to this query and connect some two nodes in the answer set with an a-labeled edge. Now the
same path that connected them in the original graph would work as a witness in the modified graph. This, however,
is a contradiction, since the two nodes are not in the answer to the query on the new graph.

On the other hand, it is straightforward to define this query in TriAL using the expression (σ2=aE)c.

31

