
Using variable automata for querying data graphs

Domagoj Vrgoč

University of Edinburgh and PUC Chile
Vicuna Mackenna 4860, Edificio San Agustin, Macul, Santiago, Chile

domagojvrgoc@gmail.com

Abstract

Thus far query languages for graphs databases that, in addition to navigating the structure of a graph, also
consider data values encountered along the paths they traverse, seem to exhibit somewhat dual behaviour
in terms of the efficiency of their query evaluation problem. Namely, their combined complexity is either
tractable, or are at least PSpace-hard. In this paper we show how to use the model of variable automata
to get a query language with intermediate (NP-complete) combined complexity of query evaluation. Since
variable automata are incomparable in terms of expressive power with previously studied querying mecha-
nisms for data graphs we also show how to join their capabilities with the ones of previously used languages
without an increase in the complexity of query evaluation, thus getting the best of both worlds.

Keywords: Graph databases, query languages, variable automata

1. Introduction

Querying graph databases has become an im-
portant topic in the database community, fuelled
by applications such as social networks, biologi-
cal databases and the Semantic Web. There are
now several vendors offering graph database sys-
tems [4, 12] and a growing body of research lit-
erature on the subject (for a survey see [1]). In
all of these applications the data is naturally mod-
elled by graphs, with nodes representing entities in
the database and edges representing various con-
nections these entities can form. For example if we
are describing a social network it is natural to rep-
resent users by nodes, with edges symbolizing the
connection between two users, such as friends, co-
workers, relatives and so on. In this model a node
carries information about a specific user in the usual
(attribute name, attribute value) format, where the
name of the attribute is drawn from a finite alpha-
bet of labels, while the attribute value comes from
an infinite domain. For example we can store in-
formation about user’s name, phone number, etc.
Furthermore, since nodes can form different types
of connections, it is usual to assign labels to the
edges connecting them, as well as some additional
information such as the time of the edge creation,

or how the edge was modified.

Over the years several querying mechanisms for
graph data have been developed, both for navigat-
ing graphs and for dealing with the stored data, and
their evaluation properties were studied in detail.
Most notable among these are regular path queries,
or RPQs [3] and their extensions with conjunction
and two-way navigation [2], or the ability to define
more complex graph patterns [13]. All of them have
in common the fact that they query the graph struc-
ture without the ability to access data values stored
in the nodes. More recently languages that in addi-
tion to topology also consider data values have been
studied [9, 11]. For both these classes of languages
one of the main concern is the efficiency of their
query evaluation – that is the problem of checking,
given a data graph, a query and a tuple of nodes, if
this tuple belongs to the answer of the query on this
given graph. This problem is often referred to as
the combined complexity of query evaluation. When
the query itself is fixed and not considered as part
of the input we are talking about data complexity.
By now the consensus is that while navigational
languages can be designed with very low combined
complexity in mind, for languages that mix topo-
logical properties with data features the problem is
either tractable, or at least PSpace-hard.

Preprint submitted to Elsevier October 24, 2014

Indeed, it appears that models that use mem-
ory, such as register automata and their expression
equivalent [11], make the query evaluation PSpace-
hard, while XPath-based approaches bring the com-
plexity down to PTime, but lose the ability to store
values into separate memory locations. However,
the panorama of languages that mix topology and
data is far from being completely understood and
it therefore makes sense to look for other query for-
malisms that might lead to languages with lower
complexity of query evaluation while still retaining
some of the desirable properties related to manipu-
lation of memory locations.

One such model that was not considered previ-
ously for querying graphs is that of variable au-
tomata. These were originally introduced in [6] to
reason about words over (countable) infinite alpha-
bets, but here we show how they can also be used
to define a graph query language with NP-complete
combined complexity. We also show that data com-
plexity remains NL-complete, matching the bound
for RPQs. Furthermore, since variable automata
are incomparable in terms of expressive power with
the well established model of register automata, we
show how the two can be joined together to get a
graph querying formalism whose evaluation com-
plexity (both data and combined) does not exceed
that of register automata, while at the same time
giving them more expressive power.
Remark. Note that some of the results presented
here were announced previously in [10].
Organization. We review notation in Section
2. In Section 3 we introduce variable automata
and show how they can be used to query graph
databases, while in Section 4 we extend register au-
tomata in a way that subsumes properties definable
by variable automata. We conclude in Section 5.

2. Preliminaries

Let Σ be a finite alphabet and D a countable
infinite set of data values.

Definition 2.1. A data graph (over Σ) is pair G =
(V,E), where

• V is a finite set of nodes;

• E ⊆ V ×Σ×D×V is a set of edges where each
edge contains a label from Σ and a data value
from D.

We write V (G) and E(G) to denote the set of
nodes and edges of G, respectively. An edge e

u1

u2

u3

u4

u5 u6

(
a
3

)
(
b
1

)(
a
3

)
(
c
7

)

(
a
4

)
(
a
5

)
(
a
1

)

Figure 1: A graph database with data values

from a node u to a node u′ is written in the form
(u,
(
a
d

)
, u′), where a ∈ Σ and d ∈ D. We call a the

label of the edge e and d the data value of the edge
e. We write D(G) to denote the set of data values
in G. A sample data graph is given in Figure 1.

A path from a node v to a node v′ in G is a
sequence π = v1

(
a1

d1

)
v2
(
a2

d2

)
v3
(
a3

d3

)
· · · vn

(
an

dn

)
vn+1

such that each (vi,
(
ai

di

)
, vi+1) is an edge for each

i ≤ n, and v1 = v and vn+1 = v′.
Each path π defines a data word w(π) =(

a1

d1

)(
a2

d2

)(
a3

d3

)
· · ·
(
an

dn

)
. Data words are commonly

studied in XML literature [5], where they are used
to describe paths in XML trees. We use them in a
similar manner to describe paths in data graphs.

Remark. Note that we use the model where both
labels and data values appear in the edges. Several
different approaches have been used in the past, for
example with data values in the nodes and labels on
edges [11], or both labels and data values in nodes
and edges [12], but it is easily shown that all of
these variations are essentially equivalent [14]. Our
choice is dictated by the ease of notation primarily,
as it identifies paths with data words.

3. Variable automata as a graph language

In this section we show how to use the model of
variable automata introduced in [6] to query graph
databases. These automata can be viewed as less
procedural than register automata [8]; in fact they
can be seen as NFAs with a guess of values to be
assigned to variables, with the run of the automa-
ton verifying correctness of the guess. Originally
they were defined on words over infinite alphabets
[6], but it is straightforward to extend them to the
setting of data words. In what follows we define
variable automata as a query language, give exam-
ples of some queries one can ask using them and

2

show that their query evaluation problem can be
solved in NP-time.

We begin by defining variable automata formally.

Definition 3.1. Let Σ be a finite alphabet and D
a countable infinite domain of data values. We will
also assume that we have a countable set V of vari-
ables. A variable finite automaton (or VFA for
short) over Σ×D is a pair A = (Γ, A), where A is
an NFA over the alphabet Σ×Γ, and Γ = C∪X∪{?}
such that:

• C ⊆ D is a finite set of data values called con-
stants

• X ⊆ V is a finite set of bound variables, and

• ? is a symbol for the free variable.

Next we define when a VFA accepts a data word
w = w1w2 . . . wn ∈ (Σ × D)∗. For each letter u =(
a
d

)
in Σ×D, we let λ(u) = a (label projection) and

δ(u) = d (data projection).
Let v = v1v2 . . . vn ∈ (Σ×Γ)∗ be a word accepted

by A. We will say that v is a witnessing pattern for
w (or that w is a legal instance of v) if the following
holds:

1. λ(vi) = λ(wi), for i = 1, . . . , n,

2. δ(vi) = δ(wi) whenever δ(vi) ∈ C,

3. if δ(vi), δ(vj) ∈ X, then δ(wi), δ(wj) /∈ C and
δ(wi) = δ(wj) iff δ(vi) = δ(vj),

4. δ(vi) = ? and δ(vj) 6= ?, then δ(wi) 6= δ(wj).

Intuitively the definition states that in a legal
instance constants and finite alphabet part will re-
main unchanged (conditions 1 and 2), while every
bound variable is assigned with the same unique
data value from D −C (condition 3) and every oc-
currence of the free variable ? is freely assigned any
data value from D that is not assigned to any of
the bound variables (condition 4). Note that the
condition 4 is a lot stronger than saying that ? is
just a wild card.

We now define the language of A, or simply L(A)
for short, as the set of all data words w for which
there exists a witnessing pattern v ∈ L(A). That is,
a word is accepted by A if there is a witnessing pat-
tern for it that is accepted by the underlying NFA
A. Note that it is straightforward to define regular
expressions for VFAs that will simply inherit the
associated semantics.

Example 3.2. Here we give two examples of lan-
guages accepted by VFAs.

1. The language where the first data value is equal
to the last and all other values are different
from them (but can be equal among themselves)
is defined by the following VFA:

qastart qb qc

(
a
x

)
(
a
?

)
(
a
x

)
2. The language where the last data value differs

from all other data values is defined by the fol-
lowing VFA:

qastart qb

(
a
x

)
(
a
?

)

Note that the last example is not expressible by
register automata [8]. It was shown in [7] that
the language L = {

(
a
d1

)(
a
d1

)(
a
d2

)(
a
d2

)
. . .
(
a
dk

)(
a
dk

)
|

k ≥ 1} is not expressible by VFAs. However, it
is straightforward to show that it is expressible by
register automata. We thus conclude that VFA and
register automata are incomparable in terms of ex-
pressive power.

3.1. Using variable automata to query graph
databases

We now show how to use VFAs as a query lan-
guage for data graphs and study the complexity
of the query evaluation problem. As is standard
when using a language theoretic formalism to de-
fine a query over graph databases [3, 2], given a
data graph G and a VFA A we define the relation
A(G) ⊆ V × V that consists of all pairs (s, t) of
nodes in G such that there is a path π between
them with the property that w(π) ∈ L(A). The re-
lation A(G) is then the answer to the query posted
by A over G.

Now we study the following problem.

Query Evaluation for VFAs

Input: A data graph G, two nodes s, t from

V (G) and a VFA A.

Task: Decide whether (s, t) ∈ A(G).

Note that this corresponds to the combined com-
plexity of query evaluation; if the automaton A is
fixed, we deal with data complexity.

3

Theorem 3.3. • Query Evaluation for
VFAs is NP-complete.

• For each fixed A, the problem Query Evalu-
ation for VFAs is NL-complete.

To prove the theorem we will use the following
claim:

Claim 3.4. Assume we are given a graph G, two
nodes s, t ∈ G and a VFA A. If there exists a word
w ∈ L(A) that is a label of a path in G from s to
t, then there is a path in G from s to t, with the
label w′ and of length at most |G| · |A|+ 1 such that
w′ ∈ L(A), where |A| denotes the number of states
in A.

Proof. To see that the claim holds assume that
w = w1 . . . wl ∈ L(A) is label of a path of length
greater than |G| · |A|+ 1 as above. Let v = v1 . . . vl
be a witnessing pattern for w that is accepted by
A. Then there is a sequence q0, q1, . . . ql of states
of A such that (qi, vi+1, qi+1) is a transition in A,
with ql a final state. There is also an assignment of
variables in v to values in D that witness w (as in
the definition of a witnessing sequence).

By the assumption there is a path n0, . . . , nl of
nodes in G with the label w and such that n0 = s
and nl = t. By the pigeon hole principle there exists
i, j ≤ n such that ni = nj and qi = qj . Observe
that n0, . . . , ni, nj+1, . . . , nl is still a path in G from
s to t with the label w′ = w1 . . . wiwj+1 . . . wl and
that q0 . . . qiqj+1 . . . ql is an accepting run on v′ =
v1 . . . vivj+1 . . . vl. Also note that v′ is a witnessing
pattern for w′, as witnessed by the same assignment
of data values to variables in v′ as it was in v. By
repeating this cutting procedure we get the desired
result.

Proof of Theorem 3.3. We start by showing the
NP upper bound. For the NP-algorithm we sim-
ply guess a path of length at most |G| · |A| + 1–a
polynomial in the size of the input. We then check
membership of this word in the language of A in
NP [6]. Since the nondeterministic guessing can be
carried out at the same time as guessing the actual
word we obtain the desired result.

The NP-hardness follows from NP-hardness of
the membership problem for variable automata
from [7]. However, since there are some minor dif-
ferences between the automata model in [7] and the
one presented here, we provide an independent NP-
hardness proof in order to make the presentation
self contained. We do this by showing a reduction

from k-CLIQUE. This problem asks, given an undi-
rected, unlabelled graph G and a number k, to de-
termine if G has a clique of size at least k.

Suppose we are given an undirected unlabelled
graph G and a number k. We will construct a graph
G′ with |G| + 2 nodes , select two nodes s, t ∈ G′
and construct a VFA A of size O(k2) such that G
contains a k-clique if and only if there is a path π
from s to t in G′ such that w(π) belongs to L(A).

Take Σ = {a, b} and make G directed by adding
edges in both directions for every edge in G. As-
sume that every vertex v is given a unique data
value dv. Label the edges (v, v′) ∈ G by

(
a
dv′

)
and

add two more nodes s and t. Add an edge from s
to every other node v (except s, t) and label them
with

(
b
dv

)
. Also add an edge from every node in G

to t and label them by
(
b
dt

)
, with dt a new unique

data value. We call the resulting graph G′. (The
idea is that every node has a unique data value –
its id.)

We define our VFA as a linear path with transi-
tions:

• (q0,
(

b
x1

)
, q1), (q1,

(
a
x2

)
, q2) (this collect the first

two nodes in the clique),

• (qi−1,
(
a
xi

)
, q′i), (q

′
i,
(
a
x1

)
, qi1), (qi1,

(
a
xi

)
, p1i),

(p1i ,
(
a
x2

)
, qi2), (qi2,

(
a
xi

)
, p2i), . . . ,

(pi−2i ,
(

a
xi−1

)
, qii−1), (qii−1,

(
a
xi

)
, qi), 3 ≤ i ≤ k,

• (qk,
(
b
dt

)
, qk+1) (to get the target node).

Note that here we add a new state for each tran-
sition of the automaton.

Next we show that there is a k-clique in G iff
there is a data path form s to t in G′ whose label
belongs to L(A).

Suppose first that there is a k-clique in G. Then
we simply move from s to arbitrary point in that
clique using the b-labelled edge and traverse the
clique back and forth until we reach the k-th el-
ement of the clique. Note that starting from the
third element, whenever we select a different node
in the clique we have to move back and forth be-
tween this node and all previously selected ones to
match the transitions (we check that they are in-
terconnected), but since we have a clique this is
possible. Finally, after selecting the last node and
verifying that it is connected to all the others we
move to t using a b-labelled edge.

Now suppose that there is a path from s to
t in G′ whose label belongs to L(A). This
means that we will be able to select k different

4

nodes n1, . . . , nk in G with data values stored in
x1, . . . , xk. Since all data values in the graph are
different they also act as ids. Now take any two
nl, nm with l < m ≤ k. Then we know that nl
and nm are connected in G because after select-
ing nm we have to go through the transitions stat-
ing (pl−1m ,

(
a
xl

)
, qml), (qml ,

(
a
xm

)
, plm) and similarly for

when l,m are at the beginning or the end of the
transition chain. Since no two data values in G
are the same this means that we have an edge be-
tween nl and nm. This completes the proof of NP-
hardness.

Next we show the NL-bound for data complexity.
Assume that the automaton A is fixed and only G
and s, t are part of the input. Let X = {x1, . . . , xl}
be the set of bound variables used by A and C =
{c1, . . . , cm} the set of constants. For the NL-upper
bound we simply guess a unique data value dxi ap-
pearing in G that will be assigned to the variable xi.
We can also decide that the value dxi = ⊥, denoting
that the variable xi is unassigned. Since the au-
tomaton is fixed we can do this using a logarithmic
amount of space.

Next we do the usual on-the-fly nonemptiness
testing for our automaton. Namely, we start with
s0 = s and guess a node s1 ∈ G. If there is an
edge (s0,

(
a1

d1

)
, s1) in G or some a1, d1 our algorithm

checks that:

1. d1 ∈ C and (q0,
(
a1

d1

)
, q1) is a transition in A,

for some state q1, or

2. d1 /∈ C, and for some i we have d1 = dxi and
(q0,

(
a1

xi

)
, q1) is a transition in A, or

3. d1 /∈ {dx1 , . . . , dxl } and (q0,
(
a1

?

)
, q1) is a transi-

tion in A.

If any of the conditions above are satisfied the al-
gorithm proceeds with s1 in place of s0, otherwise
it rejects. The algorithm halts and accepts if it
reaches t. If it performs more than |G| · |A| + 1
steps the algorithm halts and rejects.

By Claim 3.4 and definition of acceptance for
queries defined by VFAs we get the desired result.
The NL-lower bound follows from the fact that
graph reachability is already NL-hard.

Note that the combined complexity dropped from
PSpace to NP, which is viewed as much more ac-
ceptable for query evaluation, at least over large
databases. This is the complexity of relational con-
junctive queries, for instance, or conjunctive regular
path queries over graphs [3].

4. Adding registers to variable automata

We know that variable automata are incompa-
rable in expressive power with register automata.
In particular we showed that they can express a
property that all data values differ from the last.
On the other hand, bound variables in variable au-
tomata behave like a limited version of registers
that are capable of storing a data value only once.
As the result, variable automata are not able to
express some simple properties definable even by
formalisms more restrictive than register automata
[11].

In this section we define a general model that
will encompass both register and variable automata
and study its query evaluation problem over graphs.
The model is essentially a variable automaton that
can use the full power of registers in a same way
that an ordinary register automaton would. It will
subsume both models, but we shall see that it does
not increase the complexity of query evaluation be-
yond that of register automata.

To formalize storing and comparing data values
into registers we will use conditions. Assume that
for each k > 0, we have registers x1, . . . , xk at our
disposal. Then the set of conditions Ck is given by
the grammar:

c := > | ⊥ | x=i | x
6=
i | c∧c | c∨c | ¬c, 1 ≤ i ≤ k.

The satisfaction of a condition is defined with re-
spect to a data value d ∈ D and an assignment
τ : {x1, . . . , xk} → D of registers as follows:

• τ, d |= > and τ, d 6|= ⊥;
• τ, d |= x=i iff d = τ(xi);

• τ, d |= x 6=i iff d 6= τ(xi);
• the semantics for Boolean connectives ∨,∧,

and ¬ is standard.

Note that an assignment of registers can also be
viewed as a tuple τ ∈ Dk. We can now formally
define register automata with variables.

Definition 4.1. Let Σ be a finite alphabet, k a
natural number and C a finite set of data values.
A k-register automaton with variables (or varRA
for short) is a tuple A = (Q, q0, F, τ0, T, {?},Σ, C),
where:

• Q is a finite set of states;
• q0 ∈ Q is the initial state;
• F ⊆ Q is the set of final states;
• τ0 is the initial assignment of the registers;

5

• T ⊆ Q× Σ× (Ck ∪ C ∪ {?})× 2{1,...,k} ×Q is
a finite set of transitions, which could be of the
following form:

– (q, a, c, I, q′) with c ∈ Ck, or
– (q, a, d, ∅, q′) with d ∈ C, or
– (q, a, ?, ∅, q′).

We now define the notion of acceptance. We refer
to transitions (q, a, ?, ∅, q′) as ?-transitions. A k-
register automaton A with variables accepts a data
word w = w1 · · ·wn if there is a sequence q0, . . . qn
of states in Q with qn ∈ F , a sequence t1, . . . tn
such that ti is a transition from qi−1 to qi, and a
sequence τ0, . . . τn of register assignments such that
for each i ∈ {1, . . . , n}, we have:

• If ti = (qi−1, a, c, I, qi) then τi, δ(wi) |= c,
λ(wi) = a, and τi+1 is obtained from τi by
putting δ(wi) in registers from I. That is, we
define τi+1(j) = τi(j), if j /∈ I, and τi1(j) =
δ(wi), if j ∈ I;

• If ti = (qi−1, a, d, ∅, qi), then λ(wi) = a,
δ(wi) = d and τi+1 = τi;

• If ti = (qi−1, a, ?, ∅, qi) then δ(wi) = δ(wj) iff
tj is a ?-transition.

Notice that register automata with variables ex-
tend both register and variable automata in a nat-
ural way. Moreover, if we restrict the registers by
allowing them to store values only once and restrict
conditions to single equality tests, we get variable
automata (to prohibit equality with constants we
simply test for this in the conditions attached to
each transition). On the other hand if we disallow
the usage of the free variable ? we get register au-
tomata (note here that constants can be easily sim-
ulated by additional registers storing the constant
values in the initial configuration τ0).

Example 4.2. The following varVFA defines the
language L = {

(
a
d1

)(
a
d1

)(
a
d2

)(
a
d2

)
. . .
(
a
dk

)(
a
dk

)(
a
d

)
|

k ≥ 1, d 6= d1, . . . , dk} that is not expressible us-
ing neither register nor variable automata.

qastart qb qc qd
a,>, {x} a, x=, ∅ a, ?, ∅

a, x=, ∅

Next we study complexity of the query evaluation
problem for our automata. Given such an automa-
ton A, and a data graph G, we write (s, t) ∈ A(G)

if there is a path π from s to t such that w(π) is
accepted by A.

Query Evaluation for varRAs

Input: A data graph G, two nodes s, t from

V (G) and a varRA A.

Task: Decide whether (s, t) ∈ A(G).

Despite the increased expressive power, this
model still retains the evaluation complexity of reg-
ister automata.

Theorem 4.3. • Query Evaluation for
varRAs is PSpace-complete.

• For each fixed A, the problem is NL-complete.

Proof. To prove this we use a similar construction
to the one in [11]. That is for a finite set of data
values D and a k-register automaton with variables
A we produce a variable automaton AD that ac-
cepts precisely the same data words as A does when
restricted to data words whose values come from
the set D. We start by proving the PSpace upper
bound.

Let A = (Q, q0, F, τ0, T, {?},Σ, C) be a k-register
automaton with variables and D a finite set of data
values.

Next we define our VFA AD = (Γ, A) with Γ =
{C ∪D} ∪X ∪ {?}. The NFA A = (Q′, q′0, F

′, T ′)
over Σ× Γ is defined as follows:

• Q′ = Q×Dk
⊥, where ⊥ is a new data value not

in D and D⊥ = D ∪ {⊥}
• q′0 = (q0, τ0)

• F ′ = F ×Dk
⊥

• For the transitions:

– If (q, a, c, I, q′) ∈ T we add
((q, τ),

(
a
d

)
, (q′, τ ′)) to T ′ iff τ, d |= c

and we have τ ′(i) =

{
τ(i) for i /∈ I
d for i ∈ I

– If (q, a, d, ∅, q′) ∈ T , with d a constant in
C we add ((q, τ),

(
a
d

)
, (q′, τ)) to T ′

– If (q, a, ?, ∅, q′) ∈ T we add
((q, τ),

(
a
?

)
, (q′, τ)) to T ′

Next we prove that the variable automaton ob-
tained in this construction indeed accepts the same
class of data words over D as the original register
automaton with variables does.

6

Claim 4.4. Let w be a data word whose data values
come from D. Then w ∈ L(AD) if and only if
w ∈ L(A).

Proof. Assume first that w =
(
a1

d1

)
· · ·
(
an

dn

)
, where

d1, . . . dn are from D is accepted by AD.
Since AD is a VFA with constants and free vari-

able only (and no bound variables), this means that
there is a word v = v1 · · · vn ∈ (Σ × Γ)∗, accepted
by the underlying NFA A, such that for 1 ≤ i ≤ n
it holds:

• λ(vi) = λ(wi) (finite labels match)
• δ(vi) = δ(wi) , for vi = d, a constant of AD

(constants match)
• δ(vi) = ? and δ(vj) 6= ? implies that δ(wi) 6=
δ(wj) (free variable condition is true).

This in turn means that there is a sequence
(q0, τ0), . . . (qn, τn) of states in AD and appropri-
ate transitions that accept v as the witnessing pat-
tern of w. But this same sequence of states and
transitions of AD can be easily transformed into an
accepting run of A on w (follows from the construc-
tion of AD), thus implying that w ∈ L(A).

To see that the reverse is true we simply trans-
form the accepting run of A on w into the matching
run of AD. The witnessing pattern for w will be ob-
tained by converting every data value matched with
? in w by ? itself. All the details easily follow from
the definition of acceptance and the construction of
AD.

To complete the proof of Theorem 4.3 we use the
algorithm for data complexity from Theorem 3.3.

We are given our k-varRA A, a data graph G
and s, t in G. Let D = D(G) be the set of all data
values appearing in G. Note that |D| = O(|G|).
Observe now that for this A and D the size of AD

is bounded by O(|A| × |D|k).
Recall that the algorithm from Theorem 3.3

checks for the existence of a path that belongs to
the language of a variable automaton using stan-
dard on-the-fly technique. Since each of the states
of AD can be described using only polynomial space
and since the size of AD is exponential in the size
of the input the algorithm runs in PSpace. For
data complexity we have A fixed, so each state of
AD can be described using logarithmic space and
the number of states is polynomial in the size of the
input, so the running time is NL.

The lower bounds follow from the complexity of
query evaluation of register automata [11].

5. Conclusions
In this paper we examined how variable automata

behave when used as a graph query language. In
particular we showed that combined complexity of
query evaluation for them is NP-complete, a bound
lower than that for other graph query languages
that allow usage of memory [11, 14]. We also es-
tablished a NL-complete bound for data complex-
ity, matching that of RPQs. As variable automata
are incomparable in terms of expressive power with
other formalisms previously studied, we also con-
structed a graph query language subsuming both
variable automata and register automata. Surpris-
ingly, for this highly expressive language querying
complexity does not increase when compared to reg-
ister automata alone. We therefore believe that us-
ing variable automata is an interesting approach to
querying graph databases and that some of their
abilities can be added to register automata to in-
crease expressive power without hindering their ef-
ficiency.
Acknowledgements. The author would like to
thank the reviewers for their comments. This
work was supported by EPSRC grants G049165 and
J015377 and Millennium Nucleus Center for Seman-
tic Web Research Grant NC120004.

References

[1] Barceló, P., 2013. Querying graph databases. In:
PODS.

[2] Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi,
M., 2000. Containment of conjunctive regular path
queries with inverse. In: KR.

[3] Consens, M., Mendelzon, A., 1990. Graphlog: A visual
formalism for real life recursion. In: PODS.

[4] Dex, 2013. DEX query language, Sparsity Technologies.
http://www.sparsity-technologies.com/dex.php/.

[5] Figueira, D., 2010. Reasoning on words and trees with

data. Ph.D. thesis, ÉNS de Cachan.
[6] Grumberg, O., Kupferman, O., Sheinvald, S., 2010.

Variable automata over infinite alphabets. In: LATA.
[7] Grumberg, O., Kupferman, O., Sheinvald, S., 2010.

Variable automata over infinite alphabets. Manuscript.
[8] Kaminski, M., Francez, N., 1994. Finite memory au-

tomata. Theoretical Computer Science 134 (2).
[9] Libkin, L., Martens, W., Vrgoč, D., 2013. Querying

Graph Databases with XPath. In: ICDT.
[10] Libkin, L., Tan, T., Vrgoč, D., 2013. Regular expres-

sions with binding over data words for querying graph
databases. In: DLT.

[11] Libkin, L., Vrgoč, D., 2012. Regular Path Queries on
Graphs with Data. In: ICDT. pp. 74–85.

[12] Neo4j, 2013. Neo4j, The graph database.
http://www.neo4j.org/.

[13] Pérez, J., Arenas, M., Gutierrez, C., 2010. nSPARQL:
A navigational language for RDF. JWS 8 (4).

[14] Vrgoč, D., 2014. Querying graphs with data. Ph.D. the-
sis, School of Informatics, University of Edinburgh.

7

